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A CHARACTERIZATION OF CLASS GROUPS VIA SETS OF LENGTHS

ALFRED GEROLDINGER AND WOLFGANG A. SCHMID

Abstract. Let H be a Krull monoid with class group G such that every class contains a prime divisor.
Then every nonunit a ∈ H can be written as a finite product of irreducible elements. If a = u1 · . . . · uk,
with irreducibles u1, . . . uk ∈ H, then k is called the length of the factorization and the set L(a) of all
possible k is called the set of lengths of a. It is well-known that the system L(H) = {L(a) | a ∈ H}
depends only on the class group G. In the present paper we study the inverse question asking whether
or not the system L(H) is characteristic for the class group. Consider a further Krull monoid H′ with
class group G′ such that every class contains a prime divisor and suppose that L(H) = L(H′). We show
that, if one of the groups G and G′ is finite and has rank at most two, then G and G′ are isomorphic
(apart from two well-known pairings).

1. Introduction

Let H be a cancelative semigroup with unit element. If an element a ∈ H can be written as a product
of k irreducible elements, say a = u1 · . . . · uk, then k is called the length of the factorization. The set
L(a) of all possible factorization lengths is the set of lengths of a, and L(H) = {L(a) | a ∈ H} is called
the system of sets of lengths of H . Clearly, if H is factorial, then |L(a)| = 1 for each a ∈ H . Suppose
there is some a ∈ H with |L(a)| > 1, say k, l ∈ L(a) with k < l. Then, for every m ∈ N, we observe that
L(am) ⊃ {km+ ν(l−k) | ν ∈ [0,m]} which shows that sets of lengths can become arbitrarily large. Under
mild conditions on the ideal theory of H every nonunit of H has a factorization into irreducibles and all
sets of lengths are finite.

Sets of lengths (together with parameters controlling their structure) are the most investigated invari-
ants in factorization theory, in settings ranging from numerical monoids, noetherian domains, monoids of
modules to maximal orders in central simple algebras. The focus of the present paper is on Krull monoids
with finite class group such that every class contains a prime divisor. Rings of integers in algebraic number
fields are such Krull monoids, and classical philosophy in algebraic number theory (dating back to the
19th century) states that the class group determines the arithmetic. This idea has been formalized and
justified. In the 1970s Narkiewicz posed the inverse question whether or not arithmetical phenomena (in
other words, phenomena describing the non-uniqueness of factorizations) characterize the class group ([36,
Problem 32; page 469]). Very quickly first affirmative answers were given by Halter-Koch, Kaczorowski,
and Rush ([32, 28, 39]). Indeed, it is not too difficult to show that the system of sets of factorizations
determines the class group ([18, Sections 7.1 and 7.2]).

All these answers are not really satisfactory because the given characterizations are based on rather
abstract arithmetical properties which are designed to do the characterization and which play only a
little role in other parts of factorization theory. Since on the other hand sets of lengths are of central
interest in factorization theory it has been natural to ask whether their structure is rich enough to do
characterizations.
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Let H be a commutative Krull monoid with finite class group G and suppose that every class contains
a prime divisor. It is classical that H is factorial if and only if |G| = 1, and by a result due to Carlitz in
1960 we know that all sets of lengths are singletons (i.e., |L| = 1 for all L ∈ L(H)) if and only if |G| ≤ 2.
Let us suppose now that |G| ≥ 3. Then the monoid B(G) of zero-sum sequences over G is again a Krull
monoid with class group isomorphic to G, every class contains a prime divisors, and the systems of sets of
lengths of H and that of B(G) coincide. Thus L(H) = L

(
B(G)

)
, and it is usual to set L(G) := L

(
B(G)

)
.

The Characterization Problem can be formulated as follows ([18, Section 7.3], [22, page 42], [43]).

Given two finite abelian groups G and G′ such that L(G) = L(G′). Does it follow that G ∼= G′?

The system of sets of lengths L(G) for finite abelian groups is studied with methods from Additive
Combinatorics (it has been written down explicitly only for a handful small groups, see Proposition 4.2).
Zero-sum theoretical invariants, such as the Davenport constant, play a central role. Recall that, although
the precise value of the Davenport constant is well-known for p-groups and for groups of rank at most two
since the 1960s (see Proposition 2.3), the precise value is unknown in general (even for groups of the form
G = C3

n). Thus it is not surprising that all answers to the Characterization Problem so far are restricted
to very special groups including cyclic groups, elementary 2-groups, and groups of the form Cn ⊕ Cn.
Apart from two well-known pairings (see Proposition 4.2) the answer is always positive.

The goal of the present paper is to settle the Characterization Problem for groups of rank at most two.
Here is our main result.

Theorem 1.1. Let G be an abelian group such that L(G) = L(Cn1 ⊕ Cn2) where n1, n2 ∈ N with n1 |n2

and n1 + n2 > 4. Then G ∼= Cn1 ⊕ Cn2 .

Theorem 1.1 does not only apply to Krull monoids with class group G but also to certain maximal
orders in central simple algebras and to certain seminormal orders in algebraic number fields. This will
be outlined in Section 2 (see Proposition 2.1 and 2.2). The proof of Theorem 1.1 is based substantially on

• Prior work on this problem (as summarized in Propositions 6.1 and 6.2), in particular on the recent
paper [7].

• The structure theorem for sets of lengths (see Proposition 3.2) and an associated inverse result
([18, Proposition 9.4.9]; see the start of the proof of Proposition 6.5).

• The characterization of minimal zero-sum sequences of maximal length over groups of rank two
(Lemma 5.2) which is crucial also for the above mentioned paper [7].

The difficulty of the Characterization Problem stems from the fact that most sets of lengths over any
finite abelian group are arithmetical progressions with difference 1 (see Proposition 3.2.4, or [18, Theorem
9.4.11] for a density result of this flavor). Moreover, G and G′ are finite abelian groups with G ⊂ G′,
then clearly L(G) ⊂ L(G′). Thus in order to characterize a group G, we first have to find distinctive sets
of lengths for G (i.e., sets of lengths which do occur in L(G), but in no other or only in a small number
of further groups), and second we will have to show that certain sets are not sets of lengths in L(G).
These distinctive sets of lengths for rank two groups are identified in Proposition 6.5 which is the core of
our whole approach, and Proposition 5.1 provides sets which do not occur as sets of lengths for rank two
groups. In order to pull this through we proceed as follows. After gathering some background material
in Section 2, we summarize key results on the structure of sets of lengths in Propositions 3.2. 3.3, and
3.4. Furthermore, we provide some explicit constructions which will turn out to be crucial (Propositions
3.4 – 3.8). In Section 4 we characterize groups whose sets of lengths have a very special structure (e.g.,
arithmetical progressions) which allows us to settle the Characterization Problem for small groups (see
Theorem 4.1). After that we are well-prepared for the main parts given in Sections 5 and 6.
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2. The arithmetic of Krull monoids: Background

In this section we gather the required tools from the algebraic and arithmetic theory of Krull monoids.
Our notation and terminology are consistent with the monographs [18, 22, 27].

Let N denote the set of positive integers, P ⊂ N the set of prime numbers and put N0 = N ∪ {0}. For
real numbers a, b ∈ R, we set [a, b] = {x ∈ Z | a ≤ x ≤ b}. Let A,B ⊂ Z be subsets of the integers. We
denote by A+ B = {a+ b | a ∈ A, b ∈ B} their sumset, and by ∆(A) the set of (successive) distances of
A (that is, d ∈ ∆(A) if and only if d = b− a with a, b ∈ A distinct and [a, b] ∩A = {a, b}). For k ∈ N, we
denote by k · A = {ka | a ∈ A} the dilation of A by k. If A ⊂ N, then

ρ(A) = sup
{m

n
| m,n ∈ A

}
=

supA

minA
∈ Q≥1 ∪ {∞}

is the elasticity of A, and we set ρ({0}) = 1.

Monoids and Factorizations. By a monoid, we always mean a commutative semigroup with identity
which satisfies the cancelation law (that is, if a, b, c are elements of the monoid with ab = ac, then b = c
follows). The multiplicative semigroup of non-zero elements of an integral domain is a monoid. Let H be
a monoid. We denote by H× the set of invertible elements of H , by A(H) the set of atoms (irreducible
elements) of H , and by Hred = H/H× = {aH× | a ∈ H} the associated reduced monoid of H .

A monoid F is free abelian, with basis P ⊂ F , and we write F = F(P ) if every a ∈ F has a unique
representation of the form

a =
∏

p∈P

pvp(a), where vp(a) ∈ N0 with vp(a) = 0 for almost all p ∈ P ,

and we call
|a|F = |a| =

∑

p∈P

vp(a) the length of a .

The monoid Z(H) = F
(
A(Hred)

)
is called the factorization monoid of H , and the unique homomorphism

π : Z(H) → Hred satisfying π(u) = u for each u ∈ A(Hred)

is the factorization homomorphism of H . For a ∈ H ,

ZH(a) = Z(a) = π−1(aH×) ⊂ Z(H) is the set of factorizations of a , and

LH(a) = L(a) =
{
|z|

∣∣ z ∈ Z(a)
}
⊂ N0 is the set of lengths of a .

Thus H is factorial if and only if Hred is free abelian (equivalently, |Z(a)| = 1 for all a ∈ H). The monoid
H is called atomic if Z(a) 6= ∅ for all a ∈ H (equivalently, every nonunit can be written as a finite product
of irreducible elements). From now on we suppose that H is atomic. Note that, L(a) = {0} if and only if
a ∈ H×, and L(a) = {1} if and only if a ∈ A(H). We denote by

L(H) = {L(a) | a ∈ H} the system of sets of lengths of H , and by

∆(H) =
⋃

L∈L(H)

∆(L) ⊂ N the set of distances of H .

For k ∈ N, we set ρk(H) = k if H = H×, and

ρk(H) = sup{supL | L ∈ L(H), k ∈ L} ∈ N ∪ {∞}, if H 6= H× .

Then

ρ(H) = sup{ρ(L) | L ∈ L(H)} = lim
k→∞

ρk(H)

k
∈ R≥1 ∪ {∞}

is the elasticity of H . The monoid H is said to be

• half-factorial if ∆(H) = ∅ (equivalently, ρ(H) = 1). If H is not half-factorial, then min∆(H) =
gcd∆(H).
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• decomposable if there exist submonoids H1, H2 with Hi 6⊂ H× for i ∈ [1, 2] such that H = H1 ×H2

(and H is called indecomposable else).

For a free abelian monoid F(P ), we introduce a distance function d : F(P )×F(P ) → N0, by setting

d(a, b) = max
{∣∣∣ a

gcd(a, b)

∣∣∣,
∣∣∣ b

gcd(a, b)

∣∣∣
}
∈ N0 for a, b ∈ F(P ) ,

and we note that d(a, b) = 0 if and only if a = b. For a subset Ω ⊂ F(P ), we define the catenary degree
c(Ω) as the smallest N ∈ N0 ∪ {∞} with the following property: for each a, b ∈ Ω, there are elements
a0, . . . ak ∈ Ω such that a = a0, ak = b, and d(ai−1, ai) ≤ N for all i ∈ [1, k]. Note that c(Ω) = 0 if and
only if |Ω| ≤ 1. For an element a ∈ H , we call cH(a) = c(a) := c(ZH(a)) the catenary degree of a, and

c(H) = sup{c(a) | a ∈ H} ∈ N0 ∪ {∞}

is the catenary degree of H . The monoid H is factorial if and only if c(H) = 0, and if H is not factorial,
then 2 + sup∆(H) ≤ c(H).

Krull monoids and transfer homomorphisms. A monoid homomorphism ϕ : H → F is said to be a
divisor homomorphism if ϕ(a) |ϕ(b) in F implies that a | b in H for all a, b ∈ H . A monoid H is said to
be a Krull monoid if one of the following equivalent properties is satisfied ([18, Theorem 2.4.8] or [30]):

(a) H is completely integrally closed and satisfies the ascending chain condition on divisorial ideals.
(b) H has a divisor homomorphism into a free abelian monoid.
(c) H has a divisor theory: this is a divisor homomorphism ϕ : H → F = F(P ) into a free abelian

monoid such that for each p ∈ P there is a finite set E ⊂ H with p = gcd
(
ϕ(E)

)
.

Suppose that H is a Krull monoid. Then a divisor theory ϕ : H → F = F(P ) is essentially unique. The
class group C(H) = q(F )/q

(
ϕ(H)

)
depends only on H and it is isomorphic to the v-class group Cv(H).

For a ∈ q(F ), we denote by [a] = aq
(
ϕ(H)

)
∈ C(H) the class containing a. Thus every class g ∈ C(H) is

considered as a subset of q(F ) and P ∩ g is the set of prime divisors lying in g. We use additive notation
for the class group.

An integral domain R is a Krull domain if and only if its multiplicative monoid R\{0} is a Krull monoid
(this generalizes to Marot rings: indeed, a Marot ring is a Krull ring if and only if the monoid of regular
elements is a Krull monoid, [21]). Property (a) shows that a noetherian domain is Krull if and only if it is
integrally closed. Rings of integers, holomorphy rings in algebraic function fields, and regular congruence
monoids in these domains are Krull monoids with finite class group such that every class contains a prime
divisor ([18, Section 2.11]). Monoid domains and power series domains that are Krull are discussed in
[26, 34, 35]. For monoids of modules which are Krull we refer the reader to [6, 3, 11].

Much of the arithmetic of a Krull monoid can be studied in an associated monoid of zero-sum sequences.
This is a Krull monoid again which can be studied with methods from Additive Combinatorics. To
introduce the necessary concepts, let G be an additively written abelian group, G0 ⊂ G a subset, and
let F(G0) be the free abelian monoid with basis G0. In Combinatorial Number Theory, the elements of
F(G0) are called sequences over G0. If S = g1 · . . . · gl ∈ F(G0), where l ∈ N0 and g1, . . . , gl ∈ G0, then
σ(S) = g1 + . . .+ gl is called the sum of S, and the monoid

B(G0) = {S ∈ F(G0) | σ(S) = 0} ⊂ F(G0)

is called the monoid of zero-sum sequences over G0. Since the embedding B(G0) →֒ F(G0) is a divisor
homomorphism, Property (b) shows that B(G0) is a Krull monoid. The monoid B(G) is factorial if and
only if |G| ≤ 2. If |G| 6= 2, then B(G) is a Krull monoid with class group isomorphic to G and every
class contains precisely one prime divisor. This is well-known and will also follow from a more general
result given in Proposition 2.5. For every arithmetical invariant ∗(H) defined for a monoid H , it is
usual to write ∗(G0) instead of ∗(B(G0)) (although this is an abuse of language, there will be no danger
of confusion). In particular, we set A(G0) = A(B(G0)) and L(G0) = L(B(G0)). Similarly, arithmetical
properties of B(G0) are attributed to G0. Thus, G0 is said to be
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• (in)decomposable if B(G0) is (in)decomposable,
• (non-) half-factorial if B(G0) is (non-)half-factorial.

A monoid homomorphism θ : H → B is called a transfer homomorphism if if it has the following
properties:

(T 1) B = θ(H)B× and θ−1(B×) = H×.

(T 2) If u ∈ H , b, c ∈ B and θ(u) = bc, then there exist v, w ∈ H such that u = vw, θ(v) ≃ b and
θ(w) ≃ c.

Transfer homomorphisms preserve sets of lengths and further arithmetical properties. We formulate the
relevant results in the settings we need.

Proposition 2.1. Let H be a Krull monoid with divisor theory ϕ : H → F(P ), class group G, and

suppose that that each class contains a prime divisor. Let β̃ : F(P ) → F(G) be the homomorphism

defined by β(p) = [p] ∈ G for each p ∈ P . Then the homomorphism β = β̃ ◦ ϕ : H → B(G) is a transfer
homomorphism. In particular, we have

1. LH(a) = LBG)

(
β(a)

)
for each a ∈ H and L(H) = L(G).

2. If |G| ≥ 3, then c(H) = c
(
B(G)

)
(i.e., the catenary degrees of H and of B(G) coincide).

Proof. See [18, Section 3.4]. �

There are recent deep results showing that there are non-Krull monoids which allow transfer homo-
morphisms to monoids of zero-sum sequences.

Proposition 2.2.

1. Let O be a holomorphy ring in a global field K, A a central simple algebra over K, and H a classical
maximal O-order of A such that every stably free left R-ideal is free. Then L(H) = L(G), where
G is a ray class group of O and hence finite abelian.

2. Let H be a seminormal order in a holomorphy ring of a global field with principal order Ĥ such

that the natural map X(Ĥ) → X(H) is bijective and there is an isomorphism ϑ : Cv(H) → Cv(Ĥ)
between the v-class groups. Then L(H) = L(G), where G = Cv(H) is finite abelian.

Proof. 1. See [48, Theorem 1.1], and [5] for related results of this flavor. Note thatH is a non-commutative
Dedekind prime ring.

2. See [19, Theorem 5.8] for a more general result in the setting of weakly Krull monoids. Note, if

H 6= Ĥ , then H is not a Krull domain. �

Thus, beyond the Krull monoids occurring in Proposition 2.1, there are classes of objects H , where sets
of lengths depend only on an abelian group G and where L(H) = L(G) holds. Hence all characterization
results, such as Theorem 1.1, applies to them. To provide an example where the opposite phenomenon
holds, consider the class of numerical monoids. There we can find (infinitely many) non-isomorphic
numerical monoids H and H ′ with L(H) = L(H ′) ([1]).

Zero-Sum Theory. Let G be an additive abelian group, G0 ⊂ G a subset, and G•
0 = G0 \ {0}. Then

[G0] ⊂ G denotes the subsemigroup and 〈G0〉 ⊂ G the subgroup generated by G0. For a sequence

S = g1 · . . . · gl =
∏

g∈G0

gvg(S) ∈ F(G0) ,
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we set ϕ(S) = ϕ(g1) · . . . · ϕ(gl) for any homomorphism ϕ : G → G′, and in particular, we have −S =
(−g1) · . . . · (−gl). We call

supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S , vg(S) the multiplicity of g in S ,

|S| = l =
∑

g∈G

vg(S) ∈ N0 the length of S , k(S) =
∑

g∈G

1

ord(g)
∈ Q the cross number of S ,

σ(S) =
l∑

i=1

gi the sum of S , and Σ(S) =
{∑

i∈I

gi | ∅ 6= I ⊂ [1, l]
}

the set of subsequence sums of S .

The sequence S is said to be

• zero-sum free if 0 /∈ Σ(S),
• a zero-sum sequence if σ(S) = 0,
• a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and every proper subsequence
is zero-sum free.

Clearly, if S is zero-sum free, then (−σ(S))S is a minimal zero-sum sequence, and the minimal zero-sum
sequences over G0 are precisely the atoms of the monoid B(G0). Their study is basic for all arithmetical
investigations of Krull monoids. The three invariants,

• the (small) Davenport constant d(G0) = sup
{
|S|

∣∣ S ∈ F(G0) is zero-sum free
}
∈ N0 ∪ {∞} ,

• the (large) Davenport constant D(G0) = sup
{
|U |

∣∣ U ∈ A(G0)
}
∈ N0 ∪ {∞} , and

• the cross number K(G0) = sup
{
k(U)

∣∣ U ∈ A(G0)
}
∈ Q ∪ {∞}

are classical tools describing minimal zero-sum sequences (all three of them are finite for finite subsets
G0). For n ∈ N, let Cn denote a cyclic group with n elements. Suppose that G is finite. A tuple (ei)i∈I

is called a basis of G if all elements are nonzero and G = ⊕i∈I〈ei〉. For p ∈ P, let rp(G) denote the p-rank
of G, r(G) = max{rp(G) | p ∈ P} denote the rank of G, and let r∗(G) =

∑
p∈P

rp(G) be the total rank of

G. If |G| > 1, then

G ∼= Cn1 ⊕ . . .⊕ Cnr
, and we set d∗(G) =

r∑

i=1

(ni − 1) ,

where r, n1, . . . , nr ∈ N with 1 < n1 | . . . | nr, r = r(G), and nr = exp(G) is the exponent of G. Similarly,
we have

G ∼= Cq1 ⊕ . . .⊕ Cqs , and we set K∗(G) =
1

exp(G)
+

s∑

i=1

qi − 1

qi
,

where s = r∗(G) and q1, . . . , qs are prime powers. If |G| = 1, then r(G) = r∗(G) = 0, exp(G) = 1, and
d∗(G) = 0. We will use the following well-known results without further mention.

Proposition 2.3. Let G be a finite abelian group.

1. 1 + d∗(G) ≤ 1 + d(G) = D(G) ≤ |G|. If G is a p-group or r(G) ≤ 2, then d(G) = d∗(G).

2. K∗(G) ≤ K(G) ≤ 1
2 + log |G|, and the left inequality is an equality if G is a p-group or r∗(G) ≤ 2.

Proof. See [18, Chapter 5]. �

There are more groups G with d∗(G) = d(G) but we do not have equality in general. On the other
hand there is known no group G with K∗(G) < K(G). We refer to [8, 20, 47, 46, 10, 31, 33] for recent
progress. We will make substantial use of the following result, which highlights the role of the Davenport
constant for the arithmetic of Krull monoids.

Proposition 2.4. Let H be a Krull monoid with finite class group G where |G| ≥ 3 and every class
contains a prime divisor. Then c(H) ∈ [3,D(G)], and we have
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1. c(H) = D(G) if and only if G is either cyclic or an elementary 2-group.

2. c(H) = D(G)− 1 if and only if G is isomorphic either to Cr−1
2 ⊕C4 for some r ≥ 2 or to C2 ⊕C2n

for some n ≥ 2.

Proof. See [18, Theorem 6.4.7] and [24, Theorem 1.1]. �

We gather some simple facts on sets of lengths which will be used without further mention. Let
A ∈ B(G0) and d = min{|U | | U ∈ A(G0)}. If A = BC with B,C ∈ B(G0), then

L(B) + L(C) ⊂ L(A) .

If A = U1 · . . . · Uk = V1 · . . . · Vl with U1, . . . , Uk, V1, . . . , Vl ∈ A(G0) and k < l, then

ld ≤
l∑

ν=1

|Vν | = |A| =
k∑

ν=1

|Uν | ≤ kD(G0) ,

and hence
|A|

D(G0)
≤ min L(A) ≤ maxL(A) ≤

|A|

d
.

For sequences over cyclic groups the g-norm plays a similar role as the length does for sequences over
arbitrary groups. Let g ∈ G with ord(g) = n ≥ 2. For a sequence S = (n1g) · . . . · (nlg) ∈ F(〈g〉), where
l ∈ N0 and n1, . . . , nl ∈ [1, n], we define

‖S‖g =
n1 + . . .+ nl

n
.

Note that σ(S) = 0 implies that n1 + . . .+ nl ≡ 0 mod n whence ‖S‖g ∈ N0. Thus, ‖ · ‖g : B(〈g〉) → N0

is a homomorphism, and ‖S‖g = 0 if and only if S = 1. If S ∈ A(G0), then ‖S‖g ∈ [1, n − 1], and if
‖S‖g = 1, then S ∈ A(G0). Arguing as above we obtain that

‖A‖g
n− 1

≤ min L(A) ≤ max L(A) ≤ ‖A‖g .

We will need the concept of relative block monoids (as introduced by F. Halter-Koch in [29], and
recently studied by N. Baeth et al. in [4]). Let G be an abelian group. For a subgroup K ⊂ G let

BK(G) = {S ∈ F(G) | σ(S) ∈ K} ⊂ F(G) ,

and let DK(G) denote the smallest l ∈ N ∪ {∞} with the following property:

• Every sequence S ∈ F(G) of length |S| ≥ l has a subsequence T with σ(T ) ∈ K.

Clearly, BK(G) ⊂ F(G) is a submonoid with

B(G) = B{0}(G) ⊂ BK(G) ⊂ BG(G) = F(G)

and D{0}(G) = D(G). The following result is well-known ([4, Theorem 2.2]). Since there seems to be no
proof in the literature and we make substantial use of it, we provide the simple arguments.

Proposition 2.5. Let G be an abelian group and K ⊂ G a subgroup.

1. BK(G) is a Krull monoid. If |G| = 2 and K = {0}, then BK(G) = B(G) is factorial. In all other
cases the embedding BK(G) →֒ F(G) is a divisor theory with class group isomorphic to G/K and
every class contains precisely |K| prime divisors.

2. The monoid homomorphism θ : BK(G) → B(G/K), defined by θ(g1 · . . . ·gl) = (g1+K) · . . . ·(gl+K)
is a transfer homomorphism. If |G/K| ≥ 3, then c

(
BK(G)

)
= c

(
B(G/K)

)
.

3. DK(G) = sup{|U | | U is an atom of BK(G)} = D(G/K).
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Proof. 1. If |G| = 1, then B(G) = F(G) is factorial, the class group is trivial, and there is precisely one
prime divisor. If |G| = |K| = 2, then BK(G) = F(G) is factorial, the class group is trivial, and there
are precisely two prime divisors. If |G| = 2 and |K| = 1, then BK(G) = B(G) is factorial, and hence a
Krull monoid with trivial class group. Suppose that |G| ≥ 3. Clearly, the embedding BK(G) →֒ F(G) is
a divisor homomorphism. To verify that it is a divisor theory, let g ∈ G be given. If ord(g) = n ≥ 3, then
g = gcd

(
gn, g(−g)

)
. If ord(g) = 2, then there is an element h ∈ G \ {0, g} and g = gcd

(
g2, gh(g − h)

)
. If

ord(g) = ∞, then g = gcd
(
(−g)g, g(2g)(−3g)

)
.

The map ϕ : F(G) → G/K, defined by ϕ(S) = σ(S)+K for every S ∈ F(G), is a monoid epimorphism.
If S, S′ ∈ F(G), then σ(S) + K = σ(S′) + K if and only if S′ ∈ [S] = Sq

(
BK(G)

)
. Thus ϕ induces

a group isomorphism Φ: q(F(G))/q(BK(G)) → G/K, defined by Φ([S]) = σ(S) + K, and we have
[S] ∩G = σ(S) +K. Thus the class [S] contains precisely |K| prime divisors.

2. If |G| ≤ 2, then θ is the identity map. If |G| ≥ 3, then this follows from 1. and from Proposition
2.1.

3. Since a sequence S ∈ F(G) is an atom of BK(G) if and only if S 6= 1, σ(S) ∈ K and σ(T ) /∈ K for
all proper subsequences T of S, it follows that DK(G) = sup{|U | | U is an atom of BK(G)}. Since θ is
a transfer homomorphism, we get θ

(
A(BK(G))

)
= A(G/K) and θ−1

(
A(G/K)

)
= A(BK(G)). Therefore

|U | = |θ(U)| for all U ∈ BK(G), and it follows that

sup{|U | | U ∈ A(BK(G))} = sup{|V | | V ∈ A(G/K)} = D(G/K) . �

3. Structural results on L(G) and first basic constructions

Let G be an abelian group. Recall that all sets of lengths L ∈ L(G) are finite (indeed, max L(A) ≤ |A|
for all A ∈ B(G)) and that G is half-factorial (i.e., |L| = 1 for each L ∈ L(G)) if and only if |G| ≤ 2. If
G is infinite, then every finite subset L ⊂ N≥2 is contained in L(G) ([18, Theorem 7.4.1]). If G is finite
with |G| > 2, then sets of lengths have a well-studied structure which is the basis for all characterizations
of class groups. First we repeat the results needed in the sequel and then we start with some basic
constructions which will be used in all forthcoming sections.

Definition 3.1. Let d ∈ N, l, M ∈ N0 and {0, d} ⊂ D ⊂ [0, d]. A subset L ⊂ Z is called an

• arithmetical multiprogression (AMP for short) with difference d, period D and length l, if
L is an interval of minL+D + dZ (this means that L is finite nonempty and L = (minL+D +
dZ) ∩ [minL,maxL]), and l is maximal such that minL+ ld ∈ L.

• almost arithmetical multiprogression (AAMP for short) with difference d, period D, length l
and bound M , if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ

where L∗ is an AMP with difference d (whence L∗ 6= ∅), period D and length l such that
minL∗ = 0, L′ ⊂ [−M,−1], L′′ ⊂ maxL∗ + [1,M ] and y ∈ Z.

• almost arithmetical progression (AAP for short) with difference d, bound M and length l, if
it is an AAMP with difference d, period {0, d}, bound M and length l.

The subset ∆∗(G) of ∆(G), defined as

∆∗(G) = {min∆(G0) | G0 ⊂ G with ∆(G0) 6= ∅} ⊂ ∆(G) ,

plays a crucial role throughout this paper.

Proposition 3.2 (Structural results on L(G)).
Let G be a finite abelian group with |G| ≥ 3.
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1. There exists some M ∈ N0 such that every set of lengths L ∈ L(G) is an AAMP with some
difference d ∈ ∆∗(G) and bound M .

2. For every M ∈ N0 and every finite nonempty set ∆∗ ⊂ N, there is a finite abelian group G∗ such
that the following holds : for every AAMP L with difference d ∈ ∆∗ and bound M there is some
yL ∈ N such that

y + L ∈ L(G∗) for all y ≥ yL .

3. Let G0 ⊂ G be a subset. Then there exist a bound M ∈ N0 and some A∗ ∈ B(G0) such that for all
A ∈ A∗B(G0) the set of lengths L(A) is an AAP with difference min∆(G0) and bound M .

4. If A ∈ B(G) such that supp(A) ∪ {0} is a subgroup of G, then L(A) is an arithmetical progression
with difference 1.

Proof. The first statement gives the Structure Theorem for Sets of Lengths ([18, Theorem 4.4.11]), which
is sharp by the second statement proved in [44]. The third and the fourth statements show that sets of
lengths are extremely smooth provided that the associated zero-sum sequence contains all elements of its
support sufficiently often ([18, Theorems 4.3.6 and 7.6.8]). �

Proposition 3.3 (Structural results on ∆(G) and on ∆∗(G)).
Let G = Cn1 ⊕ . . .⊕ Cnr

where r, n1, . . . , nr ∈ N with r = r(G), 1 < n1 | . . . |nr, and |G| ≥ 3.

1. ∆(G) is an interval with

[
1, max{exp(G) − 2, k − 1}

]
⊂ ∆(G) ⊂

[
1,D(G)− 2

]
where k =

r(G)∑

i=1

⌊ni

2

⌋
.

2. 1 ∈ ∆∗(G) ⊂ ∆(G), [1, r(G)− 1] ⊂ ∆∗(G), and max∆∗(G) = max{exp(G)− 2, r(G) − 1}.

3. If G is cyclic of order |G| = n ≥ 4, then max
(
∆∗(G) \ {n− 2}

)
= ⌊n

2 ⌋ − 1.

Proof. The statement on max∆∗(G) follows from [25]. For all remaining statements see [18, Section 6.8].
A more detailed analysis of ∆∗(G) in case of cyclic groups can be found in [37]. �

Proposition 3.4 (Results on ρk(G) and on ρ(G)).
Let G be a finite abelian group with |G| ≥ 3, and let k ∈ N.

1. ρ2k(G) = kD(G).

2. 1 + kD(G) ≤ ρ2k+1(G) ≤ kD(G) + D(G)/2. If G is cyclic, then equality holds on the left side.

3. ρ(G) = D(G)/2.

Proof. See [18, Chapter 6.3], [15, Theorem 5.3.1], and [17] for recent progress. �

In the next propositions we provide examples of sets of lengths over cyclic groups, over groups of
rank two, and over groups of the form Cr−1

2 ⊕ Cn with r, n ∈ N≥2. All examples will have difference
d = max∆∗(G) and period D with {0, d} ⊂ D ⊂ [0, d] and |D| = 3, and we write them down in a
form used in Definition 3.1 in order to highlight their periods. It will be crucial for our approach (see
Proposition 6.5) that the sets given in Proposition 3.5.2 do not occur over cyclic groups (Proposition
3.6). It is well-known that sets of lengths over cyclic groups and over elementary 2-groups have many
features in common, and this carries over to rank two groups and groups of the form Cr−1

2 ⊕ Cn (see
Propositions 3.5.2, 3.7.2, and 6.5). Let G be an abelian group and L ∈ L(G). Then there is a B ∈ B(G)
such that L = L(B) and hence m + L = L(0mB) ∈ L(G) for all m ∈ N0. Therefore the interesting sets
of lengths L ∈ L(G) are those which do not stem from such a shift. These are those sets L ∈ L(G) with
−m+ L /∈ L(G) for every m ∈ N.

Proposition 3.5. Let G = Cn1 ⊕ Cn2 where n1, n2 ∈ N with 2 < n1 |n2, and let d ∈ [3, n1].
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1. For each k ∈ N we have

(2k + 2) + {0, d− 2, n2 − 2}+ {ν(n2 − 2) | ν ∈ [0, k − 1]} ∪ {(kn+ 2) + (d− 2)} =

(2k + 2) + {0, d− 2}+ {ν(n2 − 2) | ν ∈ [0, k]} ∈ L(G) .

2. For each k ∈ N we have(
(2k + 3) + {0, n1 − 2, n2 − 2}+ {ν(n2 − 2) | ν ∈ [0, k]}

)
∪
{
(kn2 + 3) + (n1 − 2) + (n2 − 2)

}
∈ L(G) .

Proof. Let (e1, e2) be a basis of G with ord(ei) = ni for i ∈ [1, 2], and let k ∈ N. For i ∈ [1, 2], we set
Ui = eni

i and Vi = (−ei)ei. Then

(−Ui)
kUk

i = (−Ui)
k−νUk−ν

i V νni

i for all ν ∈ [0, k] ,

and hence
L
(
(−Ui)

kUk
i

)
= 2k + {ν(ni − 2) | ν ∈ [0, k]} .

1. We set h = (d− 1)e1, W1 = (−e1)
d−1h, and W2 = e

n1−(d−1)
1 h. Then Z(U1W1) = {U1W1, V

d−1
1 W2}

and L(U1W1) = {2, d}. Therefore

L
(
(−U2)

kUk
2U1W1

)
= L

(
(−U2)

kUk
2

)
+ L

(
U1W1

)

= {2k + ν(n2 − 2) | ν ∈ [0, k]}+ {2, d}

= (2k + 2) + {ν(n2 − 2) | ν ∈ [0, k]}+ {0, d− 2} .

2. We define

W1 = en1−1
1 en2−1

2 (e1+e2), W2 = (−e1)e
n2−1
2 (e1+e2), W3 = en1−1

1 (−e2)(e1+e2), W4 = (−e1)(−e2)(e1+e2) ,

and
Bk = W1(−U1)(−U2)U

k
2 (−U2)

k .

Then any factorization of Bk is divisible by precisely one of W1, . . . ,W4, and we obtain that

Bk = W1(−U1)(−U2)U
k
2 (−U2)

k = W2V
n1−1
1 (−U2)U

k
2 (−U2)

k

= W3(−U1)V
n2−1
2 Uk

2 (−U2)
k = W4V

n1−1
1 V n2−1

2 Uk
2 (−U2)

k .

Thus it follows that

L(Bk) = {3, n1 + 1, n2 + 1, n1 + n2 − 1}+ L
(
Uk
2 (−U2)

k
)

= (2k + 3) + {ν(n2 − 2) | ν ∈ [0, k]} ∪

(2k + 3) + (n1 − 2) + {ν(n2 − 2) | ν ∈ [0, k]} ∪

(2k + 3) + (n2 − 2) + {ν(n2 − 2) | ν ∈ [0, k]} ∪

(2k + 3) + (n1 − 2) + (n2 − 2) + {ν(n2 − 2) | ν ∈ [0, k]} .

Thus maxL(Bk) = (kn2 + 3) + (n1 − 2) + (n2 − 2) and

L(Bk) =
(
(2k + 3) + {0, n1 − 2, n2 − 2}+ {ν(n2 − 2) | ν ∈ [0, k]}

)
∪ {maxL(Bk)} . �

Proposition 3.6. Let G be a cyclic group of order |G| = n ≥ 4, and let d ∈ [3, n− 1].

1. For each k ∈ N0, we have

(2k + 2) + {0, d− 2}+ {ν(n− 2) | ν ∈ [0, k]} ∈ L(G) .

2. For each k ∈ N0, we set

Lk =
(
(2k + 3) + {0, d− 2, n− 2}+ {ν(n− 2) | ν ∈ [0, k]}

)
∪
{
(kn+ 3) + (d− 2) + (n− 2)

}
.

Then for each k ∈ N0 and each m ∈ N0, we have −m+ Lk /∈ L(G).
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Proof. Let k ∈ N0.

1. Let g ∈ G with ord(g) = n, U = gn, V = (−g)g, W1 =
(
(d− 1)g

)
(−g)d−1, W2 =

(
(d− 1)g

)
gn−(d−1),

and

Bk =
(
(−U)U

)k
UW1 .

Then Z(UW1) = {UW1,W2V
d−1} and L(UW1) = {2, d}. Since every factorization of Bk is divisible either

by W1 or by W2, it follows that

L(Bk) = L
(
(−U)kUk

)
+ L

(
UW1

)

= {2k + ν(n− 2) | ν ∈ [0, k]}+ {2, d}

= (2k + 2) + {ν(n− 2) | ν ∈ [0, k]}+ {0, d− 2} .

2. Note that maxLk = (kn+ 3)+ (d− 2) + (n− 2) = (k + 1)n+ (d− 1). Assume to the contrary that
there is a Bk ∈ B(G) such that L(Bk) = Lk. Then min L(Bk) = 2k + 3 and, by Proposition 3.4,

(k + 1)n+ (d− 1) = maxL(Bk) ≤ ρ2k+3(G) = (k + 1)n+ 1 ,

a contradiction. Ifm ∈ N0 and Bm,k ∈ B(G) such that L(Bm,k) = −m+Lk, then L(0mBm,k) = Lk ∈ L(G).
Thus −m+ Lk /∈ L(G) for any m ∈ N0. �

Proposition 3.7. Let G = Cr−1
2 ⊕ Cn where r, n ∈ N≥2 and n is even.

1. For each k ∈ N0 we have

Lk = (2k + 2) + {0, n− 2, n+ r − 3}+ {ν(n− 2) | ν ∈ [0, k]} ∈ L(G) .

If r ≥ 2, then Lk /∈ L(Cn).

2. For each k ∈ N0, we have
(
(2k + 3) + {0, r − 1, n− 2}+ {ν(n− 2) | ν ∈ [0, k]}

)
∪
{
(kn+ 3) + (r − 1) + (n− 2)

}
∈ L(G) .

Proof. Let (e1, . . . , er−1, er) be a basis of G with ord(e1) = . . . = ord(er−1) = 2 and ord(er) = n. We set

e0 = e1 + . . .+ er−1, Ui = e
ord(ei)
i for each i ∈ [1, r], U0 = (e0 + er)(e0 − er), Vr = (−er)er,

V = e1 · . . . · er−1(e0 + er)(−er) , and W = e1 · . . . · er−1(e0 + er)e
n−1
r .

Let k ∈ N0.

1. Obviously, L
(
(−W )W

)
= {2, n, n+ r − 1} and

L
(
(−W )W (−Ur)

kUk
r

)
= L

(
(−W )W

)
+ L

(
(−Ur)

kUk
r

)

= {2, n, n+ r − 1}+ {2k + ν(n− 2) | ν ∈ [0, k]}

= (2k + 2) + {0, n− 2, n+ r − 3}+ {ν(n− 2) | ν ∈ [0, k]}

Since minLk = 2k + 2, maxLk = (k + 1)n+ r − 1, and ρ2k+2(Cn) = (k + 1)n by Proposition 3.4, r ≥ 2
implies that Lk /∈ L(Cn).

2. Let Lk denote the set in the statement. We define

Bk = U0U1 · . . . · Ur−1(−Ur)
k+1Uk+1

r

and assert that L(Bk) = Lk. Let z be a factorization of Bk. We distinguish two cases.

CASE 1: U1 | z.

Then U0U1 ·. . . Ur−1 | z which implies that z = U0U1 ·. . .·Ur−1

(
(−Ur)Ur

)k+1−ν
V νn
r for some ν ∈ [0, k+1]

and hence |z| ∈ r + (2k + 2) + {ν(n− 2) | ν ∈ [0, k + 1]}.

CASE 2: U1 ∤ z.
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Then either V | z or W | z. If V | z, then z = (−V )V V n−1
r

(
(−Ur)Ur

)k−ν
V νn
r for some ν ∈ [0, k] and

hence |z| ∈ (n+1)+2k+ {ν(n− 2) | ν ∈ [0, k]}. If W | z, then z = (−W )WVr

(
(−Ur)Ur

)k−ν
V νn
r for some

ν ∈ [0, k] and hence |z| ∈ 3 + 2k + {ν(n− 2) | ν ∈ [0, k]}.
Putting all together the assertion follows. �

Proposition 3.8. Let G be a finite abelian group, g ∈ G with ord(g) = n ≥ 5, and B ∈ B(G) such that(
(−g)g

)2n
|B. Suppose L(B) is an AAMP with period {0, d, n− 2} for some d ∈ [1, n− 3] \ {(n− 2)/2}.

1. If S ∈ A
(
B〈g〉(G)

)
with S |B, then σ(S) ∈ {0, g,−g, (d+ 1)g,−(d+ 1)g}.

2. If S1, S2 ∈ A
(
B〈g〉(G)

)
with S1S2 |B, then σ(Si) ∈ {0, g,−g} for at least one i ∈ [1, 2].

Proof. By definition, there is a y ∈ Z such that

L(B) ⊂ y + {0, d, n− 2}+ (n− 2)Z .

We set U = gn and V = (−g)g.

1. Let S ∈ A
(
B〈g〉(G)

)
with S |B and set σ(S) = kg with k ∈ [0, n− 1]. If k ∈ {0, 1, n− 1}, then we

are done. Suppose that k ∈ [2, n− 2]. Since S is an atom in B〈g〉(G), it follows that W1 = S(−g)k ∈ A(G)

and W ′
1 = Sgn−k ∈ A(G). We consider a factorization z ∈ Z(B) with UW1 | z, say z = UW1y. Then

z′ = W ′
1V

ky is a factorization of B of length |z′| = |z| + k − 1. Since L(B) is an AAMP with period
{0, d, n− 2} for some d ∈ [1, n− 3] \ {(n− 2)/2} it follows that k − 1 ∈ {d, n− 2− d}.

2. Let S1, S2 ∈ A
(
B〈e〉(G)

)
with S1S2 |B, and assume to the contrary σ(Si) = kie with ki ∈ [2, n− 2]

for each i ∈ [1, 2]. As in 1. it follows that

W1 = S1(−g)k1 , W ′
1 = S1g

n−k1 , W2 = S2(−g)k2 , and W ′
2 = S2g

n−k2

are in A(G). We consider a factorization z ∈ Z(B) with UW1UW2 | z, say z = UW1UW2y. Then
z1 = W ′

1V
k1−1UW2y ∈ Z(B) with |z1| = |z| + k1 − 1 and hence k1 − 1 ∈ {d, n − 2 − d}. Similarly,

z2 = UW1W
′
2V

k2−1y ∈ Z(B), hence k2 − 1 ∈ {d, n− 2− d}, and furthermore it follows that k1 = k2. Now
z3 = W ′

1V
k1−1W ′

2V
k2−1y ∈ Z(B) is a factorization of length |z3| = |z|+k1+k2−2. Thus, if k1−1 = d, then

2d ∈ {n−2, n−2+d}, a contradiction, and if k1−1 = n−2−d, then 2(n−2−d) ∈ {n−2, n−2+(n−2−d)},
a contradiction. �

4. Characterizations of extremal cases

Let G be a finite abelian group. By the Structure Theorem for Sets of Lengths (Proposition 3.2.1),
all sets of lengths are AAMPs (with difference in ∆∗(G) and some universal bound). By definition, the
concept of an AAMP comprises arithmetical progressions, AAPs, and AMPs. The goal of this section is to
characterize those groups where all sets of lengths are not only AAMPs, but have one of these more special
forms. As a consequence we establish characterizations of all involved class groups. Since L(C1) = L(C2)
and L(C3) = L(C2 ⊕ C2) (see Proposition 4.2 below), small groups require special attention in the study
of the Characterization Problem. All results of this section are gathered in the following Theorem 4.1.

Theorem 4.1. Let G be a finite abelian group.

1. The following statements are equivalent :
(a) All sets of lengths in L(G) are arithmetical progressions with difference in ∆∗(G).

(b) All sets of lengths in L(G) are arithmetical progressions.

(c) G is cyclic of order |G| ≤ 4 or isomorphic to a subgroup of C3
2 or isomorphic to a subgroup of

C2
3 .

2. The following statements are equivalent :
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(a) There is a constant M ∈ N such that all sets of lengths in L(G) are AAPs with bound M .

(b) G is isomorphic to a subgroup of C3
3 or isomorphic to a subgroup of C3

4 .

3. The following statements are equivalent :
(a) All sets of lengths in L(G) are AMPs with difference in ∆∗(G).

(b) G is cyclic with |G| ≤ 5 or isomorphic to a subgroup of C3
2 or isomorphic to a subgroup of C2

3 .

4. Suppose that D(G) ≥ 4 and that L(G) satisfies the property in 1., 2., or 3. If G′ is a finite abelian
group such that L(G) = L(G′), then G ∼= G′.

We proceed in a series of lemmas. The proof of Theorem 4.1 will be given at the end of this section.

Proposition 4.2.

1. L(C1) = L(C2) =
{
{m} | m ∈ N0

}
.

2. L(C3) = L(C2 ⊕ C2) =
{
y + 2k + [0, k]

∣∣ y, k ∈ N0

}
.

3. L(C4) =
{
y + k + 1 + [0, k]

∣∣ y, k ∈ N0

}
∪

{
y + 2k + 2 · [0, k]

∣∣ y, k ∈ N0

}
.

4. L(C3
2 ) =

{
y + (k + 1) + [0, k]

∣∣ y ∈ N0, k ∈ [0, 2]
}

∪
{
y + k + [0, k]

∣∣ y ∈ N0, k ≥ 3
}
∪
{
y + 2k + 2 · [0, k]

∣∣ y, k ∈ N0

}
.

5. L(C2
3 ) = {[2k, l] | k ∈ N0, l ∈ [2k, 5k]}

∪ {[2k + 1, l] | k ∈ N, l ∈ [2k + 1, 5k + 2]} ∪ {{1}}.

Proof. 1. This is straightforward and well-known. A proof of 2.,3., and 4. can be found in [18, Theorem
7.3.2]. For 5. we refer to [23, Proposition 3.12]. �

Lemma 4.3. Let G be a cyclic group of order |G| = n ≥ 7, g ∈ G with ord(g) = n, k ∈ N, and

Ak =

{
gnk(−g)nk(2g)n if n is even,

gnk(−g)nk
(
(2g)(n−1)/2g

)2
if n is odd.

Then there is a bound M ∈ N such that, for all k ≥ n− 1, the sets L(Ak) are AAPs with difference 1 and
bound M , but they are not arithmetical progressions with difference 1.

Proof. We set G0 = {g,−g, 2g}, U1 = (−g)g, U2 = (−g)2(2g) and, if n is odd, then V1 = (2g)(n+1)/2(−g).
Furthermore, for j ∈ [0, n/2], we define Wj = (2g)jgn−2j . Then, together with −W0 = (−g)n, these are
all minimal zero-sum sequences which divide Ak for k ∈ N. Note that

‖ −W0‖g = n− 1, ‖U2‖g = ‖V1‖g = 2, and ‖U1‖g = ‖Wj‖g = 1 for all j ∈ [0, n/2] .

It is sufficient to prove the following two assertions.

A1. There is a bound M ∈ N0 such that L(Ak) is an AAP with difference 1 and bound M for all
k ≥ n− 1.

A2. For each k ∈ N, L(Ak) is not an arithmetical progression with difference 1.

Proof of A1. By Proposition 3.2.1 there is a bound M ′ ∈ N0 such that, for each k ∈ N, L(Ak) is an
AAMP with difference dk ∈ ∆∗(G) ⊂ [1, n− 2] and bound M ′. Suppose that k ≥ n− 1. Then (W0U2)

n−1

divides Ak. Since W0U2 = W1U
2
1 , it follows that

(W0U2)
n−1 = (W0U2)

n−1−ν(W1U
2
1 )

ν for all ν ∈ [0, n− 1]

and hence L
(
(W0U2)

n−1
)
⊃ [2n−2, 3n−3]. Thus L(Ak) contains an arithmetical progression of difference

1 and length n− 1. Therefore there is a bound M ∈ N0 such that L(Ak) is an AAP with difference 1 and
bound M for all k ≥ n− 1.
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Proof of A2. Let k ∈ N. Observe that

Ak =

{
W k

0 (−W0)
kW 2

n/2 if n is even,

W k
0 (−W0)

k
(
W(n−1)/2)

2 if n is odd,

and it can be seen that min L(Ak) = 2k + 2. We assert that 2k + 3 /∈ L(Ak). If n is even, then

W0Wn/2 = WjWn/2−j for each j ∈ [0, n/2] ,

and similarly, for odd n we have

W0W(n−1)/2 = WjW(n−1)/2−j for each j ∈ [0, (n− 1)/2] .

In both cases, all factorizations of Ak of length 2k+2 contain only atoms with g-norm 1 and with g-norm
n − 1. Let z′ be any factorization of Ak containing only atoms with g-norm 1 and with g-norm n − 1.
Then |z′| − |z| is a multiple of n− 2 whence if |z′| > |z|, then |z′| − |z| ≥ n− 2 > 1.

Next we consider a factorization z′ of Ak containing at least one atom with g-norm 2, say z′ has r
atoms with g-norm n− 1, s ≥ 1 atoms with g-norm 2, and t atoms with g-norm 1. Then k > r,

‖Ak‖g = k(n− 1) + (k + 2) = r(n − 1) + 2s+ t ,

and we study
|z′| − |z| = r + s+ t− (2k + 2)

= r + s+ k(n− 1) + (k + 2)− r(n− 1)− 2s− (2k + 2)

= (k − r)(n − 2)− s .

Note that s ≤ v2g(Ak) ≤ n. Thus, if k − r ≥ 2, then

(k − r)(n− 2)− s ≥ 2n− 4− s ≥ n− 4 > 1 .

Suppose that k − r = 1. Then we cancel (−W0)
k−1, and consider a relation where −W0 occurs precisely

once. Suppose that all s atoms of g-norm 2 are equal to U2. Since v−g(U2) = 2, it follows that s ≤
v−g(−W0)/2 = n/2 whence

(k − r)(n − 2)− s ≥ n− 2− n/2 = n/2− 2 > 1 .

Suppose that V1 occurs among the s atoms with g-norm 2. Then n is odd, V1 occurs precisely once, and

s− 1 ≤ v2g(Ak)−
n+ 1

2
= (n− 1)−

n+ 1

2
=

n− 3

2
,

whence

(k − r)(n − 2)− s ≥ (n− 2)−
n− 1

2
=

n+ 1

2
− 2 > 1 . �

Lemma 4.4. Let G be a cyclic group of order |G| = 6, g ∈ G with ord(g) = 6 and, for each k ∈ N,
Ak = g6k(−g)6k(4g)(−g)4(3g)g3. Then there is a bound M ∈ N such that, for all k ∈ N, the sets L(Ak)
are AAPs with difference 1 and bound M , but they are not arithmetical progressions with difference 1.

Proof. We set U = g6, W1 = (4g)(−g)4, and W2 = (3g)g3. Then, for each k ∈ N, we have Ak =
Uk(−U)kW1W2. By Proposition 3.3, we obtain that ∆∗(G) = {1, 2, 4}. By Proposition 3.2.1, there is a
bound M ′ ∈ N such that, for every k ∈ N, L(Ak) is an AAMP with difference dk ∈ ∆∗(G) and bound M ′.
We show that 2k+4, 2k+5, 2k+6, 2k+7 ∈ L(Ak) which implies that there is a bound M ∈ N such that,
for every k ∈ N, L(Ak) is an AAP with difference 1 and bound M .

Let k ∈ N. We set V = (−g)g, W3 = (4g)(3g)(−g), W4 = (4g)g2, and obtain that

Ak = Uk(−U)kW1W2 = Uk(−U)kW3V
3

= Uk−1(−U)kW4W2V
4 = Uk−1(−U)k−1W1W2V

6 = Uk−1(−U)k−1W4(−W2)V
7 ,
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and hence {2k + 2, 2k + 4, 2k + 5, 2k + 6, 2k + 7} ⊂ L(Ak). Furthermore, min L(Ak) = 2k + 2, and
z = Uk(−U)kW1W2 is the only factorization of Ak of length 2k + 2. From this we see that there is no
factorization of length 2k + 3, and hence L(Ak) is not an arithmetical progression with difference 1. �

Lemma 4.5. Let G be a cyclic group of order |G| = 5. Then every L ∈ L(G) has one of the following
forms :

• L is an arithmetical progression with difference 1.
• L is an arithmetical progression with difference 3.
• L is an AMP with period {0, 2, 3} or with period {0, 1, 3}.

Proof. By Proposition 3.3 we obtain that ∆∗(G) = {1, 3}. Let A′ ∈ B(G). If A′ = 0mA with m ∈ N0

and A ∈ B(G•), then L(A′) = m + L(A). Thus it is sufficient to prove the assertion for L(A). If
| supp(A)| = 1, then |L(A)| = 1. If | supp(A)| = 4, then L(A) is an arithmetical progression with difference
1 by Proposition 3.2.4. Suppose that | supp(A)| = 2. Then there is a g ∈ G• such that supp(A) = {g, 2g}
or supp(A) = {g, 4g}. If supp(A) = {g, 2g}, then L(A) is an arithmetical progression with difference 1 (this
can be checked directly by arguing with the g-norm). If supp(A) = {g, 4g}, then L(A) is an arithmetical
progression with difference 3.

Thus it remains to consider the case | supp(A)| = 3. We set G0 = supp(A). Then there is an element
g ∈ G0 such that −g ∈ G0. Thus either G0 = {g, 2g,−g} or G0 = {g, 3g,−g}. Since {g, 3g,−g} =
{−g, 2(−g),−(−g)}, we may suppose without restriction that G0 = {g, 2g,−g}.

If ∆(L(A)) ⊂ {1}, then L(A) is an arithmetical progression with difference 1. If 3 ∈ ∆(L(A)), then
∆(L(A)) = {3} by [9, Theorem 3.2], which means that L(A) is an arithmetical progression with difference 3.
Thus it remains to consider the case where 2 ∈ ∆(L(A)) ⊂ [1, 2]. We show that L(A) is an AMP with period
{0, 2, 3} or with period {0, 1, 3}. Since 2 ∈ ∆(L(A)), there exist k ∈ N, A1, . . . , Ak, B1, . . . , Bk+2 ∈ A(G0)
such that

A = A1 · . . . ·Ak = B1 · . . . ·Bk+2, and k + 1 /∈ L(A) .

For convenience we list the elements of A(G0), and we order them by their lengths:

• g5, (−g)5, (2g)5,
• g3(2g), (2g)3(−g),
• g(2g)2, (2g)(−g)2,
• g(−g).

Clearly, {‖S‖g | S ∈ A(G0)} = {1, 2, 4}, and (−g)5 is the only atom having g-norm 4. We distinguish two
cases.

CASE 1: (−g)5 /∈ {A1, . . . , Ak}.
Then {A1, . . . , Ak}must contain atoms with g-norm 2. These are the atoms (2g)5, (2g)(−g)2, (2g)3(−g).

If g5 or g3(2g) occurs in {A1, . . . , Ak}, then k + 1 ∈ L(A), a contradiction. Thus none of the elements
(−g)5, g5, and g3(2g) lies in {A1, . . . , Ak}, and hence

{A1, . . . , Ak} ⊂ {(2g)5, (2g)3(−g), g(2g)2, (2g)(−g)2, g(−g)} .

Now we set h = 2g and obtain that

{A1, . . . , Ak} ⊂ {(2g)5, (2g)3(−g), g(2g)2, (2g)(−g)2, g(−g)} = {h5, h3(2h), h2(3h), h(2h)2, (2h)(3h)} .

Since the h-norm of all these elements equals 1, it follows that max L(A) = k, a contradiction.

CASE 2: (−g)5 ∈ {A1, . . . , Ak}.
If (2g)5, or g(2g)2, or (2g)3(−g) occurs in {A1, . . . , Ak}, then k + 1 ∈ L(A), a contradiction. Since

∆({−g, g}) = {3}, it follows that

Ω = {A1, . . . , Ak} ∩ {g3(2g), (2g)(−g)2} 6= ∅ .
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Since
(
g3(2g)

)(
(2g)(−g)2

)
=

(
(−g)g

)2(
g(2g)2

)
and k+1 /∈ L(A), it follows that |Ω| = 1. We distinguish

two cases.

CASE 2.1: {A1, . . . , Ak} ⊂ {g5, (−g)5, g(−g), (2g)(−g)2}.
We set h = −g, and observe that

{A1, . . . , Ak} ⊂ {g5, (−g)5, g(−g), (2g)(−g)2} = {h5, (−h)5, h(−h), h2(3h)} .

Since (−h)5 is the only element with h-norm greater than 1, it follows that (−h)5 ∈ {A1, . . . , Ak}. Since

∆({h,−h}) = {3}, it follows that h2(3h) ∈ {A1, . . . , Ak}. Since
(
(−h)5

)(
h2(3h)

)
=

(
h(−h)

)2(
(3h)(−h)3

)
,

we obtain that k + 1 ∈ L(A), a contradiction.

CASE 2.2: {A1, . . . , Ak} ⊂ {g5, (−g)5, g(−g), g3(2g)}.

Since
(
g3(2g)

)2(
(−g)5

)
=

(
g5
)(

g(−g)
)(

(2g)(−g)2
)2

and k + 1 /∈ L(A), it follows that

|{i ∈ [1, k] | Ai = g3(2g)}| = 1 ,

and hence v2g(A) = 1. Thus every factorization z of A has the form

z =
(
(2g)g3

)
z1 or z =

(
(2g)(−g)2

)
z2 ,

where z1, z2 are factorizations of elements B1, B2 ∈ B({−g, g}). Since L(B1) and L(B2) are arithmetical
progressions of difference 3, L(A) is a union of two shifted arithmetical progression of difference 3. We set

A =
(
g5
)m1

(
(−g)5

)(
(−g)g

)m3
(
(2g)g3

)
,

where m1 ∈ N0, m2 ∈ N, and m3 ∈ [0, 4]. Suppose that m1 ≥ 1. Note that

A′ =
(
g5
)(
(−g)5

)(
(2g)g3

)
=

(
(−g)g

)3(
(2g)(−g)2

)(
g5
)
=

(
(−g)g

)5(
(2g)g3

)
,

and hence L(A′) = {3, 5, 6}. We set A = A′A′′ with A′′ ∈ B({g,−g}). The above argument on the
structure of the factorizations of A implies that L(A) is the sumset of L(A′) and L(A′′) whence

L(A) = L(A′) + L(A′′) = 3 + {0, 2, 3}+ L(A′′) .

Since L(A′′) is an arithmetical progression with difference 3, L(A) is an AMP with period {0, 2, 3}. Suppose
that m1 = 0. If m3 ∈ [2, 4], then L(A) = {m2 +m3,m2 +m3 + 1,m2 +m3 + 3} is an AMP with period
{0, 1, 3}. If m3 = 1, then L(A) = {m2 + 2,m2 + 4}. If m3 = 0, then L(A) = {m2 + 1,m2 + 3}. �

Lemma 4.6. Let G = Cn1 ⊕ Cn2 where n1, n2 ∈ N with 4 ≤ n1 |n2, (e1, e2) be a basis of G with

ord(ei) = ni for i ∈ [1, 2], and set W = en1−1
1 en2−1

2 (e1 + e2). Then there is a bound M ∈ N such that, for
all sufficiently large k, the sets L

(
W k(−W )k

)
are AAPs with difference 1 and bound M , but they are not

arithmetical progressions with difference 1.

Proof. We set e0 = e1 + e2, G0 = {eν ,−eν | ν ∈ [0, 2]}, Uν = e
ord(eν)
ν and Vν = (−eν)eν for ν ∈ [0, 2].

For k ∈ N we set Ak = W k(−W )k and Lk = L(Ak). Since gcd∆(G0) | gcd({n1 − 2, n2 − 2, |W | − 2 =
n1 + n2 − 3}) = 1, it follows that min∆(G0) = 1. Thus, by Proposition 3.2.3, there are M,k0 ∈ N such
that for all k ≥ k0, the set Lk is an AAP with difference 1 and bound M .

Let k ∈ N. We assert that 1 + minLk /∈ Lk. This implies that Lk is not an arithmetical progression
with difference 1. Since |W | = | −W | = D(G), it follows that minLk = 2k, and clearly W k(−W )k is the
only factorization of Ak having length 2k. If S = (−e1)e

n2−1
2 (e1 + e2), then W (−W ) = S(−S)V n1−2

1 ,
2k + n1 − 2 ∈ Lk, and this is the second shortest factorization length of Ak. �

Lemma 4.7. Let G = C4
2 , (e1, e2, e3, e4) be a basis of G, e0 = e1 + . . . + e4, U4 = e0 · . . . · e4, U3 =

e1e2e3(e1 + e2 + e3), and U2 = e1e2(e1 + e2).
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1. There is a bound M ∈ N such that, for all sufficiently large k, the sets L
(
(U3U4)

2k
)
are AAPs with

difference 1 and bound M , but they are not arithmetical progressions with difference 1.

2. For each k ∈ N, we have

L(U2k
4 U2) = (2k + 1) + {0, 1, 3}+ 3 · [0, k − 1] .

Proof. 1. We setG0 = supp(U3U4), Ak = U2k
3 U2k

4 and Lk = L(Ak) for each k ∈ N. Since gcd∆(G0) | gcd{|U3|−
2 = 2, |U4| − 2 = 3}, it follows that min∆(G0) = 1. Thus, by Proposition 3.2.3, there are M,k0 ∈ N such
that for all k ≥ k0, the set Lk is an AAP with difference 1 and bound M .

Let k ∈ N. Then minLk = 4k, and we assert that 1 + 4k /∈ Lk. For ν ∈ [0, 4], we set Vν = e2ν
and V5 = (e1 + e2 + e3)

2. Since Z(U2
3 ) = {U2

3 , V1V2V3V5}, Z(U
2
4 ) = {U2

4 , V1V2V3V4V0}, and Z(U3U4) =
{U3U4, V1V2V3W} where W = (e1 + e2 + e3)e0e4, it follows that min(Lk \ {4k}) = 4k + 2.

2. Setting W = (e1 + e2)e3e4e0 we infer that U2
4U2 = U4(e

2
1)(e

2
2)W = U2(e

2
0) · . . . · (e

2
4) and hence

L(U2
4U2) = {3, 4, 6}. Thus for each k ∈ N we obtain that

L(U2k
4 U2) =

(
{1}+ L(U2k

4 )
)
∪
(
L(U2k−2

4 ) + L(U2
4U2)

)

=
(
2k + 1 + 3 · [0, k]

)
∪
(
2k − 2 + 3 · [0, k − 1] + {3, 4, 6}

)

=
(
2k + 1 + 3 · [0, k]

)
∪
(
2k + 2 + 3 · [0, k − 1]

)
∪
(
2k + 4 + 3 · [0, k − 1]

)

= (2k + 1) + {0, 1, 3}+ 3 · [0, k − 1] . �

Lemma 4.8. Let G = Cr
3 with r ∈ [3, 4], (e1, . . . , er) a basis of G, e0 = e1+. . .+er, and U = (e1·. . .·er)2e0.

1. If r = 3, then there is a bound M ∈ N such that, for all k ∈ N, the sets L
(
U6k+1(−U)

)
are AAPs

with difference 1 and bound M , but they are not arithmetical progressions with difference 1.

2. If r = 4 and V1 = e21e
2
2(e1 + e2), then for each k ∈ N we have

L(U3kV1) = (3k + 1) + {0, 1, 3}+ 3 · [0, 2k − 1] .

Proof. 1. Let r = 3 and k ∈ N. We set Ak = U6k+1(−U) and Lk = L(Ak). For ν ∈ [0, 3], we set Uν = e3ν ,
Vν = (−eν)eν , and we define X = e20e1e2e3.

First, consider L(U6k). We observe that Z(U2) = {U2, U1U2U3X} and Z(U3) = {U3, UU1U2U3X,
U0U

2
1U

2
2U

2
3 }. Furthermore, min L(U6k) = 6k, maxL(U6k) = 14k, ∆({e0, . . . , e3} = {2}, and hence

L(U6k) = 6k + 2 · [0, 4k] .

Next, consider L
(
(−U)U

)
. For subsets I, J ⊂ [1, 3] with [1, 3] = I ⊎ J , we set

WI = e0
∏

i∈I

e2i
∏

j∈J

(−ej) .

Since

Z
(
U(−U)

)
=

{
V0V

2
1 V

2
2 V

2
3

}
⊎

{
WI(−WI)

∏

j∈J

Vj | I, J ⊂ [1, 3] with [1, 3] = I ⊎ J
}
,

it follows that

L
(
(−U)U

)
=

{
7
}

⊎
{
2 + |J | | I, J ⊂ [1, 3] with [1, 3] = I ⊎ J

}
= {2, 3, 4, 5, 7} .

This implies that

[6k + 2, 14k + 5] ∪ {14k+ 7} = L
(
(−U)U

)
+ L(U6k) ⊂ L(Ak) ⊂ [6k + 2, 14k+ 7] ,

and we claim that [6k + 2, 14k + 5] ∪ {14k + 7} = L(Ak). Then the assertion of the lemma follows.
To prove this, we consider the unique factorization z ∈ Z(Ak) of length |z| = 14k + 7 which has the

form

z =
(
U0U

2
1U

2
2U

2
3 )

2k
(
V0V

2
1 V

2
2 V

2
3

)
.
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Assume to the contrary that there is a factorization z′ ∈ Z(Ak) of length |z′| = 14k + 6. If V0 | z′, then
V0V

2
1 V

2
2 V

2
3 | z′ and z′ = V0V

2
1 V

2
2 V

2
3 x with x ∈ Z(U6k), whence |x| ∈ L(U6k) and |z′| ∈ 7 + L(U6k),

a contradiction. Suppose that V0 ∤ z′. Then there are I, J ⊂ [1, 3] with [1, 3] = I ⊎ J such that
WI(−WI)

∏
j∈J Vj | z′ and hence z′ = WI(−WI)

(∏
j∈J Vj

)
x with x ∈ Z(U6k). Thus |z′| ∈ [2, 5]+ L(U6k),

a contradiction.

2. Let r = 4 and k ∈ N. We have L(U2) = {2, 5} and L(U3k) = 3k + 3 · [0, 2k]. We define

V2 = (e1 + e2)e1e2e
2
3e

2
4e0 , V3 = (e1 + e2)e3e4e

2
0, and W = e1 · . . . · e4e

2
0 ,

and observe that

U3V1 = U2V2(e
3
1)(e

3
2) = UV3(e

3
1)

2(e32)
2(e33)(e

3
4)

whence L(U3V1) = {4, 5, 7, 8}. Clearly, each factorization of U3kV1 contains exactly one of the atoms
V1, V2, V3, and it contains it exactly once. Therefore we obtain that

L(U3kV1) =
(
{1}+ L(U3k)

)
∪
(
L(U3V1) + L(U3k−3)

)

=
(
(3k + 1) + 3 · [0, 2k]

)
∪
(
{4, 5, 7, 8}+ (3k − 3) + 3 · [0, 2k − 2]

)

=
(
(3k + 1) + 3 · [0, 2k]

)
∪
(
(3k + 1) + {0, 1, 3, 4}+ 3 · [0, 2k − 2]

)

= (3k + 1) + {0, 1, 3}+ 3 · [0, 2k − 1] . �

Proof of Theorem 4.1. 1. (c) ⇒ (a) Proposition 4.2 shows that, for all groups mentioned, all sets of
lengths are arithmetical progressions. Proposition 3.3 shows that all differences lie in ∆∗(G).

(a) ⇒ (b) Obvious.
(b) ⇒ (c) Suppose that exp(G) = n, and that G is not isomorphic to any of the groups listed in (c).

We have to show that there is an L ∈ L(G) which is not an arithmetical progression. We distinguish four
cases.

CASE 1: n ≥ 5.
Then Proposition 3.6.1 provides examples of sets of lengths which are not arithmetical progressions.

CASE 2: n = 4.
Since G is not cyclic, it has a subgroup isomorphic to C2 ⊕ C4. Then [18, Theorem 6.6.5] shows that

{2, 4, 5} ∈ L(C2 ⊕ C4} ⊂ L(G).

CASE 3: n = 3.
Then G is isomorphic to Cr

3 with r ≥ 3, and Lemma 4.8.1 provides examples of sets of lengths which
are not arithmetical progressions.

CASE 4: n = 2.
Then G is isomorphic to Cr

2 with r ≥ 4, and Lemma 4.7.1 provides examples of sets of lengths which
are not arithmetical progressions.

2. (b) ⇒ (a) Suppose that G is a subgroup of C3
4 or a subgroup of C3

3 . Then Proposition 3.3.2 implies
that ∆∗(G) ⊂ {1, 2}, and hence Proposition 3.2.1 implies the assertion.

(a) ⇒ (b) Suppose that (b) does not hold. Then G has a subgroup isomorphic to a cyclic group of
order n ≥ 5, or isomorphic to C4

2 , or isomorphic to C4
3 . We show that in none of these cases (a) holds.

If G has a subgroup isomorphic to Cn for some n ≥ 5, then Proposition 3.6.1 shows that (a) does not
hold. If G has a subgroup isomorphic to C4

2 , then Lemma 4.7.2 shows that (a) does not hold. If G has a
subgroup isomorphic to C4

3 , then Lemma 4.8.2 shows that (a) does not hold.

3. Suppose that G is cyclic. If |G| ≤ 4, then all sets of lengths are arithmetical progressions with
difference in ∆∗(G) by 1. and hence they are AMPs with difference in ∆∗(G). If |G| ≥ 5, then the
assertion follows from the Lemmas 4.3, 4.4, and 4.5.
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Suppose that G has rank r ≥ 2 and exp(G) ∈ [2, 5], say G = Cn1 ⊕ . . . ⊕ Cnr
with 1 < n1 | . . . |nr.

If n1 ≥ 4, then Lemma 4.6 shows that there are sets of lengths which are not AMPs with difference
in ∆∗(G). Thus it suffices to consider the cases where G is isomorphic to one of the following groups:
Cr

2 , C
r−1
2 ⊕ C4, C

r
3 .

If G = Cr−1
2 ⊕ C4, then L(G) contains (arbitrarily long) AAPs with difference 2 which are not arith-

metical progressions and hence no AMPs ([15, Example 3.2.1]).
Suppose that G = Cr

2 . If r ≤ 3, then the assertion follows from 1. If r ≥ 4, then the assertion follows
from Lemma 4.7.1.

Suppose that G = Cr
3 . If r ≤ 2, then the assertion follows from 1. If r ≥ 3, then the assertion follows

from Lemma 4.8.1.

4. Let G′ be a finite abelian group such that L(G) = L(G′). Then, by Proposition 3.4, D(G) = ρ2(G) =
ρ2(G

′) = D(G′), and L(G) satisfies one of the properties 1., 2., or 3. if and only if the same is true for
L(G′). We distinguish three cases.

CASE 1: L(G) satisfies the property in 1.
By 1., G is cyclic of order |G| ≤ 4 or isomorphic to a subgroup of C3

2 or isomorphic to a subgroup of
C2

3 , and the same is true for G′. Since D(G) ≥ 4, the assertion follows from Proposition 4.2.

CASE 2: L(G) satisfies the property in 2.
By CASE 1, we may suppose that L(G) and L(G′) do not satisfy the property in 1. Then by 2., G and

G′, are isomorphic to one of the following groups: C3
3 , C2 ⊕ C4, C

2
2 ⊕ C4, C2 ⊕ C2

4 , C
2
4 , or C

3
4 . Since C3

3

and C2
4 are the only non-isomorphic groups having the same Davenport constant, it remains to show that

L(C3
3 ) 6= L(C2

4 ). Since max∆(C2
4 ) = 3 (by [24, Lemma 3.3]) and max∆(C3

3 ) = 2 (by [16, Proposition
5.5]), the assertion follows.

CASE 3: L(G) satisfies the property in 3.
By CASE 1, we may suppose that G and G′ do not satisfy the property in 1. But then 3. implies that

G and G′ are both cyclic of order five. �

5. A set of lengths not contained in L(Cn1 ⊕ Cn2)

The aim of this section is to prove the following proposition.

Proposition 5.1. Let G = Cn1 ⊕ Cn2 where n1, n2 ∈ N with n1 |n2 and 6 ≤ n1 < n2.
Then {2, n2, n1 + n2 − 2} /∈ L(G).

Let G be a finite abelian group. Sets of lengths L ∈ L(G) with {2,D(G)} ⊂ L have been studied
frequently in the literature (e.g., [18, Chapter 6.6], [7]). Let G = Cn1 ⊕Cn2 where n1, n2 ∈ N with n1 |n2.
We show that {2, n2, n1 + n2 − 2 = D(G)− 1} /∈ L(G) under the parameter restrictions that 6 ≤ n1 < n2

because this is precisely what is needed for our results in Section 6. If 6 ≤ n1 < n2 does not hold, then
{2, n2, n1 + n2 − 2} may or may not be a set of lengths (e.g., if 2 = n1 ≤ n2, then {2, n2} ∈ L(G)). By

Proposition 3.7, {2, n2, n1 + n2 − 2} ∈ L(Cn1−2
2 ⊕ Cn2), and we will use Proposition 5.1 to show that

L(Cn1 ⊕ Cn2) 6= L(Cn1−2
2 ⊕ Cn2).

The proof of Proposition 5.1 is based on the characterization of all minimal zero-sum sequences of
maximal length over groups of rank two. This characterization is due to Gao, Grynkiewicz, Reiher, and
the present authors ([12, 13, 45, 38]). We use the formulation given in [7, Theorem 3.1].

Lemma 5.2. Let G = Cn1 ⊕ Cn2 where n1, n2 ∈ N with 1 < n1 |n2. A sequence U over G of length
D(G) = n1 + n2 − 1 is a minimal zero-sum sequence if and only if it has one of the following two forms :
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•

U = e
ord(ej)−1
j

ord(ei)∏

ν=1

(xνej + ei)

where
(a) {i, j} = {1, 2} and (e1, e2) is a basis of G with ord(e1) = n1 and ord(e2) = n2,
(b) x1, . . . , xord(ei) ∈ [0, ord(ej)− 1] and x1 + . . .+ xord(ei) ≡ 1 mod ord(ej).
In this case, we say that U is of type I with respect to basis (ei, ej).

•

U = (e1 + ye2)
sn1−1en2−sn1+ǫ

2

n1−ǫ∏

ν=1

(−xνe1 + (−xνy + 1)e2),

where
(a) (e1, e2) is a basis of G with ord(e1) = n1 and ord(e2) = n2,
(b) y ∈ [0, n2 − 1], ǫ ∈ [1, n1 − 1], and s ∈ [1, n2/n1 − 1],
(c) x1, . . . , xn1−ǫ ∈ [1, n1 − 1] with x1 + . . .+ xn1−ǫ = n1 − 1,
(d) n1ye2 6= 0, and
(e) either s = 1 or n1ye2 = n1e2.
In this case, we say that U is of type II with respect to basis (e1, e2).

We continue with a simple corollary, and provide two lemmas before we start the actual proof of
Proposition 5.1.

Corollary 5.3. Let G = Cn1 ⊕ Cn2 where n1, n2 ∈ N with n1 |n2 and 6 ≤ n1 < n2, and let U ∈ A(G)
with |U | = D(G) = n1 + n2 − 1.

1. If h(U) = n2 − 1, then U is of type I with respect to a basis (e1, e2) with ord(e1) = n1 and
ord(e2) = n2, that is

U = e
ord(e2)−1
2

ord(e1)∏

ν=1

(xνe2 + e1)

where x1, . . . , xn1 ∈ [0, n2 − 1] with x1 + . . .+ xn1 ≡ 1 mod n2.

2. If h(U) = n2 − 2, then

U = (e1 + ye2)
n1−1en2−2

2

(
− xe1 + (−xy + 1)e2

) (
− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2

)
,

where (e1, e2) is a basis with ord(e1) = n1, ord(e2) = n2, y ∈ [0, n2 − 1], and x ∈ [1, (n1 − 1)/2].

3. If h(U) = n2 − 3, then

U = (e1 + ye2)
n1−1en2−3

2

3∏

ν=1

(−xνe1 + (−xνy + 1)e2) ,

where (e1, e2) is a basis with ord(e1) = n1, ord(e2) = n2, y ∈ [0, n2 − 1], and x1, x2, x3 ∈ [1, n1 − 1]
with x1 + x2 + x3 ≡ n1 − 1 mod n1 (if y 6= 0, then x1 + x2 + x3 = n1 − 1).

4. There is at most one element g ∈ G with vg(U) ≥ n2 − 3. In particular, if h(U) ≥ n2 − 3, then
there is precisely one element g ∈ G with vg(U) = h(U).

Proof. We use all notation as in Lemma 5.2.

1. If U is of type II with respect to basis (e1, e2), then s = 1, ǫ = n1 − 1, and

U = (e1 + ye2)
n1−1en2−1

2

(
e1 + ((−n1 + 1)y + 1)e2

)
,

which shows that U is also of type I with respect to basis (e1, e2). If U is of type I with respect to the
basis (e2, e1) then h(U) = n2 − 1 implies that U is also of type I with respect to the basis (e1, e2).
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2. Suppose that U is of type I with respect to basis (f2, f1). Then U has the form

U = fn1−1
1 (x1f1 + f2)

n2−2(x2f1 + f2)(x3f1 + f2) .

Thus U has the asserted form with y = 0, e1 = f1, and with e2 = x1f1+ f2. In this case we only have two
summands the congruence condition modulo n2, and hence we obtain an equality in the integers. Suppose
that U is of type II with respect to basis (e1, e2). Then s = 1, ǫ = n1 − 2, and thus the assertion follows.

3. Suppose that U is of type I with respect to basis (f1, f2). Then U has the form

U = fn1−1
1 (x1f1 + f2)

n2−3(x2f1 + f2)(x3f1 + f2)(x4f1 + f2) .

Thus U has the asserted form with y = 0, e1 = f1, and with e2 = x1f1 + f2.
Suppose that U is of type II with respect to basis (e1, e2). Then s = 1, ǫ = n1 − 3, and thus the

assertion follows.

4. Assume to the contrary that there are two distinct elements g1, g2 ∈ G with vg1(U) ≥ n2 − 3 and
vg2 (U) ≥ n2 − 3. Then

(n2 − 3) + (n2 − 3) ≤ vg1(U) + vg2(U) ≤ |U | = n1 + n2 − 1 ,

which implies that n2 ≤ n1 + 5. Hence 2n1 ≤ n2 ≤ n1 + 5 and n1 ≤ 5, a contradiction. �

The argument used in the proof of Lemma 5.4 occurs frequently in [16].

Lemma 5.4. Let G be a finite abelian group and let S ∈ F(G) be a zero-sum free sequence.
If

∏
g∈supp(S)(1 + vg(S)) > |G|, then there is an A ∈ A(G) with |A| ≥ 3 such that (−A)A | (−S)S.

Proof. We observe that

|{T ∈ F(G) | T is a subsequence of S}| =
∏

g∈supp(S)

(1 + vg(S)) .

Thus, if
∏

g∈supp(S)(1 + vg(S)) > |G|, then there exist distinct sequences T ′
1, T

′
2 ∈ F(G) such that T ′

1 | S,

T ′
2 | S, and σ(T ′

1) = σ(T ′
2). We set T ′

1 = TT1 and T ′
2 = TT2 where T = gcd(T ′

1, T
′
2) and T1, T2 ∈ F(G).

Then σ(T1) = σ(T2) and (−T1)T2 is a zero-sum subsequence of (−S)S. Let A ∈ A(G) with A | (−T1)T2.
Assume to the contrary that |A| = 2. Then A = (−g)g for some g ∈ G. Since S is zero-sum free, we
infer (after renumbering if necessary) that (−g) | (−T1) and g | T2, a contradiction to gcd(T1, T2) = 1.
Therefore we obtain that |A| ≥ 3, which implies that | gcd(A, (−g)g)| ≤ 1 for each g ∈ G, and thus
(−A)A | (−S)S. �

The next lemma is a minor modification of [16, Lemma 5.3].

Lemma 5.5. Let t ∈ N and α, α1, . . . , αt, α
′
1, . . . , α

′
t ∈ R with α1 ≥ . . . ≥ αt ≥ 0, α′

1 ≥ . . . ≥ α′
t ≥ 0,

α′
i ≤ αi for each i ∈ [1, t], and

∑t
i=1 αi ≥ α ≥

∑t
i=1 α

′
i. Then

t∏

ν=1

(1 + xν) is minimal

over all (x1, . . . , xt) ∈ Rt with α′
i ≤ xi ≤ αi for each i ∈ [1, t] and

∑t
i=1 xi = α, if

xi = αi for each i ∈ [1, s] and xi = α′
i for each i ∈ [s+ 2, t]

where s ∈ [0, t] is maximal with
∑s

i=1 αi ≤ α.

Proof. Since continuous functions attain minima on compact sets, the above function has a minimum
at some point (m1, . . . ,mt) ∈ Rt. Suppose there are i, j ∈ [1, t] such that i < j and mi < mj . Then
α′
j ≤ α′

i ≤ mi < mj ≤ αj ≤ αi, and thus we can exchange mi and mj . Therefore, after renumbering if
necessary, we may suppose that m1 ≥ · · · ≥ mt. Since for x ≥ y ≥ 0 and δ > 0 we have

(1 + x+ δ)(1 + y − δ) = (1 + x)(1 + y)− δ(x − y)− δ2 < (1 + x)(1 + y)
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it follows that all but at most one of the mi is equal to αi or α′
i. It remains to show that there is an

s ∈ [1, t] such that mi = αi for i ∈ [1, s] and mi = α′
i for each i ∈ [s + 2, t]. Assume to the contrary

that this is not the case. Then there are i, j ∈ [1, t] with i < j such that mi < αi and α′
j < mj. Using

again the just mentioned inequality and that mi ≥ mj , we obtain a contradiction to the minimum being
attained at (m1, . . . ,mt). �

Proof of Proposition 5.1. Assume to the contrary that there is an A ∈ B(G) such that L(A) = {2, n2, n1+
n2 − 2}. Then there are U, V ∈ A(G) with |U | ≥ |V | such that A = UV . We set

U = SU ′ and V = (−S)V ′ ,

where U ′, V ′ ∈ F(G), and S = gcd(U,−V ). Since

2(n1 + n2 − 2) ≤ |A| = |U |+ |V | ≤ 2D(G) = 2(n1 + n2 − 1) ,

there are the following three cases:

(I) |A| = 2(n1 + n2 − 2). Then, a factorization of A of length n1 + n2 − 2 must contain only minimal
zero-sum sequences of length 2 and thus U ′ = V ′ = 1.

(II) |A| = 2(n1+n2− 2)+1. Then, a factorization of A of length n1+n2− 2 must contain one minimal
zero-sum of length 3 and otherwise only minimal zero-sum sequences of length 2, thus U ′ = g1g2
and V ′ = (−g1 − g2) for some g1, g2 ∈ S.

(III) |A| = 2(n1 + n2 − 1). Then a factorization of A of length n1 + n2 − 2 must contain either one
minimal zero-sum subsequence of length 4 and otherwise minimal zero-sum sequences of length 2,
or two minimal zero-sum sequences of length 3 and otherwise only minimal zero-sum sequences of
length 2. Thus, there are the following two subcases.

– U ′ = g1g2, V
′ = h1h2 where g1, g2, h1, h2 ∈ G such that g1g2h1h2 ∈ A(G).

– U ′ = g1g2(−h1 − h2) and V ′ = h1h2(−g1 − g2) where g1, g2, h1, h2 ∈ G.

We start with the following two assertions.

A1. Let W ∈ A(G) with |W | < |U | and W | (−S)S. Then |W | ∈ {2, n1}.

A2. Let W1,W2 ∈ A(G) such that W1(−W1)W2(−W2) |S(−S). Then {|W1|, |W2|} 6= {n1}.

Proof of A1. Suppose |W | > 2. Then (−W )W | (−S)S and we set (−S)S = (−W )WT (−T ) with
T ∈ F(G) and obtain that

UV = (−W )WT (−T )(U ′V ′) .

Let z be a factorization of U ′V ′. Then |z| ∈ [0, 2]. If T = 1, then UV has a factorization of length
2 + |z| ∈ {2, n2, n1 + n2 − 2} which implies |z| = 0 and hence |W | = |U |, a contradiction. Thus T 6= 1.
Since T (−T ) has a factorization of length |T | = |S| − |W |, the above decomposition gives rise to a
factorization of UV of length t where

3 ≤ t = 2 + |T |+ |z| = 2 + |S| − |W |+ |z| ∈ {n2, n1 + n2 − 2} .

We distinguish four cases.
Suppose that U ′ = V ′ = 1. Then z = 1, |z| = 0, and |S| = |U | = n1+n2− 2. Thus t = n1+n2−|W | ∈

{n2, n1 + n2 − 2}, and the assertion follows.
Suppose that U ′ = g1g2 and V ′ = (−g1 − g2) for some g1, g2 ∈ S. Then |z| = 1 and |S| = n1 + n2 − 3.

Thus t = n1 + n2 − |W | ∈ {n2, n1 + n2 − 2}, and the assertion follows.
Suppose that U ′ = g1g2, V

′ = h1h2 where g1, g2, h1, h2 ∈ G such that g1g2h1h2 ∈ A(G). Then |z| = 1
and |S| = n1 + n2 − 3. Thus t = n1 + n2 − |W | ∈ {n2, n1 + n2 − 2}, and the assertion follows.

Suppose that U ′ = g1g2(−h1−h2) and V ′ = h1h2(−g1− g2) where g1, g2, h1, h2 ∈ G. Then |z| = 2 and
|S| = n1 + n2 − 4. Thus t = n1 + n2 − |W | ∈ {n2, n1 + n2 − 2}, and the assertion follows. �(A1)
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Proof of A2. Assume to the contrary that |W1| = |W2| = n1. Then there are W5, . . . ,Wk ∈ A(G)
such that

UV = W1(−W1)W2(−W2)W5 · . . . ·Wk ,

where k ∈ L(UV ) = {2, n2, n1 + n2 − 2} and hence k = n2. Since

|W5 · . . . ·Wk| = |UV | − 4n1 ≤ 2(n1 + n2 − 1)− 4n1 = 2(n2 − n1 − 1) ,

it follows that

k − 4 ≤ maxL(W5 · . . . ·Wk) ≤ |W5 · . . . ·Wk|/2 ≤ n2 − n1 − 1 < n2 − 4 ,

a contradiction. �(A2)

We distinguish two cases depending on the size of h(S).

CASE 1: h(S) ≥ n2/2.
We set S = gvS′ where g ∈ G, v = h(S), and S′ ∈ F(G). Then

U1 = (−g)n2−vS′U ′ ∈ B(G), V1 = gn2−v(−S′)V ′ ∈ B(G) .

Clearly, we have

(U ′)−1U1 = (−g)n2−vS′ = −
(
(V ′)−1V1

)
.

We will often use that if some W ∈ A(G) divides (U ′)−1U1, then (−W ) divides (V ′)−1V1 and hence
(−W )W | (−S)S.

Now we choose a factorization x1 ∈ Z(U1) and a factorization y1 ∈ Z(V1). Note that |x1| ≤ n2 − v and
|y1| ≤ n2 − v as each minimal zero-sum sequence in x1 and y1 contains (−g) and g, respectively. Then

UV = U1V1

(
(−g)g

)2v−n2

has a factorization of length t where

2 + (2v − n2) ≤ t = |x1|+ |y1|+ (2v − n2) ≤ 2(n2 − v) + (2v − n2) = n2 .

Assume to the contrary that t = 2. Then v = n2/2 and both, U = gn2/2S′U ′ and U ′ = (−g)n2/2S′U ′,
are minimal zero-sum sequences, a contradiction, as SU ′ /∈ A〈g〉(G) as its length is greater than n1. Thus
t = n2, |x1| = |y1| = n2− v, and hence L(U1) = L(V1) = {n2− v}. If W ∈ A(G) with |W | = 2 and W |U1,
then W = (−g)g. Similarly, if W ′ ∈ A(G) with |W ′| = 2 and W ′ |V1, then W = (−g)g. By definition of
v, not both U1 and V1 are divisible by an atom of length 2. Now we distinguish four cases depending on
the form of U ′ and V ′, which we determined above.

CASE 1.1: U ′ = V ′ = 1.
Then V1 = −U1, say V1 = W1 · . . . · Wn2−v. Since none of the Wi has length 2, it follows that

|W1| = . . . = |Wn2−v| = n1 and hence

2(n2 + n1 − 2) = 2|V | = 2(2v − n2) + 2|V1| = 2(2v − n2) + 2n1(n2 − v) ,

which implies that v = n2 − 1. Consequently |S| = n1 − 1 and S ∈ A〈g〉(G). This implies that (use an
elementary direct argument or [15, Theorem 5.1.8]),

S = (2e1 + a1e2)

n1−1∏

ν=2

(e1 + aνe2) ,

where (e1, e2) is a basis of G. Let r ∈ [0, n2 − 1] such that r ≡ −a1 + a2 + a3 mod n2. Then

W1 = (2e1+a1e2)(−e1−a2e2)(−e1−a3e2)e
r
2 and W2 = (2e1+a1e2)(−e1−a2e2)(−e1−a3e2)(−e2)

n2−r

are minimal zero-sum sequences dividing (−V )V . Since |W1| = 3 + r, |W2| = 3 + n2 − r, and |W1W2| =
n2 + 6 > 2n1, at least one of them does not have length n1, a contradiction.

CASE 1.2: U ′ = g1g2 and V ′ = (−g1 − g2) for some g1, g2 ∈ S.
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We set

x1 = X1 · . . . ·Xn2−v and y1 = Y1 · . . . · Yn2−v

where allXi, Yj ∈ A(G), g1g2 |X1X2 (or even g1g2 |X1), and (−g1−g2) |Y1. We distinguish three subcases.

CASE 1.2.1: v = n2 − 1.
By Corollary 5.3, with all notations as introduced there, we get

U = en2−1
2

n1∏

ν=1

(e1 + xνe2) .

Thus g = e2 and U ′ |
∏n1

ν=1(e1 + xνe2), whence after renumbering if necessary we have gi = xie1 + e2 for
each i ∈ [1, 2]. Therefore we have

V =
(
− 2e1 − (x1 + x2)e2

)
(−e2)

n2−1
n1∏

ν=3

(−e1 − xνe2) = (−g1 − g2)(−S) .

Assume to the contrary that there are i, j ∈ [3, n1] distinct with xi 6= xj . If q ∈ [1, n2 − 1] with
q ≡ −(xi − xj) mod n2, then

W ′
1 = (e1 + xie2)(−e1 − xje2)e

q
2 and W ′

2 = (e1 + xie2)(−e1 − xje2)(−e2)
n2−q

are atoms dividing (−S)S, both have length greater than two but not both have length n1, a contradiction
to A1. Therefore we have x3 = . . . = xn1 . Since x1 + . . .+ xn1 ≡ 1 mod n2, it follows that x1 6= x3 or
x2 6= x3, say x2 6= x3. Therefore there is an r ∈ [1, n2 − 1] with r ≡ x2 − x3 such that

W1 =
(
− (x1 + x2)e2 − 2e1

)
(x1e2 + e1)(x3e2 + e1)e

r
2 ∈ A(G)

and

W2 = (x2e2 + e1)(−x3e2 − e1)(−e2)
r ∈ A(G) .

Thus it follows that

UV = W1W2

n1∏

ν=4

(
(xνe2 + e1)(−xνe2 − e1)

)(
(−e2)e2

)n2−1−r

has a factorization of length

2 + (n1 − 3) + (n2 − 1− r) = n1 + n2 − 2− r ∈ {2, n2, n1 + n2 − 2} ,

and hence r = n1 − 2. Now we define

W ′
1 =

(
− (x1 + x2)e2 − 2e1

)
(x1e2 + e1)(x3e2 + e1)(−e2)

n2−r

and

W ′
2 = (x2e2 + e1)(−x3e2 − e1)e

n2−r
2 ∈ A(G) .

Thus it follows that

UV = W ′
1W

′
2

n1∏

ν=4

(
(xνe2 + e1)(−xνe2 − e1)

)(
(−e2)e2

)r−1

has a factorization of length

2 + (n1 − 3) + (r − 1) = n1 − 2 + r = 2n1 − 4 /∈ {2, n2, n1 + n2 − 2} ,

a contradiction.

CASE 1.2.2: v = n2 − 2.
Since V ′ | Y1 it follows that Y2 | (−S)S and we thus may assume that X2 = −Y2. Furthermore, |Y2|

cannot have length 2, since −g ∤ S′. Hence A1 gives that |Y2| has length n1. It follows that |Y1| = 2 and
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|X1| = 3. This implies that −g1 − g2 = −g whence v−g(V ) = n2 − 1 and vg(U) = n2 − 2. By Corollary
5.3, with all notations as introduced there, we obtain that

U = (e1 + ye2)
n1−1en2−2

2

(
− xe1 + (−xy + 1)e2

) (
− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2

)
.

Since g1 + g2 = g = e2, it follows that x = 1 and that

V = (−(e1 + ye2))
n1−2(−e2)

n2−1((n1 − 2)e1 + ((n1 − 2)y + 1)e2) .

Then W = (e1 + ye2)
2((n1 − 2)e1 + ((n1 − 2)y + 1)e2)(−e2)

r, where r ∈ [0, n2 − 1] such that r ≡ n1y + 1
mod n2, is a minimal zero-sum sequence. Since r ≡ 1 mod n1, it follows that r ∈ [1, n2 − n1 + 1]. Thus,
W | (−S)S, hence |W | = n1, and thus r = n1− 3. We consider W ′ = (e1+ ye2)

2((n1 − 2)e1+((n1− 2)y+

1)e2)e
n2−(n1−3)
2 . Again, W ′ | (−S)S. Yet |W ′| = 3 + (n2 − (n1 − 3)) = n2 − n1 + 6, a contradiction.

CASE 1.2.3: v ≤ n2 − 3.
Then Y2Y3 | (V ′)−1V1, and since |Y2| 6= 2 6= |Y3|, we infer that |Y2| = |Y3| = n1. Thus (−Y2)(−Y3) | (U ′)−1U1

and Y2(−Y2)Y3(−Y3) |S(−S), a contradiction to A2.

CASE 1.3: U ′ = g1g2, V
′ = h1h2 where g1, g2, h1, h2 ∈ G such that g1g2h1h2 ∈ A(G).

We set
x1 = X1 · . . . ·Xn2−v and y1 = Y1 · . . . · Yn2−v

where all Xi, Yj ∈ A(G), g1g2 |X1X2 (or even g1g2 |X1 ), and h1h2 |Y1Y2 (or even h1h2 |Y1). We distin-
guish four cases.

CASE 1.3.1: v = n2 − 1.
By Corollary 5.3, we have

U = en2−1
2

n1∏

ν=1

(e1 + xνe2)

−V = en2−1
2

n1∏

ν=1

(e′1 + x′
νe2) ,

where (e1, e2) and (e′1, e2) are both bases with ord(e2) = n2 and xi, x
′
i ∈ [0, n2 − 1] for each i ∈ [1, n1].

Since |S| = |U | − 2, it follows that, after renumbering if necessary,
∏n1

ν=3(e1 + xνe2) | (−V ) and hence,
after a further renumbering if necessary, e1 + xie2 = e′1 + x′

ie2 for each i ∈ [3, n1]. Thus, if we write −V
with respect to the basis (e1, e2), it still has the above structure. Therefore we may assume that e1 = e′1
and xi = x′

i for each i ∈ [3, n1]. Therefore

gi = e1 + xie2 and hi = −e1 − x′
ie2 for each i ∈ [1, 2] .

Since g1 + g2 = −h1 − h2, it follows that x1 + x2 ≡ −x′
1 − x′

2 mod n2 and hence x1 − x′
1 ≡ x′

2 − x2

mod n2. Let r ∈ [0, n2 − 1 such that r ≡ x1 − x′
1 mod n2. Then

W1 = g1h1(−e2)
r , W ′

1 = g1h1e
n2−r
2 , W2 = g2h2e

r
2 , and W ′

2 = g2h2(−e2)
n2−r

are minimal zero-sum sequences which give rise to the factorizations

UV = W1W2

(
(−e2)e2

)n2−r−1
n1∏

ν=3

(
(e1 + xνe2)(−e1 − xνe2)

)

= W ′
1W

′
2

(
(−e2)e2

)r−1
n1∏

ν=3

(
(e1 + xνe2)(−e1 − xνe2)

)
.

These factorizations have length 2+(n2−r−1)+(n1−2) = n1+n2−2−(r−1) and 2+(r−1)+(n1−2) =
n1 + r − 1. Since not both of them can be in {2, n2, n1 + n2 − 2}, we have arrived at a contradiction.

CASE 1.3.2: v = n2 − 2.
Assume to the contrary that h(U) = h(V ) = n2 − 1. Since, by Corollary 5.3.3, the elements g′, g′′ ∈ G

with vg′ (U) = n2 − 1 and vg′′ (V ) = n2 − 1 are uniquely determined, it follows that g = g′ = −g′′ and
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hence v = h(S) = n2 − 1, a contradiction. Thus, after exchanging U and V if necessary, we may assume
that h(U) = n2 − 2 and it remains to consider the two cases h(V ) = n2 − 1 and h(V ) = n2 − 2.

CASE 1.3.2.1: h(U) = n2 − 2 and h(V ) = n2 − 1.
By Corollary 5.3, we infer that

U = (e1 + ye2)
n1−1en2−2

2

(
− xe1 + (−xy + 1)e2

) (
− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2

)
,

−V = en2−1
2

n1∏

ν=1

(e′1 + xνe2) ,

where (e1, e2) and (e′1, e2) are bases and all parameters are as in Corollary 5.3. Since |S| = |U |−2, it follows
that (e1 + ye2)

n1−3 | (−V ) and hence, after renumbering if necessary, e′1 + x1e2 = . . . = e′1 + xn1−3e2 =
e1+ye2. Thus, if we write −V with respect to the basis (e1, e2), it still has the above structure. Therefore
we may assume that e1 = e′1 and y = x1 = . . . = xn1−3. Thus we obtain that

−V = en2−1
2 (e1 + ye2)

n1−3
n1∏

ν=n1−2

(e1 + xνe2) .

Note that e2 ∈ {−h1,−h2}, e2 /∈ {g1, g2}, say −h1 = e2 and −h2 = e1+xn1e2, and g1+g2 = −(h1+h2) =
e1 + (xn1 + 1)e2. This condition on the sum shows that

{g1, g2} = {−xe1 + (−xy + 1)e2,−(n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2} .

This implies that (e1 + ye2)
n1−1 | (−V ) and hence, after renumbering if necessary,

−V = en2−1
2 (e1 + ye2)

n1−1(e1 + xn1e2) .

Since g1 + g2 = −(n1 − 1)e1 − (y(n1 − 1)− 2)e2, it follows that the sequence

W1 = g1g2(−e1 − ye2)(−e2)
r ,

where r ∈ [0, n2 − 1] and r ≡ −yn1 + 2 mod n2, is a minimal zero-sum sequence. Since r ≡ 2 mod n1,
we infer that r ∈ [2, n2 − 2] and that W1 |UV . Since g1 + g2 = −(h1 + h2), we obtain that

W2 = h1h2(e1 + ye2)e
r
2 ∈ B(G) , L(W2) = {2} and W2 |UV .

Therefore it follows that

UV = W1W2

(
(−e2)e2

)n2−2−r(
(e1 + ye2)(−e1 − ye2)

)n1−2
,

and hence n1 + n2 − 1− r ∈ L(UV ) = {2, n2, n1 + n2 − 2}, a contradiction, since r ≡ 2 mod n1.

CASE 1.3.2.2: h(U) = h(V ) = n2 − 2.
By Corollary 5.3, we infer that

U = (e1 + ye2)
n1−1en2−2

2 U ′′

−V = (e′1 + y′e2)
n1−1en2−2

2 (−V ′′)

where (e1, e2) and (e′1, e2) are bases, U ′′, V ′′ ∈ F(G) with |U ′′| = |V ′′| = 2, and y, y′ ∈ [0, n2 − 1]. Since
|S| = |U | − 2, it follows that (e′1 + y′e2)

n1−3 |U and hence e′1 + y′e2 = e1 + ye2. Thus, if we write −V
with respect to the basis (e1, e2), it still has the above structure. Therefore we may assume that e1 = e′1
and y = y′. Therefore it follows that

U = (e1 + ye2)
n1−1en2−2

2 g1g2 and V = (−e1 − ye2)
n1−1(−e2)

n2−2h1h2 ,

and hence g1 + g2 = −(n1 − 1)e1 − (y(n1 − 1)− 2)e2. Thus

W1 = g1g2(−e1 − ye2)(−e2)
r ,

where r ∈ [0, n2 − 1] and r ≡ −yn1 + 2 mod n2, is a minimal zero-sum sequence. Since r ≡ 2 mod n1,
we infer that r ∈ [2, n2 − 2] and that W1 |UV . Since g1 + g2 = −(h1 + h2), we obtain that

W2 = h1h2(e1 + ye2)e
r
2 ∈ A(G) and W2 |UV .
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Therefore it follows that

UV = W1W2

(
(−e2)e2

)n2−2−r(
(e1 + ye2)(−e1 − ye2)

)n1−2
,

and hence n1 + n2 − 2− r ∈ L(UV ) = {2, n2, n1 + n2 − 2}, a contradiction, since r ≡ 2 mod n1.

CASE 1.3.3: v = n2 − 3.
Then X3 | (U ′)−1U1 and hence |X3| = n1. Since

|X1X2X3| = |U1| = |U | − v + (n2 − v) = n1 + 5 ,

it follows that |X1X2| = 5, and hence X1 or X2 has length two. Similarly, we obtain that Y1 or Y2 has
length two, a contradiction to the earlier mentioned fact that not both, U1 and V1 are divisible by an
atom of length two.

CASE 1.3.4: v ≤ n2 − 4.
Then Y3Y4 | (V

′)−1V1, and since |Y3| 6= 2 6= |Y4|, we infer that |Y3| = |Y4| = n1. Thus (−Y3)(−Y4) | (U
′)−1U1

and Y3(−Y3)Y4(−Y4) |S(−S), a contradiction to A2.

CASE 1.4: U ′ = g1g2(−h1 − h2) and V ′ = h1h2(−g1 − g2) where g1, g2, h1, h2 ∈ G.
We set

x1 = X1 · . . . ·Xn2−v and y1 = Y1 · . . . · Yn2−v

where all Xi, Yj ∈ A(G), g1g2(−h1−h2) |X1X2X3 (or even g1g2(−h1−h2) |X1X2 or g1g2(−h1−h2) |X1)
, and h1h2(−g1 − g2) |Y1Y2Y3 (or even h1h2(−g1 − g2) |Y1Y2 or h1h2(−g1 − g2) |Y1).

CASE 1.4.1: v = n2 − 1.
By Corollary 5.3 we have

U = en2−1
2

n1∏

ν=1

(e1 + xνe2)

−V = en2−1
2

n1∏

ν=1

(e′1 + x′
νe2) ,

where (e1, e2) and (e′1, e2) are both bases with ord(e2) = n2 and xν , x
′
ν ∈ [0, n2 − 1] for each ν ∈ [1, n1].

Since |S| = |U | − 3, it follows that, after renumbering if necessary,
∏n1

ν=4(e1 + xνe2) | (−V ) and hence,
after a further renumbering if necessary, e1 + xνe2 = e′1 + x′

νe2 for each ν ∈ [4, n1]. Thus, if we write −V
with respect to the basis (e1, e2), it still has the above structure. Therefore we may assume that e1 = e′1
and xν = x′

ν for each ν ∈ [4, n1]. Furthermore, we obtain that

g1 = e1 + x1e2, g2 = e1 + x2e2, −h1 − h2 = e1 + x3e2

h1 = −e1 − x′
1e2, h2 = −e1 − x′

2e2, and − g1 − g2 = −e1 − x′
3e2 ,

a contradiction, since ord(e1) = n1 > 3

CASE 1.4.2: v = n2 − 2.
Arguing as at the beginning of CASE 1.3.2 we may assume h(U) = n2−2 and it is sufficient to consider

the two subcases h(V ) = n2 − 1 and h(V ) = n2 − 2.

CASE 1.4.2.1: h(U) = n2 − 2 and h(V ) = n2 − 1.
By Corollary 5.3, we infer that

U = (e1 + ye2)
n1−1en2−2

2

(
− xe1 + (−xy + 1)e2

) (
− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2

)
,

−V = en2−1
2

n1∏

ν=1

(e′1 + xνe2) ,

where (e1, e2) and (e′1, e2) are bases and all parameters are as in Corollary 5.3. Since |S| = |U |−3, it follows
that (e1 + ye2)

n1−4 | (−V ) and hence, after renumbering if necessary, e′1 + x1e2 = . . . = e′1 + xn1−4e2 =
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e1+ye2. Thus, if we write −V with respect to the basis (e1, e2), it still has the above structure. Therefore
we may assume that e1 = e′1 and y = x5 = . . . = xn1 . Thus we obtain that

−V = en2−1
2 (e1 + ye2)

n1−4
4∏

ν=1

(e1 + xνe2) .

Since

gcd
((

− xe1 + (−xy + 1)e2
) (

− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2
)
, −V

)
= 1 ,

it follows that

g1g2(−h1 − h2) = (e1 + ye2)
(
− xe1 + (−xy + 1)e2

) (
− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2

)
.

Thus ve1+ye2(S) = n1 − 2 and hence, after renumbering if necessary,

−V = en2−1
2 (e1 + ye2)

n1−2(e1 + x1e2)(e1 + x2e2) .

We observe that(
− xe1 + (−xy + 1)e2

)
+
(
− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2

)
= e1 + (−(n1 − 1)y + 2)e2 ,

(−e1 − x1e2) + (−e1 − x2e2) = (n1 − 2)(e1 + ye2) + (n2 − 1)e2 = −2e1 + ((n1 − 2)y − 1)e2 .

Consequently, there are r, r′ ∈ [0, n2 − 1] such that

W1 =
(
− xe1 + (−xy + 1)e2

)(
− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2

)
(−e1 − ye2)(−e2)

r ∈ A(G) , and

W2 = (−e1 − x1e2)(−e1 − x2e2)(e1 + ye2)
2er

′

2 ∈ A(G) ,

(note that y /∈ {−x1,−x2}), and clearly we have

r ≡ 2− n1y mod n2 and r′ ≡ 1− n1y mod n2 .

This implies that r ≡ 2 mod n1 and r′ = r − 1. Therefore, we obtain that

UV = W1W2

(
(e1 + ye2)(−e1 − ye2)

)n1−3(
(−e2)e2

)n2−r−1
,

and thus n1 + n2 − 2− r ∈ L(UV ) = {2, n2, n1 + n2 − 2}, a contradiction, since r ≡ 2 mod n1.

CASE 1.4.2.2: h(U) = h(V ) = n2 − 2.
By Corollary 5.3, we infer that

U = (e1 + ye2)
n1−1en2−2

2 U ′′

−V = (e′1 + y′e2)
n1−1en2−2

2 (−V ′′)

where (e1, e2) and (e′1, e2) are bases, U ′′, V ′′ ∈ F(G) with |U ′′| = |V ′′| = 2, and y, y′ ∈ [0, n2 − 1]. Since
|S| = |U | − 3, it follows that (e′1 + y′e2)

n1−4 |U . If n1 > 6, it follows that e′1 + y′e2 = e1 + ye2. If n1 = 6,
so n1 even, then

U ′′ =
(
− xe1 + (−xy + 1)e2

) (
− (n1 − 1− x)e1 + (−(n1 − 1− x)y + 1)e2

)

is not a square whence (e′1 + y′e2)
2 6= U ′′ and it follows again that e′1 + y′e2 = e1 + ye2. Thus, if we

write −V with respect to the basis (e1, e2), it still has the above structure. Therefore we may assume
that e1 = e′1 and y = y′. Therefore it follows that

U = (e1 + ye2)
n1−1en2−2

2 U ′′ and V = (−e1 − ye2)
n1−1(−e2)

n2−2V ′′ ,

a contradiction to |S| = |U | − 3.

CASE 1.4.3: v = n2 − 3.
Note that

|X1X2X3| = |U1| = |U | − v + (n2 − v) = n1 + n2 − 1 + n2 − (2n2 − 6) = n1 + 5 .
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Suppose that U ′ divides a product of two of the X1, X2, X3, say U ′ |X1X2. Then X3 | (U ′)−1U1 and
hence |X3| = n1. Thus |X1X2| = 5 and either X1 or X2 has length two. Since X3 divides (U ′)−1U1,
it follows that −X3 divides V1(V

′)−1. After considering a new factorization of V1 if necessary we may
suppose without restriction that Y3 = −X3. Arguing as above we infer that Y1 or Y2 has length two, a
contradiction to the earlier mentioned fact that not both, U1 and V1 are divisible by an atom of length
two.

Thus from now on we may assume that for every X ∈ A(G) dividing U1 we have | gcd(X,U ′)| = 1, and
similarly for every Y ∈ A(G) dividing V1 we have | gcd(Y, V ′)| = 1.

Arguing as at the beginning of CASE 1.3.2 we obtain that h(U) = n2 − 3 or h(V ) = n2 − 3, say
h(U) = n2 − 3. By Corollary 5.3.3, we infer that

U = (e1 + ye2)
n1−1en2−3

2

3∏

ν=1

(−xie1 + (−xνy + 1)e2) ,

with all parameters as described there. Since |S| = |U | − 3, it follows that (e1 + ye2)
n1−4 | (−V ) and thus

V = (−e1 − ye2)
n1−4(−e2)

n2−3V ′′ where V ′′ ∈ F(G) with |V ′′| = 6 .

Since

U1 = (−e2)
3(e1 + ye2)

n1−1
3∏

ν=1

(−xνe1 + (−xνy + 1)e2) = X1X2X3 ,

it follows that (−e2) |Xν for each ν ∈ [1, 3]. Since (e1 + ye2)
n1−1(−e2)

3 is zero-sum free, each of the Xν

is divisible by at least one of the elements from
∏3

ν=1(−xνe1 + (−xνy + 1)e2). Thus, after renumbering
if necessary, it follows that for each ν ∈ [1, 3]

Xν = (−e2)(−xνe1 + (−xνy + 1)e2)(e1 + ye2)
xν .

This implies that x1 + x2 + x3 = n1 − 1. Since | gcd(Xν , U
′)| = 1 for each ν ∈ [1, 3], it follows that

U ′ =
∏3

ν=1(−xνe1 + (−xνy + 1)e2), and hence

V = (−e1 − ye2)
n1−1(−e2)

n2−3V ′ .

Since
V1 = e32(−e1 − ye2)

n1−1V ′ = Y1Y2Y3 ,

it follows that e2 |Yν for each ν ∈ [1, 3]. Since (−e1−ye2)
n1−1e32 is zero-sum free, each of the Yν is divisible

by at least one of the elements from V ′. Setting h3 = −g1 − g2 and renumbering if necessary, it follows
that for each ν ∈ [1, 3]

Yν = e2hν(−e1 − ye2)
yν ,

where y1, y2, y3 ∈ N0 with y1+ y2+ y3 = n1− 1. For each ν ∈ [1, 3] it follows that hν = yνe1+(yyν − 1)e2.
Therefore we obtain that

0 = g1 + g2 + h3 =
(
− x1e1 + (−x1y + 1)e2

)
+
(
− x2e1 + (−x2y + 1)e2

)
+
(
y3e1 + (yy3 − 1)e2

)

=
(
− x1 − x2 + y3

)
e1 +

(
(−x1 − x2 + y3)y + 1

)
e2 ,

a contradiction, as not both −x1 − x2 + y3 and (−x1 − x2 + y3)y + 1 can be 0 modulo n1.

CASE 1.4.4: v = n2 − 4.
Then X4 | (U ′)−1U1 and hence |X4| = n1. Since

|X1X2X3X4| = |U1| = |U | − v + (n2 − v) = n1 + 7 ,

it follows that |X1X2X3| = 7, and hence X1, X2, or X3 has length two. Similarly, we obtain that Y1, Y2,
or Y3 has length two, a contradiction to the earlier mentioned fact that not both, U1 and V1 are divisible
by an atom of length two.

CASE 1.4.5: v ≤ n2 − 5.
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Then Y4Y5 | (V ′)−1V1, and since |Y4| 6= 2 6= |Y5|, we infer that |Y4| = |Y5| = n1. Thus (−Y4)(−Y5) | (U ′)−1U1

and Y4(−Y4)Y5(−Y5) |S(−S), a contradiction to A2.

CASE 2: h(S) < n2/2.
We distinguish two subcases, depending on the parity of n2.

CASE 2.1: n2 is odd.
Since n2 is odd, we have 3n1 ≤ n2 and n1 ≥ 7. We write S =

∏k
ν=1 a

αν
ν with a1, . . . , ak ∈ G pairwise

distinct and α1 ≥ . . . ≥ αk ≥ 1. Since |S| =
∑k

ν=1 αν ≥ n2 + n1 − 4 and α1 ≤ (n2 − 1)/2, it follows that
k ≥ 3.

We define T1 = S(a1a2a3)
−1 and set T1 =

∏l
i=1 b

βi

i with b1, . . . , bl ∈ G pairwise distinct and β1 ≥

. . . ≥ βl ≥ 1. Since β1 ≤ α1 ≤ (n2 − 1)/2,
∑k

i=1 βi = |S| − 3 ≥ n2 + n1 − 7, and n2 − 1 < n1 + n2 − 7,
it follows that l ≥ 3. Applying Lemma 5.5 (with parameters t = l, α = |T1|, α′

1 = . . . = α′
t = 0 and

α1 = . . . = αt = (n2 − 1)/2; note that we have s+ 1 = 3) we infer that

l∏

ν=1

(1 + βν) ≥

(
1 +

n2 − 1

2

)2 (
1 + (|T1| − (n2 − 1)

)

≥

(
1 +

n2 − 1

2

)2

(1 + 1) =
n2
2 + 2n2 + 1

2
> n1n2 .

Thus Lemma 5.4 implies that there is a W1 ∈ A(G) with |W1| ≥ 3 such that (−W1)W1 | (−T1)T1. Since
|W1| < |U |, A1 implies that W1 = n1. We write W1 = W ′

1(−W ′′
1 ) with W ′

1W
′′
1 | T1.

We define T2 = S(W ′
1W

′′
1 )

−1 and note that (−S)S = W1(−W1)T2(−T2). Furthermore,

|T2| = |S| − n1 ≥ n2 − 4 and | supp(T2)| ≥ 3 .

We set T2 =
∏m

ν=1 c
γν
ν with c1, . . . , cm ∈ G pairwise distinct and γ1 ≥ . . . ≥ γm ≥ 1. Applying Lemma 5.5

(with parameters t = m, α = |T2|, α′
1 = . . . = α′

3 = 1, α′
4 = . . . = α′

t = 0 and α1 = . . . = αt = (n2 − 1)/2;
note that we have s+ 1 = 3) we infer that

m∏

ν=1

(1 + γν) ≥

(
1 +

n2 − 1

2

)(
1 + |T2| −

(
n2 − 1

2
+ 1

))
(1 + 1)

=
n2 + 1

2

n2 − 7

2
2 =

1

2
(n2

2 − 6n2 − 7) > n1n2 .

Thus Lemma 5.4 implies that there is a W2 ∈ A(G) with |W2| ≥ 3 such that (−W2)W2 | (−T2)T2.
Since |W2| < |U |, A1 implies that W2 = n1. Therefore we obtain that W1(−W1)W2(−W2) | (−S)S, a
contradiction to A2.

CASE 2.2: n2 is even.
We distinguish three cases; the first one is that |U | = |V | = n1 + n2 − 2 and the two others deal with

the case |U | = n1 + n2 − 2, further distinguishing based on the structural description recalled in Lemma
5.2.

CASE 2.2.1: |U | = |V | = n1 + n2 − 2.
First we handle the case n2 > 12. The special case n2 = 12 will follow by the same strategy but the

details will be different.
We write S =

∏k
ν=1 a

αν
ν with α1 ≥ . . . ≥ αk. Since

∑k
ν=1 αν = n2 + n1 − 2 and α1 ≤ (n2 − 2)/2, it

follows that k ≥ 3.
We define T1 =

∏l
ν=1 b

βν
ν with β1 ≥ . . . ≥ βl to be a subsequence of S of length n2 − 2 such that

β2 ≤ n2/2 − 3 and such that T−1
1 S contains at least 4 distinct elements or 3 elements with multiplicity

at least 2. Applying Lemma 5.5 (with parameters t = l, α = |T1| = n2 − 2, α′
1 = . . . = α′

t = 0, and
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α1 = (n2 − 2)/2, α2 = . . . = αt = (n2 − 6)/2; note that we have s+ 1 = 3) we infer that

l∏

ν=1

(1 + βν) ≥

(
1 +

n2 − 2

2

)(
1 +

n2 − 6

2

)
(1 + 2) = 3

(
n2
2

4
− n2

)
> n1n2 ,

where the last inequality holds because n2 > 12. Thus Lemma 5.4 implies that there is a W1 ∈ A(G)
with |W1| ≥ 3 such that (−W1)W1 | (−T1)T1. Since |W1| < |U |, A2 implies that |W1| = n1. We write
W1 = W ′

1(−W ′′
1 ) with W ′

1W
′′
1 | T1.

We define T2 = S(W ′
1W

′′
1 )

−1 =
∏m

ν=1 c
γν
ν with γ1 ≥ . . . ≥ γm. We note that T−1

1 S |T2, (−S)S =

W1(−W1)T2(−T2), and |T2| = n2− 2. By construction of T−1
1 S, we obtain that either (γ3 ≥ 2) or (γ3 ≥ 1

and γ4 ≥ 1). Applying Lemma 5.5 (with parameters t = m, α = |T2|, α1 = . . . = αt = (n2 − 2)/2, and
either (α′

1 = . . . = α′
3 = 2, α′

4 = . . . = α′
t = 0) or (α′

1 = . . . = α′
4 = 1, α′

5 = . . . = α′
t = 0) we infer that

either
m∏

ν=1

(1 + γν) ≥
(
1 +

n2

2
− 1

) (
1 + (|T2| −

(n2

2
− 1

)
− 2)

)
(1 + 2) =

n2

2

(n2

2
− 2

)
3 > n1n2 ,

or
m∏

ν=1

(1 + γν) ≥
(
1 +

n2

2
− 1

)(
1 + |T2| −

(n2

2
− 1

)
− 2

) )
(1 + 1)(1 + 1) =

n2

2

(n2

2
− 2

)
4 > n1n2 .

Thus Lemma 5.4 implies that there is a W2 ∈ A(G) with |W2| ≥ 3 such that (−W2)W2 | (−T2)T2.
Since |W2| < |U |, A1 implies that |W2| = n1. Therefore we obtain that W1(−W1)W2(−W2) | (−S)S, a
contradiction to A2.

Now suppose that n2 = 12. Then n1 = 6 and |S| = 16. Again we set S =
∏k

ν=1 a
αν
ν with α1 ≥ . . . ≥ αk.

Since h(S) ≤ 5, we infer that k ≥ 4. We define T1 = S(a1a2a3a4)
−1 and set T1 =

∏l
ν=1 b

βν
ν with

β1 ≥ . . . ≥ βl. Observe that β1 ≤ 4. Applying Lemma 5.5 (with parameters t = l, α = |T1| = 12,
α′
1 = . . . = α′

t = 0, and α1 = . . . = αt = 4) we infer that

l∏

ν=1

(1 + βν) ≥ (1 + 4)3 > n1n2 .

Thus Lemma 5.4 implies that there is a W1 ∈ A(G) with |W1| ≥ 3 such that (−W1)W1 | (−T1)T1. Since
|W1| < |U |, A1 implies that |W1| = n1 = 6. We write W1 = W ′

1(−W ′′
1 ) with W ′

1W
′′
1 | T1.

We define T2 = S(W ′
1W

′′
1 )

−1 =
∏m

ν=1 c
γν
ν with γ1 ≥ . . . ≥ γm. We note that |T2| = n2 − 2 = 10

and m ≥ 4. Applying Lemma 5.5 (with parameters t = m, α = |T2| = 10, α′
1 = . . . = α′

4 = 1,
α′
5 = . . . = α′

t = 0, and α1 = . . . = αt = 5) we infer that
m∏

ν=1

(1 + γν) ≥ (1 + 5)(1 + 3)(1 + 1)(1 + 1) > n1n2 ,

and we obtain a contradiction as above.

CASE 2.2.2: U is of type I, as given in Lemma 5.2.
Then

n2

2
− 1 ≥ h(S) ≥ h(U)− 3 ≥ ord(ej)− 4 ,

which implies that ord(ej) = n1 so j = 1. We assert that

ve1(UV ) + v−e1(UV ) ≥ n1 + 1 .

If this holds, then Lemma 5.2 in [16] implies that L(UV ) ∩ [3, n1] 6= ∅, a contradiction. Since v−e1(V ) ≥
v−e1 (−S) ≥ ve1(U)− 3, we obtain that

ve1(UV ) + v−e1(UV ) ≥ (n1 − 1) + (n1 − 1)− 3 = 2n1 − 5 ≥ n1 + 1 .

CASE 2.2.3: U is of type II, as given in Lemma 5.2.
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We observe that
n2

2
− 1 ≥ h(S) ≥ h(U)− 3 = max{sn1 − 1, n2 − sn1 + ǫ} − 3 .

This implies that s = n2

2n1
, hence ve2(U) = n2

2 + ǫ. Thus ǫ ∈ [1, 2] and eǫ+1
2 |U ′.

Assume to the contrary that U ′ = g1g2(−h1 − h2) = e32. Then V ′ = (−2e2)h1h2, |V | = D(G), and

v−e2(V ) ≥ v−e2 (−S) = ve2 (S) = ve2 (U)− 3 ≥
n2

2
+ ǫ− 3 .

Thus v−e2(V ) ≥ 1, which implies that V ∗ = (−2e2)
−1(−e2)

2V ∈ A(G), but |V ∗| = |V |+ 1 = D(G) + 1, a
contradiction.

Since ǫ = 2 implies that U ′ = e32, we obtain that ǫ = 1, ve2 (U
′) = 2, v−e2 (V

′) = 0, and

v−e2(V ) = v−e2(−S) = ve2(S) = ve2(U)− 2 =
n2

2
− 1 .

We consider

U1 = e
−ve2(U)
2 (−e2)

v−e2 (V )U and V1 = (−e2)
−v−e2 (V )e

ve2 (U)
2 V .

Neither U1 nor V1 is divisible by an atom of length 2, and since |V1| = |V | + 2 > D(G), V1 /∈ A(G).
Therefore we obtain that

2 < maxL(U1) + maxL(V1) ≤
|U1|

3
+

|V1|

3
=

|UV |

3
≤

2n1 + 2n2 − 2

3
< n2 ,

a contradiction. �

6. Characterization of the system L(Cn1 ⊕ Cn2)

In this section we finally provide the proof of Theorem 1.1. We start with two propositions which gather
various special cases which have been settled before. The first groups, for which the Characterization
Problem has been solved, are cyclic groups and elementary 2-groups ([14]) for which we now have a
variety of proofs. We use the characterization of groups Cn ⊕ Cn ([42]) and [7]. The core of this section
is Proposition 6.5, whose proof covers almost the whole section.

Proposition 6.1. Let G be an abelian group such that L(G) = L(Cn1 ⊕ Cn2) where n1, n2 ∈ N with
n1 |n2 and n1 + n2 > 4. Then G is finite, and we have

1. d(G) = d(Cn1 ⊕ Cn2) = n1 + n2 − 2 and exp(G) = n2.

2. If n1 = n2, then G ∼= Cn1 ⊕ Cn2 .

Proof. 1. The finiteness of G and the equality of the Davenport constants follows from [18, Proposition
7.3.1]. The statement on the exponents follows from [46, Proposition 5.2] or from [7, Proposition 5.4].

2. This follows from [42, Theorem 4.1]. �

Proposition 6.2. Let n1, n2 ∈ N with n1 |n2 and n1 + n2 > 4, and let G = H ⊕ Cn2 where H ⊂ G is a
subgroup with exp(H) |n2. Suppose that L(G) = L(Cn1 ⊕ Cn2).

1. d(H) ≤ n1 − 1, and d∗(H) = n1 − 1 implies that d(G) = d∗(G).

2. If d(G) = d∗(G), then G ∼= Cn1 ⊕ Cn2 .

3. If n1 ∈ [1, 5], then G ∼= Cn1 ⊕ Cn2 .
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Proof. 1. Proposition 6.1 implies that

n1 + n2 − 2 = d(G) ≥ d(H) + (n2 − 1) and hence d(H) ≤ n1 − 1 .

If d∗(H) = n1 − 1, then

n1 + n2 − 2 = d(G) ≥ d∗(G) = d∗(H) + (n2 − 1) = n1 + n2 − 2 .

2. This follows from [7, Theorem 5.6].

3. By 2., it is sufficient to show that d(G) = d∗(G). Suppose that H is cyclic. Then r(G) ≤ 2 and
Proposition 2.3.1 implies that d(G) = d∗(G). Suppose that H is noncyclic. Then 2 ≤ r(H) ≤ d(H) ≤
n1 − 1, and hence n1 ∈ [3, 5].

Suppose that n1 = 3. Then d(H) = 2 and H ∼= C2 ⊕ C2. Thus d
∗(H) = 2 = n1 − 1, and the assertion

follows from 1.
Suppose that n1 = 4. Then d(H) ∈ [2, 3] and H is isomorphic to C2 ⊕ C2 or to C3

2 . If H ∼= C3
2 , then

d∗(H) = n1 − 1, and the assertion follows from 1. Suppose that H ∼= C2 ⊕ C2 and set n2 = 2m. If m is
even, then d(G) = d∗(G) by [15, Corollary 4.2.13]. If m is odd, then d(G) = d∗(G) by [2] (in [46, Theorem
3.13] even the structure of all minimal zero-sum sequences of length D(G) has been determined).

Suppose that n1 = 5. Then d(H) ∈ [2, 4] and H is isomorphic to one of the following groups:
C2

2 , C
3
2 , C

4
2 , C2 ⊕ C4, C3 ⊕ C3. If H is isomorphic to one of the groups in {C4

2 , C2 ⊕ C4, C3 ⊕ C3}, then
d∗(H) = n1 − 1. If H ∼= C2 ⊕ C2, then d(G) = d∗(G) as outlined above. Suppose that H ∼= C3

2 .
Then G = C3

2 ⊕ Cn2 and we set n2 = 2m. If m is even, then again [15, Corollary 4.2.13] implies that
d(G) = d∗(G). If m is odd, then this follows from [2]. �

We need the following characterization of decomposable subsets.

Lemma 6.3. Let G be a finite abelian group and G0 ⊂ G a subset.

1. The following statements are equivalent :
(a) G0 is decomposable.
(b) There are nonempty subsets G1, G2 ⊂ G0 such that G0 = G1⊎G2 and B(G0) = B(G1)×B(G2).
(c) There are nonempty subsets G1, G2 ⊂ G0 such that G0 = G1⊎G2 and A(G0) = A(G1)⊎A(G2).
(d) There are nonempty subsets G1, G2 ⊂ G0 such that 〈G0〉 = 〈G1〉 ⊕ 〈G2〉.

2. There exist uniquely determined t ∈ N and (up to order) uniquely determined nonempty indecom-
posable sets G1, . . . , Gt ⊂ G0 such that

G0 =
t⊎

ν=1

Gν and 〈G0〉 =
t⊕

ν=1

〈Gν〉 .

Proof. 1. See [40, Lemma 3.7] and [3, Lemma 3.2].
2. See [40, Proposition 3.10]. �

We need the invariant

m(G) = max{min∆(G0) | G0 ⊂ G is a non-half-factorial subset with k(A) ≥ 1 for all A ∈ A(G0)} .

Lemma 6.4. Let G be a finite abelian group, G0 ⊂ G a subset with min∆(G0) = max∆∗(G), and let

G0 =
⋃t

ν=1 Gν be the decomposition into indecomposable components. If exp(G) > m(G) + 2, then each
component Gν is either half-factorial or equal to {−gν, gν} for some gν ∈ G with ord(gν) = exp(G), and
there exists at least one non-half-factorial component.

Proof. See [41, Corollary 5.2]. �
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Proposition 6.5. Let n1, n2 ∈ N with n1 |n2 and 6 ≤ n1 < n2, and let G be a finite abelian group with
exp(G) = n2 and d(G) = n1 + n2 − 2. Suppose that, for all k ∈ N, the sets

Lk =
{
(kn2+3)+ (n1− 2)+ (n2− 2)

}
∪
(
(2k+3)+ {0, n1− 2, n2− 2}+ {ν(n2− 2) | ν ∈ [0, k]}

)
∈ L(G) .

Then G is isomorphic to one of the following groups

Cn1 ⊕Cn2 , Cs
2 ⊕Cn2 with s ∈ {n1−2, n1−1} , Cn1−4

2 ⊕C4⊕Cn2 , C2⊕Cn1−1⊕Cn2 with 2 | (n1−1) |n2 .

Proof. We set G = H ⊕ Cn2 where H ⊂ G is a subgroup with exp(H) |n2. If H is cyclic, then d(G) =
|H |+ n2 − 2 whence |H | = n1 and G ∼= Cn1 ⊕Cn2 . From now on we suppose that H is non-cyclic. Since
d(H) + n2 − 1 ≤ d(G) = n1 + n2 − 2, it follows that d(H) ≤ n1 − 1, and hence exp(H) ≤ D(H) ≤ n1.
Since exp(H) = n1 would imply that H is cyclic of order n1, it follows that exp(H) ≤ n1 − 1. We have

r(H) ≤ d(H) ≤ n1 − 1. If r(H) = n1 − 1, then H ∼= Cn1−1
2 and hence G ∼= Cn1−1

2 ⊕ Cn2 . Thus from now
on we suppose that r(H) ∈ [2, n1 − 2].

We start with the following two assertions.

A1. exp(G) > m(G) + 2.

A2. Let G0 ⊂ G with min∆(G0) = n2 − 2. Then G0 = {g,−g} ∪ G1 where ord(g) = n2, G1 ⊂ G is
half-factorial, and 〈G1〉 ∩ 〈g〉 = {0}.

Proof of A1. Assume to the contrary that n2 ≤ m(G) + 2, and hence m(G) ≥ n2 − 2. By [42,
Proposition 3.6], we have

m(G) ≤ max{r∗(G)− 1,K(G)− 1} .

We have r∗(G) ≤ log2 |G|, K(G) ≤ 1
2 + log |G| ≤ 1

2 + log2 |G| by Proposition 2.3, and hence

m(G) ≤ −
1

2
+ log2 |G| .

If H = Cm1 ⊕ . . .⊕ Cms
, where s,m1, . . . ,ms ∈ N with s = r(H) ≥ 2 and 1 < m1 | . . . |ms |n2, then

log2 |H | =
s∑

i=1

log2 mi ≤
s∑

i=1

(mi − 1) = d∗(H) ≤ d(H) .

Therefore we obtain that

n2 − 2 ≤ m(G) ≤ −
1

2
+ log2 |G| = −

1

2
+ log2 n2 + log2 |H | ≤ −

1

2
+ log2 n2 + d(H)

≤ −
3

2
+ log2 n2 + n1 ≤ −

3

2
+ log2 n2 +

n2

2
and hence

n2

2
≤ log2 n2 +

1

2
,

a contradiction to n2 ≥ 7. �(Proof of A1)

Proof of A2. By Lemma 6.3, G0 has a decomposition into indecomposable subsets, say G0 = ∪t
ν=1Gν .

Proposition 3.3.2 implies that max∆∗(G) = n2 − 2 = min∆(G0). By A1 and Lemma 6.4, the sets Gν

have the following structure: there is an s ∈ [1, t] such that Gν = {−gν, gν} with ord(gν) = n2 for each
ν ∈ [1, s], and Gs+1, . . . , Gt are half-factorial. Since, by Lemma 6.3.2,

〈G0〉 =
t⊕

ν=1

〈Gν〉 ⊂ G = H ⊕ Cn2 and exp(H) < n2 ,

it follows that s = 1. �(Proof of A2)

By assumption, for every k ∈ N the sets Lk =
{
(kn2 + 3) + (n1 − 2) + (n2 − 2)

}
∪
(
(2k + 3) + {0, n1 − 2, n2 − 2}+ {ν(n2 − 2) | ν ∈ [0, k]}

)
∈ L(G) .
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Clearly, these sets are AAMPs with difference n2− 2 and period {0, n1− 2, n2− 2} and, for all sufficiently
large k ∈ N, Lk is not an AAMP with some difference d which is not a multiple of n2 − 2 ([18, Theorem
4.2.7]). Let k ∈ N be sufficiently large. In the course of the proof we will meet certain bounds and will
assume that k exceeds all of them.

We choose Bk ∈ B(G) such that L(Bk) = Lk. By [18, Proposition 9.4.9], there exist an M1 ∈ N
(not depending on k) such that Bk = VkSk, where Vk and Sk are zero-sum sequences with the following
properties:

min∆
(
supp(Vk)

)
= n2 − 2 and |Sk| ≤ M1 ,

(indeed in the terminology of Proposition 9.4.9, we have Vk ∈ V [[V ]] and Sk ∈ B(G)[U , V ] for a given full
almost generating set U ; but we do not need these additional properties). By A2, we obtain that

supp(Vk) = {−gk, gk} ∪Ak, where ord(gk) = n2 and Ak ⊂ G is half-factorial with 〈gk〉 ∩ 〈Ak〉 = {0} .

Since for each two elements g, g′ ∈ G with ord(g) = ord(g′) = n2, there is a group automorphism ϕ : G → G
with ϕ(g) = g′, and since L(B) = L

(
ϕ(B)

)
for all B ∈ B(G), we may assume without restriction that

there is a g ∈ G such that g = gk. Applying a further automorphism if necessary we may suppose that
G = H ⊕ 〈g〉.

We continue with the assertion

A3. There exist a constant M2 ∈ N (not depending on k), Ck ∈ B(supp(Vk)) and Dk ∈ B(G•) with the
following properties:

• Bk = CkDk,
• |Dk| ≤ M2,
• For any factorization z = W1 · . . . ·Wγ ∈ Z(Bk) with W1, . . . ,Wγ ∈ A(G) there are I, J such
that [1, γ] = I ⊎ J ,

∏
i∈I Wi = Ck and

∏
j∈J Wj = Dk.

Proof of A3. Let z = X1 · . . . ·XαY1 · . . . ·Yβ be a factorization of Bk, where X1, . . . , Xα, Y1, . . . , Yβ are
atoms, and Y1, . . . , Yβ are precisely those atoms which contain some element from Sk. Then β ≤ |Sk| ≤ M1

and X1 · . . . ·Xα divides Vk (in B(G)). For any element a ∈ supp(Vk) let ma(z) ∈ N0 be maximal such
that aord(a)ma(z) divides X1 · . . . ·Xα. Since β ≤ M1, there is a constant M3(z) ∈ N (not depending on k)
such that va(Bk)− ord(a)ma(z) ≤ M3(z). Now we define, for each a ∈ supp(Vk),

ma = min{ma(z) | z ∈ Z(Bk)} ,

Ck =
∏

a∈supp(Vk)

aord(a)ma and Dk = C−1
k Bk .

Since there is a constant M3 ∈ N (not depending on k) such that va(Bk) − ord(a)ma ≤ M3 for all
a ∈ supp(Vk), there is a constant M2 ∈ N (not depending on k) such that

|Dk| = |Bk| − |Ck| ≤ M2 . �(Proof of A3)

Since Ck ∈ B(supp(Vk)), L(Ck) is an arithmetical progression with difference n2 − 2, and by A3 we
have

L(Bk) = L(Ck) + L(Dk) =
⋃

m∈L(Dk)

(
m+ L(Ck)

)
.

Assume to the contrary that L(Dk) = {m}. Then −m + Lk = −m + L(Bk) = L(Ck) ∈ L(Cn2 ), a
contradiction to Proposition 3.6.2. This implies that |L(Dk)| > 1. Since supp(Ck) ⊂ supp(Vk) ⊂ {−g, g}∪
Ak, where Ak is half-factorial and 〈g〉 ∩ 〈Ak〉 = {0}, it follows that Ck = C′

kC
′′
k , with C′

k ∈ B({g,−g}),
C′′

k ∈ B(Ak), L(Ck) = L(C′
k) + L(C′′

k ) and |L(C′′
k )| = 1. Thus, if L(C′′

k ) = {mk}, then

L(Ck) = L(C′
k0

mk) and L(Bk) = L(CkDk) = L(C′
k0

mkDk) .

Therefore, after changing notation if necessary, we suppose from now on that

Bk = CkDk, L(Bk) = L(Ck) + L(Dk), where supp(Ck) ⊂ {0, g,−g} and Dk ∈ B(G) with |Dk| ≤ M2 .
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We continue with the assertion

A4. • Let T ∈ F(G) with T |Dk. If T ∈ A(B〈g〉(G)), then σ(T ) ∈ {0, g,−g, (n1 − 1)g,−(n1 − 1)g}.
• If z = T1 · . . . · Tγ ∈ ZB〈g〉(G)(Dk) with T1, . . . , Tγ ∈ A(B〈g〉(G)), then at most one of the

elements σ(T1), . . . , σ(Tγ) does not lie in {0, g,−g}.

Proof of A4. This follows from Proposition 3.8. �(Proof of A4)

We shall use the following notation. If z = T1 · . . . · Tγ is as above, then we set

σ(z) = σ(T1) · . . . · σ(Tγ) ∈ F(〈g〉) ,

and we continue with the assertion

A5.

LB(G)(Bk) =
⋃

z∈ZB〈g〉(G)(Dk)

LB(〈g〉)

(
Ckσ(z)

)
,

and the union on the right hand side consists of at least two distinct sets which are not contained
in each other.

Proof of A5. Assume to the contrary that all sets of lengths on the right hand side are contained in
one fixed set L1 = LB(〈g〉)

(
Ckσ(z

∗)
)
with z∗ ∈ ZB〈g〉(G)(Dk). Then L(Bk) ∈ L(Cn2), a contradiction to

Proposition 3.6.
To show that the set on the left side is in the union on the right side, we choose a factorization

z∗ = W1 · . . . ·Wγ ∈ ZB(G)(Bk), where W1, . . . ,Wγ ∈ A(G). For each ν ∈ [1, γ], we set Wν = XνYν where
Xν , Yν ∈ F(G) such that

Ck = X1 · . . . ·Xγ and Dk = Y1 · . . . · Yγ .

For each ν ∈ [1, γ], we have σ(Wν) = 0 ∈ G, hence σ(Yν) = −σ(Xν) ∈ 〈g〉, Yν ∈ B〈g〉(G), and we choose
a factorization zν ∈ ZB〈g〉(G)(Yν). Then

z = z1 · . . . · zγ ∈ ZB〈g〉(G)(Dk) .

Then, for each ν ∈ [1, γ], W ′
ν = Xνσ(zν) ∈ A(〈g〉) and W ′

1 · . . . · W ′
γ = Ckσ(z) ∈ F(〈g〉). Therefore

z′ = W ′
1 · . . . ·W

′
γ ∈ ZB(〈g〉)

(
Ckσ(z)

)
and

|z∗| = γ = |z′| ∈ LB(〈g〉)

(
Ckσ(z)

)
.

Conversely, let z = S1 · . . . · Sβ ∈ ZB〈g〉(G)(Dk) and z′ = W ′
1 · . . . ·W

′
γ ∈ ZB(〈g〉)

(
Ckσ(z)

)
be given, where

S1, . . . , Sβ ∈ A(B〈g〉(G)), W ′
1, . . . ,W

′
γ ∈ A(〈g〉), and we write

σ(z) = s1 · . . . · sβ , where s1 = σ(S1), . . . , sβ = σ(Sβ) .

Note that s1, . . . , sβ satisfy the properties given in A4. We continue with the following

Assertion: We can find a renumbering such that

W ′
ν = sνTν with Tν ∈ F({−g, g}) for all ν ∈ [1, β] .

Proof of the Assertion. We proceed in three steps.

First, we may assume without restriction that s1 = . . . = sδ = 0 and 0 /∈ {sδ+1, . . . , sβ}. Then at least δ
of theW ′

1, . . . ,W
′
γ are equal to 0. After renumbering if necessary, we may suppose thatW ′

1 = . . . = W ′
δ = 0,

and we set T1 = . . . = Tδ = 1 ∈ F({−g, g}).
Second, suppose there is a ν ∈ [δ+1, β] such that sν ∈ {(n1−1)g, n2−(n1−1)g}, say ν = δ+1. Then sδ+1

divides (in F(G)) one element of {W ′
δ+1, . . . ,W

′
γ}, sayW

′
δ+1. Then we set Tδ+1 = s−1

δ+1W
′
δ+1 ∈ F({−g, g}).

To handle the last step, we observe that, by A4, all remaining sν lie in {−g, g}. Since β ≤ |Dk| ≤ M2

and the multiplicities of g and of −g in Ck are growing with k, and k is sufficiently large, for each ν ≤ β
the product

∏γ
λ=ν W

′
λ is divisible by g and by −g. Thus we can pick a suitable W ′

ν and the assertion
follows. �
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Now we define

W ′′
ν =

{
SνTν for each ν ∈ [1, β],

W ′
ν for each ν ∈ [β + 1, γ] .

Then, by construction, we have
Bk = W ′′

1 · . . . ·W ′′
γ .

Let ν ∈ [1, β]. Since W ′
ν ∈ A(〈g〉), it follows that T ′

ν ∈ F(〈g〉) is zero-sum free. Since Sν ∈ A(B〈g〉(G)),
it follows that W ′′

ν ∈ A(G). Thus W ′′
1 , . . . ,W

′′
β ∈ A(G), and we have constructed a factorization of Bk of

length γ = |z′|. �(Proof of A5)

A6. Let
z = T1 · . . . · Tγ ∈ ZB〈g〉(G)(Dk) and z′ = T ′

1 · . . . · T
′
γ′ ∈ ZB〈g〉(G)(Dk) ,

where γ, γ′ ∈ N, T1, . . . , Tγ , T
′
1, . . . , T

′
γ′ ∈ A(B〈g〉(G)), and z 6= z′. Furthermore, let

F = Ckσ(T1) · . . . · σ(Tγ) ∈ B(〈g〉) and F ′ = Ckσ(T
′
1) · . . . · σ(T

′
γ′) ∈ B(〈g〉) ,

and define

F = SF1 and F ′ = SF2, where S, F1, F2 ∈ F(〈g〉) and S = gcdF(〈g〉)(F, F
′) .

Then one of the following statements holds:
(i) d(z, z′) ≥ n1 − 1.

(ii) {F1, F2} = {
(
(−g)g

)v
, 0v} with v ∈ N.

Proof of A6. Note that gcd(F1, F2) = 1, σ(F1) = σ(F2) = −σ(S), Ck |S, and

(∗) dZ(B〈g〉(G))(z, z
′) ≥ dF(〈g〉)(F, F

′) = dF(〈g〉)(F1, F2) = max{|F1|, |F2|} .

Since |F | = |Ck|+ |z|, |F1|+ |S| = |Ck|+ |z|, |F2|+ |S| = |Ck|+ |z′|, we obtain that |F2| − |F1| = |z′| − |z|
and

(∗∗) d(z, z′) ≥
∣∣|z| − |z′|

∣∣+ 2 =
∣∣|F1| − |F2|

∣∣+ 2 .

Using (∗) and (∗∗) we observe that max{|F1|, |F2|} ≥ n1 − 1 as well as
∣∣|F1| − |F2|

∣∣ ≥ n1 − 3 implies (i).
To simplify the discussion we suppose that max{|F1|, |F2|} ≤ n1 − 1 (of course we could also assume that
max{|F1|, |F2|} ≤ n1 − 2; the slightly weaker assumption allows us to give a more complete description
of (F1, F2) without additional efforts). Based on the structural description of σ(z) and σ(z′) given in A4
we distinguish four cases.

CASE 1: σ(z)σ(z′) ∈ F({0, g,−g}).
We set

S =
(
gn2

)k1
(
(−g)n2

)k2
(
(−g)g

)k3
(
δg
)k4

0k5 ,

where δ ∈ {−1, 1}, k1, . . . , k5 ∈ N0 and k3 < n2. We distinguish two cases.

CASE 1.1: F1 = 1 or F2 = 1, say F2 = 1.

Then σ(S) = 0, σ(F1) = 0, and k4 = 0. We have F1 = 0v0(F1)
(
(−g)g

)vg(F1)
and |F1| > 0. Then

min L(SF2) = min L(S) = k1+k2+k3+k5 and min L(SF1) = k1+k2+k3+k5+v0(F1)+vg(F1)−ǫ(n2−2)

where

ǫ =

{
0 k3 + vg(F1) < n2

1 otherwise
.

Thus v0(F1)+vg(F1) is congruent to min L(SF1)−min L(SF2) modulo n2−2 and hence congruent either to
0 or to n1−2 or to (n2−2)−(n1−2) = n2−n1 modulo n2−2. Since 0 < |F1| = v0(F1)+2vg(F1) ≤ n1−1,
it follows that (v0(F1), vg(F1)) ∈ {(n1 − 2, 0), {n1 − 3, 1)}, hence |F1| − |F2| = |F1| ≥ n1 − 2, and thus (i)
holds.

CASE 1.2: F1 6= 1 and F2 6= 1.
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By symmetry we may suppose that 0 ∤ F1. Then g |F1 or (−g) |F1, and by symmetry we may suppose
that g |F1. We distinguish two cases.

CASE 1.2.1: (−g) |F1.

Then F2 = 0v0(F2), and hence σ(S) = 0 = σ(F1). This implies k4 = 0 and F1 =
(
(−g)g

)vg(F1)
. Then

min L(SF2) = k1 + k2 + k3 + v0(F2) + k5 and min L(SF1) = k1 + k2 + k3 + vg(F1)− ǫ(n2 − 2) + k5

where ǫ ∈ {0, 1}. Thus v0(F2)− vg(F1) is congruent to min L(SF1)−min L(SF2) modulo n2− 2 and hence
congruent either to 0 or to n1 − 2 or to n2 − n1 modulo n2 − 2. This implies that either

v0(F2) = vg(F1) or v0(F2) = vg(F1) + n1 − 2 or vg(F1) = v0(F2) + n1 − 2 .

If v0(F2) = vg(F1) + n1 − 2, then vg(F1) ≥ 1 implies that |F2| ≥ v0(F2) ≥ n1 − 1, and hence (i) holds.
If vg(F1) = v0(F2) + n1 − 2, then v0(F2) ≥ 1 implies that vg(F1) ≥ n1 − 1 whence |F1| = 2vg(F1) ≥

2(n1 − 1) > n1, a contradiction.
If v0(F2) = vg(F1), then (ii) holds.

CASE 1.2.2: (−g) ∤ F1.
Then F1 = gvg(F1) and F2 = (−g)v−g(F2)0v0(F2). Note that vg(F1) + v−g(F2) > 0, vg(F1), v−g(F2) ∈

[0, n1 − 1], and n2 ≥ 2n1. However, σ(F1) = σ(F2) implies that vg(F1) + v−g(F2) ≡ 0 mod n2, a
contradiction.

CASE 2: σ(z)σ(z′) ∈
(
(n1 − 1)g

)
F({0,−g, g}) or σ(z)σ(z′) ∈

(
− (n1 − 1)g

)
F({0,−g, g}).

After applying the group automorphism which sends each h ∈ G onto its negative if necessary, we may
suppose that σ(z)σ(z′) ∈

(
(n1−1)g

)
F({0,−g, g}). After exchanging z and z′ if necessary we may suppose

that σ(z) ∈ F({0,−g, g}) and σ(z′) ∈
(
(n1 − 1)g

)
F({0,−g, g}).

We set
S =

(
gn2

)k1
(
(−g)n2

)k2
(
(−g)g

)k3
(
δg
)k4

0k5 ,

where δ ∈ {−1, 1}, k1, . . . , k5 ∈ N0 and k3 < n2. If σ(F1) = 0, then σ(F2) = 0 and hence |F2| ≥ n1, a
contradiction. Thus it follows that σ(F1) 6= 0, and hence there are the following three cases.

CASE 2.1: g |F1 and (−g) |F1.
Then F2 =

(
(n1 − 1)g

)
0v0(F2) and hence σ(F2) = (n1 − 1)g = σ(F1) =

(
vg(F1) − v−g(F1)

)
g, a

contradiction to |F1| ≤ n1 − 1.

CASE 2.2: g |F1 and (−g) ∤ F1.
Then F1 = gvg(F1)0v0(F1), F2 =

(
(n1 − 1)g

)
(−g)n1−1−vg(F1)0v0(F2), and we can write SF1 and SF2 as

follows:
SF1 =

(
gn2

)l1(
(−g)n2

)l2(
(−g)g

)l3
0l4+v0(F1)

SF2 =
(
gn2

)l1(
(−g)n2

)l2(
(−g)g

)l3−vg(F1)
0l4+v0(F2)

((
(n1 − 1)g

)
(−g)n1−1

)

where l1, . . . , l4 ∈ N0, l4 = v0(S), and l3 ≥ vg(F1) (the last inequality holds because k is large enough).
Therefore

m1 = l1 + l2 + l3 + l4 + v0(F1) ∈ Lk

and
m2 = l1 + l2 + l3 − vg(F1) + l4 + v0(F2) + 1 ∈ Lk

which implies that m1 − m2 = v0(F1) + vg(F1) − v0(F2) − 1 is congruent to either 0 or to n1 − 2 or to
n2 − n1 modulo n2 − 2. We distinguish three cases.

CASE 2.2.1: v0(F1) + vg(F1) ≡ v0(F2) + 1 mod n2 − 2.
Since |F1| < n1 and |F2| < n1, it follows that v0(F1) + vg(F1) = v0(F2) + 1. Since

|F2| = v0(F2) + 1 +
(
n1 − 1− vg(F1)

)

= v0(F1) + vg(F1) +
(
n1 − 1− vg(F1)

)
= n1 − 1 + v0(F1) ,

it follows that |F2| ≥ n1 − 1 and hence (i) holds.
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CASE 2.2.2: v0(F1) + vg(F1) ≡ v0(F2) + n1 − 1 mod n2 − 2.
Similarly, we obtain that v0(F1) + vg(F1) = v0(F2) + n1 − 1. Thus |F1| ≥ n1 − 1 and hence (i) holds.

CASE 2.2.3: v0(F1) + vg(F1) ≡ n2 − n1 + v0(F2) + 1 mod n2 − 2.
We obtain that v0(F1) + vg(F1) = −(n1 − 3) + v0(F2) which implies that v0(F2) > n1 − 3. Therefore

|F2| = v0(F2) + 1 + n1 − 1− vg(F1) = n1 + v0(F1) + (n1 − 3)− v0(F2) + v0(F2)

= 2n1 − 3 + v0(F1) ≥ n1 ,

a contradiction.

CASE 2.3: g ∤ F1 and (−g) |F1.
Then

F1 = (−g)v−g(F1)0v0(F1) and F2 =
(
(n1 − 1)g

)
gn2−(n1−1)−v−g(F1)0v0(F2) .

We can write SF1 and SF2 as

SF1 =
(
gn2

)l1(
(−g)n2

)l2(
(−g)g

)l3
0l4+v0(F1) and

SF2 =
(
gn2

)l1(
(−g)n2

)l2(
(−g)g

)l3−v−g(F1)
0l4+v0(F2)

(
gn2−(n1−1)

(
(n1 − 1)g

))

where l1, . . . , l4 ∈ N0, l4 = v0(S), and l3 ≥ v−g(F1) (the last inequality holds because k is large enough).
Therefore

m1 = l1 + l2 + l3 + l4 + v0(F1) ∈ Lk

and
m2 = l1 + l2 + l3 − v−g(F1) + l4 + v0(F2) + 1 ∈ Lk .

which implies that m1 −m2 = v0(F1) + v−g(F1) − v0(F2) − 1 is congruent to either 0 or to n1 − 2 or to
n2 − n1 modulo n2 − 2. We distinguish three cases.

CASE 2.3.1: v0(F1) + v−g(F1) ≡ v0(F2) + 1 mod n2 − 2.
We obtain that v0(F1) + v−g(F1) = v0(F2) + 1 and hence

|F2| = 1 + v0(F2) + n2 − (n1 − 1)− v−g(F1) = v0(F1) + n2 − (n1 − 1) ≥ n1 ,

a contradiction.

CASE 2.3.2: v0(F1) + v−g(F1) ≡ v0(F2) + n1 − 1 mod n2 − 2.
We obtain that v0(F1) + v−g(F1) = v0(F2) + n1 − 1. Therefore |F1| ≥ n1 − 1 and hence (i) holds.

CASE 2.3.3: v0(F1) + v−g(F1) ≡ n2 − n1 + v0(F2) + 1 mod n2 − 2.
We obtain that v0(F1) + v−g(F1) = v0(F2)− n1 + 3 and therefore

|F2| = v0(F2) + 1 + n2 − (n1 − 1)− v−g(F1) = v0(F1) + n1 − 3 + 1 + n2 − (n1 − 1)

= v0(F1)− 1 + n2 ≥ n1 ,

a contradiction.

CASE 3: σ(z)σ(z′) ∈
(
(n1 − 1)g

)2
F({0,−g, g}) or σ(z)σ(z′) ∈

(
− (n1 − 1)g

)2
F({0,−g, g}).

After applying the group automorphism which sends each h ∈ G onto its negative if necessary, we

may suppose that σ(z)σ(z′) ∈
(
(n1 − 1)g

)2
F({0,−g, g}), whence σ(z) ∈

(
(n1 − 1)g

)
F({0,−g, g}) and

σ(z′) ∈
(
(n1 − 1)g

)
F({0,−g, g}).

We set
S =

(
(n1 − 1)g

)(
gn2

)k1
(
(−g)n2

)k2
(
(−g)g

)k3
(
δg
)k4

0k5 ,

where δ ∈ {−1, 1}, k1, . . . , k5 ∈ N0 and k3 < n2. We distinguish two cases.

CASE 3.1: F1 = 1 or F2 = 1, say F2 = 1.
Since F2 = 1, it follows that L(S) ⊂ Lk. Let l1 ∈ L(F1). Then l1+L(S) ⊂ Lk and hence l1 is congruent

either to 0 or to n1−2 or to n2−n1 modulo n2−2. Since l1 > 0, it follows that |F1|−|F2| = |F1| ≥ n1−2,
and hence (i) holds.

CASE 3.2: F1 6= 1 and F2 6= 1.
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We have 0 ∤ F1 or 0 ∤ F2, say 0 ∤ F1. Then g |F1 or (−g) |F1. We distinguish three cases.

CASE 3.2.1: g |F1 and (−g) ∤ F1.
Then F1 = gvg(F1) and F2 = (−g)v−g(F2)0v0(F2). Since σ(F1) = σ(F2), it follows that vg(F1)+v−g(F2) ≡

0 mod n2, and hence

max{vg(F1), v−g(F2)} ≥
n2

2
≥ n1 ,

a contradiction.

CASE 3.2.2: g |F1 and (−g) |F1.

Then (−g)g |F1 whence F2 = 0v0(F2). This implies that 0 = σ(F2) = σ(F1) and thus F1 =
(
(−g)g

)vg(F1)
.

As above it follows that vg(F1)− v0(F2) is congruent either to 0 or to n1 − 2 or to n2 −n1 modulo n2 − 2.
If vg(F1) = v0(F2), then (ii) holds.
If vg(F1) = v0(F2) + n1 − 2, then |F1| = 2vg(F1) ≥ 2n1 − 4 ≥ n1, a contradiction.
Suppose that vg(F1) − v0(F2) ≡ n2 − n1 mod n2 − 2. Then |F1| < n1 implies that vg(F1) − v0(F2) =

−n1 + 2. Since vg(F1) ≥ 1, it follows that |F2| ≥ v0(F2) ≥ n1 − 1, and hence (i) holds.

CASE 3.2.3: g ∤ F1 and (−g) |F1.
Then F1 = (−g)v−g(F1) and F2 = gvg(F2)0v0(F2). Since σ(F1) = σ(F2), it follows that v−g(F1)+vg(F2) ≡

0 mod n2, and hence

max{v−g(F1), vg(F2)} ≥
n2

2
≥ n1 ,

a contradiction.

CASE 4: σ(z)σ(z′) ∈
(
(n1 − 1)g

)(
− (n1 − 1)g

)
F({0,−g, g}).

After exchanging z and z′ if necessary we may suppose that σ(z) ∈
(
(n1 − 1)g

)
F({0,−g, g}) and

σ(z′) ∈
(
− (n1 − 1)g

)
F({0,−g, g}). We set

SF1 =
(
gn2)l1

(
(−g)n2

)l2(
(g(−g)

)l3(
(n1 − 1)g(−g)n1−1

)
0l4+v0(F1)

and

SF2 =
(
gn2)l

′
1
(
(−g)n2

)l′2((g(−g)
)l′3((− (n1 − 1)g

)
gn1−1

)
0l4+v0(F2)

where l1, l
′
1, . . . , l3, l

′
3, l4 ∈ N0.

Since

F1 =
(
(n1 − 1)g

)
gvg(F1)(−g)v−g(F1)0v0(F1) and F2 =

(
− (n1 − 1)g

)
gvg(F2)(−g)v−g(F2)0v0(F2) ,

it follows that
(
n1 − 1 + vg(F1)− v−g(F1)

)
g = σ(F1) = σ(F2) =

(
− n1 + 1 + vg(F2)− v−g(F2)

)
g

and hence
2n1 − 2 ≡

(
vg(F2)− vg(F1)

)
+
(
v−g(F1)− v−g(F2)

)
mod n2 .

We distinguish four cases.

CASE 4.1: g |F1 and (−g) |F1.
Then vg(F2) = 0 = v−g(F2) and hence

2n1 − 2 ≡ −vg(F1) + v−g(F1) mod n2 .

If n2 ≥ 3n1, then |F1| ≥ n1, a contradiction. Thus n2 = 2n1, v−g(F1) + 2 ≡ vg(F1) mod n2, and so
v−g(F1) + 2 = vg(F1). Therefore we obtain that

SF2 =
(
gn2)l1

(
(−g)n2

)l2(
(g(−g)

)l3−vg(F1)−(n1−1)
(−g)n2

((
− (n1 − 1)g

)
gn1−1

)
0l4+v0(F2)

Therefore
m1 = l1 + l2 + l3 + l4 + 1 + v0(F1) ∈ Lk

and
m2 = l1 + l2 + l3 + l4 − (vg(F1) + n1 − 1) + 2 + v0(F2) ∈ Lk
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which implies that m1 −m2 = v0(F1)− v0(F2) + vg(F1) + n1 − 2 is congruent to either 0 or to n1 − 2 or
to n2 − n1 modulo n2 − 2. We distinguish three cases.

CASE 4.1.1: v0(F1) + vg(F1) + n1 ≡ v0(F2) + 2 mod n2 − 2.
The left and the right hand side cannot be equal, since vg(F1) ≥ 2 would imply that |F2| ≥ v0(F2) ≥ n1.

Therefore we have

v0(F1) + vg(F1) + n1 = v0(F2) + n2

and thus |F1| ≥ v0(F1) + vg(F1) ≥ n2 − n1 = n1, a contradiction.

CASE 4.1.2: v0(F1) + vg(F1) + n1 ≡ v0(F2) + n1 mod n2 − 2.
This implies that v0(F1) + vg(F1) = v0(F2) whence v0(F2) ≥ vg(F1) ≥ 2, v0(F1) = 0, and vg(F1) =

v0(F2). Therefore we obtain F1 =
(
(n1−1)g

)
gv0(F2)(−g)v0(F2)−2 and F2 =

(
− (n1−1)g

)
0v0(F2). Now con-

sider a factorization z1 of SF1 which is divisible by the atomX =
(
(n1−1)g

)
gn1+1 and by

(
g(−g)

)v0(F2)−2
.

It gives rise to a factorization

z2 = z1X
−1

(
g(−g)

)−(v0(F2)−2)
((

− (n1 − 1)g
)
gn1−1

)
0v0(F2) ∈ Z(SF2)

of length |z2| = |z1| − (1 + v0(F2)− 2) + 1 + v0(F2) = |z1|+ 2. Since n1 ≥ 5 and min∆(Lk) = min{n1 −
2, n2 − n1} ≥ 3, Lk cannot contain the lengths |z1| and |z1|+ 2 = |z2|, a contradiction.

CASE 4.1.3: v0(F1) + vg(F1) ≡ v0(F2) + 2 mod n2 − 2.
This implies that v0(F1) + vg(F1) = v0(F2) + 2. Since vg(F1) ≥ 3, it follows that v0(F2) > 0 and hence

v0(F1) = 0. Therefore we obtain F1 =
(
(n1− 1)g

)
gv0(F2)+2(−g)v0(F2) and F2 =

(
− (n1− 1)g

)
0v0(F2). Now

consider a factorization z2 of SF2 which is divisible by the atom X =
(
− (n1 − 1)g

)
(−g)n1+1. It gives

rise to a factorization

z1 = z2X
−10−v0(F2)

(
(n1 − 1)g(−g)n1−1

)(
(−g)g

)v0(F2)+2

of length |z1| = |z2|+ 2, a contradiction.

CASE 4.2: g |F1 and (−g) ∤ F1.
Then vg(F2) = 0 = v−g(F1), hence

n2 − 2n1 + 2 ≡ vg(F1) + v−g(F2) mod n2

and thus n2 − 2n1 + 2 = vg(F1) + v−g(F2). Furthermore, we obtain that

max{vg(F1), v−g(F2)} ≥
n2 − 2n1 + 2

2
,

and hence n2 ∈ {2n1, 3n2}. We obtain that

SF2 =
(
gn2)l1

(
(−g)n2

)l2(
(g(−g)

)l3−vg(F1)−(n1−1)
(−g)n2

((
− (n1 − 1)g

)
gn1−1

)
0l4+v0(F2)

Therefore

m1 = l1 + l2 + l3 + l4 + 1 + v0(F1) ∈ Lk

and

m2 = l1 + l2 + l3 + l4 − (vg(F1) + n1 − 1) + 2 + v0(F2) ∈ Lk

which implies that m1 −m2 = v0(F1)− v0(F2) + vg(F1) + n1 − 2 is congruent to either 0 or to n1 − 2 or
to n2 − n1 modulo n2 − 2. We distinguish three cases.

CASE 4.2.1: v0(F1) + vg(F1) + n1 ≡ v0(F2) + 2 mod n2 − 2.
The left and the right hand side cannot be equal, because otherwise we would have |F2| ≥ v0(F2)+1 ≥

n1. Therefore we have

v0(F1) + vg(F1) + n1 = v0(F2) + n2

and thus |F1| ≥ v0(F1) + vg(F1) ≥ n2 − n1 ≥ n1, a contradiction.

CASE 4.2.2: v0(F1) + vg(F1) + n1 ≡ v0(F2) + n1 mod n2 − 2.
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This implies that v0(F1) + vg(F1) = v0(F2) whence v0(F2) ≥ vg(F1) ≥ 1, v0(F1) = 0, and vg(F1) =

v0(F2). Therefore we obtain F1 =
(
(n1 − 1)g

)
gv0(F2) and F2 =

(
− (n1 − 1)g

)
(−g)n2−2n1+2−v0(F2)0v0(F2)

and hence |F2| = 1 + n2 − 2n1 + 2 which implies that n2 = 2n1 and |F2| = 3. Thus v0(F2) ∈ {1, 2}.
Suppose that v0(F2) = 1. Then vg(F1) = 1, F1 =

(
(n1−1)g

)
g, and F2 =

(
− (n1−1)g

)
(−g)0. Consider

a factorization z1 of SF1 divisible by X =
(
(n1 − 1)g

)
gn1+1. This gives rise to a factorization

z2 = z1X
−10

(
(−g)g

)((
− (n1 − 1)g

)
gn1−1

)

of length |z2| = |z1|+ 2, a contradiction.
Suppose that v0(F2) = 2. Then vg(F1) = 2, F1 =

(
(n1 − 1)g

)
g2, and F2 =

(
− (n1 − 1)g

)
02. Consider

a factorization z1 of SF1 divisible by X =
(
(n1 − 1)g

)
gn1+1. This gives rise to a factorization

z2 = z1X
−102

((
− (n1 − 1)g

)
gn1−1

)

of length |z2| = |z1|+ 2, a contradiction.

CASE 4.2.3: v0(F1) + vg(F1) ≡ v0(F2) + n2 − 2n1 + 2 mod n2 − 2.
Suppose that n2 = 3n1. Then v0(F1)+ vg(F1) ≡ v0(F2)+n1+2 mod n2− 2, and equality cannot hold

because |F1| ≥ v0(F1) + vg(F1). This implies that (n2 − 2)+ v0(F1) + vg(F1) = v0(F2) + n1 +2 and hence
2n1 − 4 + v0(F1) + vg(F1) = v0(F2), a contradiction to v0(F2) ≤ |F2| ≤ n1 − 1.

This implies that n2 = 2n1 and v0(F1) + vg(F1) = v0(F2) + 2. Since 2 = vg(F1) + v−g(F2), we infer
that vg(F1) ∈ [1, 2].

Suppose vg(F1) = 2. Then v−g(F2) = 0 and v0(F1) = v0(F2) = 0, and we have F1 =
(
(n1 − 1)g

)
g2 and

F2 =
(
− (n1− 1)g

)
. Consider a factorization z2 of SF2 containing the atom X =

(
− (n1− 1)g

)
(−g)n1+1.

This gives rise to a factorization

z1 = z2X
−1

((
(n1 − 1)g

)
(−g)n1−1

)(
(−g)g

)2

of length |z1| = |z2|+ 2, a contradiction.
Suppose vg(F1) = 1. Then v−g(F2) = 1, v0(F1) = 1, v0(F2) = 0, and we have F1 =

(
(n1 − 1)g

)
g0

and F2 =
(
− (n1 − 1)g

)
(−g). Consider a factorization z2 of SF2 containing the atom X =

(
− (n1 −

1)g
)
(−g)n1+1. This gives rise to a factorization

z1 = z2X
−1

((
(n1 − 1)g

)
(−g)n1−1

)(
(−g)g

)
0

of length |z1| = |z2|+ 2, a contradiction.

CASE 4.3: g ∤ F1 and (−g) |F1.
Then vg(F1) = 0 and v−g(F2) = 0 and hence

2n1 − 2 ≡ vg(F2) + v−g(F1) mod n2 .

This implies that vg(F2) = v−g(F1) = n1 − 1 and hence |F1| ≥ n1 and |F2| ≥ n1, a contradiction.

CASE 4.4: g ∤ F1 and (−g) ∤ F1.
Then vg(F1) = 0 = v−g(F1) and hence

2n1 − 2 ≡ vg(F2)− v−g(F2) mod n2 .

If n2 ≥ 3n1, then |F2| ≥ n1, a contradiction. Thus n2 = 2n1 and hence vg(F2) = v−g(F2)− 2. Therefore
we obtain that

SF2 =
(
gn2)l1

(
(−g)n2

)l2(
(g(−g)

)l3+vg(F2)−(n1−1)
(−g)n2

(
((−n1 + 1)g)gn1−1

)
0l4+v0(F2)

Therefore

m1 = l1 + l2 + l3 + l4 + 1 + v0(F1) ∈ Lk



A CHARACTERIZATION OF CLASS GROUPS VIA SETS OF LENGTHS 43

and

m2 = l1 + l2 + l3 + l4 + vg(F2)− (n1 − 1) + 2 + v0(F2) ∈ Lk

which implies that m1−m2 = v0(F1)− v0(F2)− vg(F2)+ (n1 − 1)− 1 is congruent to either 0 or to n1− 2
or to n2 − n1 modulo n2 − 2. We distinguish three cases.

CASE 4.4.1: v0(F2) + vg(F2) ≡ v0(F1) + n1 − 2 mod n2 − 2.
This implies that v0(F2) + vg(F2) = v0(F1) + n1 − 2, and hence |F2| ≥ v−g(F2) ≥ vg(F2) + 2 ≥ n1, a

contradiction.

CASE 4.4.2: v0(F2) + vg(F2) + (n1 − 2) ≡ v0(F1) + n1 − 2 mod n2 − 2.
This implies that v0(F2) + vg(F2) = v0(F1) and hence v0(F2) = 0. Therefore we obtain that F1 =(

(n1 − 1)g
)
0v0(F1) and F2 =

(
− (n1 − 1)g

)
gv0(F1)(−g)v0(F1)+2. Now consider a factorization z1 of SF1

containing the atom X =
(
(n1 − 1)g

)
gn1+1. This gives rise to a factorization

z2 = z1X
−1

((
− (n1 − 1)g

)
gn1−1

)(
(−g)g

)v0(F1)+2
0−v0(F1)

of length |z2| = |z1|+ 2, a contradiction.

CASE 4.4.3: v0(F2) + vg(F2) + (n2 − n1) ≡ v0(F1) + n1 − 2 mod n2 − 2.
Since n2 = 2n1, the congruence simplifies to v0(F2) + vg(F2) + 2 ≡ v0(F1) mod n2 − 2 which im-

plies that v0(F2) + vg(F2) + 2 = v0(F1). Thus v0(F2) = 0, F1 =
(
(n1 − 1)g

)
0v0(F1), and F2 =

(
−

(n1 − 1)g
)
gv0(F1)−2(−g)v0(F1). Now consider a factorization z1 of SF1 containing the atom X =

(
(n1 −

1)g
)
(−g)n1−1. This gives rise to a factorization

z2 = z1X
−1

((
− (n1 − 1)g

)
(−g)n1+1

)(
(−g)g

)v0(F1)−2
0−v0(F1)

of length |z2| = |z1| − 2, a contradiction. �(Proof of A6)

We state the final assertion

A7. n1 − 1 ≤ cB〈g〉(G)(Dk).

Proof of A7. By A5, we have

LB(G)(Bk) =
⋃

z∈ZB〈g〉(G)(Dk)

LB(〈g〉)

(
Ckσ(z)

)
,

and the union on the right hand side consists of at least two distinct sets which are not contained in each
other. Assume to the contrary that cB〈g〉(G)(Dk) ≤ n1 − 2 and choose a factorization z0 ∈ ZB〈g〉(G)(Dk).

We assert that for each z ∈ ZB〈g〉(G)(Dk) there exists an l(z) ∈ Z such that σ(z) = σ(z0)0
−l(z)

(
(−g)g

)l(z)
.

Let z ∈ ZB〈g〉(G)(Dk) be given, and let z0, . . . , zk = z be an (n1 − 2)-chain of factorizations concatenating

z0 and z. Since d(zi−1, zi) < n1−1, it follows that the pair (zi−1, zi) is of type (ii) in A6 for each i ∈ [1, k].

Therefore σ(zi) = σ(zi−1)0
−li

(
(−g)g

)li
for some li ∈ Z and each i ∈ [1, k], and hence the assertion follows

with l(z) = l1 + . . .+ lk.
We choose a factorization z∗ ∈ ZB〈g〉(G)(Dk) such that

l(z∗) = max{l(z) | z ∈ ZB〈g〉(G)(Dk)} ,

and assert that

LB(〈g〉)(Ckσ(z)) ⊂ LB(〈g〉)(Ckσ(z
∗)) for each z ∈ ZB〈g〉(G)(Dk) .

Let z ∈ ZB〈g〉(G)(Dk) be given. Then σ(z∗) = σ(z)0−(l(z∗)−l(z))
(
(−g)g

)l(z∗)−l(z)
. If

y ∈ ZB(〈g〉)(Ckσ(z)) , then y0−(l(z∗)−l(z))
(
(−g)g

)l(z∗)−l(z)
∈ ZB(〈g〉)(Ckσ(z

∗))

is a factorization of length |y|, and hence LB(〈g〉)(Ckσ(z)) ⊂ LB(〈g〉)(Ckσ(z
∗)).
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Therefore we obtain that

LB(G)(Bk) =
⋃

z∈ZB〈g〉(G)(Dk)

LB(〈g〉)

(
Ckσ(z)

)
= L(Ckσ(z

∗)) ,

a contradiction to the fact that this union consists of least two distinct sets which are not contained in
each other. �(Proof of A7)

Using A7 and Proposition 2.5.2, we infer that

n1 − 1 ≤ cB〈g〉(G)(Dk) ≤ c(B〈g〉(G)) = c(B(G/〈g〉)) ≤ D(G/〈g〉) = D(H) ≤ n1 .

We distinguish two cases.

CASE 1: c(B(G/〈g〉)) = n1.
Then D(G/〈g〉) = n1, Proposition 2.4.1 implies that G/〈g〉 is either cyclic of order n1 or an elementary

2-group of rank n1 − 1. Since H ∼= G/〈g〉, it follows that G ∼= Cn1 ⊕ Cn2 or G ∼= Cn1−1
2 ⊕ Cn2 .

CASE 2: c(B(G/〈g〉)) = n1 − 1.
We distinguish two cases.

CASE 2.1: D(G/〈g〉) = n1.
Then Proposition 2.4.2 implies that G/〈g〉 is isomorphic either to C2 ⊕Cn1−1, where n1 − 1 is even, or

to Cn1−4
2 ⊕ C4. Since H ∼= G/〈g〉, it follows that G ∼= C2 ⊕ Cn1−1 ⊕ Cn2 or G ∼= Cn1−4

2 ⊕ C4 ⊕ Cn2 .

CASE 2.2: D(G/〈g〉) = n1 − 1.
Then c(B(G/〈g〉)) = D(G/〈g〉) = n1 − 1, and (again by Proposition 2.4.1) G/〈g〉 is cyclic of order

n1 − 1 or an elementary 2-group of rank n1 − 2. If G/〈g〉 is cyclic, then G has rank two and d(G) =
d(G/〈g〉) + d(〈g〉) = n1 − 2 + n2 − 1 < n1 + n2 − 2 = d(G), a contradiction. Thus G/〈g〉 is an elementary

2-group and G ∼= Cn1−2
2 ⊕ Cn2 . �

Finally we are able to prove the main result of this paper.

Proof of Theorem 1.1. Let G be an abelian group such that L(G) = L(Cn1 ⊕Cn2) where n1, n2 ∈ N with
n1 |n2 and n1 + n2 > 4.

Proposition 6.1 implies that G is finite with exp(G) = n2 and d(G) = d(Cn1 ⊕ Cn2) = n1 + n2 − 2.
If n1 = n2, then G ∼= Cn1 ⊕ Cn2 by Proposition 6.1.2. Thus we may suppose that n1 < n2, and we set
G = H ⊕Cn2 where H ⊂ G is a subgroup with exp(H) |n2. If n1 ∈ [1, 5], then the assertion follows from
Proposition 6.2.3, and hence we suppose that n1 ≥ 6. Since L(G) = L(Cn1 ⊕Cn2), Proposition 3.5 implies
that, for each k ∈ N, the sets

Lk =
{
(kn2 + 3) + (n1 − 2) + (n2 − 2)

}
∪
(
(2k + 3) + {0, n1 − 2, n2 − 2}+ {ν(n2 − 2) | ν ∈ [0, k]}

)

are in L(G). Therefore Proposition 6.5 implies that G is isomorphic to one of the following groups

Cn1 ⊕Cn2 , C
s
2 ⊕Cn2 with s ∈ {n1−2, n1−1} , Cn1−4

2 ⊕C4⊕Cn2 , C2⊕Cn1−1⊕Cn2 with 2 | (n1−1) |n2 .

Since

d∗(Cn1−4
2 ⊕ C4 ⊕ Cn2) = n1 + n2 − 2 = d(G) and d∗(C2 ⊕ Cn1−1 ⊕ Cn2) = n1 + n2 − 2 = d(G) ,

Proposition 6.2.2 implies that G cannot be isomorphic to any of these two groups. Proposition 3.7 (with
k = 0, n = n2, and r = n1 − 1) implies that

{2, n2, n1 + n2 − 2} ∈ L(Cn1−2
2 ⊕ Cn2) ⊂ L(Cn1−1

2 ⊕ Cn2) .

However, Proposition 5.1 shows that {2, n2, n1 + n2 − 2} /∈ L(Cn1 ⊕ Cn2) = L(G). Therefore it follows
that G ∼= Cn1 ⊕ Cn2 . �
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