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An Anisotropic Mumford-Shah Model

David Vicente

March 26, 2015

Abstract

We introduce an anisotropic Mumford-Shah functional in dimension n = 2, 3. To
detect the thin tubular structures of an image, the classical Hausdorff measure in the
original model is replaced by an anisotropic surface measure depending on a riemannian
metric M. We then consider a relaxation of this energy in the set of SBV functions and
we prove that the minimizing problem admits solution under suitable conditions. We also
prove that a relaxed solution provides in fact a regular solution to the initial problem.

Introduction
This work is a contribution to the problem of detection of thin structures, namely tubes,
in a digital image with dimension n = 2 or n = 3. In a previous work [1], we have
introduced an energy in the binary context. More precisely, we assumed that the image
histogram was bimodal. In this paper, we remove this assumption and generalize our
previous results. To solve this problem, we modify the so-called Mumford-Shah model
[2] by introducing a geometric prior which favors tubes. The domain of the image is an
open and bounded set Ω ⊂ Rn, g : Ω→ R is a given image with normalized gray level in
[0; 1] and the well-known Mumford-Shah energy associated to this image is defined as

E(u,K) =
∫

Ω\K
(u− g)2dx+

∫
Ω\K
|∇u|2dx+Hn−1(K),

where K a compact subset of Ω and u ∈ W 1,2(Ω \K). To introduce a geometric prior,
we consider M a riemannian metric associated to g. Formally, M is a function defined
on Ω with values in the set S+

n (R) of symmetric positive definite matrices. To favor the
detection of a set T which has a tubular geometry, at each point of the tube, the unit
ball of the metric must be elongated in the tube direction.

Figure 0.1: Unit Balls for M adapted to a tube T
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The energy associated to this metric can be defined as

EM(u,K) =
∫

Ω\K
(u− g)2dx+

∫
Ω\K
|∇u|2dx+

∫
K
〈Mν, ν〉

1
2dHn−1, (0.1)

where K is a compact C1-hypersurface, ν : K → Sn−1 an unitary, normal vector to K,
and u ∈W 1,2(Ω \K).

In section 1, we introduce a relaxed formulation of this problem and prove that it
admits a solution. In section 2, we show a regularity result and prove that it provides a
solution to the initial unrelaxed problem. In section 3, we present various techniques to
construct the metric M.

1 Relaxed problem
In order to prove that the minimization of EM is a well-posed problem, we introduce a
relaxed formulation and prove that the new relaxed problem admits a solution.

1.1 Functional framework
The following definitions and results are taken from [4], chapters 3 and 4. A function
u ∈ L1(Ω) is said with bounded variation, denoted u ∈ BV (Ω), if its derivative, in the
sense of the distribution, is a Radon measure.

We are interested by the property for this space to allow functions with jump discon-
tinuities. We denote by 〈·, ·〉 the usual scalar product in Rn and introduce{

B+
r (x, ν) = {y ∈ Br(x) : 〈y − x, ν〉 > 0},

B−r (x, ν) = {y ∈ Br(x) : 〈y − x, ν〉 < 0},

for the two half balls contained in the ball Br(x) ⊂ Rn determined by ν ∈ Sn−1.

Definition 1.1. Let u ∈ L1(Ω) and x ∈ Ω. We say that x is an approximate jump point
of u if there exist a, b ∈ R and ν ∈ Sn−1 such that a 6= b and

lim
r→0+

∮
B+
r (x,ν)

|u(y)− a| dy = 0, lim
r→0+

∮
B−r (x,ν)

|u(y)− b| dy = 0.

The set of approximate jump points is denoted by Ju. The triplet (a, b, ν), uniquely
determined up to a permutation of (a, b) and a change of sign of ν, is denoted by
(u+(x), u−(x), νu(x)).

The set Ju inherits the following structure theorem.

Theorem 1.1. Let u be a given function in BV (Ω). Then, Ju is countably (n − 1)-
rectifiable. There exists a countable family (Ki)i of compact C1-hypersurfaces such that
Ju = N ∪ (

⋃
iKi), where Hn−1(N) = 0.

We say that u ∈ BV (Ω) is a special function with bounded variation and we write
u ∈ SBV (Ω), if the Cantor part of its derivative is zero, we obtain:

Du = ∇uLn + (u+ − u−)νuHn−1xJu,

where ∇u is the density of Du with respect to the Lebesgue measure Ln, νu the normal
of the jump set Ju and Hn−1xJu the restriction of the Hausdorff measure to the jump
set.

2



1.2 Existence result
For u ∈ SBV (Ω), replacing K by Ju in (0.1), we define the relaxed energy by

ẼM(u) =
∫

Ω
(u− g)2dx+

∫
Ω
|∇u|2dx+

∫
Ju
〈Mνu, νu〉

1
2dHn−1, (1.1)

where ∇u, Ju and νu are defined in the sense of SBV (Ω). We denote by (P̃M) the relaxed
problem

(P̃M) : min{ẼM(u) : u ∈ SBV (Ω)}.

We introduce the following constraints on M:
i) ellipticity:

(H1) : ∃λ > 0,∃Λ > 0,∀(x, v) ∈ Ω× Rn, λ|v|2 ≤ 〈M(x)v, v〉 ≤ Λ|v|2,

ii) Hölder-regularity:

(H2) : ∃α > 0, ∃C ≥ 0,∀(x, y) ∈ Ω2, ‖M(x)−M(y)‖ ≤ C|x− y|α.

Condition (H1) is equivalent to the inclusion of M spectrum in [λ; Λ]. If M ∈W 1,r(Ω)
and p > n then, according to Sobolev embedding theorem (see [3], chapter 5), condition
(H2) is satisfied with α = 1− n

p .
In this section, we will prove the following result.

Theorem 1.2. Let ẼM be defined as in (1.1) and M a metric which satisfies (H1) and
(H2). Then, the problem (P̃M) admits at least one solution.

To prove this result, we will use the direct method of calculus of variation. The key
tools are Theorem 4.8. (compactness) Theorem 4.7. (lower semi-continuity) of [4] in
the context of a constant and homogeneous metric (that is M ≡ Id). Our result is a
generalization: M is not necessary the identity matrix (anisotropy) and may depend on
x ∈ Ω (non homogeneity).

In the sequel we assume that the hypothesis of Theorem 1.2 are satisfied. We use the
weak*-convergence which is defined in [4], definition 3.11.

Lemma 1.1 (Compactness). Let (uk)k ⊂ SBV (Ω) ∩ L∞(Ω) be such that
(
ẼM(uk)

)
k
is

bounded. Then, there exists a sequence weakly* convergent to u ∈ SBV (Ω).

Proof. According to ellipticity condition (H1), we have∫
Ω
|∇uk|2dx+Hn−1(Juk) ≤ max

{
1;λ−

1
2
}
ẼM(uk). (1.2)

In [4] (Theorem 4.8.), it is proved that the boudedness of the left hand side of (1.2) ensures
the existence of a subsequence (uk)k weakly* converging in BV (Ω) to u ∈ SBV(Ω).

Lemma 1.2 (Lower semicontinuity). Let (uk)k ⊂ SBV (Ω) be a weakly* convergent
sequence to u ∈ SBV (Ω). Then, we have

ẼM(u) ≤ lim inf
k→∞

ẼM(uk).
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Proof. As (uk)k weakly* converges to u then it converges in L1(Ω) and

lim
k→∞

∫
Ω

(uk − g)2dx =
∫

Ω
(u− g)2dx. (1.3)

We may assume that (ẼM(uk))k is bounded, otherwise the result is ensured. So, according
to inequality (1.2),

∫
Ω |∇uk|2dx + Hn−1(Juk) is bounded with respect to k. With [4]

(Theorem 4.7.), it implies that∫
Ω
|∇u|2dx ≤ lim inf

k→∞

∫
Ω
|∇uk|2dx, (1.4)

Hn−1(Ju) ≤ lim inf
k→∞

Hn−1(Juk). (1.5)

According to (1.3), (1.4) and (1.5), it is sufficient to prove that∫
Ju
〈Mνu, νu〉

1
2dHn−1 ≤ lim inf

k→∞

∫
Juk

〈Mνuk , νuk〉
1
2dHn−1. (1.6)

This result is proved in [4] (Theorem 5.2.) for an homogeneous and fixed media (if the
metric M does not depend on x ∈ Ω). In order to overpass this constraint, we introduce
a piecewise constant approximation. Then, we apply the result of [4] for each piece of
the approximation.

Let η > 0 be arbitrary small and A be a finite partition of Ω, such that, for any
A ∈ A, diam(A) < η. For each set A ∈ A, we fix one point xA ∈ A. We denote MA the
metric such as its restriction on A is equal to M(xA). Moreover, for any vector of the
canonical basis ei ∈ Sn−1, we denote{

Πi
t = {x ∈ Ω: 〈x, ei〉 = t} ,

N i
t =

{
t ∈ R : Hn−1(Ju ∩Πi

t) > 0
}
∪
{
t ∈ R : ∃k ∈ N,Hn−1(Juk ∩Πi

t) > 0
}
.

As Hn−1(Ju) <∞ (1.5) and Hn−1(Juk) <∞, then N i
t is at most countable. So, for any

fixed η > 0, there exists a finite partition A of Ω such that any A ∈ A satisfies
∂A ⊂

⋃
i,j Πi

ti,j ,

∀(x, y) ∈ A2, |x− y| ≤ η,
Hn−1(Ju ∩ ∂A) = 0,

∀k ∈ N, Hn−1(Juk ∩ ∂A) = 0.

(1.7)

Figure 1.1: Construction of A

We will estimate the limits of the following integral.∫
Juk

〈Mνuk , νuk〉
1
2dHn−1 =

∫
Juk

(
〈Mνuk , νuk〉

1
2 − 〈MAνuk , νuk〉

1
2
)
dHn−1

+
∫
Juk

〈MAνuk , νuk〉
1
2dHn−1.

(1.8)
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Claim 1: The sequence∫
Juk

(
〈Mνuk , νuk〉

1
2 − 〈MAνuk , νuk〉

1
2
)
dHn−1

converges to 0 uniformly with respect to k ∈ N when η converges to 0+.
Let be A ∈ A, x ∈ A and estimate

〈M(x)νuk , νuk〉
1
2 − 〈MA(x)νuk , νuk〉

1
2 = 〈M(x)νuk , νuk〉

1
2 − 〈M(xA)νuk , νuk〉

1
2 ,

= 〈(M(x)−M(xA))νuk , νuk〉
〈M(x)νuk , νuk〉

1
2 + 〈M(xA)νuk , νuk〉

1
2
.

(1.9)
According to ellipticity condition (H1), it yields

〈M(x)νuk , νuk〉
1
2 + 〈M(xA)νuk , νuk〉

1
2 ≥ 2λ

1
2 , for Hn−1xJuk − a.e. x ∈ A. (1.10)

According to regularity assumption (H2), there exist constants C > 0 and α > 0 such
that

∀x ∈ A, ‖M(x)−M(xA)‖ ≤ C|x− xA|α ≤ Cηα. (1.11)

So, (1.9), (1.10) and (1.11) give∣∣∣〈M(x)νuk , νuk〉
1
2 − 〈MA(x)νuk , νuk〉

1
2

∣∣∣ ≤ Cηα

2λ
1
2
, for Hn−1xJuk − a.e. x ∈ A.

As A is a partition of Ω, we have∣∣∣∣∣
∫
Juk

(
〈Mνuk , νuk〉

1
2 − 〈MAνuk , νuk〉

1
2
)
dHn−1

∣∣∣∣∣ ≤ CηαHn−1(Juk)
2λ

1
2

.

As ellipticity condition givesHn−1(Juk) ≤ λ−
1
2 ẼM(uk), then (Hn−1(Juk))k is a bounded

sequence and it concludes the proof of Claim 1.
Claim 2: We have the following result∫

Ju
〈MAνu, νu〉

1
2 dHn−1 ≤ lim inf

k→∞

∫
Juk

〈MAνuk , νuk〉
1
2 dHn−1.

We denote by
◦
A the interior of the set A. According to [4], Theorem 5.2., we have∫

Ju∩
◦
A
〈M(xA)νu, νu〉

1
2dHn−1 ≤ lim inf

k→∞

∫
Juk∩

◦
A
〈M(xA)νuk , νuk〉

1
2dHn−1.

According to (1.7), the energy on the boundaries is null. It gives∫
Ju∩A

〈M(xA)νu, νu〉
1
2dHn−1 ≤ lim inf

k→∞

∫
Juk∩A

〈M(xA)νuk , νuk〉
1
2dHn−1.

So,∑
A∈A

∫
Ju∩A

〈M(xA)νu, νu〉
1
2dHn−1 ≤

∑
A∈A

lim inf
k→∞

∫
Juk∩A

〈M(xA)νuk , νuk〉
1
2dHn−1,

≤ lim inf
k→∞

∑
A∈A

∫
Juk∩A

〈M(xA)νuk , νuk〉
1
2dHn−1.

As A is a partition of Ω, this conclude the proof of Claim 2 :∫
Ju
〈MAνu, νu〉

1
2dHn−1 ≤ lim inf

k→∞

∫
Juk

〈MAνuk , νuk〉
1
2dHn−1.
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Now, let δ > 0 be an arbitrary small number. According to Claim 1, there exists η > 0
and a partition A defined as above which satisfies

lim sup
k→∞

∣∣∣∣∣
∫
Juk

(
〈MAνuk , νuk〉

1
2 − 〈MAνuk , νuk〉

1
2
)
dHn−1

∣∣∣∣∣ ≤ δ. (1.12)

According to decomposition (1.8), (1.12) and Claim 2, we have∫
Ju
〈MAνu, νu〉

1
2dHn−1 ≤ δ + lim inf

k→∞

∫
Juk

〈Mνuk , νuk〉
1
2dHn−1.

As for Claim 2, we have∣∣∣∣∫
Ju

(
〈Mνu, νu〉

1
2 − 〈MAνu, νu〉

1
2
)
dHn−1

∣∣∣∣ ≤ CηαHn−1(Ju)
2λ

1
2

.

We may conclude∫
Ju
〈Mνu, νu〉

1
2dHn−1 ≤ lim inf

k→∞

∫
Juk

〈Mνuk , νuk〉
1
2dHn−1.

Recall that we have the following chain rule for SBV (Ω).

Theorem 1.3. Let u ∈ SBV (Ω) and let ϕ : R → R be a Lipschitz function. Then,
v = ϕ ◦ u belongs to SBV (Ω) and

Dv = ϕ′(u)∇uLn + (ϕ(u+)− ϕ(u−))νuHn−1xJu. (1.13)

This result is a straightforward consequence of Theorem 3.99 in [4]. It is the key tool
for the proof of Theorem 1.2 that follows.

Proof. We denote by (uk)k ⊂ SBV (Ω) a minimizing sequence for ẼM. As we assumed
that g ∈ L∞(Ω), we may introduce

∀t ∈ R, ϕ(t) =


−‖g‖L∞(Ω) if t ≤ −‖g‖L∞(Ω),
t if |t| ≤ ‖g‖L∞(Ω),
‖g‖L∞(Ω) if t ≥ ‖g‖L∞(Ω).

We denote vk = ϕ ◦uk. As the function ϕ is 1-Lipshitz, we may apply Theorem 1.3, then
vk ∈ SBV (Ω) ∩ L∞(Ω). According to the decomposition (1.13), we have

∀k, ẼM(vk) ≤ ẼM(uk),

so (vk)k is a minimizing sequence for ẼM. According to Theorem 1.1, there exists v ∈
SBV (Ω) and a subsequence, still denoted (vk)k weakly* convergent to v. With Theorem
1.2, we have ẼM(v) ≤ lim inf ẼM(vk). So, v is a minimizer of ẼM.

2 Regularity result
An important question is to check if a SBV minimizer of the relaxed problem (P̃M) is
a "classical" one i.e. its jump set is closed and so the function is locally smooth in the
complement of the jump set. A positive answer was given by De Giorgi, Carriero and
Leaci in [5] for the Mumford-Shah functional. We generalize this result and prove that a
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minimizer of the relaxed problem (P̃M), whose existence is proved in section 2, provides
a minimizer of the original problem

(PM) : min{EM(u,K) : K ⊂ Ω is a compact C1 hypersurface , u ∈W 1,2(Ω \K)}.

We give the definition of a local almost-quasi minimizer of a free discontinuity problem
and a regularity result for its jump set which is proved in [6].

Definition 2.1. We say that w ∈ SBV (U) is an almost-quasi minimizer of a free dis-
continuity problem, if there exists Λ ≥ 1, α > 0 and cα ≥ 0 such that

v ∈ SBV (U), x ∈ U, Br(x) ⊂ U, [w 6= v] ⊂ Br(x) ⇒∫
Br(x)

|∇w|2dx+Hn−1(Jw ∩Br(x)) ≤
∫
Br(x)

|∇v|2dx+ ΛHn−1(Jv ∩Br(x)) + cαr
n−1+α.

(2.1)

Theorem 2.1. Let u be an almost-quasi minimizer of a free discontinuity problem, then
Hn−1(Ju \ Ju) = 0.

We use this key tool to prove the following.

Theorem 2.2. Let u be a minimizer of (P̃M), then Hn−1(Ju \ Ju) = 0.

Proof. Let u ∈ SBV (Ω) be a minimizer of (P̃M). For β > 0, we denote

∀x ∈ βΩ, uβ(x) = u

(
x

β

)
, gβ(x) = g

(
x

β

)
.

As
Hn−1(Juβ \ Juβ ) = 0⇒ Hn−1(Ju \ Ju) = 0

then, according to Theorem 2.1, it suffices to prove the following assertion.
Claim : There exists β > 0 such that uβ ∈ SBV (βΩ) is an almost-quasi minimizer

of a free discontinuity problem
With the same argument as in the proof of Theorem 1.2, we have u ∈ SBV (Ω) ∩

L∞(Ω). As u is a minimizer of (P̃M), then uβ is a minimizer of the rescaled problem

(P̃βM) : min
{
EβM(v), v ∈ SBV (βΩ)

}
,

where

ẼβM(v) = β2
∫
βΩ

(v − gβ)2dx+
∫
βΩ
|∇v|2dx+ β

∫
Jv
〈Mνv, νv〉

1
2dHn−1.

Let be v ∈ SBV (βΩ), x ∈ βΩ, Br(x) ⊂ βΩ, [uβ 6= v] ⊂ Br(x) and ṽ = ϕ ◦ v,
where ϕ is introduced in the proof of Theorem 1.2. As uβ is a minimizer of (P̃βM) then
EβM(uβ) ≤ EβM(ṽ) and it implies∫

Br(x)
|∇uβ|2dx+ β

∫
Juβ∩Br(x)

〈Mνuβ , νuβ 〉
1
2dHn−1

≤
∫
Br(x)

|∇ṽ|2dx+ β

∫
Jṽ∩Br(x)

〈Mνṽ, νṽ〉
1
2dHn−1 +

∫
Br(x)

(ṽ − gβ)2dx.

Then ∫
Br(x)

|∇uβ|2dx+ β

∫
Juβ∩Br(x)

〈Mνuβ , νuβ 〉
1
2dHn−1

≤
∫
Br(x)

|∇v|2dx+ β

∫
Jv∩Br(x)

〈Mνv, νv〉
1
2dHn−1 + 4‖g‖2L∞(Ω)ωnr

n,
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where ωn = Ln(B1(x)). Now, we set β = λ−1 where λ is the ellipticity coefficient
introduced in section 1.1. The left hand side of inequality (H1) gives

Hn−1(Juβ ∩Br(x)) = βλHn−1(Juβ ∩Br(x)),

≤ β

∫
Juβ∩Br(x)

〈Mνuβ , νuβ 〉
1
2dHn−1,

so ∫
Br(x)

|∇uβ|2dx+Hn−1(Juβ ∩Br(x))

≤
∫
Br(x)

|∇v|2dx+ β

∫
Jv∩Br(x)

〈Mνv, νv〉
1
2dHn−1 + 4‖g‖2L∞(Ω)ωnr

n.

The right hand side of (H1) gives∫
Br(x)

|∇uβ|2dx+Hn−1(Juβ ∩Br(x))

≤
∫
Br(x)

|∇v|2dx+ βΛHn−1(Jv ∩Br(x)) + 4‖g‖2L∞(Ω)ωnr
n.

So, we may conclude that uβ satisfies the definition of an almost quasi-minimizer of a
free discontinuity problem and the Claim is proved.

We deduce from the previous Theorem that a minimizer of the relaxed problem pro-
vides a minimizer of the general problem. Moreover, we have
Proposition 2.1. Let u ∈ SBV (Ω) be a minimizer of (PM), then u ∈ C1(Ω \ Ju).
Proof. Let Br(x) ⊂ Ω \ Ju; then u ∈W 1,2(Br(x)) and it is a minimizer of the functional∫

Br(x)
(v − g)2dx+

∫
Br(x)

|∇v|2dx

among the functions v in u + W 1,2
0 (Br(x)) and then classical regularity results give u ∈

C1(Br(x)).

3 Construction of M
In the previous sections, we assumed the existence of a riemannian metric M adapted
to the problem of detection of tubes. Moreover, our results are true if ellipticity (H1)
and Holder-regularity (H2) are satisfied. So, we propose two possible definitions of such
a metric which may be used in practice.

3.1 2D Case
We give a definition adapted to dimension 2. For that, we search for an unitary vector
field c : Ω→ Sn−1 following the direction of the tubes.

We introduce the following functional

F (c) =
∫

Ω
〈Dg, c〉2dx+

∫
Ω
|Dc|rdx

and the following minimization problem

(Pc) : min{F (c) : c(x) ∈ Sn−1 a.e. x ∈ Ω, c ∈W 1,r(Ω)}.

If we set r > n then, Sobolev embedding Theorem ensures that c is α-Holder regular
with α > 0. It is easy to prove that a solution c0 of (Pc) exists and we set

M = Id + µ tc0c0,

where µ > 0 corresponds to the elongation of the unit ball of M along the direction c(x).
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Kc

Figure 3.1: Vector field c along a tube K

3.2 3D Case
In dimension 3, the previous approach is not adapted. In fact, a vector field can avoid
lateraly a tube without penalizing the regularization term

∫
Ω |Dc|r.

K
c

To overpass this problem, we introduce the second order derivative of H of g. We
introduce the following minimization problem

F (M) =
∫

Ω
‖M−H‖2dx+

∫
Ω
|DM|rdx

and the following minimization problem

(PH) : min{F (M) : M satisfies (H1), (H2),M ∈W 1,r(Ω)}.

Conclusion
We have introduced a new model and we have proved that the associated minimizing
problem is well posed. In a forthcoming work, we will introduce an approximation of this
problem with Γ-convergence. It allows us to solve the minimizing problem with PDE
technics.
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