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Abstract

We introduce an anisotropic Mumford-Shah functional in dimension
n = 2,3. The classical Hausdorff measure with dimension n—1 is replaced
by an anisotropic surface measures depending on a riemannian metric M.
This term contains the geometric a priori on the image we want to get.
We give a relaxation of this energy in the set of SBV functions and we
prove that with this formulation, the minimizing problem admits solution
under suitable conditions. We also prove that a relaxed solution provides
in fact a regular solution of the initial problem. Methods are given to
construct the metric M.

Introduction

This work is a contribution to the problem of detection of thin structures,
namely tubes, in a digital image with dimension n = 2 orn = 3. In a
previous work [1], we have introduced an energy in the binary context. In
this paper we remove this assumption and generalize our previous results.
To solve this problem, we modify the so-called Mumford-Shah model [2]
by introducing a geometric a priori which favors tubes. The domain of
the image is an open and bounded set Q@ C R", g : 2 — R is a given
image with gray level normalized in [0; 1] and the Mumford-Shah energy
associated to this image is defined as

E(u,K)—/\ (u—g>2+/\ Tl + 1 (),
O\K O\K

where K a compact subset of Q and u € W'2(Q\ K). To introduce a ge-
ometric a priori, we set M a riemannian metric associated to g. Formally,
M is a function defined on Q which takes its values in the set S (R) of
symmetric positive definite matrices. To favor the detection of a set T
which has a tubular geometry, at each point of the tube, the unit ball of
the metric must be elongated in direction of the tube.

Then, the energy associated to this metric is defined as

EM(u,K):/ (ufg)zder/ \Vu|2dm+/ <MI/,I/>%dHn71,
O\K O\K K

(0.1)
where K is a compact hypersurface with class C', v : K — S" ! an
unitary and normal vector to K, and u € W'2(Q\ K).

In section 1, we will introduce a relaxed formulation of this problem
and prove that it admits a solution. In section 2, we will show a regularity
result and prove that it provides a solution of the initial problem. In
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Figure 0.1: Unit Balls for M adapted to a tube T

section 3, we will present various techniques to construct the metric M.
In a forthcoming work, we will introduce an approximation of this problem
with I'-convergence and numerical experimentations.

1 Relaxed problem

In order to prove that the minimization of Fn is a well-posed problem,
we will introduce in this section a relaxed formulation and prove that this
new formulation admits a solution.

1.1 Functional framework

A function v € L*(Q) is said with bounded variation, denoted u € BV (),
if its derivative, in the sense of the distribution, is a Radon measure. We
are interested by the property for this space to allow function with jump
discontinuities. To this aim we introduce

{ B/ (w,v) ={y € Br(z): (y — z,v) > 0},
B, (z,v) ={y € By(2): (y — z,v) < 0},

for the two half balls contained in the ball B,.(x) determined by v € S" .

Definition 1.1. Let u € L'(Q) and x € Q. We say that x is an approzi-
mate jump point of u if there exist a,b € R and v € S" ' such that a # b
and

lim y{ |u(y) —aldy =0, lim ?{ |u(y) — bldy = 0.
=% J Bt (20) =0t Jp= (e )

The set of approximate jump points is denoted by J,,.

The triplet (a,b,v), uniquely determined up to a permutation of (a,b)
and a change of sign of v, is denoted by (u™(z),u™ (z), vu(x)).

The set J, inherits the following structure theorem (see [3], theorem
10.3.4.).

Theorem 1.1. Let u be a given function in BV (). Then, Jy is countably
(n—1)-rectifiable. That is, there exists a countable family (K;); of compact
hypersurface with class C' such that J, = NU (UZ Ki), where H"‘l(N) =
0.



We say that u € BV (Q) is a special function with bounded variation
and we write u € SBV (), if the Cantor part of its derivative is zero, we
obtain (see [4]):

Du=Vul" + (v —u v H" L,

where Vu is the density of Du with respect to the Lebesgue measure £",
v, the normal of the jump set J, and H" "1 J, the restriction of the
Hausdorff measure to the jump set. For u € SBV(Q), replacing K by J,
in 0.1, we define its relaxed energy by

EM(u):/(u—g)Qd:c—F/|Vu|2dx+/ (Muu,uuﬁd?-["_l, (1.1)
Q Q J

Ju

where Vu, J, and v, are defined in the sense of SBV (€2). We denote by
(Pr) the relaxed problem

(Pa): min{Ex(u): u € SBV(®)}.

We introduce the following constraints on M:

i) ellipticity:
(Hy) : 3IA>0,3A > 0,¥(z,v) € QxR",  Ao|* < (M(z)v,v) < Alv|?,
ii) Hoélder-regularity:

(H2) : Ja > 0,3C > 0,¥(z,y) € D, |[|[M(z)—M(y)| < Clz—y|*.

1.2 Existence result

In this section, we will prove the following theorem.

Theorem 1.2. Let En as defined in (1.1) and M a metric which satisfies
(H1) and (H2). Then, the problem (Pm) admits at least one solution.

To prove this result, we will use the direct method of calculus of vari-
ation. The key tools are the theorem 4.8. (compactness) and theorem
4.7. (lower semi-continuity) of [4] in the context of a constant and ho-
mogeneous metric (that is M = Id). Our result is a generalization with
M not necessary the identity (anisotropy) and depending on z € Q (non
homogeneity).

In the two following results we assume that the hypothesis of theorem
1.2 are satisfied.

Proposition 1.1 (Compactness). Let (ux)r C SBV(2)NL>(2) be such
that (EM(uk))k is bounded. Then, there exists a sequence weakly* con-
vergent to u € SBV(Q).

Proof. According to ellipicity condition (H1), we have
/|Vuk|2+7-l”_l(Juk) gmax{Lx%}EM(uk). (1.2)
Q

In [4] (theorem 4.8.), it is proved that the boudedness of the left hand side
of (1.2) ensures the existence of a subsequence (uy)r weakly* converging
in BV () to u € SBV(Q).

O



Proposition 1.2 (Lower semicontinuity). Let (ux)r C SBV(Q) be a
weakly* convergent sequence to u € SBV(Q). Then, we have

Ewm(u) < liminf Ene (ug).
k—oo

Proof. As (ux)r weakly* converges to u then it converges in L'(f), it
gives

lim (ug — g)’de = / (u—g)?dx. (1.3)

k— o0

Q Q

We may assume that (Ea(ux))x is bounded, otherwise the result is en-
sured. So, according to inequality (1.2), fQ |Vug|?de + H" 1 (Ju,) is
bounded with respect to k. In [4] (theorem 4.7.), it implies the two fol-
lowing limits:

/|Vu|2dac§hminf/ |Vug|*de, (1.4)

Q k—o0 Q

H () < lim inf H () (1.5)
— 00

According to (1.3), (1.4) and (1.5), it suffices to prove that

/<Muu,uu>%dw*slmf / (M, v 501" (16)
Ju

Tuy,

This result is proved in [4] (theorem 5.2.) for an homogeneous and
fixed media, that is, if the metric M does not depend on x € . In order
to overpass these constraint, we introduce a piecewise constant approxima-
tion. Then, we apply the result of [4] in each piece of the approximation.

Let 7 > 0 be arbitrary small and A be a finite partition of 2, such
that, for any A € A, diam(A) < n. For each set A € A, we fix one point
za € A. We denote M the metric such as its restriction on A is equal
to M(z4). Moreover, for each vector of the canonical basis e; € S™*, we
denote

I ={z€Q: (v,e;) =t},
Ni={teR:H" '(Ju,NIT}) >0} U {t € R: Tk € N,H" "' (Ju, NIT}) > 0}.

As H" 1 (J.) < oo (1.5) and H™ ' (Ju,) < 0o, then N{ is at most count-
able. For any fixed n > 0, we may choose a partition A of Q such that
any A € A has its boundary 0A supported by n planes (Hii)izl‘_‘n and
which satisfies

VAe AVEkeN,  H" ' (J,NOA) =0, H" (J, NOA) =0. (1.7)

We will estimate the limits of each of the following integrals.

f‘]uk <MVuk,l/uk>%dHn_l = f‘]“k <<Myuk7l/uk>% — <MAVuk7Vuk>%> dH™ !
+fJuk <M‘Ayuk’7/uk>%d%nil'

(1.8)
Claim 1: The sequence
/ (<Myuka’/uk>% - <MAyuk’V“k>%) aH™
Ju

k

converges to 0 uniformly with respect to k € N when n converges to 0.
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Figure 1.1: Construction of A

We set A € A, x € A and estimate

=
|

(M(@) Vg Vi) 2 — (MA (@), V)
(M(2) = M(24))Vuy, V)

(M(@) Vs Vi )2 — (M(24) Vi )

Nl=

’

(M(2) vy, v, )2 + <M((m>vuk, Vay,)

1.9)
According to ellipticity condition (H1), it yields

[N

> 2)\%7 for ”H"ilLJuk —a.e. T € A.

(1.10)
According to regularity assumption (Hz), there exist constants C' > 0 and
a > 0 such that

(M(2) Vi Vi) % 4+ (M(22) g s Vi)

Ve e A, ||M(z)—M(za)| <Clz—zal® < Cn. (1.11)
So, (1.9), (1.10) and (1.11) give
Cn®

[NE

‘(M(I)VUMV%)% - <MA(‘T)VH1C7V%>

2)2

As A is a partition of 2, we have

Cn*H" ™ (Juy)

<
- 2\3

/ <Ml/uk,l/uk>% - (M““I/uk,,z/ukﬁd’;'-l”*1
Ju

k

As ellipticity condition gives H" ™! (Ju, ) < A2y (ur), then (H" ™ (Ju, )k
is a bounded sequence and it concludes the proof of Claim 1.
Claim 2: We have the following result

k—oo

/ <MAZ/u,I/u>%dHn_1 < liminf/ (MAVuk,I/uk)%d"Hn_l.
Ju Ju,

k

o
We denote by A the interior of the set A. According to [4], theorem 5.2,
we have

WA k— o0

/ L (M(za)va, Vuﬁd’]-["_l < lim inf/ . <M(zA)Vuk,yuk>%dHn—1.
J Juj,NA
According to (1.7), the energy on the boundaries is null, it gives

/ (M(xA)yu,yuﬁdH"_l < liminf/ <M(1’A)Vuk,yuk)%d7-[n_l.
JuNA Ju, NA

k— oo

<, for ' 'Jy, —ae. z € A,

Nl=



So,

Z/ <M(1‘A)l/u,l/u>%d7{n71 < hminf/ (M(w,q)l/uk,l/uk>%d7-l"71,
e Juna e 7 Juuna

PR

< hrggng/ (M(24)Vuy, s vy, ) ZAH !

As A is a partition of 2, we conclude the proof of Claim 2
/ (MAuu,uuﬁdH”*l < liminf/ (MAz/uk,z/uk>%dHn71.
Ju k—o0 ‘]uk

Let § > 0 be an arbitrary small number. According to Claim 1, there
exists n > 0 and a partition A defined above which satisfies

/ <MAVuk7Vuk>
Ju

k

=

lim sup — (MAuuk,VukﬁdH"*l <4 (1.12)

k—oco

According to decomposition (1.8), (1.12) and Claim 2, we have

/ (MAZ/H,1/u>%d3'-[n_1 < 6—|—liminf/ (Myuk,vukﬁd?-["_l.
Tu k— oo ‘]uk

As for Claim 2, we have

/Ju (Muvy, )

We may conclude

aqyn—1
— (MAvg, vy bapnt| < G )
2)2

Nl

/ (Muu,l/uﬁd'ﬂnfl < hkrglol.}f/ (Myuk,uuk>%d7-["71.
Ju

Tuy,

We have the following chain rule for SBV ().

Theorem 1.3. Let u € SBV(Q) and let ¢ : R — R be a Lipschitz
function. Then, v = @ o u belongs to SBV () and

Dv = ¢ (w)Vul"™ + (p(u) — p(u ))vuH" L. (1.13)

This result is a straightforward consequence of theorem 3.99 in [4]. It
is the key tool for the following proof of theorem 1.2.

Proof. We denote by (ug), C SBV(S) a minimizing sequence for En.
As we assumed that g € L>(Q), we may introduce

—llgllzecy  ift < =gl (),
vVt €R, L)O(t) = t if |t| < ||9HLOC(Q)7
llgll e (o) if £ > ||gllLoo (-

We denote v, = ¢ o ug. As the function ¢ is 1-Lipshitz, we may apply
theorem 1.3, then v, € SBV(Q) N L>=(2). According the decomposition
(1.13), we have 5 y
Vk, EM(Uk) S EM(uk),

50 (vx)x is a minimizing sequence for Enr. According to theorem 1.1, there
exist v € SBV(Q) and a subsequence, still denoted (vi)r weakly* conver-
gent to v. According to theorem 1.2, we have En(v) < liminf En(vg).
So, v is a minimizer of Eum.

O



2 Regularity result

An important question is whether an S BV minimizer of the relaxed prob-
lem (Pm) is a "classical” one i.e. its jump set is closed and so the function
is locally smooth in the complement of the jump set. A positive answer
was given by De Giorgi, Carriero and Leaci in [5] for the Mumford-Shah
functional. We generalize this result and prove that a minimizer of the
relaxed problem (ﬁM), whose existence is proved in section 2, provides a
minimizer of the general problem

(Pm) : min{Em(u, K): K C Qis a compact C' hypersurface ,u € W"?(Q\K)}.

We give the definition of local almost-quasi minimizer of a free discon-
tinuity problem and a regularity result for its jump set which is proved in
Definition 2.1. We say that w € SBV (U) is an almost-quasi minimizer
of a free discontinuity problem, if there exists A > 1, a > 0 and co > 0
such that

vESBV(U), xz€U, Bq(z)CU [w#v]C B () =

/ |Vw|*dz + H" " (Jw N Br(x)) < |Vol?de + AH" ' (J, N Br(x)) 4+ car™ %,
By () By (z)
(2.1)

Theorem 2.1. Let u be an almost-quasi minimizer of a free discontinuity
problem, then H™*(J, \ Ju) = 0.

We use this key tool to prove the following.
Theorem 2.2. Let u be a minimizer of (Pwm), then H" " (Ju \ Ju) = 0.

Proof. Let u € SBV(Q) a minimizer of (Pm). For 8 > 0, we denote

Vo e B, us(x)=u (;) , gs() =g (g) :

H' Ty \ Juy) =0=H" ' (Tu\ Ju) =0
then, according to theorem 2.1, it suffices to prove the following assertion.
Claim : There exists § > 0 such that ug € SBV(8RQ) is an almost-
quast minimizer of a free discontinuity problem
With the same argument as in the proof of theorem 1.2, we have
u € SBV(Q)NL>®(Q). Asu is a minimizer of (Pm), then us is a minimizer
of the rescaled problem

(Pyy) :  min {Ey(v),v € SBV(BQ)},

As

E{f,l(v):ﬁQ/ (v—g@)zdx+/ |Vv|2dm+ﬁ/ (Muy, vy) 2dH™ "
B8R BQ Ju

We set v € SBV(BQ), =€ B9, B.(z)CBQ, [us##v]C Br(z)
and ¥ = ¢ o v, where ¢ is introduced in the proof of theorem 1.2. As ug
is a minimizer of (PY;) then Ef;(ug) < ES;(7) and it implies

/ |Vug|*dz + 3 <Ml/u6,l/u6>%d7'ln71
By (x) JugNBr(z)

s/ |Vo|*dz + 8 <Mua,w>%dH”‘1+/ (0 — gs)*da.
Br(z) J5N B (z) Br-(x)



Then

/ Vs *dz +5/ (M, vy ) EdH™
By (x) Jug NBr(x)

l n— n
= / \Vol*de + 5 (Muy, 1) 2dH" " + 4 g]|7 o (g wnt™,
B(z) JuN By ()

where w, = L™"(Bi(z)). Now, we set 8 = A~ where ) is the ellipticity
coefficient introduced in section 1.1. The left hand side of inequality (H1)
gives

H' ' (Juy NBr(x)) = BAH" ' (Ju, N Br(2)),

5/ (M, vy ) 2dH Y,
Jugn

By (2)

IA

SO

/ |Vus|*dz +H" "' (Juy N Br(z))
By (x)

< / Volde + (M, o) M 4 gl o™

By () JuNBr(z)

The right hand side of (H1) gives
[ sk w0, 0B
Br.(z)

< Vo2 dz + BAH" "1 (Jo N Br(2)) + 4|gl| 7o oy wn ™

@

So, we may conclude that ug satisfies the definition of an almost quasi-
minimizer of a free discontinuity problem and the Claim is proved.
O

We deduce from the previous theorem that a minimizer of the relaxed
problem provides a minimizer of the general problem. Moreover, we have

Proposition 2.1. Let u € SBV(Q) be a minimizer of (Pm), then u €
CHQ\ Tu).

Proof. Let By(z) C Q\ Ju; then v € W'2(B,(x)) and it is a minimizer

of the functional
/ (vfg)de+/ |Vo|?dz
By (z) By (x)

among the functions v in u + W, ?(B,(z)) and then classical regularity
results give u € C*(B,(z)). O

3 Construction of M

In the previous sections, we admit the existence of a riemannian metric
M adapted to the problem of detection of tubes. Moreover, our results
are true if ellipticity (H1) and Holder-regularity (H2) are satisfied. So,
we propose two possible definitions of such a metric which may be used
in practice.



3.1 In dimension 2

We present a definition adapted to dimension 2. For that, we search for

an unitary vector field ¢ : © — S"~! such that it follows the direction of
the tubes.

TV AYAAN ARAUR TR A
TVVAAN ANANR TN
PYVAVY VAN SRR
TV VAN AR
| IR R SR WAVA ANA T B
| R SR RATA Vit
LR S SR T I RS
T trr
[ A [N R |
trrra ettt
et rrrt
et rrrrt
rrriry e
[ A A JAR N AN
rrrrzz ARSI
A Hrr VA
rrrrszs AN
rrrrss st

Figure 3.1: Vector field c along a tube K

We introduce the following functional

F(c):/ﬁ(Dg,c)ZJr/Q|Dc|T

and the following minimization problem
(P.): min{F(c):c(z) €S" " ae z€Q, cec W (Q)}.

If we set » > n then, Sobolev embedding theorem ensures that c is a-

Holder regular with « > 0. It is easy to prove that a solution cg of (P.)
exists and we set

M =1Id + p'ce,

where ;1 > 0 corresponds to the elongation of the unit ball of M along the
direction c(x).

3.2 In dimension 3

In dimension 3, the previous approach is not adapted. In fact, a vector
field can avoid lateraly a tube without penalizing the regularization term

fﬂ' K

Y

T~

R
N

To overpass this problem, we introduce the second order derivative of
H of g. We introduce the following minimization problem

F(M) = /Q IV H? £ / oM



and the following minimization problem

(Pr): min{F(M) : M satisfies (H,), (H2), M € W""(Q)}.
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