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Much work has been recently proposed to model relational data, especially in the multi-relational case, where di↵erent kinds of relationships are used to connect the various data entities. Previous attempts either consist of powerful systems with high capacity to model complex connectivity patterns, which unfortunately usually end up overfitting on rare relationships, or in approaches that trade capacity for simplicity in order to fairly model all relationships, frequent or not. In this paper, we propose a happy medium obtained by complementing a high-capacity model with a simpler one, both pre-trained separately and jointly finetuned. We show that our approach outperforms existing models on different types of relationships, and achieves state-of-the-art results on two benchmarks of the literature.

Introduction

Predicting new links in multi-relational data plays a key role in many areas and hence triggers a growing body of work. Multi-relational data are defined as directed graphs whose nodes correspond to entities and edges are in the form of triples (head, label, tail) (denoted (h, `, t)), each of which indicates that there exists a relationship of name label between the entities head and tail. Figure 1 displays an example of such data with six entities (Jane, Patti, John, Mom, Miami and Austin) and two relationships (born in and child of). Link prediction in this context consists in attempting to create new connections between entities and to determine their type; this is crucial in social networks, knowledge management or recommender systems to name a few.

Performing predictions in multi-relational data is complex because of their heterogeneous nature. Any such data can equivalently be seen as a set of directed graphs that share the same nodes but that usually present drastically di↵erent properties in terms of sparsity or connectivity. As illustration, we can look at some statistics of a subset of the knowledge base Freebase, named FB15k in the following, which we use for our experiments. This data set contains ⇠15k entities connected by ⇠1.5k relationships to form a graph of ⇠500k triples. Even if FB15k is just a small sample, it is likely that its characteristics are shared with most real-world multi-relational data, but at a di↵erent scale. The relationships of FB15k have a mean number of triples of ⇠400 and a median of 21: a vast number of relationships appear in very few triples, while others provide a large majority of the connections. Besides, roughly 25% of the relationships are of type 1-to-1, that is a head is connected to at most one tail (think of a spouse of link for instance), but on the opposite 25% of the relationships are of type Many-to-Many, that is, multiple head can be linked to a tail and vice-versa (for instance, a like product link). Creating new connections for Many-to-Many relationships can be possible by relying on several existing links of the same kind, whereas in the 1-to-1 case, the only way to be able to generalize is to count on the other relationships, especially if the relationship of interest happens to be rare.

In contrast to (pseudo-) symbolic approaches for link prediction based on Markov-logic networks [START_REF] Kok | Statistical predicate invention[END_REF] or random walks [START_REF] Lao | Random walk inference and learning in a large scale knowledge base[END_REF], most recent e↵ort towards solving this problem concern latent factor models (e.g. [START_REF] Paccanaro | Learning distributed representations of concepts using linear relational embedding[END_REF][START_REF] Kemp | Learning systems of concepts with an infinite relational model[END_REF][START_REF] Sutskever | Modelling relational data using bayesian clustered tensor factorization[END_REF][START_REF] Miller | Nonparametric latent feature models for link prediction[END_REF][START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF][START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF][START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF]) because they tend to scale better and to be more robust w.r.t. the heterogeneity of multi-relational data. These models represent entities with latent factors (usually low-dimensional vectors or embeddings) and relationships as operators destined to combine those factors. Operators and latent factors are trained to fit the data using reconstruction [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF], clustering [START_REF] Sutskever | Modelling relational data using bayesian clustered tensor factorization[END_REF] or ranking costs [START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF]. The multi-relational quality of the data is modeled through the sharing of the latent factors across relationships which grants a transfer of information from one relationship to another; operators are normally specific to each relationships, except in [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF] where some parameters are shared among relationships.

Learning these latent factor models can be seen as a kind of multitask training, with one task per relationship: one model is fitted for each task and some parameters are shared across tasks. All existing latent factor approaches define the same formulation for each task. This is natural since hand-crafting a particular model for each relationship seems daunting since there can be several thousands of them. However, as all relationships have very di↵erent properties, this also induces important drawbacks.

The standard modeling assumption is to consider 3-way interactions between head, label and tail, i.e. to consider that they are all interdependent: the validity of a triple (h, `, t) depends jointly on h, `and t. This generally results in models where entities are represented by vectors and relationships by matrices. An exception is Parafac [START_REF] Harshman | Parafac: parallel factor analysis[END_REF][START_REF] Franz | Triplerank: Ranking semantic web data by tensor decomposition[END_REF] that models multi-relational data as a binary tensor and factorizes it as a sum of rank one tensors. Other tensor factorization methods derived from Tucker decompositions [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF] or Dedicom [?] like RESCAL [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF][START_REF] Nickel | Factorizing yago: scalable machine learning for linked data[END_REF] end up with vectorial latent factors for entities and low rank matrices for relationships. This formulation is also shared by many non-parametric Bayesian approaches such as extensions of the Stochastic Block Models [START_REF] Kemp | Learning systems of concepts with an infinite relational model[END_REF][START_REF] Miller | Nonparametric latent feature models for link prediction[END_REF][START_REF] Zhu | Max-margin nonparametric latent feature models for link prediction[END_REF], or joint entities and relationships clustering approaches [START_REF] Sutskever | Modelling relational data using bayesian clustered tensor factorization[END_REF], which end up modeling the data with similar architectures but with drastically di↵erent training and inference procedures. Linear Relational Embeddings [START_REF] Paccanaro | Learning distributed representations of concepts using linear relational embedding[END_REF] were proposed as a 3-way model trained using a regression loss: the vector representing t is learned so that it can be reconstructed using the embedding of h and the matrix encoding `, if (h, `, t) is valid. This work was later followed by the Structured Embeddings model (SE) [START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF] where the regression loss was replaced by a ranking loss for learning embeddings of entities.

Three-way models are appropriate for multi-relational data since they can potentially represent any kind of interaction. However, this comes at a price since they have to allocate the same large capacity to model each relationship. While this is beneficial for frequent ones, this can be problematic for rare relationships and cause major overfitting. Hence, one must control the capacity either by regularizing, which is not straightforward since di↵erent penalties might need to be used for each relationship, or by reducing the expressivity of the model. The second option is implemented in two recent embedding models, SME [START_REF] Bordes | A semantic matching energy function for learning with multi-relational data[END_REF] and TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], that choose to represent multi-relational data as combination of 2-way interactions. The idea is to assume that the validity of a triple (h, `, t) is governed by binary interaction terms (h, t), (t, `) and (h, `), which allows to represent a relationship as a vector as with the other entities. Such a model, TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], outperforms most 3-way approaches on various data sets, which indicates that less expressivity can be beneficial overall for a whole database, especially for relationships where the number of training triples is reduced. However, by design, methods based on 2-way interactions are limited and can not hope to represent all kinds of relations between entities.

In this paper, we introduce Tatec (for Two And Three-way Embeddings Combination), a latent factor model which successfully combines well-controlled 2way interactions with high-capacity 3-way ones. We demonstrate in the following that our proposal is a generalization of many previous methods. Unlike recent work like the Latent Factor Model (LFM) of [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF] or the Neural Tensor Model (NTN) of [START_REF] Socher | Reasoning With Neural Tensor Networks For Knowledge Base Completion[END_REF] that proposed similar joint formulations mixing several interaction terms, we deliberately choose not to share parameters between the 2-and 3-way interaction components of our model. Previous work use the same embeddings for entities in all terms of their models, which seems to be a sound and natural idea to obtain the possible latent representations. However, we discov-ered that 2-and 3-way models do not respond to the same data patterns, and that they do not necessarily encode the same kind of information in the embeddings: sharing them among interaction terms can hence be detrimental because it can make some features to be missed by the embeddings or to be destroyed. On the contrary, we explain in the following that using di↵erent embeddings for both terms allows to detect distinct kinds of patterns in the data. To ensure that Tatec satisfactorily collects both kinds of patterns, we pre-train separately a 2-way and a 3-way model, which are then combined and jointly fine-tuned in a second stage. We show in various experiments that this combination process is powerful since it allows to jointly enjoy both nice properties of 2 and of 3-way interactions. As a result, Tatec is more robust than previous work w.r.t. the number of training samples and the type of relationships. It consistently outperforms most models in all conditions and achieves state-of-the-art results on two benchmarks from the literature, FB15k [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] and SVO [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF].

This paper is organized as follows. Section 2 introduces our formulation and our training procedure, divided in a pre-training phase followed by a fine-tuning step both conducted via stochastic gradient descent. We justify our particular modeling choices in Section 3. Finally, we display and discuss our experimental results on FB15k, SVO and a synthetic dataset in Section 4.

Model

We now describe our model, and the training algorithm associated to it. The motivation underlying our parameterization is given in the next section.

Scoring Function

The data S is a set of relations between entities in a fixed set of entities in E = {e 1 , ..., e E }. Relations are represented as triples (h, `, t) where the head h and the tail t are indexes of entities (i.e. h, t 2 [[E]] = {1, ..., E}), and the label `is the index of a relationship in L = {l 1 , ..., l L }, which defines the type of the relation between the entities e h and e t . Our goal is to learn a discriminant scoring function on the set of all possible triples E ⇥ L ⇥ E so that the triples which represent likely relations receive higher scores than triples that represent unlikely relations. Our proposed model, Tatec, learns embeddings of entities in low dimensional vector spaces, and parameters of operators on R d ⇥ R d , most of them being associated to single relationships. More precisely, the score given by Tatec to a triple (h, `, t), denoted by s(h, `, t), is defined as:

s(h, `, t) = s 1 (h, `, t) + s 2 (h, `, t) (1) 
where s 1 and s 2 have the following form:

(B) Bigrams or the 2-way interactions terms:

s 1 (h, `, t) = ⌦ r 1 e h 1 ↵ + ⌦ r 2 e t 1 ↵ + ⌦ e h 1 D e t 1 ↵
, where e h 1 , e t 1 are embeddings in R d1 of the head and tail entities of (h, `, t) respectively, r 1 and r 2 are vectors in R d1 that depend on the relationship l `, and D is a diagonal matrix that does not depend on the input triple. As a general notation throughout this section, ⌦ . . ↵ is the canonical dot product, and

⌦ x A y ↵ = ⌦
x Ay ↵ where x and y are two vectors in the same space and A is a square matrix of appropriate dimensions. (T) Trigram or the 3-way interactions term:

s 2 (h, `, t) = ⌦ e h 2 R ` e t 2 ↵ , where R `is a matrix of dimensions (d 2 , d 2 )
, and e h 2 and e t 2 are embeddings in R d2 of the head and tail entities respectively. The embeddings of the entities for this term are not the same as for the 2-way term; they can have di↵erent dimensions for instance.

The embedding dimensions d 1 and d 2 are hyperparameters of our model. All other vectors and matrices are learned without any additional parameter sharing.

The 2-way interactions term of the model is similar to that of [START_REF] Bordes | A semantic matching energy function for learning with multi-relational data[END_REF], but slightly more general because it does not contain any constraint between the relationdependent vectors r 1 and r 2. It can also be seen as a relaxation of the translation model of [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], which is the special case where r 1 = r 2, D is the identity matrix, and the 2-norm of the entities embeddings are constrained to equal 1.

The 3-way term corresponds exactly to the model used by the collective factorization method RESCAL [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF], and we chose it for its high expressivity on complex relationships. Indeed, as we said earlier in the introduction, 3-way models can basically represent any kind of interaction among entities. The usage of combinations of 2-way and 3-way terms has already been used in [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF][START_REF] Socher | Reasoning With Neural Tensor Networks For Knowledge Base Completion[END_REF], but, besides a di↵erent parameterization, Tatec contrasts with them by the choice of not sharing the embeddings between the two models. In LFM [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF], constraints were imposed on the relation-dependent matrix of the 3-way terms (low rank in a limited basis of rank-one matrices), the relation vectors r 1 and r 2 were constrained to be a constant linear function of the matrix (D = 0 in their work). These global constraints severely limited the expressivity of the 3-way model, and act as powerful regularization in that respect. However, their global constraints also reduces the expressivity of the 2-way model, which, as we explain in Section 3, should be left with maximum degrees of freedom. The fact that we do not share any parameter between relations is similar to NTN [START_REF] Socher | Reasoning With Neural Tensor Networks For Knowledge Base Completion[END_REF]. Our overall scoring function is similar to this model with a single layer, with the fundamental di↵erence that we use di↵erent embedding spaces and do not use any non-linear transfer function, which results in a facilitated training (the gradients have a larger magnitude, for instance).

Training

Training is carried out using gradient descent, with a ranking criterion as training objective. The optimization approach is similar to the one used for TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], but the models are very di↵erent. Our loss function takes training triples, and tries to give them higher scores than to corrupted versions, where the corruption consists in either replacing the head or the tail of each triple by a random entity. Since we are learning with positive examples only, this kind of criterion implements the prior knowledge that unobserved triples are likely to be invalid. Such corruption approaches are widely used when learning embeddings of knowledge bases [START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF][START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] or words in the context of language models [START_REF] Collobert | Natural language processing (almost) from scratch[END_REF][START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF].

Given a training triple (h, `, t), the set of possible corrupted triples, denoted by C(h, `, t), is defined as:

C(h, `, t) = {(h 0 , `, t 0 ) 2 [[E]] ⇥ {`} ⇥ [[E]]|h 0 = h or t 0 = t} .
The loss function we optimize is then:

X (h,`,t)2S X (h 0 ,`,t 0 )2C(h,`,t) max(0, 1 s(h, `, t) + s(h 0 , `, t 0 )) ( 2 
)
Stochastic gradient is performed in a minibatch setting. The dataset S is shu✏ed at each epoch, minibatches of m << |S| training triples are selected, and, for each one of them, a corresponding mini-batch of corrupted triples is sampled at random to create ranking pairs. We only create a single corrupted triple per training sample. The learning rate of the stochastic gradient is kept constant, and optimization is stopped using early stopping on a validation set. Several regularization schemes were tried during training: either by forcing the entity embeddings to have, at most, a 2-norm of r (for radius), or by adding 2norm regularization inside the sum of (2) of the form k x k 2 2 for each parameter x (relation vectors and diagonal matrix in the 2-way term or relation matrix in the 3-way term) that appears in max(0, 1 s(h, `, t) + s(h 0 , `, t 0 )). The first kind of regularization is carried out after each minibatch by projecting the entities into the 2-norm ball of radius r.

A random initialization of the scoring function (1) can lead to a poor local minimum, but can also prevent the di↵erent embeddings used in the 2-and 3way terms to capture di↵erent patterns as we expect (see next section). Hence, following many previous work on deep architecture, we decided to first pre-train separately the bigrams and trigram terms on the training set. When their pretraining is over (i.e. stopped using early stopping on a validation set), we initialize the parameter of the full score (1) using these learned weights and fine-tuned it by running stochastic gradient descent on the training set with the full model.

Interpretation and Motivation of the Model

This section discusses the motivations underlying the parameterization of Tatec, and in particular our choice of 2-way model to complement the 3-way term.

2-Way Interactions as one Fiber Biases

It is common in regression, classification or collaborative filtering to add biases (also called o↵sets or intercepts) to the model. For instance, a critical step of the best-performing techniques of the Netflix prize was to add user and item biases, i.e. to approximate a user-rating R ui according to (see e.g. [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]):

R ui ⇡ ⌦ P u Q i ↵ + ↵ u + i + µ (3) 
where P 2 R U ⇥k , with each row P u containing the k-dimensional embedding of the user (U is the number of users), Q 2 R I⇥k containing the embeddings of the I items, ↵ u 2 R a bias only depending on a user and i 2 R a bias only depending on an item (µ is a constant that we do not consider further on). The 2-way + 3-way interactions model we propose can be seen as the 3mode tensor version of this "biased" version of matrix factorization: the trigram term (T) is the collective matrix factorization parametrization of the RESCAL algorithm [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF] and plays a role analogous to the term

⌦ P u Q i ↵
of the matrix factorization model for collaborative filtering [START_REF] Bordes | A semantic matching energy function for learning with multi-relational data[END_REF]. The bigram term (B) then plays the role of biases for each fiber of the tensor,1 i.e.

s 1 (h, `, t) ⇡ B 1 l,h + B 2 l,t + B 3 h,t (4) 
and thus is the analogous for tensors to the term ↵ u + i in the matrix factorization model [START_REF] Bordes | A semantic matching energy function for learning with multi-relational data[END_REF]. The exact form of s 1 (h, `, t) given in (B) corresponds to a specific form of collective factorization of the fiber-wise bias matrices

B 1 = h B 1 l,h i l2[[L]],h2[[E]]
, B 2 and B 3 of Equation 4. We do not exactly learn one bias by fiber because many such fibers have very little data, while, as we argue in the following, the specific form of collective factorization we propose in (B) should allow to share relevant information between di↵erent biases.

The Need for Multiple Embeddings

A key feature of Tatec is to use di↵erent embedding spaces for the 2-way and 3-way terms, while existing approaches that have both types of interactions use the same embedding space [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF][START_REF] Socher | Reasoning With Neural Tensor Networks For Knowledge Base Completion[END_REF]. We motivate this choice in this section.

It is important to notice that biases in the matrix factorization model (3), or the bigram term in the overall scoring function [START_REF] Bader | Temporal analysis of social networks using three-way dedicom[END_REF] do not a↵ect the model expressiveness, and in particular do not a↵ect the main modeling assumptions that embeddings should have low rank. The user/item-biases in (3) only boil down to adding two rank-1 matrices ↵1 T and 1 T to the factorization model. Since the rank of the matrix is a hyperparameter, one may simply add 2 to this hyperparameter and get a slightly larger expressiveness than before, with reasonably little impact since the increase in rank would remain small w.r.t. its original value (which is usually 50 or 100 for large collaborative filtering data sets). The critical feature of these biases in collaborative filtering is how they interfere with capacity control terms other than the rank, namely the 2-norm regularization: in [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF] for instance, all terms of (3) are trained using a squared error as a measure of approximation and regularized by

⇣ k P u k 2 2 + k Q i k 2 2 + ↵ 2 u + 2 i ⌘
, where > 0 is the regularization factor. This kind of regularization is a weighted trace norm regularization [START_REF] Salakhutdinov | Collaborative filtering in a non-uniform world: Learning with the weighted trace norm[END_REF] on PQ T . Leaving aside the "weighted" part, the idea is that at convergence, the quantity ⇣ P

u k P u k 2 2 + P i k Q i k 2 2
⌘ is equal to 2 times the sum of the singular values of the matrix PQ T . However, k ↵ k 2 2 , which is the regularization applied to user biases, is not 2 times the singular value of the rank-one matrix ↵1 T , which is equal to p Ik ↵ k 2 , and can be much larger than k ↵ k 2 2 . Thus, if the pattern user+item biases exists in the data, but very weakly because it is hidden by stronger factors, it will be less regularized than others and the model should be able to capture it. Biases, which are allowed to fit the data more than other factors, o↵er the opportunity of relaxing the control of capacity on some parts of the model but this translates into gains if the patterns that they capture are indeed useful patterns for generalization. Otherwise, this ends up relaxing the capacity to lead to more overfitting.

Our ↵ is directly in an appropriate quadratic form. Thus, the only way to gain from the addition of bigram terms is to ensure that they can capture useful patterns, but also that capacity control on these terms is less strict than on the trigram terms. In tensor factorization models, and especially 3-way interaction models with parameterizations such as (T), capacity control through the regularization of individual parameters is still not well understood, and as it turns out in experiments is more detrimental than e↵ective. The only e↵ective parameter is the admissible rank of the embeddings, which leads to the conclusion that the bigram term can be really useful in addition to the trigram term if higher-dimensional embeddings are used. Hence, in absence of clear and concrete way of e↵ectively controlling the capacity of the trigram term, we believe that di↵erent embedding spaces should be used.

2-Way Interactions as Entity Types+Similarity

Having a part of the model that is less expressive, but less regularized than the other part is only useful if the patterns it can learn are meaningful for the prediction task at hand. In this section, we give the motivation for our 2-way interactions term for the task of modeling multi-relational data.

Most relationships in multi-relational data, and in knowledge bases like FB15k in particular, are strongly typed, in the sense that only well-defined and specific subsets of entities can be either heads or tails of selected relationships. For instance, a relationship like capital of expects a (big) city as head and a country as tail for any valid relation. Large knowledge bases have huge amounts of entities, but those belong to many di↵erent types. Identifying the expected types of head and tail entities of relationships, with an appropriate granularity of types (e.g. person or artist or writer), is likely to filter out 95% of the entity set during prediction. The exact form of the first two terms 2-way interaction model (B), which corresponds to a low-rank factorization of the per bias matrices (head, label) and (tail, label) in which head and tail entities have the same embeddings, is based on the assumption that the types of entities can be predicted based on few (learned) features, and these features are the same for predicting head-types as for predicting tail-types. As such, it is natural to share the entities embeddings in the first two terms of (B).

⌦ r 1 e h 1 ↵ + ⌦ r 2 e t 1 ↵ of the
The last term, ⌦ e h 1 D e t 1 ↵
, is intended to account for a global similarity between entities. For instance, predicting the capital of France can easily be performed correctly by saying that we search for the city with strongest overall connections with France in the knowledge base. A country and a city may be strongly linked through their geographical positions, independent of their respective types. The diagonal matrix D allows to re-weight features of the embedding space to account for the fact that the features used to describe types may not be the same as those that can describe the similarity between objects of di↵erent types. The use of a diagonal matrix is strictly equivalent to using a general symmetric matrix in place of D. 2 The reason for using a symmetric matrix comes from the intuition that the direction of many relationships is arbitrary (i.e. the choice between having triples "Paris is capital of France" rather than "France has capital Paris"), and the model should be invariant under arbitrary inversions of the directions of the relationships (in the case of an inversion of direction, the relations vectors r 1 and r 2 are swapped, but all other parameters are una↵ected). For tasks in which such invariance is not desirable, the diagonal matrix could be replaced by an arbitrary matrix.

Experiments

This section presents a series of experiments that we conducted to compare Tatec to previous models from the literature on two benchmarks, FB15k, a subset of Freebase [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], and SVO, a database of nouns connected by verbs and introduced in [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF], as well an artificial data set that we created (Family). The statistics of these data sets are given in Table 1. 2 We can see the equivalence by taking the eigenvalue decomposition of a symmetric D: apply the change of basis to the embeddings to keep only the diagonal part ofD in the term

⌦ e h 1 D e t 1 ↵
, and apply the reverse transformation to the vectors r 1 and r 2. Note that since rotations preserve euclidian distances, the equivalence still holds under 2-norm regularization of the embeddings.

Table 2. Baselines. Rules used by our symbolic baselines, an upper and a lower one, to predict a tail given a head and a label on the Family data set. Similar symmetric rules have been used to predict a head given a tail and a label for these relations.

Relationship Baseline

Rules for predicting a tail given a head cousin of Lower Any entity of the same layer as the head of the families where the head has a cousin.

Upper

Any entity whose parent is a sibling(-in-law) of the parents of the head.

sibling of

Lower Any entitiy of the same layer as the head of the families where the head has a sibling. Upper Any entity whose parent is the same as the parents of head.

married to

Lower Any entity of the same layer as the head whose marriage would not be forbidden with.

Upper Entity who has children in common with the head.

parent of Lower

Any entity of the lower layer of head of the families where head has a child.

Upper

Any entity being children of the spouse of head.

uncle of Lower

Any entity of the lower layer of head of the families where head has a niece/nephew.

Upper

Any entity being child of a sibling/sibling a law of head or the spouse of head.

For evaluation, we use a ranking procedure as in [START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF][START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF]. For each test triplet, the head is removed and replaced by each of the entities of the dictionary in turn. Scores of those corrupted triplets are computed by the models and sorted by descending order and the rank of the correct entity is stored. This whole procedure is repeated when removing the tail instead or the head. We report the mean of those predicted ranks and the hits@10, i.e. the proportion of correct entities ranked in the top 10.

Synthetic Data

"Family" Data Set This database contains triples expressing family relationships among the members of 5 families along 6 generations, each family being organized in a layered tree structure where each layer refers to a generation. These 5 families are first created independent of each other by recursively sampling the number of children of each node of a layer using the normal distribution N (3, 1.5) to create a new generation. Then, families are connected by marriage links between two members. We use pre-defined rules to avoid non-typical situations, like marriages between cousins and brothers, as well as marriages between two members of di↵erent generations. To control the number of connections between families, only i 1 marriages are allowed in the generation i.

After all families are created, we build a multi-relational data set by collecting the pairs of entities connected using the following relationships: cousin of, married to, parent of, sibling of and uncle of. We end up with a data set with 721 entities, 5 relationships and ⇠9k triples which is later split into training, validation and test sets. There is a large variation in the numbers of triples: there are only 30 examples with married to but 5, 060 with cousin of. Family is a realistic and challenging study case, but for which we know the underlying semantics.

Baselines We created two symbolic baselines since we know the underlying rules used to generate the data. These baselines can be used to assess what kind of pattern is caught by our model. Our first baseline, Lower, uses simplistic rules in order to find a set of potential candidates among all entities given a label and either a head or a tail as input. Our second baseline, Upper, returns candidate answers using a much more refined knowledge about the underlying semantics of the relationships, such as, if John and Mary have children together then they are likely to be married. We made sure than, for any triple from the data set, the correct missing element given a label and either a head or a tail as input, is always contained in the sets returned by Lower and Upper (the second being included in the first one). Then, for each test triple, we computed the mean rank of the answers given by the baselines, by sorting the elements of the returned candidate sets by the number of occurrences of each entity in the training set. It is worth noting that the entities of the Upper set always form triples expressing true knowledge. The rules used to defined both baselines are given in Table 2.

Implementation To pre-train our Bigrams and Trigram models we selected the learning rate for the stochastic gradient descent among {0.1, 0.01, 0.001, 0.0001}, and the embedding dimension among {5, 10, 20}. The margin was fixed to 1, and the radius determining the maximim 2-norm of the entity embeddings was validated among {1, 10, 100}. For fine-tuning Tatec, the learning rate was selected among the same values as above, independent of the values chosen for pretraining. For all three models, training was limited to a maximum of 500 epochs, and we used the mean rank on the validation set (computed every 50 epochs) as stopping criterion.

Results Table 3 presents our results. Tatec outperforms the best performance of Bigrams and Trigram counterparts for each relationship, indicating that the biases brought to the 3-way model by the bigram terms are indeed beneficial to detect complementary patterns in the data. As a result, Tatec gets a really close performance to that of the upper baseline, indicating that it can perform relatively sophisticated inference, as long as the amount of data is su cient. Indeed, all embedding-based models fail completely on the married to relationship: with very few training samples, those models cannot learn any meaningful information that would grant non-trivial predictions for this complex relationship.

Encoding Freebase

Freebase Data Set (FB15k) Freebase is a huge and growing database of general facts; there are currently around 1.2 billion triples and more than 80 million entities. We used FB15k, a data set based on Freebase introduced in [4], This small data set is based on a subset of entities that are also present in the Wikilinks database 3 and that also have at least 100 mentions in Freebase (for both entities and relationships). This results in 592, 213 triples with 14, 951 entities and 1, 345 relationship which were randomized and split.

Baselines We compare Tatec with various models from previous work: RESCAL [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF], LFM [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF] , SE [START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF] , SME [START_REF] Bordes | A semantic matching energy function for learning with multi-relational data[END_REF] and TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF]. Results were extracted from [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] since we follow the same experimental protocol here. We also include comparisons with NTN [START_REF] Socher | Reasoning With Neural Tensor Networks For Knowledge Base Completion[END_REF]. For this method, we ran experiments with the code provided by the authors. The embedding dimension was selected between {25, 50} and the number of slices of the tensor layer was fixed to 2 for computational considerations. We chose the regularization hyperparameter among {0, 0.1, 0.01, 0.001} and tanh as nonlinear element-wise function. The negative triplets were generated as before in a proportion of 10 negative to 1 positive triple. The model ran for 700 iterations and was validated every 50 iterations. Besides Bigrams, Trigram and Tatec, we also propose the performance of 3 other versions of Tatec:

-Tatec-no-pretrain: Tatec without pre-training s 1 (h, `, t) and s 2 (h, `, t).

-Tatec-shared: Tatec but sharing the embeddings between s 1 (h, `, t) and s 2 (h, `, t) and without pre-training. -Tatec-linear-comb: this version simply combines the bigram and trigram terms using a linear combination, without jointly fine-tuning their parameters. The score is hence defined as follows: The combination weights ì depend on the relationship and are learned by optimizing the ranking loss defined in (2) using L-BFGS, with an additional quadratic penalization term,

s(h, `, t) = 1⌦ r 1 e h 1 ↵ + 2⌦ r 2 e t 1 ↵ + 3⌦ e h 1 D
P k || k || 2 2 k +✏ , subject to P k k = .
Training is carried out in an iterative way, by alternating optimization of parameters via L-BFGS, and update of parameters using

⇤ i = || i ||2 P i || i ||2
, until some stopping criterion is reached. The parameters are initialized to 1 and the value is validated among {0.1, 1, 10, 100, 250, 500, 1000}. The intuition behind this particular penalization for the s is that it is equivalent to a LASSO penalization [START_REF] Grandvalet | Least absolute shrinkage is equivalent to quadratic penalization[END_REF] and our initial idea was to enforce sparsity among parameters. However we found experimentally that the best performance was obtained with a of 250, which does not yield a sparse solution.

Implementation Tatec, and its 3 alternative versions have been trained and validated in the same setting that was used for the Family experiments, except that we chose the embedding dimensions among {25, 50}.

Results Table 4 displays the mean rank and hits@10 for all the aforementioned methods. These results have been computed in a filtered setting as defined in [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF]: to reduce the error introduced by true triples that might be ranked above the target triple in test, all the entities forming existing triples in the train, validation and test sets but the target one are removed from the candidate set of entities to be ranked. This grants a clearer view on ranking performance.

First of all, we can notice that our plain 2-and 3 way models (Bigrams and

Trigram respectively) are performing comparably as other similarly expressive models: Bigrams is better than SME(linear) but worse than TransE, and Trigram performs roughly like SME(bilinear). RESCAL is interesting since it achieves a very poor mean rank but almost the best hits@10 value: we believe that this is due to overfitting. To make it scale on large data sets, RESCAL has to be ran without regularization, this causes a major overfitting on rare relationships and hence a poor mean rank. But, it seems that one can reach a very decent hits@10 nonetheless. Interestingly, Tatec is able to significantly outperform both its con- Tatec outperforms all previous models by a wide margin, especially in hits@10. We also broke down the results by type of relation, classifying each relationship according to the cardinality of their head and tail arguments. A relationship is considered as 1-to-1, 1-to-M, M-to-1 or M-M regarding the variety of arguments head given a tail and vice versa. If the average number of di↵erent heads for the whole set of unique pairs (label, tail) given a relationship is below 1.5 we have considered it as 1, and the same in the other way around. The number of relations classified as 1-to-1, 1-to-M, M-to-1 and M-M is 353, 305, 380 and 307, respectively. The results are displayed in the Table 5. Most results point out that Tatec consistently outperforms all models we compared it with, except for the relations 1-to-M and M-to-M when predicting the tail.

Predicting Verbs

In this last experimental section, we present results of ranking label given head and tail. We do so by working on a verb prediction task, where one has to assign the correct verb given two noun phrases acting subject and direct object.

Subject-Verb-Object Data Set (SVO) This data set was generated by extracting sentences from Wikipedia articles whose syntactic structure is (subject, verb, direct object) and where the verb appears in the WordNet lexicon [START_REF] Miller | WordNet: a Lexical Database for English[END_REF] and where the subject and direct object are noun phrases from WordNet as well. Due to the high number of relations in this data set, this is an interesting benchmark for label prediction.

Baselines We compare Tatec with 3 di↵erent approaches: LFM, Counts and SME(linear). Counts is based on the direct estimation of probabilities of triples (head, label, tail) by using the number of occurrences of pairs (head, label) and (label, tail) in the training set. The results for these models have been extracted from [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF], and we followed the same experimental setting.

Implementation Due to the di↵erent nature of the application, the negative triples have been generated here by replacing the verb of a given positive triple by a random verb. The rest of the experimental setting is identical to the one used for Family and FB15k, but running only 100 epochs and validating every 10 epochs in the pre-training phase, since we found that the models were converging much faster. For Tatec, we even validated every epoch.

Results

Table 6 shows the results for this database. The measure hits@z% indicates the proportion of predictions for which the correct verb is ranked in the top z% of the verb list. The performance of Tatec is also excellent in this case since it outperforms all previous methods on all metrics, including LFM, another model combining 2-and 3-way interactions.

Conclusion

This paper introduced Tatec, a new method for performing link prediction in multi-relational data, which is made of the combination a 2-and 3-way interactions terms. Both terms do not share their embeddings and this, along with a two-phase training (pre-training and fine-tuning), allows for the model to encode complementary information into its parameters. As a result, Tatec outperforms by a wide margin many methods from the literature, some based on 2-way, on 3-way interactions or on both.
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 1 Fig. 1. Example of multi-relational data with 6 entities and 2 relationships.
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 1 Statistics of the data sets used in this paper and extracted from an artificial database, Family, and from two knowledge bases: FB15k and SVO.

	Data set	Family FB15k [4] SVO [9]
	Entities	721	14,951	30,605
	Relationships	5	1,345	4,547
	Training examples	5,748 483,142 1,000,000
	Validation examples 1,935	50,000	50,000
	Test examples	1,955	59,071 250,000

Table 3 .

 3 Synthetic data set. We compare our Bigrams, Trigram and Tatec models in terms of mean rank, with both baselines on the Family dataset.

	Relation cousin of married to parents of sibling of uncle of
	Lower	76	4	25	35	34
	Upper	4	3	7	4	3
	Bigrams	10	102	9	8	13
	Trigram	7	1 6 2	7	5	8
	Tatec	6	6 9	5	4	6

Table 4 .

 4 Link prediction results. We compare Bigrams, Trigram and several version of Tatec with various methods from the literature on the FB15k dataset. Results are displayed in the filtered setting, see the text for more details.

	Interaction Model	Mean Rank Hits@10
	2-way	SME(linear) [3] TransE [4]	154 125	40.8 47.1
		SE [2]	162	39.8
	3-way	SME(bilinear) [3]	158	41.3
		RESCAL [17]	683	44.1
	2 + 3-way	NTN [21] LFM [9]	332 164	27.0 33.1
	2-way	Bigram	133	44.7
	3-way	Trigram	156	42.7
		Tatec-no-pretrain	133	44.7
	2 + 3-way	Tatec-shared-embs Tatec-linear-comb	137 115	45.0 51.7
		Tatec	111	52.6

Table 5 .

 5 Detailed results by category of relationship. We compare our Bigrams, Trigram and Tatec models in terms of Hits@10 (in %) on FB15k in the filtered setting against other models of the literature. (M. stands for Many).
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Table 6 .

 6 Verb prediction results. We compare our Bigrams, Trigram and Tatec models with baselines from the literature on the SVO dataset. Bigrams and Trigram, which indicates that they can encode complementary information. This is confirmed by the comparison with the baseline 2+3-way models, LFM and NTN. 4 By sharing their embeddings between their 2-and 3way terms, they constrain their model too much. We can see a similar behavior if we look at the results of Tatec-shared-embs, which are much worse than those of Tatec. The pre-training is very useful: without pre-training, Tatec only achieves the same performance as the 2-way term alone. Tatec-linear-comb performs only slightly worse than Tatec, which indicates that, with proper regularization, a simpler combination of 2-and 3-way terms can be e cient. Overall,

		Median/Mean Rank Hits@5% Hits@20%
	Counts [9]	48/517	72	83
	LFM [9]	50/195	78	95
	SME [3]	56/199	77	95
	Bigrams	52/210	78	98
	Trigram	44/188	79	95
	Tatec	42/180	80	99
	stituents			

Fibers are the higher order analogue of matrix rows and columns for tensors and are defnied by fixing every index but one.

Results of NTN are worse than expected. As we said earlier, we tried a large number of hyperparameter values but NTN might require to cover an even wider range.
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