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Enhancement in Ti–6Al–4V sintering via
nanostructured powder and spark plasma
sintering

K. Crosby1, L. L. Shaw*1,2, C. Estournes3, G. Chevallier3, A. W. Fliflet4 and
M. A. Imam4

Studies are performed to enhance low temperature sintering of Ti–6Al–4V. High energy ball milling

is found to be effective in lowering the sintering temperature through the mechanisms of particle

size reduction and nanograin formation. The former reduces the diffusion distance for

densification, whereas the latter introduces an additional densification mechanism allowing mass

transport from the interior of the particle to the neck zone. Together, these two effects can reduce

the onset temperature for densification by about 300uC. Spark plasma sintering can further

improve low temperature sintering when compared with radiant heat sintering and microwave

sintering. The enhanced densification is discussed on the basis of the applied pressure (50 MPa)

and the intrinsic joule effect that leads to increase in the local temperature at the contact point

between particles.

Keywords: Titanium alloys, Ball milling, Nanomaterials, Sintering

Introduction

Currently, there is a significant need to improve fixation
and performance of orthopaedic implants because of the
growing elderly population. Device lifespan and bioac-
tivity have been improved steadily since the inception of
orthopaedic implants through the use of specific
materials systems (e.g. bioinert metallic alloys, low
modulus alloys and bioactive ceramic coatings)1–3 and
fabrication techniques (e.g. porous surface structures).4

However, there is still a desire to further enhance the
lifespan and performance of implants such that the
device meets or exceeds the performance of the natural
biological structure. One of the approaches to achieve
this goal is to develop functionally graded implants
composed of a Ti–6Al–4V (Ti–6–4) core and a hydro-
xyapatite (HA) rich surface. The former will provide
mechanical strength, while the latter will offer a
bioactive surface with no sharp interface between the
core and surface. Such functionally graded implants can
be fabricated via powder processing and cosintering of
Ti–6–4 and HA. However, cosintering of Ti–6–4 and
HA at temperatures above 1000uC results in a sub-
stantial strength reduction of Ti–6–4 due to the

embrittlement of oxygen diffusion into the metal.5

Thus, there is a critical need to study methods for

sintering Ti–6–4 at temperatures ,1000uC.

Sintering behaviour of Ti–6–4 has been studied by

many investigators in order to obtain either porous or

dense bodies.6–14 Porous bodies or porous surface with a

dense core is aimed at enhancing tissue ingrowth for Ti–

6–4 orthopaedic implants,7,10–12 whereas dense bodies

can offer superior specific strength for load carrying

applications.6,8 In general, 1200uC or higher is required

to obtain dense Ti–6–4 bodies. Specifically, Tasdemirci

et al.9 reveal that sintering at 1200uC for 2 h only results

in Ti–6–4 bodies that still contain 38 vol.-% porosity.

The same sintering result is reported by Guden et al.14

Shibo and his co-workers6 show that depending on the

binder used in the powder injection moulding process,

powder injection moulded Ti–6–4 bodies can reach a

relative density of either 97 or 94% of the theoretical

density after sintering at 1230uC for 3 h. They further

demonstrate that uniaxial pressing of the same Ti–6–4

powder followed by sintering at 1230uC for 3 h can only

lead to a relative density of 95%, similar to the powder

injection moulded bodies. Bautista et al.13 have sintered

Ti–6–4 bodies at different conditions and have shown

that Ti–6–4 bodies still contain about 0?5% porosity

after sintering at 1260uC for 4 h. When the sintering

temperature is reduced to 1230 and 1200uC, the porosity

level is increased to 1 and 1?3% respectively.13 All of

these studies reveal one common phenomenon, that is

pressureless sintering of Ti–6–4 requires sintering

temperatures at 1200uC or higher in order to reduce

porosity in the sintered bodies.
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In order to obtain fully dense Ti–6–4 bodies, pressure
is often applied during sintering. For example, Shibo
et al.6 demonstrate that Ti–6–4 bodies with 99?3%
density can be obtained by pressureless sintering at
1230uC for 3 h, followed by hot isostatic pressing at
1230uC again. Kim and Yang8 also reveal that by
applying a pressure of 60 MPa during hot pressing (HP),
Ti–6–4 bodies with density higher than 99% can be
obtained after HP at 950uC for 2 h. However, HP at
850uC for 2 h is not sufficient to obtain Ti–6–4 bodies
with density higher than 99%.8

Clearly, there are challenges in attaining dense Ti–6–4
bodies at sintering temperature below 1000uC. In this
study, we focus on the investigation of processing of
nanostructured Ti–6–4 powder along with different
sintering methods in order to achieve sintering of fully
dense Ti–6–4 bodies at 1000uC or lower. This study will
pave the way to achieve co-sintering of Ti–6–4 and HA
at temperatures compatible with the stability domain
of HA and prevention of Ti–6–4 embrittlement (i.e.
,1000uC) in the near future. The detail of attaining
nanostructured Ti–6–4 and sintering at temperatures
below 1000uC is described below.

Materials and methods
The commercial Ti–6–4 powder was purchased from
Advanced Specialty Metals (Nashua, NH, USA). The as
received powder is composed of highly uniform sphe-
rical particles in the range of 45–250 mm in diameter.
High energy ball milling under inert argon atmosphere
was performed using a SPEX mill with a ball/powder
weight ratio of 10 : 1. To prevent excessive cold welding
during ball milling, stearic acid was added to the powder
as a process control agent (PCA). The concentration of
stearic acid ranging from 1 to 5 wt-% was investigated in
order to identify the proper concentration of PCA for
achieving the smallest crystallite size of Ti–6–4 along
with the minimum particle size. To avoid substantial
heating during ball milling that can also lead to excessive
cold welding, long duration ball milling was conducted
using short 1 h milling increments followed by 15 min of
cooling at room temperature. On the basis of these
investigations, Ti–6–4 powder with the smallest crystal-
lite size was selected for sintering studies.

Sintering investigation was performed using three
different methods, that is traditional radiant heat
sintering (RHS), spark plasma sintering (SPS) and
microwave sintering (MWS). Radiant heat sintering
was conducted using an alumina tube with steel end caps
which allow for atmospheric control. Green body pellets
were prepared with a stainless steel die by using
300 MPa uniaxial pressure. To prevent oxidation during
sintering, pellets were wrapped in tantalum foil and
sealed in quartz tubing under a vacuum of less than
10 mT before their insertion into the alumina tube,
which was evacuated and purged with argon before the
onset of heating. Spark plasma sintering was performed
at the Plateforme Nationale CNRS de Frittage-Flash
(PNF2, Toulouse) using a Dr Sinter 2080 (SPS Syntex
Inc., Japan). The desired amount of Ti–6–4 powder was
loaded into a graphite die of 8 mm in diameter. For easy
removal of the sintered pellet, a sheet of graphitic paper
was placed between the punch and the powder as well as
between the die and the powder to prevent sticking due
to any possible reaction between the powder and

graphite die/punch. A uniaxial pressure of 50 MPa was
applied throughout the process. Sintering was conducted

under vacuum, and the heating rate was 100uC min21.
Changes in temperature, average intensity and voltage

of the pulsed current and sintering displacement were
recorded in situ by a computer during the entire sintering

process. The thermocouple for monitoring the tempera-
ture was placed in a little hole 3 mm in depth at the

surface of the graphite die. Thus, the measured value
corresponds to the temperature of the inner surface of the
die near the sample. However, because of the high

thermal conductivity of graphite and Ti–6–4, the sample
temperature would be close to the thermocouple reading.

The sintering displacement curves were used to identify
the onset and completion temperatures of densification

during continuous heating. The green pellets 0?5 inch in
diameter for MWS were formed using 670 MPa uniaxial

pressure, followed by 690 MPa isostatic pressing at room
temperature. The green pellets were then placed inside an

insulated chamber. No susceptor material was used due
to the particle–pore dipole interaction that suffices to

generate heat within the sample. The microwaves were
generated in a 2?45 GHz Cober Electronics Model S6F

Industrial Microwave Generator and transported to the
heating chamber via S band waveguide.

Scanning electron microscopy (SEM) was used to

examine the average powder particle size as a function of
milling duration. Samples for particle size measurements

were prepared by dry dropping of the powder particles
onto copper tape that was mounted on an SEM sample

stub. Quantification via SEM involved direct measure-
ment of the powder particles using a calibration based

on the scale bar specific to the magnification displayed
on each image. Approximately 15 particles were

measured from each of five images of the same SPEX
milling powder condition. As such, the average particle
size calculation took into account the distribution of

particle sizes over .50 particles. Scanning electron
microscopy analysis was also conducted to examine

the microstructure and porosity of sintered samples. On
the basis of the porosity at the polished cross-section,

the densities of sintered samples were determined. For
microstructural characterisation of the as received and

ball milled powders, powders were mounted in con-
ductive copper mounting compound, ground to 1200

grit SiC roughness and then polished to a mirror finish
using 0?05 mm colloidal silica. After a uniform surface

was attained, the sample was swabbed with Kroll’s
etchant until the microstructure had reasonable contrast
under the optical microscope.

X-ray diffraction (XRD) (Bruker D2 Phaser, Madison,
WI, USA) studies were conducted for each SPEX milled

sample to determine phase purity and monitor any
compounds that may be forming during the milling

process using Cu Ka radiation, 30 V, 10 mA, 0?02u/step
and 0?26 s/step scan rate. In addition to monitoring phase

formation, XRD was also used to estimate the crystallite
size via peak broadening through the use of the Scherrer

formula15

bg~kl=Dcos h (1)

where bg is the full width half maximum peak breadth, k
is the shape factor (y1?0), l is the X-ray wavelength (Cu

Ka151?541 nm),D is the crystallite size and h is the Bragg
angle. In this study, the reflections used for the crystallite



size estimation were at low 2h angles (to be provided in
the section on ‘Results and discussion’). Since the
reflections used for the crystallite size estimation were at
low 2h angles and the instrumental broadening of our
instrument was small, the broadening was therefore
mainly attributed to ultrafine crystallites.16

To verify the crystallite size estimation via the XRD
line broadening, transmission electron microscopy
(TEM) analysis of ball milled samples was performed.
The TEM samples were prepared by ultrasonicating the
ball milled powder in ethanol for 15 min to suspend the
fine particles. A pipette was used to dispense a few
suspension drops to an ultrathin carbon film (Ted Pella
TEM product). The drops were allowed to dry in air.
The operating condition of the TEM (FEI Tecnai Spirit
Twin TEM) was 120 kV in either bright or dark field
imaging modes.

Results and discussion

Particle size reduction and nanostructure
formation through high energy ball milling
Figure 1 shows the evolution of the shape and micro-
structure of Ti–6–4 particles induced by ball milling. One
hour ball milling has changed the initial spherical
particles with an average diameter of 120 mm (Fig. 1a)
to large flakes with a thickness of y25 and 150 mm in
diameter (Fig. 1b). Further ball milling up to 4 h leads to
equiaxed particles with an average diameter of y25 mm
(Fig. 1c). However, prolonged milling beyond the 4 h
duration yields little change in the particle morphology
and the average particle diameter, indicating that a
balance between cold welding and fracture has been
reached at y4 h milling for the material with 4 wt-%

stearic acid. Such morphology evolution is consistent

with the behaviour of ductile phases subjected to high

energy ball milling observed previously.17–19 That is the

formation of plate-like morphology at the early stage of

milling due to severe plastic deformation via ‘mini

forging’, which is followed by repeated particle fracture

once the ductility of particles is exhausted. Finally, the

extensive particle fracture is balanced by cold welding,

leading to the final particle sizes that are insensitive to the

prolonged milling time.

In addition to the particle morphology evolution, the

microstructure of particles has been altered as well. The

as received powder particles show a dendritic micro-

structure with a dendrite arm thickness of y4 mm,

indicative of slow cooling from a melt (Fig. 1d). When

ball milling is performed, the dendritic microstructure is

replaced by an elongated lamellar microstructure with

a thickness of y1 mm (Fig. 1e). Such microstructure

evolution is due to continual plastic deformation and

cold welding during the ball milling process. Although

nanograin formation cannot be detected using SEM,

the XRD and TEM analyses below indicate that the

microstructure change at the nanometre level also takes

place during ball milling.

Figure 2 shows the XRD spectra of Ti–6–4 as a

function of the milling time. It can be seen that the

crystallite size decreases continuously with increased

milling duration, as indicated by the continuous peak

broadening when the milling time increases. The

coherent XRD domain size (termed as the crystallite

size hereafter) of Ti–6–4 has been estimated using the

Scherrer formula.15 The two major reflections, (101) and

(002), of Ti–6–4 are utilised for such estimation. The

values obtained are listed in Table 1. As shown, the peak

a as received; b ball milled for 1 h; c ball milled for 4 h; d etched cross-section of as received; e etched cross-section of

ball milled for 4 h

1 Images of Ti–6–4 powder



broadening analysis of both reflections reveals that the
crystallite sizes of Ti–6–4 powder decrease continually as
the milling time increases. With 4 h milling, the crystal-
lite sizes have been reduced to 35 or 15 nm, depending
on which reflection is considered. In contrast, the
crystallite size for the as received particles is beyond
the valid range of the Scherrer formula (i.e. .100 nm).
The estimation of crystallite sizes was corroborated
using the TEM analysis. As shown in Fig. 3, the Ti–6–4
powder after 4 h of ball milling with the presence of
4 wt-% stearic acid exhibits many grains with sizes in the
order of 10–20 nm. These observations are consistent
with the expectation that sufficient high energy ball
milling will result in the formation of nanograins within
ductile particles.18–23 The formation of nanograins in
ductile phases has been shown to proceed by substantial/
increases in dislocation density, followed by the disin-
tegration of the crystal into subgrains separated by low
angle grain boundaries, and a gradual increase in
subgrain boundary misorientation, which eventually
leads to the full evolution of nanograins.20,21

The effect of the PCA concentration on the particle
size and crystallite size as a function of milling time is
shown in Fig. 4. The data for the 1 wt-%PCA addition
are not included in this figure because of severe cold
welding of the powder to the walls of the milling vial.
Figure 4 shows clearly that the average particle size
decreases with increasing the PCA concentration. This is
consistent with the expectation because the function of
PCA is to prevent cold welding.19 Therefore, the more
PCA, the more effective in preventing cold welding and

thus the smaller particle size. It is interesting to note that

the average crystallite size also decreases with increasing

the PCA concentration until a critical concentration

(y4 wt-% for 4 h milling) is reached. We propose that

this phenomenon arises because of two competing

processes. First, the initial increase in the PCA

concentration results in smaller particle sizes, as shown

in Fig. 4a. The decreased particle size leads to more

effective plastic deformation of the particle and thus

results in higher dislocation densities in the particle. The

latter in turn translates to faster grain size reduction

because the formation of nanograins requires the

accumulation of plastic strain to a critical value.24

Second, after the PCA concentration reaches a critical

value (y4 wt-% for 4 h milling), further increase in

PCA does not lead to reduction in the grain size; instead,

it may result in a slight increase in the grain size as

shown in Fig. 4b. This is due to the lubricating effect of

PCA and has been observed in ball milling of Al alloys

previously.19

a as received; b ball milled for 1 h; c ball milled for 2 h; d ball milled for 3 h; e ball milled for 4 h (all are with 4 wt-%

stearic acid)

2 X-ray diffraction spectra of Ti–6–4 samples

Table 1 X-ray diffraction analysis of crystallite sizes as
function of milling duration

Milling

duration/h

(101) crystallite

size/nm

(002) crystallite

size/nm

0 (as received) .100 .100

1 51 77

2 53 76

3 44 21

4 35 15
3 Dark field TEM image of Ti–6–4 powder ball milled for

4 h with presence of 4 wt-% stearic acid



Based on the reduced particle and crystallite sizes,
we expect that sintering kinetics will be improved.
Furthermore, we have chosen the Ti–6–4 powder ball
milled for 4 h with the addition of 4 wt-% stearic acid
for detailed sintering studies because this powder
exhibits the lowest crystallite size along with the second

smallest particle size. The sintering behaviour of this
powder is described below.

Sintering enhancement via nanostructured
powder
Figure 5 presents the microstructure of Ti–6–4 samples
sintered under various conditions. The as received

powder only results in a porous body after sintering at
1250uC for 2 h via RHS (Fig. 5a). The fraction of the
solid area determined using the ImageJ image analysis

software (National Institutes of Health, USA) is found

to be y90%. However, 4 h ball milling before sintering

has reduced porosity drastically and increased the

sintered density to 97% of the theoretical (Fig. 5b).

With SPS, the sintered density can reach .99% even

with the use of the as received powder and continuous

heating up to 860uC only (Fig. 5c). In contrast, MWS

exhibits similar sintered densities as RHS, showing a

density of 98% at the central region (Fig. 5d) and a

density of 81% at the edge (not shown here) after

sintering at 1250uC for 30 min. The densities of all other

samples sintered under different conditions are sum-

marised in Table 2. It is interesting to note that the

sintered density for the 1 h ball milled powder sintered

using RHS is only 75% of the theoretical, even lower

than the density sintered from the as received powder.

4 a average particle size (via SEM image analysis) and b average crystallite size [via XRD analysis of (002) reflection] of

Ti–6Al–4V powder ball milled for 4 h as function of PCA concentration

a as received powder sintered at 1250uC for 2 h via RHS; b 4 h ball milled powder sintered at 1250uC for 2 h via RHS; c

as received powder sintered via SPS with completion of shrinkage at 860uC during continuous heating; d core region of

4 h ball milled powder sintered at 1250uC for 30 min via MWS

5 Polished surfaces of sintered pellets



This is due to the formation of elongated plate-like

particles after 1 h ball milling (Fig. 1b). These elongated

plate-like particles do not pack well during uniaxial

pressing, which is performed at a pressure below the

yield strength of Ti–6–4. Therefore, the large pore

volume and folding/unfolding of the plate-like particles

prevent the achievement of high green density and thus

lead to the low sintered density.

Note that the low density of the sintered bodies

derived from the as received powder is in good

accordance with other studies. Specifically, using Ti–6–

4 particles with a mean diameter of 170 mm and sintering

at 1200uC for 2 h, Tasdemirci et al.9 have obtained a

sintered body of only 62% dense. In contrast, densifica-

tion behaviour improves noticeably when the powder

particle size decreases. For example, using Ti–6–4

powder with particle sizes ranging from 25 to 45 mm

and pressing followed by sintering at 1230uC for 3 h,

Shibo et al.6 have achieved sintered bodies of 94?6%

dense. Although a precise comparison cannot be made

between the present study and previous ones because of

different sources of powders and different packing

densities before sintering, the trend of the present study

showing improved densification with decreasing particle

sizes is consistent with previous investigations.6,9,14

For the present study, the drastically improved

densification behaviour of 4 h ball milled Ti–6–4

samples versus the as received powder can be attributed

to two factors. First, the particle size has been reduced

from y120 to 25 mm. This particle size reduction will

translate into a shorter diffusion distance from the

interparticle boundary area to the neck zone of the

particles, and thus enhance the densification rate, as

predicted by Herring’s scaling law.25 Second, the
crystallites of the ball milled particles have been reduced

to y35 nm or less, indicating the formation of

nanograins within micrometre sized particles. As
pointed out before, many metals exhibit the same

behaviour as Ti–6–4 in this study, that is they become
nanostructured particles after sufficient high energy ball

milling.18–23 The presence of the nanograins will greatly
increase the grain boundary area within each particle,

and thus the diffusion flux of the atoms from the interior
of the particle to the neck zone of the particles. The

presence of this nanostructure effect can be confirmed

by analysing the onset temperature for densification of
the as received and 4 h ball milled samples during SPS.

As shown in Fig. 6, the onset temperature for densifica-
tion has been reduced from 893 K (620uC) for the as

received powder to 613 K (340uC) for the 4 h ball milled
sample. It is well known that at the initial stage of

sintering, the shrinkage is related to neck growth

through equation (2)26

DL

L0

~
x

D

� �2

(2)

where the shrinkage DL/L0 is the length change divided

by the initial length, x is the neck diameter and D is the
particle diameter. The neck size ratio x/D is in turn

correlated to the particle diameter, sintering time t,
sintering temperature T and the primary mechanism of

mass transport for densification.26 Assuming that the
primary mechanism for densification is the mass

transport from the interparticle boundary area to the

neck zone through interparticle boundary diffusion, one
will have the following relationship26

x

D

� �6

~B0 exp {
Qgb

RT

� �

t

D4
(3)

where Qgb is the activation energy for interparticle
boundary diffusion, which is close to that for grain

boundary diffusion; B0 is a constant related to the
interparticle boundary width, surface energy and atomic

volume; and t and T have been defined above.

Since Ti–6–4 at the annealed condition is composed of

y90% of the a phase and 10% of the b phase,27 one can

use the activation energy for grain boundary self diffusion
in a-Ti (Qgb5187 kJ mol21)28 to estimate the neck size

ratio as a function of the sintering time, sintering
temperature and particle diameter. Substituting the onset

temperatures of 893 K for the as received powder
(D5120 mm) and 613 K for the 4 h ball milled sample

(D525 mm)with the same sintering time (e.g. 1 s at 893 K
for the as received powder and at 613 K for the 4 h ball

milled powder) into equation (3), one can find that the

Table 2 Density values of Ti–6–4 bodies sintered via various methods and conditions*

Sample condition Density/%theor

As received powder, sintered at 1250uC, 2 h, RHS 90

1 h ball milled powder, sintered at 1250uC, 2 h, RHS 75

4 h ball milled powder, sintered at 1250uC, 2 h, RHS 97

As received powder, shrinkage completion at 860uC, SPS 99z

4 h ball milled powder, shrinkage completion at 740uC, SPS 99z

4 h ball milled powder, heated to 600uC and hold for 5 min, SPS 96

4 h ball milled powder, sintered at 1250uC, 0.5 h, MWS 98 centre, 81 edge

4 h ball milled powder, sintered at 900uC, 1 h, MWS 95 centre, 80 edge

*All samples are made from the 4 h ball milled Ti–6–4 with 4 wt-% stearic acid unless indicated otherwise.

6 Punch displacement curves during SPS with heating

rate of 100uC min21; arrows point to onset temperature

for shrinkage during continuous heating for powder

compacts indicated



ratio of (x/D) for the as received powder to (x/D) for the
4 h ball milled powder is 185. In other words, if the
shrinkage of the 4 h ball milled powder at the initial stage
of sintering depends only on the mass transport from the
interparticle boundary area to the neck zone, the neck size
ratio of the 4 h ball milled sample would be about two
orders of magnitude smaller than that of the as received
powder sample. Since the neck size ratio of the 4 h ball
milled sample at 613 K is similar to that of the as received
powder sample at 893 K (as evidenced by the similar
shrinkage at 893 and 613 K for the as received and 4 h
ball milled powders respectively, shown in Fig. 6), one
can conclude that neck growth for the 4 h ball milled
sample does not rely only on the mass transport from the
interparticle boundary area to the neck zone. The mass
transport from the particle interior to the neck zone, due
to substantial nanograin boundaries inside each particle,
must also contribute to the neck growth and densification
of the 4 h ball milled sample. Therefore, high energy ball
milling has resulted in two beneficial effects on sintering
of Ti–6–4. These are reduced particle sizes and the
formation of nanostructure within each particle.

It should be pointed out that high energy ball milling
can also activate the surface of particles and increase their
reactivity.29–33 Thus, one may argue that high energy ball
milling also leads to enhanced surface diffusion due to the
activated surface. However, it is well known that mass
transport through surface diffusion does not result in
densification of a powder compact.34 Thus, the contribu-
tion of enhanced surface diffusion to densification, if any,
should be negligible. Therefore, the enhanced densifica-
tion observed for the 4 h ball milled sample should be
attributed to particle size reduction and nanograin
formation, as discussed above.

Densification enhancement through SPS
The present study also reveals that the densification
behaviour of Ti–6–4 can be improved immensely via SPS.
As shown in Table 2, the as received powder only leads to
in a porous body after sintering at 1250uC for 2 h via
RHS. In sharp contrast, a dense body can be formed via
SPS during continuous heating up to 860uCwith a heating
rate of 100uC min21. For the 4 h ball milled powder, the
enhancement is equally impressive. A sintered body of
97% dense can be obtained via RHS at 1250uC for 2 h.
However, a sintered body of .99% dense is obtained by
continuous heating up to 740uC only for SPS. This
represents a reduction of more than 500uC in the sintering
temperature when RHS is replaced by SPS. Furthermore,
it is noted that by adding a short holding time at a
preselected temperature the densification temperature of
SPS can be further reduced. For example, continuous
heating up to 600uC with a holding time of 5 min via SPS
has resulted in a sintered body of 96% dense, indicating
that with a finite holding time the completion temperature
for densification via SPS can be reduced by as much as
650uC from 1250uC for RHS.

The enhanced densification properties exhibited by SPS
could be ascribed to two mechanisms. First, the uniaxial
pressure of 50 MPa can force particle rearrangement and
the breakdown of agglomerates as well as inducing plastic
deformation at high temperatures. The latter can be
supported by the fact that Ti–6–4 can plastically deform
under 50 MPa with a strain rate of 1023 s21 at 775uC.35

In addition, it should be noted that the enhancement in
densification is not due to the uniaxial pressure of

50 MPa only. The intrinsic joule effect derived from the
pulsed current during SPS also plays an important role. A
previous study8 on the effect of uniaxial pressure using
experiments and finite element modelling has revealed
that applying 60 MPa with a holding time 10 min at
750uC only results in a Ti–6–4 body with,80% dense. In
the present study, a fully dense body is obtained by
continuous heating up to 740uC with a heating rate of
100uC min21 for SPS. Clearly, SPS has led to a far better
result than the case of applying 60 MPa at 750uC for
10 min. Thus, the intrinsic joule effect derived from the
pulsed current during SPS must also play a role in
enhancing densification. Since Ti–6–4 is a conducting
material, a fraction of the pulsed current can flow through
the powder compact resulting in heating by intrinsic joule
effect. This effect is particularly important at the contact
point between particles where the current density is
concentrated, resulting in an increase in the local
temperature and the enhanced diffusion.36–38 In addition,
the applied current can enhance sintering via non-thermal
effects, such as enhanced defect mobility, point defect
generation and electromigration.39

It is worth pointing out that the improved densification
behaviour of SPS over HP has also been reported for
commercially pure Ti powder.40 It has been shown that
SPS can result in dense Ti bodies at 730uC, while the same
Ti powder would require 950uC to become dense bodies
by usingHP.40Another study41 shows that commercial Ti
powder (,45 mm in size) can reach 99% density at 800uC
using SPS, again demonstrating that SPS can lead to low
temperature densification of Ti powder, while this is not
achievable through HP and RHS.

Microwave sintering behaviour
Unlike SPS, MWS, which relies on microwave energy to
stimulate solid state diffusion for densification, exhibits
similar sintering properties for Ti–6–4 as RHS. In MWS,
the porosity of the green body allows penetration of the
microwave fields into the metallic compact. These fields
induce eddy currents on particle surfaces, resulting into
heat generation.42 Thus, fully dense metallic bodies like
Ti–6–4 are relatively difficult to attain via MWS.
Nevertheless, slightly improved densification behaviour
over RHS has been observed, as evidenced by 98%
density at the centre of the as received powder sample
sintered at 1250uC for 0?5 h (Table 2). However, micro-
wave sintered samples show a gradient in density from the
centre of the pellet to the edge. This phenomenon stems
from the microwave interaction with the sample and
cooler chamber surfaces causing heat emanating from the
centre of the sample to flow outward. The gradient in
heating within the pellet causes the sintered body to show
a large amount of porosity near the edges, with nearly full
density at the core where the thermally driven diffusion
process is more prominent. This is different from RHS
that involves heating from the outside of the pellet. In
spite of different heating mechanisms, RHS and MWS
exhibit similar sintering effectiveness for Ti–6–4, as
revealed in this study.

Conclusions
In summary, the present study has revealed that high
energy ball milling of Ti–6–4 can greatly enhance
sintering properties of Ti–6–4 powder via two mechan-
isms. One is the reduction of particle sizes and the other



is the formation of nanostructure within each particle.
The former reduces the diffusion distance for densifica-
tion, whereas the latter introduces an additional
densification mechanism allowing mass transport from
the interior of the particle to the neck zone. Together,
these two effects can reduce the onset temperature
for densification by y300uC. SPS exhibits substantial
advantages over RHS and MWS, achieving nearly full
theoretical density in less than 5 min of sintering at
600uC. This is well below the critical temperature of
1000uC that must be avoided for co-sintering of Ti–Al–V
and HA composites. Thus, SPS is a viable option for the
functionally graded orthopaedic implants. The reduc-
tion in the densification temperature achieved via SPS
over RHS by as much as 650uC is attributed to particle
sliding and plastic deformation at high temperatures due
to the presence of the applied pressure (50 MPa) and the
intrinsic joule effect that results in an increase in the
local temperature at the contact point between particles.
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