
HAL Id: hal-01131975
https://hal.science/hal-01131975v1

Submitted on 16 Mar 2015 (v1), last revised 17 Mar 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-Preserving Reputation Mechanism: A Usable
Solution Handling Negative Ratings

Paul Lajoie-Mazenc, Emmanuelle Anceaume, Gilles Guette, Thomas Sirvent,
Valérie Viet Triem Tong

To cite this version:
Paul Lajoie-Mazenc, Emmanuelle Anceaume, Gilles Guette, Thomas Sirvent, Valérie Viet Triem Tong.
Privacy-Preserving Reputation Mechanism: A Usable Solution Handling Negative Ratings. IFIP
WG 11.1 International Conference on Trust Management, May 2015, Hambourg, Germany. �hal-
01131975v1�

https://hal.science/hal-01131975v1
https://hal.archives-ouvertes.fr

Privacy-Preserving Reputation Mechanism:
A Usable Solution Handling Negative Ratings

Paul Lajoie-Mazenc1, Emmanuelle Anceaume2, Gilles Guette1,
Thomas Sirvent3, and Valérie Viet Triem Tong4

1 Université de Rennes-1/IRISA firstname.lastname@irisa.fr
2 CNRS/IRISA emmanuelle.anceaume@irisa.fr

3 DGA Maîtrise de l’Information/IRISA thomas.sirvent@m4x.org
4 CentraleSupélec/IRISA valerie.viettriemtong@supelec.fr

Abstract. Reputation mechanisms allow users to mutually evaluate
their trust. This is achieved through the computation of a reputation
score summarizing their past behaviors. Depending on these scores, users
are free to accept or refuse to interact with each other. When users are
virtual, volatile, or distant, an accurate evaluation of reputation scores is
complex. Furthermore, users expect reputation mechanisms to preserve
the privacy of their interactions and of their feedback. Existing solutions
often rely on costly cryptographic tools that may lead to impractical so-
lutions. In this article, we propose a usable privacy preserving reputation
mechanism. This mechanism is distributed and handles non-monotonic
ratings. Its implementation on cheap single board computers validates
its adequacy to large-scale systems.

1 Introduction

Reputation mechanisms tend to be an effective tool to encourage trust and co-
operation in electronic environments [1]. This is achieved by enabling users to
rate services or people, based on their past experience. These ratings or feedback
are aggregated to derive publicly available reputation scores. Reputation mech-
anisms either rely on a central authority or take advantage of the participating
users to compute reputation scores. To circumvent the vulnerability of the for-
mer approach, both in terms of privacy and fault-tolerance, we present a reputa-
tion mechanism that meets security and trust requirements through distributed
computations. While aggregating ratings is necessary to derive reputation scores,
identifiers and ratings are personal data, whose collection and usage may fall un-
der legislation [2]. Furthermore, as shown by recent works [3], solely relying on
pseudonyms to interact is not sufficient to guarantee user privacy [4]. This has
given rise to the proposition of a series of reputation mechanisms which address
either the non-exposure of the history of raters [5], the non-disclosure of indi-
vidual feedback [6–8], the secrecy of ratings and the k-anonymity of ratees [9],
or the anonymity and unlinkability of both raters and ratees [5, 10].

Regrettably, the search for privacy has led to algorithmic restrictions, in the
sense that handling solely non-negative ratings seems to be the sine qua non

condition to preserve user privacy [5, 10]. Indeed, existing privacy-preserving
mechanisms give their users the opportunity to skip some of the received ratings
to increase their privacy, which is unfortunately not compatible with negative
ratings. Furthermore, Baumeister et al. explain that “bad feedback has stronger
effects than good feedback” on our opinions [11]. Thus, it is crucial to allow
clients to issue negative ratings.

In the remaining of the article, we present the design and evaluation of a
non-monotonic distributed reputation mechanism preserving the privacy of both
parties. This work is the continuation of our preliminary work [12]. After having
presented the state of the art in Section 2, we present in Section 3 the properties
that should be met by a reputation mechanism to be secure, to preserve the
privacy of all parties, and to handle non-monotonic ratings. Section 4 provides
a description of the main principles of our approach to build such a mechanism,
and their orchestration is presented in Section 5. The main contribution of this
paper is presented in Section 6. This section shows that this unprecedented
mechanism is computationally efficient, and thus implementable in large-scale
applications. Finally, Section 7 concludes.

2 State of the Art

One of the first examples of reputation mechanisms has been set up by eBay. In
this mechanism, clients and service providers rate each other after each transac-
tion: ratings are either +1, 0, or −1 according to the (dis)satisfaction of users.
The reputation score of a user is simply the sum of the received ratings. Resnick
and Zeckhauser have analyzed this mechanism and the effects of reputation on
eBay [13], and have highlighted a strong bias toward positive ratings. More elabo-
rated reputations mechanisms have been proposed, such as the Beta Reputation
System [14], methods based on the Dempster-Shafer theory of belief [15], or
based on distributed hash tables [16–18]. Jøsang et al. propose a broad survey
of reputation mechanisms [19], while Marti and Garcia-Molina focus on their
implementation in P2P systems [20]. Indubitably, the nature of ratings and the
computation of reputation scores have been thoroughly researched. In this work,
we do not make any assumptions regarding the function that computes reputa-
tion scores. Indeed, our solution handles both positive and negative ratings, and
may thus use any computation function.

One of the first known reputation mechanism taking the privacy of users into
account has been proposed by Pavlov et al. [6]. Their solution presents a series
of distributed algorithms for computing the reputation score of service providers
without divulging the ratings issued by clients. Their solution has been improved
by Hasan et al. [7,18] for different adversary models, and stronger privacy guar-
antees. Similarly, Kerschbaum proposes a centralized mechanism computing the
reputation scores of service providers without disclosing the individual ratings
of the clients [8]. The secrecy of ratings contributes to the privacy of users,
but is clearly insufficient: service providers can still discriminate their clients
according to their identity or to additional information unrelated to the trans-

action. As we previously mentioned, identifiers and ratings can be considered
personal data. Steinbrecher argues that reputation mechanisms must guarantee
both the anonymity of their users, and the unlinkability of their transactions to
be fully adopted [4]. Both properties have been lately formalized by Pfitzmann
and Hansen [21]. Namely, a user is anonymous if this user is not identifiable
within a set of users, called the anonymity set. The transactions of a user are un-
linkable if the participants in two different transactions cannot be distinguished.
Hence, Clauß et al. [9] propose a centralized mechanism guaranteeing both the
secrecy of ratings and the k-anonymity of service providers. However, beyond
being centralized, this mechanism does not preserve the privacy of clients. An-
droulaki et al. [10] also propose a centralized reputation mechanism guaranteeing
both the anonymity and the unlinkability of both parties. However, since provi-
ders send a request to the central bank for their ratings to be taken into account,
only positive ratings are handled. In addition, this mechanism is vulnerable to
ballot-stuffing attacks [1], that is, a single client can issue many ratings on a
provider to bias her reputation. Whitby et al. [22] propose a technique mitigat-
ing ballot-stuffing attacks, however their technique requires the ability to link
the ratings concerning the same provider. Bethencourt et al. [5] propose to com-
pute such a link. That is, they propose a mechanism linking all the transactions
that have occurred with the same partners, while preserving their privacy. How-
ever, beyond handling only positive ratings, their reputation mechanism requires
high computational power, bandwidth and storage capacity. For instance, when
proving their reputation score, providers must send about 500KiB per received
rating, which is unbearable from a practical point of view.

So far, preserving the privacy of both raters and ratees and handling both
positive and negative ratings has been recognized as a complex challenge. Quot-
ing Bethencourt et al., “Most importantly, how can we support non-monotonic
reputation systems, which can express and enforce bad reputation as well as
good? Answering this question will require innovative definitions as well as cryp-
tographic constructions” [5]. We are not aware of any distributed reputation
mechanism preserving the privacy of its users and allowing clients to issue both
positive and negative ratings that is computationally efficient. This is the objec-
tive of this paper.

3 Model and Properties

Terminology. In the following, we differentiate transactions from interactions.
A transaction corresponds to the exchange of a service between a client and
a service provider, while an interaction is the whole protocol followed by the
client and the provider, during which the clients get the provider’s reputation
and the client issues a rating on the provider. Note that we make no assumption
about the nature of transactions: they can be, for example, web-based community
applications or e-commerce ones. Once a transaction is over, the client is expected
to issue a rating representative of the provider’s behavior during the transaction.
Nevertheless, clients can omit to issue such a rating, deliberately or not. While

dissatisfied clients almost always issue a rating, satisfied clients seldom do it.
To cope with this asymmetry, we introduce the notion of proofs of transaction:
a proof of transaction is a token delivered to providers for transactions during
which the client did not issue a rating. Such proofs of transaction allow clients
to distinguish between multiple providers that have the same reputation. We
denote by report the proof of transaction associated with the client’s rating,
if any. These reports serve as the basis to compute reputation scores. Finally,
we say that a user is honest if this user follows the protocol of the reputation
mechanism. Otherwise, this user is malicious.

Model of the System. We consider an open system populated by a large
number of users. A proportion of these users can be malicious (more details are
given below). Before entering the system, users register to a central authority C,
that gives them identifiers and certificates. Once registered, users do not need
to interact with C anymore. A user can act as a client, as a service provider, or
as both, and obtains credentials for both roles. We assume that users commu-
nicate over an anonymous communication network, e.g. Tor [23], to prevent IP
addresses tracking.

Properties of our Reputation Mechanism. Our reputation mechanism aims
at offering three main guarantees to users. First and foremost, the privacy of
users must be preserved. Second, users must always be able to cast their report.
Finally, every data needed for the computation of reputation scores must be
available and unforgeable. Privacy properties are stated in Properties 1 and 2,
while Properties 3 and 4 are related to the undeniability of reports. Both prop-
erties expect that providers obtain proofs of transaction, and that clients are
always able to cast ratings. Property 5 deals with reports unforgeability. Finally,
Properties 6 and 7 respectively stipulate that the computation of the reputation
scores cannot be biased by ballot-stuffing attacks, and that reputation scores are
unforgeable. Note that since clients do not know the provider they are interacting
with, targeted bad-mouthing attacks cannot be launched.

Property 1. Privacy of service providers. When a client rates an honest service
provider, this service provider is anonymous among all honest service providers
with an equivalent reputation.

Property 2. Privacy of clients. When a provider conducts a transaction with
an honest client, this client is anonymous among all honest clients. Furthermore,
the interactions of honest clients with different providers are unlinkable.

Property 3. Undeniability of ratings. At the end of a transaction between a
client and a provider, the client can issue a valid rating, which will be taken into
account in the reputation score of the provider.

Property 4. Undeniability of proofs of transaction. At the end of a transac-
tion between a client and a provider, the provider can obtain a valid proof of
transaction.

Property 5. Unforgeability of reports. Let r be a report involving a client and
a service provider. If r is valid and either the client or the provider is honest,
then r was issued at the end of an interaction between both users.

Property 6. Linkability of reports. Two valid reports emitted by the same client
on the same service provider are publicly linkable.

Property 7. Unforgeability of reputation scores. A provider cannot forge a valid
reputation score different from the one computed from all the reports assigned to
this provider.

4 Building Blocks

4.1 Distributed Trusted Third-Parties

As explained in Section 1, service providers must not manage themselves their
reputation score to guarantee their reliability. To solve this issue, we propose
to construct a distributed trusted authority in charge of updating and certi-
fying reputation scores. We call accredited signers the entities constituting this
authority. This first distributed authority has two main features. Firstly, this au-
thority must involve fairly trusted entities or enough entities to guarantee that
the malicious behavior of some of them never compromises the computation of
reputation scores. Secondly, this authority must ensure that providers remain in-
distinguishable from each other. Moreover, to ensure the undeniability of ratings,
a client must be able to issue his report, even if the service provider does not
complete the interaction. However, the precautions taken for that purpose must
not imply sending identifying data before the transaction. In the same way, data
identifying the client must not be sent before the transaction, even to ensure
the undeniability of proof of transactions. To solve all these issues, we propose a
distributed trusted authority in charge of guaranteeing that reports can be built.
This distributed authority must collect information before the transaction, and
potentially help one of the two parties afterwards; it must thus be online. We
call share carriers the entities constituting this authority.

Both distributed authorities could be gathered in a single one. The drawback
of this approach is that this distributed trusted authority should be simultane-
ously online, unique, and fairly trusted or reasonably large. The uniqueness and
the participation in each interaction would induce an excessive load on each en-
tity of this distributed authority. For efficiency reasons, we thus suggest distinct
authorities. Accredited signers are then a unique set of fairly trusted or numer-
ous entities, periodically updating the reputation scores of all providers. On the
other hand, share carriers are chosen dynamically during each interaction among
all service providers. Accredited signers manage every reputation score, and are
thus critical in our mechanism. On the other side, share carriers are responsible
for the issuing of a single report. Hence, they do not need to be as trustworthy
as the accredited signers.

To deal with the privacy of both clients and providers, share carriers use
verifiable secret sharing [24]. This basically consists in disseminating shares of a

secret to the share carriers, so that they cannot individually recover the secret,
but allow the collaborative reconstruction of this secret.

4.2 Cryptographic tools

Our mechanism relies on cryptographic tools to guarantee its properties. The
underlying structure of those tools is a bilinear group Λ = (p, G1, G2, GT , e,
G1, G2) in which G1,G2,GT are three groups of prime order p that we write
multiplicatively. The map e : G1×G2 → GT is non-degenerate and bilinear.
G1 ∈ G1 (resp. G2 ∈ G2) is a group generator of G1 (resp. G2).

First, our mechanism uses SXDH commitments [25]. To commit to a value
in G1 or G2, one needs two random scalars. Then, our mechanism relies on the
Non-Interactive Zero-Knowledge (NIZK) proof system proposed by Groth and
Sahai [25], which allows users to prove their possession of secrets without re-
vealing the secrets. Instead, the secrets are masked by SXDH commitments. For
instance, this proof system allows users to compute Anonymous Proxy Signa-
tures [26], i.e. to sign messages without revealing the message, the signature, or
their verification key. This requires particular signature schemes, e.g. Structure-
Preserving Signatures [27]. Finally, as previously mentioned, our mechanism re-
lies on verifiable secret sharing. Such a scheme allows a prover to split a secret
into n shares, and to reconstruct the secret from t shares (with t 6 n). More
specifically, the prover sends a share to n share carriers, and convinces a verifier
that the verifier will be able to reconstruct the prover secret. To convince the
verifier, the prover uses NIZKs to prove (a) the correctness of the secret, and
(b) the consistency of the shares. An optimal choice for t is t = dn/3e, which
tolerates up to t − 1 malicious share carriers. In this case, the verifier accepts
the sharing as soon as 2t− 1 share carriers have confirmed the reception of their
share. The analysis leading to this choice is detailed in the companion paper [28].

As explained in Section 2, reputation mechanisms must defend themselves
against ballot-stuffing attacks. Bethencourt et al. [5] propose such a method by
computing a value that depends only on the client and the provider, but that
does not allow different providers to compare their clients. We propose a simi-
lar method, yet simpler, allowing to compute such an invariant. Let IdSP ∈ G1

(resp. idCl ∈ Zp) be the identifier of the provider (resp. client). We then define
the invariant as inv = IdSP

idCl . Note that the invariant must not be computed
directly: it requires the client to know the provider’s identifier, and vice versa.
Hence, they jointly compute the invariant in three steps, which require an ad-
ditional group element Y1 ∈ G1. First, the provider computes a pre-invariant
with randomness r ∈ Zp: pre_inv = (G1

r, IdSP ·Y1r). The client then ran-
domly chooses s ∈ Zp to compute a masked invariant : masked_inv = (G1

s ·
Y1

idCl , pre_inv1
s · pre_inv2

idCl). Finally, the provider obtains the invariant from
masked_inv: inv = masked_inv2 · masked_inv1

−r = (IdSP)
idCl . Note that the in-

variant is computed after the transaction, otherwise the provider would know
whether she has already interacted with the client or not, which might introduce
a bias in the provision of the service.

5 Reputation Protocol

Throughout the reputation protocol, users need cryptographic keys and identi-
fiers. Specifically, the central authority C uses a structure-preserving signature
key pair (vkC , skC) to generate certificates on users’ credentials. To enter the
system, users register to this authority, which may require a computational or
monetary cost to mitigate Sybil attacks. Note that this authority is required only
for the registration of users, and possibly for the choice of accredited signers.

Clients have a structure-preserving signature key pair, consisting of a veri-
fication key vkCl and a signing key skCl. When clients enter the system, they
register to the central authority C to get a random identifier idCl ∈ Zp, and a
certificate certCl on idCl and vkCl. Similarly, service providers have a structure-
preserving signature key pair (vkSP, skSP), and register to C to obtain a random
identifier IdSP ∈ G1, and a certificate certSP on IdSP and vkSP.

Accredited signers have a structure-preserving signature key pair (vkAS, skAS)
and a certificate certAS on vkAS. They use these keys to sign the reputation score
of service providers at regular intervals, that we call rounds. We denote by σi
the signature of the i-th accredited signer on the reputation score repSP of the
provider, for current round rnd, i.e. a signature on 〈vkSP, H(repSP, rnd)〉. In the
following, nAS represents the number of accredited signers. We assume that a
majority tAS of them are honest.

Share carriers possess two key pairs, namely a classical encryption key pair
(ekSC, dkSC), and a classical signature key pair (skSC, vkSC), used to encrypt
received messages and sign sent messages. They also have a certificate certSC on
ekSC and vkSC, issued by the central authority C.

Both clients and providers compute by themselves their own pseudonyms.
They renew them at each interaction. Pseudonyms nymCl and nymSP are SXDH
commitments to verification keys vkCl and vkSP. Similarly, both clients and ser-
vice providers compute commitments CidCl

and CIdSP to their identifiers idCl and
IdSP. Clients compute commitments CcertCl

to their certificate, and NIZK proofs
of their validityΠcertCl

. Similarly, service providers compute commitments CcertSP

and proofs ΠcertCl
. Finally, service providers compute a pre-invariant pre_inv

from IdSP and a randomly chosen scalar rpre_inv.
Due to space constraints, we defer the cryptographic proofs of the security of

our protocol as well as figures detailing this protocol in a companion article [28].

5.1 Proof of the Reputation Score

When a client wishes to interact with a service provider, he sends a pseudonym
nymCl and a proof of its validity CidCl

, CcertCl
, and ΠcertCl

to the provider. Once
the provider has verified this proof, she chooses a nonce sSC and commits to it by
computing CSC = H(00‖sSC).5 Then, the provider sends back her pseudonym,
reputation, pre-invariant and respective proofs of validity, and committed nonce.
That is, she sends nymSP, CIdSP , CcertSP ,ΠcertSP , repSP, a proof of reputationΠrep,

5 This concatenation guarantees that sSC and rSC are chosen independently.

pre_inv, a proof Πpre_inv of its computation while masking IdSP and rpre_inv, and
CSC.

If the client is satisfied with the reputation of the provider, and if all the
proofs are valid, the client computes the masked invariant masked_inv, chooses
a nonce rSC, computes a signature σCl on H(CSC, rSC, nymSP), and sends rSC
and σCl to the provider. If σCl is valid, the provider computes a signature on
H(sSC, rSC, nymCl), and sends sSC and σSP to the client. Note that the signa-
tures guarantee that the client agreed to conduct a transaction with provider
nymSP, who uses the randomness hidden in CSC, and that the provider agreed
to conduct a transaction with client nymCl, who uses randomness rSC. Once the
client and the provider have exchanged their nonces, they choose the share car-
riers, using (sSC‖rSC‖ nymCl ‖ nymSP) as a seed. For that purpose, they iterate
a hash function, e.g. SHA-256 [29], to randomly select nSC share carriers among
all service providers. In the remainder, this seed serves as an identifier of the
transaction, and we note it idtrans.

During this step, the client sends one element in Zp, 86 in G1, and 74 in G2

to the provider, while the provider sends 3 element in Zp, (74tAS+92) in G1, and
(66tAS+84) in G2. Once this step is over, besides being mutually authenticated,
the provider has proven her reputation score to the client, each party is able to
prove the implication of the other one in the interaction, and they finally have
jointly and independently chosen the share carriers.

5.2 Sharing Ingredients of the Report

The client and the service provider now rely on the verifiable secret sharing
scheme to guarantee the undeniability properties. The service provider shares
her identifier IdSP, that is, she chooses a polynomial Q of degree tSC − 1, with
coefficients IdSP, A1, . . . , AtSC−1, where the Aj are randomly chosen in G1. The
shares are the

(
i, Qi = Q(i)

)
for 1 6 i 6 nSC. To prove the sharing, the provider

computes commitments CAj to the Aj , and NIZK proofs ΠQi that share Qi
was generated from IdSP and from the Aj for 1 6 i 6 nSC, while masking IdSP
and the Aj . Note that nymSP, CIdSP , CcertSP and ΠcertSP have already proven the
correctness of the secret, that is IdSP. Finally, the provider sends the (CAj

) to
the client, and encrypts and sends idtrans, (i, Qi), CIdSP , (CAj)16j<tSC , and ΠQi

to the i-th share-carrier. If the received proof is valid, the share carriers send
a confirmation to the client, that is idtrans, i, CIdSP , and (CAj

), together with
a signature. If these commitments are the same as the one received from the
provider, the client accepts this confirmation: all the shares were generated from
the same polynomial, which evaluates to the correct secret, IdSP, in 0. Since the
validity of the shares guarantees the undeniability properties, the client accepts
the sharing once he has received 2tSC − 1 valid shares. This requires for the
provider to send (2tSC − 2) elements in G1 to the client, and 4 in Zp, (2tSC + 3)
in G1, and 4 in G2 to each share carrier. Each share carrier sends 2 elements in
Zp and 2tSC in G1 to the provider.

In the meantime, the client shares his secret, that is the masked invariant
masked_inv. Since masked_inv consists of two elements, he must double the

sharing. That is, the client chooses two polynomial R1, R2 of degree tSC − 1
with coefficients masked_invk, B1,k, . . . , BtSC−1,k for k ∈ {1, 2}, and the shares
are

(
i, Ri =

(
R1(i), R2(i)

))
for 1 6 i 6 nSC. To prove the sharing, the client

computes commitments Cmasked_inv and CBj,k
to masked_inv and to the Bj,k,

and NIZK proofs ΠRi
that Ri was generated from masked_inv and from the

Bj for 1 6 i 6 nSC, while masking masked_inv and the Bj . To prove the cor-
rectness of the secret, the client also computes a proof ΠCmasked_inv

guaranteeing
the computation of masked_inv, while masking masked_inv, idCl, and the ran-
domness used. Thus, the client sends Cmasked_inv, (CBj,k

), and ΠCmasked_inv
to the

provider, and encrypts and sends idtrans, (i, Ri), Cmasked_inv, (CBj,k
), and ΠRi

to
the i-th share carrier. As previously, the i-th share carrier sends a confirmation
consisting of idtrans, i, Cmasked_inv, (CBj,k

), and a signature to the provider if the
share is valid. The provider accepts such a confirmation if the commitments are
identical to the ones she received, and accepts the sharing as soon as she has
received 2tSC − 1 valid confirmations. Thus, the client sends one element in Zp,
(4tSC+14) in G1 and 16 in G2 to the provider, and 2 in Zp, (4tSC+6) in G1 and
8 in G2 to each share carrier. Each share carrier sends 2 elements in Zp and 4tSC
in G1 to the provider. Once this step is over, the client is ensured that he will
be able to obtain IdSP to issue the report. Similarly, the provider is guaranteed
that she will be able to obtain a proof of transaction through the computation
of masked_inv.Therefore, both parties can conduct their transaction.

5.3 Construction of the Reports

Once the transaction is over, the client can issue a rating and the provider can
obtain a proof of transaction. Scenario A describes their interactions.

Scenario A – Nominal case. The client chooses a rating ρ and computes a
signature σρ,Cl on H(idtrans, ρ) to prevent any modification on ρ, and a proof
Πmasked_inv of the computation of masked_inv, while masking idCl and the ran-
domness used. It is very important to note that the identity of the provider is
preserved until the client issues and signs his rating, which fully preserves the
objectivity of the rating. Once this is achieved, the provider can reveal her iden-
tity to the share carriers and even to the client. This allows the rating to be
affected to the identity of the provider without allowing bad-mouthing attacks.
Note also that by doing so, reputation scores reflect all the provider’s interac-
tions, not those conducted under a specific pseudonym. Since masked_inv no
longer needs to be hidden, Πmasked_inv is a simpler proof than ΠCmasked_inv

. The
client sends message m1 to the provider, with m1 = (idtrans, ρ, masked_inv,
Πmasked_inv, σρ,Cl). If both the proof and signature are valid, the provider com-
putes the invariant inv from masked_inv and rpre_inv, and a signature σρ,SP on
H(idtrans, σρ,Cl). Note that since the provider reveals her identity, this signa-
ture is a structure-preserving signature, not an anonymous proxy signature. The
provider then reveals her identifier, opens commitments nymSP and CIdSP , and
reveals rpre_inv. These proofs, denoted by ΠSP, guarantee both the computation
of pre_inv and that this provider is the one hidden behind nymSP. The provider

Table 1. Components of the report in the three scenarii

Scenario A Scenario B Scenario C

Provider IdSP, vkSP, certSP, nymSP,
CIdSP , ΠSP

IdSP, vkSP, certSP, nymSP,
CIdSP , ΠSP

CIdSP , nymSP, PCertSP, IdSP,
(CAj)j , {ij , Qij , ΠQij

}j

Client CidCl , nymCl, PCertCl CidCl , nymCl, PCertCl CidCl , nymCl, PCertCl

Trans. id. idtrans, σSP, σCl idtrans, σSP, σCl idtrans, σSP, σCl

Invariant pre_inv, masked_inv, inv,
rpre_inv, Πmasked_inv

pre_inv, masked_inv, inv,
rpre_inv, (CBj,k), {ij , Rij ,
ΠRij

}j , Cmasked_inv,
ΠCmasked_inv

inv, Πinv

Rating ρ, σρ,Cl, σρ,SP ρ, {σρ,SCij
}j

sends message m2 to the client, with m2 = (IdSP, vkSP, certSP, inv, ΠSP, σρ,SP).
The client verifies ΠSP and signature σρ,SP. Finally, both the client and the
provider are able to issue the report by sending the elements given in the first
column of Table 1 to the share carriers (where the first four lines represent the
proof of transaction and the last one the rating together with the signatures of
both parties). If all the signatures and proofs are valid, the report itself is con-
sidered valid by the share carriers. This scenario completes successfully if both
parties are honest. If the client does not send message m1 (resp. the provider
does not send message m2) then scenario B (resp. scenario C) is run. Finally, if
neither the client nor the provider issue the report, then the transaction is not
taken into account in the reputation score of the service provider. If this step
proceeds correctly, the client sends 2 elements in Zp, 14 in G1, and 14 in G2 to
the provider. Similarly, the provider sends 7 elements in Zp, 19 in G1, and 12 in
G2. The report is composed of 11 elements in Zp, 143 in G1, and 116 in G2.

Scenario B – Dishonest client. If the provider does not receive message m1

from the client, she queries the share carriers for their share by sending them
idtrans. On their turn, they query the client to get his rating and, in absence of
his answer, send their shares (i, Ri) and associated proofs ΠRi

to the provider.
The provider is then able to reconstruct the masked invariant masked_inv from
tSC valid received shares. From that point, the provider can compute inv from
masked_inv and rpre_inv and issue the report, which only contains the proof of
transaction (i.e., the elements in the second column of Table 1). During this
step, the provider sends one element in Zp to each share carrier, while each of
them sends back to her one element in Zp, 6 in G1, and 8 in G2. The report is
made of (tSC +10) elements in Zp, (10tSC +132) in G1, and (8tSC +108) in G2.

Scenario C – Dishonest provider. If the client does not receive message m2

from the provider, he sends the masked invariant and his rating together with
their associated proofs and signatures to the share carriers. That is, the client

sends idtrans, nymCl, CidCl
, CcertCl

, ΠcertCl
, nymSP, CidSP , CcertSP , ΠcertSP , pre_inv,

Πpre_inv, masked_inv, Πmasked_inv, ρ, σρ,Cl. If all the proofs and signatures are
valid, the share carriers forward them to the provider to give her the opportunity
to reveal IdSP and the invariant. In absence of any response, the share carriers
send their share (i, Qi) and associated proof ΠQi

to the client. Note that they
also compute a signature σρ,SCj

on H(idtrans, σρ,Cl) to validate the fact that the
client has chosen his rating before knowing the provider’s identity. Once the
client has received tSC valid shares, he reconstructs IdSP, computes inv from IdSP
and idCl, and computes a proof Πinv of the computation of inv while masking
idCl. Finally, the client issues the report by sending the elements presented on
the third column of Table 1 to the share carriers. In this step, the client sends
4 elements in Zp, 202 in G1, and 178 in G2 to each share carrier. Each share
carrier sends back one element in Zp, 3 in G1, and 4 in G2. Finally, the report
is made of (tSC +4) elements in Zp, (5tSC +192) in G1, and (4tSC +164) in G2.

5.4 Computation of the Reputation Scores

At the end of round rnd, each share carrier gathers all the reports received since
round rnd−1, and sends them to the accredited signers. This allows the accred-
ited signers to update the reputation scores of all the service providers concerned
by valid reports. Once accredited signers have checked the validity of a report,
they only keep the identifier of the provider, the identifier of the transaction,
the invariant inv, and the rating of the client, if any, and sign them. Note that
if two (or more) reports have the same identifier of transaction and invariant,
they keep a single one to avoid duplicates. Beyond handling negative ratings, the
accredited signers know the rounds during which reports have been cast. Thus,
as described in Section 2, any reputation score function can be used, e.g. to
lower the influence of old ratings [14] or to limit the impact of ballot-stuffing at-
tacks [22]. In addition, the accredited signers approximate the reputation score
of providers to extend their anonymity set. Once the accredited signers have
computed the reputation score of a provider, they compute a signature σi on
〈vkSP, H(repSP, rnd)〉 and send it to the provider. Service providers can use these
signatures to prove their reputation to their clients during round rnd+1.

6 Performance Evaluation

We now evaluate our privacy-preserving reputation mechanism both in theoret-
ical and practical ways. The former evaluation is achieved through an analysis
of the performance of each building block, while the latter relies on its imple-
mentation on a platform made of heterogeneous computing nodes. The number
of share carriers nSC and the number of accredited signers nAS are respectively
equal to nSC = 28 and nAS = 1. This setting is sufficient to prevent the collusions
of dnSC/3e − 1 = 9 share carriers with probability 2−20 in a system comprising
108 service providers, including 5× 106 malicious ones. This analysis, based on
the hypergeometric distribution, appears in a companion paper [28].

Table 2. Size of exchanged messages for nSC = 28 and nAS = 1, in kibibytes

Phase Cl ↔ SP Cl ↔ SCi SP ↔ SCi report

Proof of Reputation 22 0 0 —
Sharing 3.28 2.69 2.34 —

Scenario A 2.94 0 0 12.06
Scenario B 0 0 0.75 19.63
Scenario C 0 17.94 0 20.75

6.1 Theoretical Study

The correctness of our mechanism relies on the verification of NIZK proofs, which
requires the computation of many pairings. To decrease the number of these op-
erations, we adopt the technique proposed by Blazy et al. [30] which consists in
verifying NIZKs by batches. We also ensure efficient pairing computations by re-
lying on prime-order elliptic curves [31]. We consider elliptic curves in a subclass
of the Barreto-Naehrig family. Thus, elements of Zp and G1 (resp. G2) can be
represented by 32B (resp. 64B). We use the computation costs given by Aranha
et al. [31]. Namely, the four cores of a 3.0GHz AMD Phenom II X4 940 proces-
sor – a top-level processor of 2010 – can compute 8 pairings in a millisecond,
16 exponentiations in G2, or 48 in G1. In the following, we study two metrics,
namely (a) the size of messages exchanged between each entity, and (b) the time
necessary for each entity to perform his computation. We now present and com-
ment the main results obtained with these settings. Table 2 gives the size of
messages (in KiB) exchanged between the different parties involved in the rep-
utation mechanism, namely, between the client and the provider, the client and
one share carrier, and the provider and one share carrier before the transaction
takes place. Finally, it gives the size of the report sent to the accredited signer
once the transaction is over.

These results are both satisfactory and reassuring. The largest messages cor-
respond to the proof of reputation, which comprises the mutual authentication of
the service provider and the client, and the proof by the provider of his reputation
score. Nevertheless, this exchange requires only around 20KiB. This is impres-
sive compared to the mechanism proposed by Bethencourt et al. [5], where the
proof of reputation requires 500KiB per received rating. Table 2 also shows that
share carriers only need 3KiB when a transaction goes well, and less than 10KiB
in the worst case situation. This clearly shows that the design of a distributed
trusted third party requires very little resources. The same comment applies for
the accredited signers. The size of the report, that comprises all the proofs, re-
quires no more than 20KiB in the worst case. It is important to note that the
only message that scales (linearly) as a function of the number of the accredited
signers is the proof of reputation. Thus, even for larger sets of accredited signers,
which typically do not grow to more than 20 entities, the communication cost
remains acceptable. These results are very reassuring because they show that,

 Rep. Proof Sharing Scenario A Scenario B Scenario C

Phase

0

T
im

e
 (

m
s)

79

57

4

22

67

31

7

40

6

66

45

85
90

Cl
SP
SC
AS

Fig. 1. Theoretical computation times (ms)

from a theoretical point of view, privacy-preserving reputation mechanisms are
entirely viable. The next section will show that this holds in practice!

Figure 1 details the computation cost (in ms) of each phase of the reputation
mechanism for each of the involved entities. Several remarks are in order. The
main one is that computation times are very low. Indeed, each user needs no
more than 200ms for all their computations. In particular, each share carrier
needs no more than 6ms when both the client and the provider are honest. Even
in the worst case, they need only 75ms to perform their computations. Finally,
the verification of a report requires between 45ms and 90ms. This clearly shows
that participating to one of the two distributed trusted third parties computing
entities costs little. Actually, the largest costs are due to scenarii B or C. We
can minimize those costs by penalizing malicious users, e.g. by preventing them
from interacting for a given period of time.

6.2 Implementing the Reputation Mechanism

We have implemented our reputation mechanism in Python 2.7 with the Charm
framework [32]. This framework facilitates the implementation of complex cryp-
tographic primitives, such as Groth-Sahai’s NIZK proof system [25], and the com-
bination of multiple primitives, e.g., to build anonymous proxy signatures [26].
Furthermore, Charm provides the means to benchmark applications, both by
giving their running time and by counting each elementary cryptographic oper-
ation. We also use Twisted, an event-driven networking engine, to handle com-
munications between the different parties. Experiments have been conducted
on heterogeneous entities, namely, a virtual machine running on a Dell Latitude
E6430 laptop with a 2.60 GHz Core i7-3720 QM processor, and cheap Raspberry
Pi model B machines with the Raspbian operating system.

Figure 2 presents the results of the conducted experiments. It shows the mean
and standard deviation of the computation times of each user for every step of

 Rep. Proof Sharing Scenario A Scenario B Scenario C

Phase

0

T
im

e
 (

s)

2.6
2.7

1.3

0.6

2.7

2.3

0.9

1.2

0.2

2.0

2.2

2.5
2.4

Cl
SP
SC (VM)
AS

Fig. 2. Practical computation times (s)

the interaction, namely, the proof of reputation, the sharing, and the issuing
of the report in every scenario. Note that the “SC” columns correspond to the
computation times of one share carrier running on the virtual machine, and that
the “AS” columns relate to the verification of one report by an accredited signer.

Clearly, the computation times are higher than the one obtained in theory,
which can easily be explained. First, Aranha et al. carefully select a Barreto-
Naehrig curve, and optimize the computation of pairings using Assembly and
C code on this specific curve [31]. In our case, we rely on the MNT-159 curve
proposed by Charm, which is a Python framework wrapping around Lynn’s pbc
library.6 Furthermore, the theoretical number of operations per second assumes
that they are all ran in parallel, which is not the case in our experiments. Finally,
all the users except one share carrier were run on a single virtual machine. This
does not slow down the phases where users run computations sequentially, e.g.
the proof of reputation or the construction of the report in Scenario A, but it
does slow down the concurrent ones, e.g. the sharing of the secrets.

Even with those limitations, we observe that our mechanism allows clients
to interact with providers, and to run all the preparation in no more than 5 s.
Issuing the report may take longer, but the most important point is that clients
can rapidly verify the reputation of a provider and get involved in the transac-
tion. Similarly, the pre-transaction and the post-transaction phases respectively
require no more than 5 s and 1 s which clearly allows the provider to interact
with many clients simultaneously. Note that share carriers can even be run on
cheap Raspberry Pi machines. In that case, sharing the secrets requires no more
than 4.7 s, while issuing the rating in presence of malicious clients needs no more
than 59 s. Such cheap machines increase the waiting time of both clients and pro-
viders, but this delay remains acceptable (less than 15 s), compared for example
to the time required to buy items on any e-commerce web sites. Finally, run-
ning clients on Raspberry Pi requires about 75 s for conducting the reputation
6 http://crypto.stanford.edu/pbc/

proof and 115 s for the sharing. That is, clients need about 3min before being
able to conduct a transaction, which is clearly reasonable to engage in (possibly)
financial transactions.

7 Conclusion

In this article, we have presented a privacy-preserving distributed reputation
mechanism. Beyond being non-monotonic, this mechanism reveals to be fully
usable even with cheap on-board computers. This is a very encouraging result
as it shows that privacy does not impede utility and accuracy. This has been
achieved by combining distributed algorithms and cryptographic schemes. Our
mechanism is independent of the reputation model, that is, our system can inte-
grate any reputation model [14], preferably one using both positive and negative
ratings.

As future works, we plan to study more deeply an off-line version of the
secret sharing, which requires the share carriers only in Scenarii B and C, and
to improve the report verification when the service provider does not want to
collaborate.

References

1. Dellarocas, C.: Immunizing online reputation reporting systems against unfair
ratings and discriminatory behavior. In: ACM Conference on Electronic Commerce
(EC), USA (2000)

2. European Parliament and Council of the European Union: Directive 95/46/EC.
Official Journal of the European Communities (1995)

3. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: IEEE Symposium on Security and Privacy, Oakland,USA (2008)

4. Steinbrecher, S.: Enhancing multilateral security in and by reputation systems. In:
The Future of Identity in the Information Society. (2008)

5. Bethencourt, J., Shi, E., Song, D.: Signatures of reputation. In: Financial Cryp-
tography and Data Security (FC), Canary Islands (2010)

6. Pavlov, E., Rosenschein, J.S., Topol, Z.: Supporting privacy in decentralized ad-
ditive reputation systems. In: International Conference on Trust Management.
(2004)

7. Hasan, O., Brunie, L., Bertino, E.: Preserving privacy of feedback providers in
decentralized reputation systems. Computers & Security (2012)

8. Kerschbaum, F.: A verifiable, centralized, coercion-free reputation system. In:
Workshop on Privacy in the Electronic Society (WPES), Chicago,USA (2009)

9. Clauß, S., Schiffner, S., Kerschbaum, F.: k-anonymous reputation. In: Symposium
on Information, Computer and Communications Security (ASIACCS). (2013)

10. Androulaki, E., Choi, S.G., Bellovin, S.M., Malkin, T.: Reputation systems for
anonymous networks. In: Privacy Enhancing Technologies (PETS), Belgium (2008)

11. Baumeister, R.F., Bratslavsky, E., Finkenauer, C., Vohs, K.D.: Bad is stronger
than good. Review of General Psychology (2001)

12. Lajoie-Mazenc, P., Anceaume, E., Guette, G., Sirvent, T., Viet Triem Tong, V.:
Extending signatures of reputation. In: Privacy and Identity. IFIP AICT 421
(2014) 165–176

13. Resnick, P., Zeckhauser, R.: Trust among strangers in Internet transactions: Em-
pirical analysis of eBay’s reputation system. The Economics of the Internet and
E-Commerce (2002)

14. Jøsang, A., Ismail, R.: The beta reputation system. In: Bled Electronic Commerce
Conference, Bled, Slovenia (2002)

15. Yu, B., Singh, M.P.: Distributed reputation management for electronic commerce.
Computational Intelligence (2002)

16. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust algorithm for
reputation management in P2P networks. In: International World Wide Web Con-
ference (WWW). (2003)

17. Anceaume, E., Ravoaja, A.: Incentive-based robust reputation mechanism for
P2P services. In: International Conference on Principles of Distributed Systems
(OPODIS), Bordeaux, France, Springer Berlin Heidelberg (2006)

18. Hasan, O., Brunie, L., Bertino, E., Shang, N.: A decentralized privacy preserving
reputation protocol for the malicious adversarial model. IEEE Transactions on
Information Forensics and Security (2013)

19. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decision Support Systems (2007)

20. Marti, S., Garcia-Molina, H.: Taxonomy of trust: Categorizing P2P reputation
systems. Computer Networks (2006)

21. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by
data minimization: Anonymity, unlinkability, undetectability, unobservability,
pseudonymity, and identity management (2010)

22. Whitby, A., Jøsang, A., Indulska, J.: Filtering out unfair ratings in bayesian rep-
utation systems. In: International Workshop on Trust in Agent Societies. (2004)

23. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: USENIX Security Symposium. (2004)

24. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
Foundations of Computer Science (FOCS), USA (1987)

25. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Eurocrypt, Istanbul, Turkey, Springer Berlin Heidelberg (2008)

26. Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Security and
Cryptography for Networks (SCN). (2008)

27. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Advances in
Cryptology—CRYPTO. (2010)

28. Lajoie-Mazenc, P., Anceaume, E., Guette, G., Sirvent, T., Viet Triem Tong,
V.: Efficient distributed privacy-preserving reputation mechanism handling non-
monotonic ratings. Technical report, https://hal.archives-ouvertes.fr/hal-01104837
(2015)

29. National Institute of Standards and Technology: Secure hash standard (2012)
30. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud,

D.: Batch groth-sahai. In: Applied Cryptography and Network Security (ACNS),
Beijing, China, Springer Berlin Heidelberg (2010)

31. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Eurocrypt. (2011)

32. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M.,
Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. Journal
of Cryptographic Engineering 3 (2013) 111–128

