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Abstract. Much work has been recently proposed to model relational
data, especially in the multi-relational case, where di↵erent kinds of rela-
tionships are used to connect the various data entities. Previous attempts
either consist of powerful systems with high capacity to model complex
connectivity patterns, which unfortunately usually end up overfitting on
rare relationships, or in approaches that trade capacity for simplicity in
order to fairly model all relationships, frequent or not. In this paper, we
propose a happy medium obtained by complementing a high-capacity
model with a simpler one, both pre-trained separately and jointly fine-
tuned. We show that our approach outperforms existing models on dif-
ferent types of relationships, and achieves state-of-the-art results on two
benchmarks of the literature.

Keywords: Representation learning; Multi-relational data.

1 Introduction

Predicting new links in multi-relational data plays a key role in many areas and
hence triggers a growing body of work. Multi-relational data are defined as di-
rected graphs whose nodes correspond to entities and edges are in the form of
triples (head, label, tail) (denoted (h, `, t)), each of which indicates that there
exists a relationship of name label between the entities head and tail. Figure 1
displays an example of such data with six entities (Jane, Patti, John, Mom, Mi-

ami and Austin) and two relationships (born in and child of). Link prediction
in this context consists in attempting to create new connections between enti-
ties and to determine their type; this is crucial in social networks, knowledge
management or recommender systems to name a few.

Performing predictions in multi-relational data is complex because of their
heterogeneous nature. Any such data can equivalently be seen as a set of directed
graphs that share the same nodes but that usually present drastically di↵erent
properties in terms of sparsity or connectivity. As illustration, we can look at
some statistics of a subset of the knowledge base Freebase, named FB15k in
the following, which we use for our experiments. This data set contains ⇠15k
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Fig. 1. Example of multi-relational data with 6 entities and 2 relationships.

entities connected by ⇠1.5k relationships to form a graph of ⇠500k triples. Even
if FB15k is just a small sample, it is likely that its characteristics are shared with
most real-world multi-relational data, but at a di↵erent scale. The relationships
of FB15k have a mean number of triples of ⇠400 and a median of 21: a vast
number of relationships appear in very few triples, while others provide a large
majority of the connections. Besides, roughly 25% of the relationships are of type
1-to-1, that is a head is connected to at most one tail (think of a spouse of link
for instance), but on the opposite 25% of the relationships are of type Many-to-
Many, that is, multiple head can be linked to a tail and vice-versa (for instance,
a like product link). Creating new connections for Many-to-Many relationships
can be possible by relying on several existing links of the same kind, whereas in
the 1-to-1 case, the only way to be able to generalize is to count on the other
relationships, especially if the relationship of interest happens to be rare.

In contrast to (pseudo-) symbolic approaches for link prediction based on
Markov-logic networks [11] or random walks [13], most recent e↵ort towards
solving this problem concern latent factor models (e.g. [19, 10, 22, 16, 2, 17, 9])
because they tend to scale better and to be more robust w.r.t. the heterogene-
ity of multi-relational data. These models represent entities with latent factors
(usually low-dimensional vectors or embeddings) and relationships as operators
destined to combine those factors. Operators and latent factors are trained to
fit the data using reconstruction [17], clustering [22] or ranking costs [2]. The
multi-relational quality of the data is modeled through the sharing of the latent
factors across relationships which grants a transfer of information from one rela-
tionship to another; operators are normally specific to each relationships, except
in [9] where some parameters are shared among relationships.

Learning these latent factor models can be seen as a kind of multitask train-
ing, with one task per relationship: one model is fitted for each task and some
parameters are shared across tasks. All existing latent factor approaches define
the same formulation for each task. This is natural since hand-crafting a par-
ticular model for each relationship seems daunting since there can be several
thousands of them. However, as all relationships have very di↵erent properties,
this also induces important drawbacks.
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The standard modeling assumption is to consider 3-way interactions between
head, label and tail, i.e. to consider that they are all interdependent: the validity
of a triple (h, `, t) depends jointly on h, ` and t. This generally results in mod-
els where entities are represented by vectors and relationships by matrices. An
exception is Parafac [8, 6] that models multi-relational data as a binary tensor
and factorizes it as a sum of rank one tensors. Other tensor factorization meth-
ods derived from Tucker decompositions [23] or Dedicom [?] like RESCAL [17,
18] end up with vectorial latent factors for entities and low rank matrices for
relationships. This formulation is also shared by many non-parametric Bayesian
approaches such as extensions of the Stochastic Block Models [10, 16, 24], or joint
entities and relationships clustering approaches [22], which end up modeling the
data with similar architectures but with drastically di↵erent training and infer-
ence procedures. Linear Relational Embeddings [19] were proposed as a 3-way
model trained using a regression loss: the vector representing t is learned so
that it can be reconstructed using the embedding of h and the matrix encoding
`, if (h, `, t) is valid. This work was later followed by the Structured Embed-
dings model (SE) [2] where the regression loss was replaced by a ranking loss for
learning embeddings of entities.

Three-way models are appropriate for multi-relational data since they can
potentially represent any kind of interaction. However, this comes at a price since
they have to allocate the same large capacity to model each relationship. While
this is beneficial for frequent ones, this can be problematic for rare relationships
and cause major overfitting. Hence, one must control the capacity either by
regularizing, which is not straightforward since di↵erent penalties might need
to be used for each relationship, or by reducing the expressivity of the model.
The second option is implemented in two recent embedding models, SME [3] and
TransE [4], that choose to represent multi-relational data as combination of 2-way
interactions. The idea is to assume that the validity of a triple (h, `, t) is governed
by binary interaction terms (h, t), (t, `) and (h, `), which allows to represent a
relationship as a vector as with the other entities. Such a model, TransE [4],
outperforms most 3-way approaches on various data sets, which indicates that
less expressivity can be beneficial overall for a whole database, especially for
relationships where the number of training triples is reduced. However, by design,
methods based on 2-way interactions are limited and can not hope to represent
all kinds of relations between entities.

In this paper, we introduce Tatec (for Two And Three-way Embeddings Com-

bination), a latent factor model which successfully combines well-controlled 2-
way interactions with high-capacity 3-way ones. We demonstrate in the following
that our proposal is a generalization of many previous methods. Unlike recent
work like the Latent Factor Model (LFM) of [9] or the Neural Tensor Model
(NTN) of [21] that proposed similar joint formulations mixing several interac-
tion terms, we deliberately choose not to share parameters between the 2- and
3-way interaction components of our model. Previous work use the same embed-
dings for entities in all terms of their models, which seems to be a sound and
natural idea to obtain the possible latent representations. However, we discov-
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ered that 2- and 3-way models do not respond to the same data patterns, and
that they do not necessarily encode the same kind of information in the embed-
dings: sharing them among interaction terms can hence be detrimental because
it can make some features to be missed by the embeddings or to be destroyed.
On the contrary, we explain in the following that using di↵erent embeddings for
both terms allows to detect distinct kinds of patterns in the data. To ensure
that Tatec satisfactorily collects both kinds of patterns, we pre-train separately
a 2-way and a 3-way model, which are then combined and jointly fine-tuned in
a second stage. We show in various experiments that this combination process
is powerful since it allows to jointly enjoy both nice properties of 2 and of 3-way
interactions. As a result, Tatec is more robust than previous work w.r.t. the
number of training samples and the type of relationships. It consistently outper-
forms most models in all conditions and achieves state-of-the-art results on two
benchmarks from the literature, FB15k [4] and SVO [9].

This paper is organized as follows. Section 2 introduces our formulation and
our training procedure, divided in a pre-training phase followed by a fine-tuning
step both conducted via stochastic gradient descent. We justify our particular
modeling choices in Section 3. Finally, we display and discuss our experimental
results on FB15k, SVO and a synthetic dataset in Section 4.

2 Model

We now describe our model, and the training algorithm associated to it. The
motivation underlying our parameterization is given in the next section.

2.1 Scoring Function

The data S is a set of relations between entities in a fixed set of entities in
E = {e1, ..., eE}. Relations are represented as triples (h, `, t) where the head h
and the tail t are indexes of entities (i.e. h, t 2 [[E]] = {1, ..., E}), and the label
` is the index of a relationship in L = {l1, ..., lL}, which defines the type of
the relation between the entities eh and et. Our goal is to learn a discriminant
scoring function on the set of all possible triples E ⇥ L ⇥ E so that the triples
which represent likely relations receive higher scores than triples that represent
unlikely relations. Our proposed model, Tatec, learns embeddings of entities in
low dimensional vector spaces, and parameters of operators on Rd⇥Rd, most of
them being associated to single relationships. More precisely, the score given by
Tatec to a triple (h, `, t), denoted by s(h, `, t), is defined as:

s(h, `, t) = s1(h, `, t) + s2(h, `, t) (1)

where s1 and s2 have the following form:

(B) Bigrams or the 2-way interactions terms:

s1(h, `, t) =
⌦
r`1
��eh1

↵
+
⌦
r`2
��et1

↵
+
⌦
eh1

��D
��et1

↵
,
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where eh1 , e
t
1 are embeddings in Rd1 of the head and tail entities of (h, `, t)

respectively, r`1 and r`2 are vectors in Rd1 that depend on the relationship l`,
and D is a diagonal matrix that does not depend on the input triple.
As a general notation throughout this section,

⌦
.
��.
↵
is the canonical dot

product, and
⌦
x
��A

��y
↵
=

⌦
x
��Ay

↵
where x and y are two vectors in the same

space and A is a square matrix of appropriate dimensions.
(T) Trigram or the 3-way interactions term:

s2(h, `, t) =
⌦
eh2

��R`
��et2

↵
,

where R` is a matrix of dimensions (d2, d2), and eh2 and et2 are embeddings in
Rd2 of the head and tail entities respectively. The embeddings of the entities
for this term are not the same as for the 2-way term; they can have di↵erent
dimensions for instance.

The embedding dimensions d1 and d2 are hyperparameters of our model. All
other vectors and matrices are learned without any additional parameter sharing.

The 2-way interactions term of the model is similar to that of [3], but slightly
more general because it does not contain any constraint between the relation-
dependent vectors r`1 and r`2. It can also be seen as a relaxation of the translation
model of [4], which is the special case where r`1 = �r`2, D is the identity matrix,
and the 2-norm of the entities embeddings are constrained to equal 1.

The 3-way term corresponds exactly to the model used by the collective
factorization method RESCAL [17], and we chose it for its high expressivity
on complex relationships. Indeed, as we said earlier in the introduction, 3-way
models can basically represent any kind of interaction among entities. The usage
of combinations of 2-way and 3-way terms has already been used in [9, 21], but,
besides a di↵erent parameterization, Tatec contrasts with them by the choice
of not sharing the embeddings between the two models. In LFM [9], constraints
were imposed on the relation-dependent matrix of the 3-way terms (low rank
in a limited basis of rank-one matrices), the relation vectors r`1 and r`2 were
constrained to be a constant linear function of the matrix (D = 0 in their
work). These global constraints severely limited the expressivity of the 3-way
model, and act as powerful regularization in that respect. However, their global
constraints also reduces the expressivity of the 2-way model, which, as we explain
in Section 3, should be left with maximum degrees of freedom. The fact that we
do not share any parameter between relations is similar to NTN [21]. Our overall
scoring function is similar to this model with a single layer, with the fundamental
di↵erence that we use di↵erent embedding spaces and do not use any non-linear
transfer function, which results in a facilitated training (the gradients have a
larger magnitude, for instance).

2.2 Training

Training is carried out using gradient descent, with a ranking criterion as training
objective. The optimization approach is similar to the one used for TransE [4], but
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the models are very di↵erent. Our loss function takes training triples, and tries to
give them higher scores than to corrupted versions, where the corruption consists
in either replacing the head or the tail of each triple by a random entity. Since we
are learning with positive examples only, this kind of criterion implements the
prior knowledge that unobserved triples are likely to be invalid. Such corruption
approaches are widely used when learning embeddings of knowledge bases [2, 4]
or words in the context of language models [5, 14].

Given a training triple (h, `, t), the set of possible corrupted triples, denoted
by C(h, `, t), is defined as:

C(h, `, t) = {(h0, `, t0) 2 [[E]]⇥ {`}⇥ [[E]]|h0 = h or t0 = t} .

The loss function we optimize is then:
X

(h,`,t)2S

X

(h0,`,t0)2C(h,`,t)

max(0, 1� s(h, `, t) + s(h0, `, t0)) (2)

Stochastic gradient is performed in a minibatch setting. The dataset S is shu✏ed
at each epoch, minibatches of m << |S| training triples are selected, and, for
each one of them, a corresponding mini-batch of corrupted triples is sampled
at random to create ranking pairs. We only create a single corrupted triple per
training sample. The learning rate of the stochastic gradient is kept constant,
and optimization is stopped using early stopping on a validation set.

Several regularization schemes were tried during training: either by forcing
the entity embeddings to have, at most, a 2-norm of r (for radius), or by adding 2-
norm regularization inside the sum of (2) of the form �k x k22 for each parameter
x (relation vectors and diagonal matrix in the 2-way term or relation matrix in
the 3-way term) that appears in max(0, 1� s(h, `, t) + s(h0, `, t0)). The first kind
of regularization is carried out after each minibatch by projecting the entities
into the 2-norm ball of radius r.

A random initialization of the scoring function (1) can lead to a poor local
minimum, but can also prevent the di↵erent embeddings used in the 2- and 3-
way terms to capture di↵erent patterns as we expect (see next section). Hence,
following many previous work on deep architecture, we decided to first pre-train
separately the bigrams and trigram terms on the training set. When their pre-
training is over (i.e. stopped using early stopping on a validation set), we initialize
the parameter of the full score (1) using these learned weights and fine-tuned it
by running stochastic gradient descent on the training set with the full model.

3 Interpretation and Motivation of the Model

This section discusses the motivations underlying the parameterization of Tatec,
and in particular our choice of 2-way model to complement the 3-way term.

3.1 2-Way Interactions as one Fiber Biases

It is common in regression, classification or collaborative filtering to add biases
(also called o↵sets or intercepts) to the model. For instance, a critical step of the
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best-performing techniques of the Netflix prize was to add user and item biases,
i.e. to approximate a user-rating Rui according to (see e.g. [12]):

Rui ⇡
⌦
Pu

��Qi

↵
+ ↵u + �i + µ (3)

where P 2 RU⇥k, with each row Pu containing the k-dimensional embedding of
the user (U is the number of users), Q 2 RI⇥k containing the embeddings of
the I items, ↵u 2 R a bias only depending on a user and �i 2 R a bias only
depending on an item (µ is a constant that we do not consider further on).

The 2-way + 3-way interactions model we propose can be seen as the 3-
mode tensor version of this “biased” version of matrix factorization: the trigram
term (T) is the collective matrix factorization parametrization of the RESCAL

algorithm [17] and plays a role analogous to the term
⌦
Pu

��Qi

↵
of the matrix

factorization model for collaborative filtering (3). The bigram term (B) then
plays the role of biases for each fiber of the tensor,1 i.e.

s1(h, `, t) ⇡ B1
l,h +B2

l,t +B3
h,t (4)

and thus is the analogous for tensors to the term ↵u + �i in the matrix fac-
torization model (3). The exact form of s1(h, `, t) given in (B) corresponds to
a specific form of collective factorization of the fiber-wise bias matrices B1 =h
B1

l,h

i

l2[[L]],h2[[E]]
, B2 and B3 of Equation 4. We do not exactly learn one bias by

fiber because many such fibers have very little data, while, as we argue in the
following, the specific form of collective factorization we propose in (B) should
allow to share relevant information between di↵erent biases.

3.2 The Need for Multiple Embeddings

A key feature of Tatec is to use di↵erent embedding spaces for the 2-way and
3-way terms, while existing approaches that have both types of interactions use
the same embedding space [9, 21]. We motivate this choice in this section.

It is important to notice that biases in the matrix factorization model (3),
or the bigram term in the overall scoring function (1) do not a↵ect the model
expressiveness, and in particular do not a↵ect the main modeling assumptions
that embeddings should have low rank. The user/item-biases in (3) only boil
down to adding two rank-1 matrices ↵1T and 1�T to the factorization model.
Since the rank of the matrix is a hyperparameter, one may simply add 2 to this
hyperparameter and get a slightly larger expressiveness than before, with reason-
ably little impact since the increase in rank would remain small w.r.t. its original
value (which is usually 50 or 100 for large collaborative filtering data sets). The
critical feature of these biases in collaborative filtering is how they interfere with
capacity control terms other than the rank, namely the 2-norm regularization: in
[12] for instance, all terms of (3) are trained using a squared error as a measure

1 Fibers are the higher order analogue of matrix rows and columns for tensors and are
defnied by fixing every index but one.
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of approximation and regularized by �
⇣
k Pu k22 + k Qi k22 + ↵2

u + �2
i

⌘
, where

� > 0 is the regularization factor. This kind of regularization is a weighted trace
norm regularization [20] on PQT . Leaving aside the ”weighted” part, the idea

is that at convergence, the quantity �
⇣P

u k Pu k22 +
P

i k Qi k22
⌘

is equal to

2� times the sum of the singular values of the matrix PQT . However, �k ↵ k22,
which is the regularization applied to user biases, is not 2� times the singular
value of the rank-one matrix ↵1T , which is equal to

p
Ik ↵ k2, and can be much

larger than k ↵ k22. Thus, if the pattern user+item biases exists in the data, but
very weakly because it is hidden by stronger factors, it will be less regularized
than others and the model should be able to capture it. Biases, which are al-
lowed to fit the data more than other factors, o↵er the opportunity of relaxing
the control of capacity on some parts of the model but this translates into gains
if the patterns that they capture are indeed useful patterns for generalization.
Otherwise, this ends up relaxing the capacity to lead to more overfitting.

Our bigram terms are closely related to the trigram term: the terms
⌦
r`1
��eh1

↵

and
⌦
r`2
��et1

↵
can be added to the trigram term by adding constant features in

the entities’ embeddings, and
⌦
eh1

��D
��et1

↵
is directly in an appropriate quadratic

form. Thus, the only way to gain from the addition of bigram terms is to ensure
that they can capture useful patterns, but also that capacity control on these
terms is less strict than on the trigram terms. In tensor factorization models,
and especially 3-way interaction models with parameterizations such as (T),
capacity control through the regularization of individual parameters is still not
well understood, and as it turns out in experiments is more detrimental than
e↵ective. The only e↵ective parameter is the admissible rank of the embeddings,
which leads to the conclusion that the bigram term can be really useful in addi-
tion to the trigram term if higher-dimensional embeddings are used. Hence, in
absence of clear and concrete way of e↵ectively controlling the capacity of the
trigram term, we believe that di↵erent embedding spaces should be used.

3.3 2-Way Interactions as Entity Types+Similarity

Having a part of the model that is less expressive, but less regularized than
the other part is only useful if the patterns it can learn are meaningful for the
prediction task at hand. In this section, we give the motivation for our 2-way
interactions term for the task of modeling multi-relational data.

Most relationships in multi-relational data, and in knowledge bases like FB15k
in particular, are strongly typed, in the sense that only well-defined and specific
subsets of entities can be either heads or tails of selected relationships. For in-
stance, a relationship like capital of expects a (big) city as head and a country
as tail for any valid relation. Large knowledge bases have huge amounts of enti-
ties, but those belong to many di↵erent types. Identifying the expected types of
head and tail entities of relationships, with an appropriate granularity of types
(e.g. person or artist or writer), is likely to filter out 95% of the entity set
during prediction. The exact form of the first two terms

⌦
r`1
��eh1

↵
+
⌦
r`2
��et1

↵
of the
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Table 1. Statistics of the data sets used in this paper and extracted from an
artificial database, Family, and from two knowledge bases: FB15k and SVO.

Data set Family FB15k [4] SVO [9]
Entities 721 14,951 30,605
Relationships 5 1,345 4,547
Training examples 5,748 483,142 1,000,000
Validation examples 1,935 50,000 50,000
Test examples 1,955 59,071 250,000

2-way interaction model (B), which corresponds to a low-rank factorization of
the per bias matrices (head, label) and (tail, label) in which head and tail entities
have the same embeddings, is based on the assumption that the types of entities
can be predicted based on few (learned) features, and these features are the same
for predicting head-types as for predicting tail-types. As such, it is natural to
share the entities embeddings in the first two terms of (B).

The last term,
⌦
eh1

��D
��et1

↵
, is intended to account for a global similarity be-

tween entities. For instance, predicting the capital of France can easily be per-
formed correctly by saying that we search for the city with strongest overall
connections with France in the knowledge base. A country and a city may be
strongly linked through their geographical positions, independent of their respec-
tive types. The diagonal matrix D allows to re-weight features of the embedding
space to account for the fact that the features used to describe types may not be
the same as those that can describe the similarity between objects of di↵erent
types. The use of a diagonal matrix is strictly equivalent to using a general sym-
metric matrix in place of D.2 The reason for using a symmetric matrix comes
from the intuition that the direction of many relationships is arbitrary (i.e. the
choice between having triples ”Paris is capital of France” rather than ”France
has capital Paris”), and the model should be invariant under arbitrary inversions
of the directions of the relationships (in the case of an inversion of direction, the
relations vectors r`1 and r`2 are swapped, but all other parameters are una↵ected).
For tasks in which such invariance is not desirable, the diagonal matrix could be
replaced by an arbitrary matrix.

4 Experiments

This section presents a series of experiments that we conducted to compare Tatec
to previous models from the literature on two benchmarks, FB15k, a subset of
Freebase [4], and SVO, a database of nouns connected by verbs and introduced
in [9], as well an artificial data set that we created (Family). The statistics of
these data sets are given in Table 1.

2 We can see the equivalence by taking the eigenvalue decomposition of a symmetric
D: apply the change of basis to the embeddings to keep only the diagonal part ofD
in the term

⌦
e

h
1

��
D

��
e

t
1

↵
, and apply the reverse transformation to the vectors r

`
1 and

r

`
2. Note that since rotations preserve euclidian distances, the equivalence still holds
under 2-norm regularization of the embeddings.
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Table 2. Baselines. Rules used by our symbolic baselines, an upper and a lower one,
to predict a tail given a head and a label on the Family data set. Similar symmetric
rules have been used to predict a head given a tail and a label for these relations.

Relationship Baseline Rules for predicting a tail given a head

cousin of

Lower Any entity of the same layer as the head of the families where the head has a cousin.
Upper Any entity whose parent is a sibling(-in-law) of the parents of the head.

sibling of

Lower Any entitiy of the same layer as the head of the families where the head has a sibling.
Upper Any entity whose parent is the same as the parents of head.

married to

Lower Any entity of the same layer as the head whose marriage would not be forbidden with.
Upper Entity who has children in common with the head.

parent of

Lower Any entity of the lower layer of head of the families where head has a child.
Upper Any entity being children of the spouse of head.

uncle of

Lower Any entity of the lower layer of head of the families where head has a niece/nephew.
Upper Any entity being child of a sibling/sibling a law of head or the spouse of head.

For evaluation, we use a ranking procedure as in [2, 4]. For each test triplet,
the head is removed and replaced by each of the entities of the dictionary in
turn. Scores of those corrupted triplets are computed by the models and sorted
by descending order and the rank of the correct entity is stored. This whole
procedure is repeated when removing the tail instead or the head. We report
the mean of those predicted ranks and the hits@10, i.e. the proportion of correct
entities ranked in the top 10.

4.1 Synthetic Data

“Family” Data Set This database contains triples expressing family relation-
ships among the members of 5 families along 6 generations, each family being
organized in a layered tree structure where each layer refers to a generation.
These 5 families are first created independent of each other by recursively sam-
pling the number of children of each node of a layer using the normal distribution
N (3, 1.5) to create a new generation. Then, families are connected by marriage
links between two members. We use pre-defined rules to avoid non-typical situa-
tions, like marriages between cousins and brothers, as well as marriages between
two members of di↵erent generations. To control the number of connections be-
tween families, only i� 1 marriages are allowed in the generation i.

After all families are created, we build a multi-relational data set by collect-
ing the pairs of entities connected using the following relationships: cousin of,
married to, parent of, sibling of and uncle of. We end up with a data set with 721
entities, 5 relationships and ⇠9k triples which is later split into training, valida-
tion and test sets. There is a large variation in the numbers of triples: there are
only 30 examples with married to but 5, 060 with cousin of. Family is a realistic
and challenging study case, but for which we know the underlying semantics.

Baselines We created two symbolic baselines since we know the underlying
rules used to generate the data. These baselines can be used to assess what kind
of pattern is caught by our model. Our first baseline, Lower, uses simplistic rules
in order to find a set of potential candidates among all entities given a label and
either a head or a tail as input. Our second baseline, Upper, returns candidate



Blending Two and Three-way Models for Multi-relational Data 11

Table 3. Synthetic data set. We compare our Bigrams, Trigram and Tatec models
in terms of mean rank, with both baselines on the Family dataset.

Relation cousin of married to parents of sibling of uncle of

Lower 76 4 25 35 34
Upper 4 3 7 4 3

Bigrams 10 102 9 8 13
Trigram 7 162 7 5 8
Tatec 6 69 5 4 6

answers using a much more refined knowledge about the underlying semantics
of the relationships, such as, if John and Mary have children together then they
are likely to be married. We made sure than, for any triple from the data set,
the correct missing element given a label and either a head or a tail as input,
is always contained in the sets returned by Lower and Upper (the second being
included in the first one). Then, for each test triple, we computed the mean rank
of the answers given by the baselines, by sorting the elements of the returned
candidate sets by the number of occurrences of each entity in the training set. It
is worth noting that the entities of the Upper set always form triples expressing
true knowledge. The rules used to defined both baselines are given in Table 2.

Implementation To pre-train our Bigrams and Trigram models we selected the
learning rate for the stochastic gradient descent among {0.1, 0.01, 0.001, 0.0001},
and the embedding dimension among {5, 10, 20}. The margin was fixed to 1,
and the radius determining the maximim 2-norm of the entity embeddings was
validated among {1, 10, 100}. For fine-tuning Tatec, the learning rate was selected
among the same values as above, independent of the values chosen for pre-
training. For all three models, training was limited to a maximum of 500 epochs,
and we used the mean rank on the validation set (computed every 50 epochs) as
stopping criterion.

Results Table 3 presents our results. Tatec outperforms the best performance
of Bigrams and Trigram counterparts for each relationship, indicating that the
biases brought to the 3-way model by the bigram terms are indeed beneficial to
detect complementary patterns in the data. As a result, Tatec gets a really close
performance to that of the upper baseline, indicating that it can perform rela-
tively sophisticated inference, as long as the amount of data is su�cient. Indeed,
all embedding-based models fail completely on the married to relationship: with
very few training samples, those models cannot learn any meaningful information
that would grant non-trivial predictions for this complex relationship.

4.2 Encoding Freebase

Freebase Data Set (FB15k) Freebase is a huge and growing database of
general facts; there are currently around 1.2 billion triples and more than 80
million entities. We used FB15k, a data set based on Freebase introduced in
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Table 4. Link prediction results. We compare Bigrams, Trigram and several version
of Tatec with various methods from the literature on the FB15k dataset. Results are
displayed in the filtered setting, see the text for more details.

Interaction Model Mean Rank Hits@10

2-way
SME(linear) [3] 154 40.8
TransE [4] 125 47.1

3-way
SE [2] 162 39.8
SME(bilinear) [3] 158 41.3
RESCAL [17] 683 44.1

2 + 3-way
NTN [21] 332 27.0
LFM [9] 164 33.1

2-way Bigram 133 44.7
3-way Trigram 156 42.7

2 + 3-way

Tatec-no-pretrain 133 44.7
Tatec-shared-embs 137 45.0
Tatec-linear-comb 115 51.7
Tatec 111 52.6

[4], This small data set is based on a subset of entities that are also present in
the Wikilinks database3 and that also have at least 100 mentions in Freebase
(for both entities and relationships). This results in 592, 213 triples with 14, 951
entities and 1, 345 relationship which were randomized and split.

Baselines We compare Tatec with various models from previous work: RESCAL
[17], LFM [9] , SE [2] , SME [3] and TransE [4]. Results were extracted from [4]
since we follow the same experimental protocol here. We also include compar-
isons with NTN [21]. For this method, we ran experiments with the code provided
by the authors. The embedding dimension was selected between {25, 50} and the
number of slices of the tensor layer was fixed to 2 for computational consider-
ations. We chose the regularization hyperparameter among {0, 0.1, 0.01, 0.001}
and tanh as nonlinear element-wise function. The negative triplets were gener-
ated as before in a proportion of 10 negative to 1 positive triple. The model ran
for 700 iterations and was validated every 50 iterations.

Besides Bigrams, Trigram and Tatec, we also propose the performance of 3
other versions of Tatec:

– Tatec-no-pretrain: Tatec without pre-training s1(h, `, t) and s2(h, `, t).
– Tatec-shared: Tatec but sharing the embeddings between s1(h, `, t) and

s2(h, `, t) and without pre-training.
– Tatec-linear-comb: this version simply combines the bigram and trigram

terms using a linear combination, without jointly fine-tuning their parame-
ters. The score is hence defined as follows:

s(h, `, t) = �`1
⌦
r`1
��eh1

↵
+ �`2

⌦
r`2
��et1

↵
+ �`3

⌦
eh1

��D
��et1

↵
+ �`4

⌦
eh2

��R`
��et2

↵

3
code.google.com/p/wiki-links
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Table 5. Detailed results by category of relationship. We compare our Bigrams,
Trigram and Tatec models in terms of Hits@10 (in %) on FB15k in the filtered setting
against other models of the literature. (M. stands for Many).

Task Predicting head Predicting tail
Rel. category 1-to-1 1-to-M. M.-to-1 M.-to-M. 1-to-1 1-to-M. M.-to-1 M.-to-M.
SE [2] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
SME(linear) [3] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3
SME(bilinear) [3] 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8
TransE [4] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

Bigrams 55.4 73.2 25.5 49.3 51.3 11.4 78.5 37.4
Trigram 44.3 69.6 29.0 48.0 41.2 8.3 72.6 35.1
Tatec 65.8 84.8 40.0 58.9 62.3 15.1 87.0 42.3

The combination weights �`i depend on the relationship and are learned by
optimizing the ranking loss defined in (2) using L-BFGS, with an additional

quadratic penalization term,
P

k
||�k||22
�k+✏ , subject to

P
k �k = �. Training is

carried out in an iterative way, by alternating optimization of � parame-
ters via L-BFGS, and update of � parameters using �⇤

i = �||�i||2P
i ||�i||2

, until

some stopping criterion is reached. The � parameters are initialized to 1 and
the � value is validated among {0.1, 1, 10, 100, 250, 500, 1000}. The intuition
behind this particular penalization for the �s is that it is equivalent to a
LASSO penalization [7] and our initial idea was to enforce sparsity among
� parameters. However we found experimentally that the best performance
was obtained with a � of 250, which does not yield a sparse solution.

Implementation Tatec, and its 3 alternative versions have been trained and
validated in the same setting that was used for the Family experiments, except
that we chose the embedding dimensions among {25, 50}.

Results Table 4 displays the mean rank and hits@10 for all the aforementioned
methods. These results have been computed in a filtered setting as defined in
[4]: to reduce the error introduced by true triples that might be ranked above
the target triple in test, all the entities forming existing triples in the train,
validation and test sets but the target one are removed from the candidate set
of entities to be ranked. This grants a clearer view on ranking performance.

First of all, we can notice that our plain 2- and 3� way models (Bigrams and
Trigram respectively) are performing comparably as other similarly expressive
models: Bigrams is better than SME(linear) but worse than TransE, and Trigram

performs roughly like SME(bilinear). RESCAL is interesting since it achieves a
very poor mean rank but almost the best hits@10 value: we believe that this is
due to overfitting. To make it scale on large data sets, RESCAL has to be ran
without regularization, this causes a major overfitting on rare relationships and
hence a poor mean rank. But, it seems that one can reach a very decent hits@10
nonetheless. Interestingly, Tatec is able to significantly outperform both its con-
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Table 6. Verb prediction results. We compare our Bigrams, Trigram and Tatec

models with baselines from the literature on the SVO dataset.

Median/Mean Rank Hits@5% Hits@20%
Counts [9] 48/517 72 83
LFM [9] 50/195 78 95
SME [3] 56/199 77 95
Bigrams 52/210 78 98
Trigram 44/188 79 95
Tatec 42/180 80 99

stituents Bigrams and Trigram, which indicates that they can encode complemen-
tary information. This is confirmed by the comparison with the baseline 2+3-way
models, LFM and NTN.4 By sharing their embeddings between their 2- and 3-
way terms, they constrain their model too much. We can see a similar behavior
if we look at the results of Tatec-shared-embs, which are much worse than
those of Tatec. The pre-training is very useful: without pre-training, Tatec only
achieves the same performance as the 2-way term alone. Tatec-linear-comb
performs only slightly worse than Tatec, which indicates that, with proper regu-
larization, a simpler combination of 2- and 3-way terms can be e�cient. Overall,
Tatec outperforms all previous models by a wide margin, especially in hits@10.

We also broke down the results by type of relation, classifying each relation-
ship according to the cardinality of their head and tail arguments. A relationship
is considered as 1-to-1, 1-to-M, M-to-1 or M-M regarding the variety of argu-
ments head given a tail and vice versa. If the average number of di↵erent heads
for the whole set of unique pairs (label, tail) given a relationship is below 1.5
we have considered it as 1, and the same in the other way around. The number
of relations classified as 1-to-1, 1-to-M, M-to-1 and M-M is 353, 305, 380 and
307, respectively. The results are displayed in the Table 5. Most results point
out that Tatec consistently outperforms all models we compared it with, except
for the relations 1-to-M and M-to-M when predicting the tail.

4.3 Predicting Verbs

In this last experimental section, we present results of ranking label given head

and tail. We do so by working on a verb prediction task, where one has to assign
the correct verb given two noun phrases acting subject and direct object.

Subject-Verb-Object Data Set (SVO) This data set was generated by ex-
tracting sentences from Wikipedia articles whose syntactic structure is (subject,
verb, direct object) and where the verb appears in the WordNet lexicon [15] and
where the subject and direct object are noun phrases from WordNet as well. Due
to the high number of relations in this data set, this is an interesting benchmark
for label prediction.
4 Results of NTN are worse than expected. As we said earlier, we tried a large number
of hyperparameter values but NTN might require to cover an even wider range.
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Baselines We compare Tatec with 3 di↵erent approaches: LFM, Counts and
SME(linear). Counts is based on the direct estimation of probabilities of triples
(head, label, tail) by using the number of occurrences of pairs (head, label) and
(label, tail) in the training set. The results for these models have been extracted
from [9], and we followed the same experimental setting.

Implementation Due to the di↵erent nature of the application, the negative
triples have been generated here by replacing the verb of a given positive triple by
a random verb. The rest of the experimental setting is identical to the one used
for Family and FB15k, but running only 100 epochs and validating every 10
epochs in the pre-training phase, since we found that the models were converging
much faster. For Tatec, we even validated every epoch.

Results Table 6 shows the results for this database. The measure hits@z%
indicates the proportion of predictions for which the correct verb is ranked in
the top z% of the verb list. The performance of Tatec is also excellent in this
case since it outperforms all previous methods on all metrics, including LFM,
another model combining 2- and 3-way interactions.

5 Conclusion

This paper introduced Tatec, a new method for performing link prediction in
multi-relational data, which is made of the combination a 2- and 3-way interac-
tions terms. Both terms do not share their embeddings and this, along with a
two-phase training (pre-training and fine-tuning), allows for the model to encode
complementary information into its parameters. As a result, Tatec outperforms
by a wide margin many methods from the literature, some based on 2-way, on
3-way interactions or on both.

Acknowledgments

This work was carried out in the framework of the Labex MS2T (ANR-11-
IDEX-0004-02), and was funded by the French National Agency for Research
(EVEREST-12-JS02-005-01).

References

1. Bader, B.W., Harshman, R.A., Kolda, T.G.: Temporal analysis of social networks
using three-way dedicom. Sandia National Laboratories TR SAND2006-2161 119
(2006)

2. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: Proc. of the 25th Conf. on Artif. Intel. (AAAI) (2011)

3. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy func-
tion for learning with multi-relational data. Machine Learning (2013)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems. pp. 2787–2795 (2013)
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