
HAL Id: hal-01131888
https://hal.science/hal-01131888v1

Submitted on 16 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heuristic Solutions for the Vehicle Routing Problem
with Time Windows and Synchronized Visits

Sohaib Afifi, Duc-Cuong Dang, Aziz Moukrim

To cite this version:
Sohaib Afifi, Duc-Cuong Dang, Aziz Moukrim. Heuristic Solutions for the Vehicle Routing Prob-
lem with Time Windows and Synchronized Visits. Optimization Letters, 2016, 10 (3), pp.511-525.
�10.1007/s11590-015-0878-3�. �hal-01131888�

https://hal.science/hal-01131888v1
https://hal.archives-ouvertes.fr

manuscript No.
(will be inserted by the editor)

Heuristic Solutions for the Vehicle Routing Problem
with Time Windows and Synchronized Visits

Sohaib Afifi · Duc-Cuong Dang · Aziz
Moukrim

Received: date / Accepted: date

Abstract We present a simulated annealing based algorithm (SA-ILS) for a vari-
ant of the vehicle routing problem (VRP), in which a time window is associated
with each client service and some services require simultaneous visits from different
vehicles to be accomplished. The problem is called the VRP with time windows
and synchronized visits (VRPTWSyn). The algorithm features a set of local im-
provement methods to deal with various objectives of the problem. Experiments
conducted on the benchmark instances from the literature clearly show that our
method is fast and outperforms the existing approaches. It produces all known op-
timal solutions of the benchmark in very short computational times, and improves
the best results for the rest of the instances.

Keywords vehicle routing · synchronization · destruction/repair · local search ·
simulated annealing.

Introduction

The vehicle routing problem (VRP) [24] is a widely studied combinatorial op-
timization problem in which the objective is to plan optimal tours for a set of
vehicles serving a set of customers geographically distributed and respecting some
constraints. We are interested in a particular variant of VRP, the VRP with time
windows and synchronized visits (VRPTWSyn). In this problem, each client is

A preliminary version [1] of this paper was presented at the conference Learning and Intelligent
OptimizatioN (LION 7), 2013.

Sohaib Afifi · Aziz Moukrim
Université de Technologie de Compiègne
Laboratoire Heudiasyc, UMR 7253 CNRS, 60205 Compiègne, France
E-mail: {sohaib.afifi,aziz.moukrim}@hds.utc.fr

Duc-Cuong Dang
University of Nottingham
ASAP Research Group, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
E-mail: duc-cuong.dang@nottingham.ac.uk

2 Sohaib Afifi et al.

associated with a time window, e.g. an interval of time representing the availabil-
ity of the client to starting receiving the vehicle service. If the vehicle arrives too
soon it should wait until the opening of the time window to serve the client; while
late arrivals are not allowed. Additionally, for some clients, more than one visit
(e.g. two visits from two different vehicles) are required for the service and those
visits need to be synchronized, e.g. having the same start time. VRPTWSyn was
first studied in [7] with an application in homecare services for elders. In such
services, some operations may require more than one staff to be accomplished, for
example the ones demanding heavy lifts or requiring different sets of skills. Timing
and coordination are crucial for the success of the operations and the associated
temporal constraints must be taken into account during the construction of the
schedule.

As an extension of VRP, VRPTWSyn is clearly NP-Hard [17]. To the best of
our knowledge, there were only few attempts in the literature to solve this variant
of the problem [6, 7] and its generalizations [11, 20]. In those methods, solutions
are obtained by approximately or optimally solving integer linear programs. Thus,
constructing good solutions often require extensive computational times.

In detail, Bredström and Rönnqvist [7] studied the role of the synchroniza-
tion constraints found in real world applications and proposed a mathematical
formulation of VRPTWSyn. Three objectives of optimization were considered: (i)
minimizing the total travel time; (ii) maximizing the sum of preferences, this is
due to the fact that each client may like or dislike being served by a specific ve-
hicle; (iii) minimizing the difference between the longest and the shortest service
times among the vehicles in order to optimize the workload balance. For conve-
nience, we shall call the three objectives respectively travel cost, service reward
and attribution fairness. In practical applications, they can be addressed simul-
taneously, e.g. by aggregating them into a single objective using a set of weights.
To avoid negative weights in the aggregation, the minimization of the sum of the
negative preferences, e.g. dislike measures, is used instead of the maximization of
service reward. The authors proposed a variant of the local-branching approach
[14] to solve the problem. A set of benchmark instances was created to evaluate
the method. For analytical purposes, e.g. identify the strengths and weaknesses of
the approach, the three objectives were studied independently on those instances.
As concluded in the paper, fairness appears to be the most difficult to optimize.

As a continuity of [7], the same authors proposed a branch-and-price algorithm
focusing the first two objectives, the cost and reward, in [6]. The approach is in-
fluenced by the fleet assignment techniques of [15]. In the root node, the synchro-
nization constraints are relaxed and the linear model is basically a set partitioning
formulation. Then during the solving steps, the constraints are strengthened with a
branch-and-bound. This was done by repeatedly adjusting the arrival times of the
vehicles at the clients and by branching on time windows. The branch-and-price
algorithm was able to solve 44 out of 60 proposed instances to optimality.

In [20], a similar application in homecare services was studied with a particular
focus on the reward objective. The authors proposed a clustering scheme based
on the client preferences and a branch-and-price algorithm to solve the problem.
The algorithm was able to find good approximate solutions for instances that
were not solved to the optimality. The synchronization constraints were modeled
as generalized precedence constraints and then reinforced through branching. The

Heuristic solutions for VRPTWSyn 3

approach was tested on the standard instances of [7], as well as on real-world
instances collected from two Danish municipalities.

Later on, Dohn et al [11] presented a generalization of VRPTWSyn, the so-
called Vehicle Routing Problem with Time Windows and Temporal Dependencies
(VRPTWTD). In addition to the standard synchronization, more general require-
ments are studied, such as the maximum/minimum overlap and/or gap between
the starting time or ending time of visits. On the objective, only travel cost was
considered. A branch-and-cut-and-price algorithm was proposed to solve the gener-
alized problem and was tested on a set of instances derived from the 56 well-known
instances of Solomon’s benchmark for VRPTW [21]. Note that the results reported
in both papers [11] and [20] are general statistics, such as the number of instances
being solved to the optimality by the proposed method. Readers interested in
other variants or applications are referred to [13, 18, 26]. General perspectives of
temporal constraints for vehicle routing can be also found in the survey [12].

To summarize, only solving techniques based on linear programming were pro-
posed for VRPTWSyn. Motivated by the potential applications and by the chal-
lenge of computational time, we propose, in this work, a Simulated Annealing
based algorithm with dedicated local searches (SA-ILS) for solving VRPTWSyn.
Our SA-ILS uses several local search methods dedicated to the problem. It pro-
duces high quality solutions in very short computational time compared to the
other methods of the literature. New best solutions are discovered. A preliminary
version of this paper was communicated in [1], in which only dedicated heuristics
to optimize the travel cost had been developed and analyzed. The remainder of the
paper is organized as follows. Section 1 briefly presents the problem formulation.
In Section 2, the detailed description of the proposed SA-ILS algorithm is given.
The results of the experimental studies are reported in Section 3. Finally, some
concluding remarks are drawn in Section 4.

1 Problem formulation

The problem is modeled using an oriented graph G = (V +, A), where V + =
{0, . . . , n + 1} is the vertex set and A is the arc set. Vertices 0 and n + 1 are
the departure and arrival points respectively. The other vertices V = {1, . . . , n}
are the visit points where each one is associated to a client. A client can have
multiple visit points depending on the number of vehicles needed to delivery the
service. For example, if two visit points i and j are associated to the same client,
then the points are superposed and required to be visited by two distinct vehicles.
These two visits must be synchronized and we use [i, j] ∈ P sync to denote the set of
synchronizations. Also, for each i we denote by P sync

i = {j ∈ V + such that [i, j] ∈
P sync} the set of visits to be synchronized with.

A travel time δij is associated to each arc (i, j) ∈ A. For convenience, we
associate an infinite travel time δi,i = +∞ (δi,j = +∞) to non-existent arcs.
Each visit point i is associated with a service time Si and a time window [ai, bi]
where ai and bi specify the earliest and latest possible starting time of the service
(bi ≥ ai ≥ 0). For a given client, these data are identical for all the associated visit
points. The departure and arrival points are also associated with a time window
[E,L] ([a0, b0] = [an+1, bn+1] = [E,L] and S0 = 0).

4 Sohaib Afifi et al.

The fleet of vehicles is denoted by the set K = {1, . . . ,m}. Related to reward
objective, Pik defines the negative preference of the assignment of vehicle k to the
service of the client at point i. Let xijk ∈ {0, 1} ∀k ∈ K ∀(i, j) ∈ A be the binary
routing variables: xijk is set to 1 if vehicle k travels along arc (i, j), and to 0
otherwise. Let tik be the scheduling variables which represent the service starting
time of visit i by vehicle k (set to 0 if vehicle k does not serve i). We have the
following mixed integer programming model due to [7].

∑
k∈K

∑
j:(i,j)∈A

xijk = 1 ∀i ∈ V (1)∑
j:(0,j)∈A

x0jk =
∑

j:(j,n+1)∈A

xj(n+1)k = 1 ∀k ∈ K (2)∑
j:(i,j)∈A

xijk −
∑

j:(j,i)∈A

xjik = 0 ∀k ∈ K ∀i ∈ V (3)

tik + (δij + Si)xijk ≤ tjk + bi(1− xijk) ∀k ∈ K ∀(i, j) ∈ A (4)

ai
∑

j:(i,j)∈A

xijk ≤ tik ≤ bi
∑

j:(i,j)∈A

xijk ∀k ∈ K ∀i ∈ V (5)

ai ≤ tik ≤ bi ∀k ∈ K ∀i ∈ {0, n+ 1} (6)∑
k∈K

tik =
∑
k∈K

tjk ∀[i, j] ∈ P sync (7)∑
(i,j)∈A

Sixijk −
∑

(i,j)∈A

Sixijl ≤ W ∀k ∈ K ∀l ∈ K \ {k} (8)

xijk ∈ {0, 1} ∀k ∈ K ∀(i, j) ∈ A (9)

tik ≥ 0 ∀k ∈ K ∀i ∈ V +

W ≥ 0

While constraints (1) ensure that each visit point is served by exactly one
vehicle, constraints (2) ensure that every vehicle starts from the departure point
and returns to the arrival point. Constraints (3) guarantee that the same vehicle
enters and leaves a given client. The connectivity of each tour is guaranteed by (4)
and the time windows are respected with constraints (4), (5) and (6). Constraints
(7) ensure that synchronized visits start simultaneously. Inequalities (8) record the
gap between the longest and shortest service times of the fleet according to the
minimization objective. Finally, (9) are variables definition constraints.

The objective is to minimize either the total travel time (10a), the sum of as-
signed negative preferences (10b) or the difference in the attribution of the work-
load (10c).

min
∑
k∈K

∑
(i,j)∈A

δijxijk (10a)

min
∑
k∈K

∑
(i,j)∈A

Pikxijk (10b)

min W (10c)

Heuristic solutions for VRPTWSyn 5

Algorithm 1: Simulated annealing algorithm for VRPTWSyn

Output: Xbest, the best solution found so far by the algorithm;
1 X ← BestInsertion(∅);
2 X ← LocalSearch(X);
3 Xbest ← X;
4 T ← T0; iter ← 1;
5 repeat
6 if ((iter mod n) = 0) then
7 X′ ← Diversification(X, n2 , n);

8 else
9 X′ ← Diversification(X, 1, d);

10 X′ ← LocalSearch(X’);

11 ∆← Fitness(X′)− Fitness(X);
12 iter ← iter + 1;
13 T ← α× T ;
14 r ∼ Unif(0, 1);

15 if (r < e−
∆
T) then

16 X ← X′;
17 if (Fitness(X) < Fitness(Xbest)) then
18 iter ← 1;
19 Xbest ← X;

20 until (iter > itermax);

2 Simulated annealing algorithm

Our motivation in this work is to propose a fast dedicated heuristic solution for
VRPTWSyn. The global scheme of our approach is a Simulated Annealing algo-
rithm (SA) [16] which integrates a set of dedicated local searches. Recall that SA
is a stochastic local search which is often used to address discrete optimization
problems. The main idea of a Simulated Annealing algorithm is to occasionally
accept degraded solutions in the hope of escaping the current local optimum. The

probability of accepting a newly created solution is computed as e−
∆
T , where ∆ is

the difference of fitness between the new solution and the current one and T is the
current temperature. This parameter is initialized to some T0 then evolved during
the search by imitating the cooling process in metallurgy, e.g. controlled by the
coefficient α as in a geometric progression. Successful applications of SA-ILS in
VRP and its variants can be found in [4, 8, 9, 25].

Our SA-ILS is summarized in Algorithm 1. We use Fitness() to denote the
process of computing the objective value according to Equations (10a), (10b) and
(10c). SA-ILS memorizes the best discovered solutions so far and stops after a fixed
number of iterations without improvement of this solution. This number is set to
m × n. The other functions: BestInsertion(X), Diversification(X, dmin, dmax)
and LocalSearch(X ′) are described as follows.

2.1 Constructive heuristic

The procedure BestInsertion(X) is a constructive heuristic to build a solution
from scratch (X = ∅) or from a partial solution. A solution is called partial if some
visits are not routed. In each iteration of BestInsertion(X), a visit is heuristically
selected to be inserted in a route so that the increasing cost is minimized. The
algorithm is stopped when no more insertion is possible. The obtained solution
can be either complete, i.e. a feasible solution with all the visits being routed, or

6 Sohaib Afifi et al.

still partial, i.e. an infeasible solution. The later can happen for the instances of
VRPTWSyn [7], particularly for the ones with small or strict time windows. In
that case, unrouted visits are put in a pool for later attempts and a penalty cost
is added to the objective value. This penalty must be big enough to prefer feasible
solutions over infeasible ones and it must be proportional to the number of visits
in the pool in order to compare infeasible solutions, e.g. 103 × U where U is the
number of unrouted visits.

In order to evaluate each insertion cost in constant time, a calculation of pos-
sible positions to insert visits is first performed. Then information for each visit
is archived and updated during the process as follows. For each visit i, we use
Waiti to memorize the waiting time in case the arrival takes place before the
beginning of the time window, MaxShifti to compute the maximal delay of the
visit. Supposing that Arrivali and Starti are the arrival time and the starting
time of the service respectively, it holds that

Waiti = Starti −Arrivali (11)

Because of the synchronization constraints, Starti for some visits may be
delayed so that the client is simultaneously served by the assigned vehicles. For
a given route r, we also use function r(p) to denote the visit at position p in the
route. We now notice that MaxShiftr(p) is equal to the sum of Waitr(p+1) and
MaxShiftr(p+1), unless there is a time window bound.

MaxShiftr(p) := min{br(p) − Startr(p),Waitr(p+1) + MaxShiftr(p+1)} (12)

Besides, if visits need to be synchronized, the minimal value of MaxShift is
taken for all of them. Therefore, if there exists j ∈ V such that [r(p), j] ∈ P sync

we have:

MaxShiftr(p) := min{MaxShiftr(p), min
j∈P sync

r(p)

MaxShiftj} (13)

Therefore, an insertion of a visit k in a route r between p and p + 1 will be
considered to be valid if the generated shift Shiftr,p

k is less than or equal to the
sum of Waitr(p+1) + MaxShiftr(p+1).

Shiftr,p
k := δr(p)k + Waitk + Sk + δkr(p+1) − δr(p)r(p+1) (14)

As mentioned earlier, the insertion with the least cost is applied in each itera-
tion. The insertion cost is considered to be δr(p)k + δkr(p+1) − δr(p)r(p+1) for the
case of minimizing the travel cost, Pkr when dealing with the preference, and the
new W calculated using (10c) if optimizing the workload balance.

After the insertion, the update is propagated through different routes because
of the synchronization constraints. The propagation may loop infinitely if the cross
synchronizations are not prohibited, e.g. visiting u then v by the first vehicle,
visiting i then j by the second vehicle, and finally realizing that u and j are the
same client as well as v and i, e.g. [u, j], [v, i] ∈ P sync. To avoid such issues,
transitive closures [2] are computed to filter out cross synchronizations from the
set of possible positions for insertion. We use a reduced solution RSync(X) to refer
to a structure equivalent to solution X with only the synchronization visits (see
Fig. 1). This computation is applied on RSync(X) and takes O(s3) steps where
s is the number of synchronizations. Therefore, the complexity of constructing a
solution completely from scratch (worst-case) is O(n ·max{s3, n2}).

Heuristic solutions for VRPTWSyn 7

Fig. 1: Example of the RSync(X) solution representation

2.2 Diversification process

The function Diversification(X, dmin, dmax) first removes a number (randomly
generated between dmin and dmax) of visits from the current solution and runs
a local search procedure (described in Subsection 2.3) to improve this partial
solution. A reconstruction phase is then processed using the above constructive
heuristic. This iterative approach is similar to the destruction/repair operator used
in [5, 10]. At every iteration of the algorithm, the diversification process is applied
using d as the maximum number of visits to be removed. Except that after n
iterations without improvement a greater diversification process is applied. This
involves destroying a large part of the solution.

In addition, a dynamic priority management is also administered to identify
critical visits. Each visit is associated with a priority number initialized to 0. This
number is increased by 1 unit whenever the insertion of the visit cannot be done.
Visits having the highest priority, i.e. frequently caused infeasible solutions, are
in fact critical. Therefore, they need to be inserted during the early stages of the
constructive heuristic. With this dynamic management, the search is guided back
to the feasible space whenever it hits the infeasible one. In general, we observed
that the ration between infeasible and feasible solutions explored by our algorithm
varies from one instance to another. This generally depends on the size of the
time windows, e.g. the algorithm finds infeasible solutions more frequently with
instances having small time windows.

2.3 Local search procedure

The following neighborhoods were adapted to the synchronization constraints and
used in our local search procedure:

2-opt*, exchanges the tails of two routes:

In a 2-opt operator, the possibilities of exchanging two links with two others in
the same route are explored to find a local improvement. For the case of multiple
vehicles, we use 2-opt* [19] to denote the same principle of exchange but related
to two distinct routes. This operator consequently implies the exchanges of paths
between the two routes. It is particularly suitable for our case since it is hardly
possible for the classical 2-opt to find an improvement due to the preserved order
of visits from the time windows. Our 2-opt* is implemented as follows.

A subset of visits of size d is randomly selected and for each couple of visits
{r(p), r′(q)}, we consider the arcs (r(p), r(p + 1)) and (r′(q), r′(q + 1)). If the
exchange of these two arcs for (r(p), r′(q + 1)) and (r′(q), r(p + 1)) ensures the

8 Sohaib Afifi et al.

feasibility then the associated cost is recorded. The feasibility check is handled
by the same process as the one used in the constructive heuristic to avoid cross
synchronizations. Therefore, the exchange cost is evaluated in a constant time for
each couple {r(p), r′(q)}. After testing all the possible couples, the best one is then
memorized and the improving exchange is applied.

or-opt, relocation of visits in the same route:

In this operator [22], we look for the possibilities of relocating a sequence of (1,
2 or 3) visits from its original place to another one in the same route. The im-
plementation of this operator is similar to 2-opt* operator: a random selection
at the beginning then a feasibility check and the best move is applied. Although
this operator does not directly improve the objective when minimizing the sum of
preferences, it compacts the routes and makes room for further insertions.

replacement, exchanges between the routed and unrouted visits:

In this operator, we try to insert unrouted visits by mean of exchanging them with
routed visits. The operator is implemented with a full enumeration. That is to say
for each routed visit we try to exchange its position with all the unrouted visits.
Among the feasible exchanges that improve the objective, the best one is applied.

single-move, change the position of the routed visits:

This operator tries to move every routed visit from its current position to another
position so that the objective value is improved. Similar to replacement, a full
enumeration is considered and the best improving move is applied. Unlike or-opt,
the operator looks for potential positions in all routes and only one routed visit is
considered at a time.

At each iteration, a random neighborhood w is chosen from the set W of un-
explored neighborhoods, initialized to {2-opt*, or-opt, replacement, single-move}
denoted W0. Neighborhood w is then removed from W and applied on the current
solution. If at least one improvement is detected by the current neighborhood w,
the set of unexplored neighborhoods will be set back to W0. The procedure is
terminated when W is empty.

3 Experimentation

We tested our algorithm on the standard instances of [7]. The benchmark which
was generated to simulate the scheduling problem in homecare services, comprises
10 data sets. The sets are grouped in 3 categories based on the number of clients.
Each set has 5 varieties of instances, those are named after the width of the time
windows (Small, Medium and Large). In each instance, about 10% of the visits
need to be pairwisely synchronized.

Our algorithm is coded in C++ using the Standard Template Library (STL) for
data structures. The program is compiled with GNU GCC in a Linux environment
and all experiments were conducted on an Intel Xeon 2.67 GHz. Our configuration

Heuristic solutions for VRPTWSyn 9

is similar to the computational environment used by Bredström and Rönnqvist [6,
7]. According to the protocol proposed in [6], all the methods were tested with the
three varieties as mentioned earlier. We consider the three objectives separately:
minimizing the total travel time, minimizing the sum of negative preferences and
minimizing the maximal difference in service times of the vehicles.

The three parameters required to be tuned in our algorithm are: the initial tem-
perature T0, the control parameter α of the cooling schedule and d: the maximum
number of visits to be removed in the diversification phase.

The value of T0 is set during execution so that the probability of accepting
degrading solutions at the beginning is 0.95 (see [23]). First, 20 random neigh-
bors solutions of the initial solution are generated to measure the largest gap ∆f

between their qualities. Then, T0 is set to −∆f/ ln(0.95).
Concerning the two remaining parameters α and d, we explore to subset of

possible settings on a subset of training instances as follows. The control parameter
α was tested with values 0.9, 0.95, 0.99, 0.995, 0.999. For parameter d, we used
values in [1, 19]. This results 95 different combinations of the pair {α, d} for the
test. The training set is picked from the instances of the benchmark with more
than 50 clients. For each combination of the settings, the algorithm was executed
10 times per instance. Two following quantitative measures are used to compare
the combinations: the average relative gap to the best solutions found measured
in each objective, denoted by rpe and the average computation time, denoted by
cpu. In order to make the comparison, those measures are normalized into [0, 1]
interval as shown in Fig. 2. The best combination is then selected among the
non-dominated configuration points so that the euclidean distance to the ideal
point (0, 0) is minimized. Using this technique, we adopt the following parameter
settings: {α = 0.99, d = 10} (the highlighted point in the figure).

Comparative results

With the parameters found in the previous sections, our algorithm is then tested
on the whole benchmark. Tables 1, 2 and 3 report our results and compare them
with the existing methods in the literature. Column Best shows the best known
solution collected from all methods (including ours) for each instance. A star mark
(*) is used in Best to indicate that the solution has been proved to be optimal
by an exact method. The other columns are: MIP for the results of the linear
model solver reported in [7]; H for the heuristic proposed in [7] which was based
on the local-branching technique [14]; BP for the results of the branch-and-price
algorithms presented in [6]. They tested two variants of their algorithm when
treating the travel time, we denote them by BP1 and BP2. Finally the column SA-
ILS for our simulated annealing algorithm. Columns Sol and CPU report the best
solution found by each method and the computational time. Bold numbers in Sol
indicate that the solution quality reachesBest. The time unit in those tables for the
objective values like travel time or fairness is in hours, and for the computational
time is in seconds. Note also that, in order to establish an accurate comparison,
the results of H and MIP are reported based on our reimplementation of [7] using
the more recent version of CPLEX 12.6, and tested on the same environment of
computation as the one used by our SA-ILS. Compared to the originally published
results of [7], few improvements can be noticed.

10 Sohaib Afifi et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

cp
u

rpe

Fig. 2: Tradeoff between performance and computational time for different parameter
settings

H
eu

ristic
so

lu
tio

n
s

fo
r

V
R

P
T

W
S

y
n

1
1

Table 1: Comparison of the solutions and computational times for the total travel time

Data Best
MIP H BP1 BP2 SA-ILS

Sol CPU Sol CPU Sol CPU Sol CPU Sol CPU

1S 3.55* 3.55 3.43 3.55 120.03 3.55 1.96 3.55 1.12 3.55 0.02
1M 3.55* 3.55 14.48 3.55 120.25 3.55 221.93 3.55 3.69 3.55 0.02
1L 3.39* 3.39 76.71 3.39 120.48 3.39 107.41 3.39 11.91 3.39 0.03
2S 4.27* 4.27 0.22 4.27 120.07 4.27 3.28 4.27 0.56 4.27 0.02
2M 3.58* 3.58 25.97 3.58 120.11 3.58 8.12 3.58 3.2 3.58 0.03
2L 3.42* 3.42 183.11 3.42 120.95 3.42 2.72 3.42 7.41 3.42 0.03
3S 3.63* 3.63 1.79 3.63 120.26 3.63 14.17 3.63 3.84 3.63 0.02
3M 3.33* 3.33 21.24 3.33 120.19 3.33 17.57 3.33 4.31 3.33 0.03
3L 3.29* 3.29 96.47 3.29 120.6 3.29 42.78 3.29 1.44 3.29 0.02
4S 6.14* 6.14 30.9 6.14 120.16 6.14 14.02 6.14 1.54 6.14 0.02
4M 5.67* 5.67 1380 5.67 120.15 5.67 27.53 5.67 2.55 5.67 0.05
4L 5.13* 5.13 3600 5.3 120.04 5.13 9.74 5.13 7.69 5.13 0.09
5S 3.93* 3.93 6.99 3.93 120.13 3.93 2.84 3.93 2.9 3.93 0.03
5M 3.53* 3.53 6.2 3.53 120.09 3.53 57.04 3.53 9.1 3.53 0.03
5L 3.34* 3.34 225.23 3.34 120.85 3.34 9.11 3.34 5.15 3.34 0.03

6S 8.14* 8.14 3600 8.14 600.94 8.14 3600 8.14 197 8.14 13.97
6M 7.7 8.14 3600 11.63 609.58 7.71 3600 7.7 3600 7.7 26.68
6L 7.14* - 3600 - 624.06 7.14 3279 7.14 3600 7.14 15.86
7S 8.39* - 3600 8.97 603.97 8.39 14.72 8.39 169 8.39 15.08
7M 7.48 12.66 3600 - 648.02 7.67 3600 7.56 3600 7.48 18.34
7L 6.88 12.66 3600 - 645.33 6.88 3600 6.88 3600 6.88 15.92
8S 9.54* - 3600 - 657.03 9.54 931 9.54 850 9.54 25.13
8M 8.54* - 3600 - 632.61 8.54 3600 8.54 3490 8.54 15.01
8L 8 - 3600 - 618.63 8.62 3600 8.11 3600 8 24.51

9S 11.93 - 3600 - 626.26 - 3600 12.21 3600 11.93 150.52
9M 10.92 - 3600 - 612.19 11.74 3600 11.04 3600 10.92 292.17
9L 10.49 - 3600 - 607.36 11.11 3600 10.89 3600 10.49 207.17
10S 8.60 - 3600 - 604.46 - 3600 9.13 3600 8.60 16.10
10M 7.62 - 3600 - 705.2 8.54 3600 8.1 3600 7.62 52.75
10L 7.75 - 3600 - 631.39 - 3600 - 3600 7.75 51.89

1
2

S
o
h

a
ib

A
fi

fi
et

a
l.

Table 2: Comparison of the solutions and computational times for the sum of negative preferences

Data Best
MIP H BP SA-ILS

Sol CPU Sol CPU Sol CPU Sol CPU

1S -114.03* -114.03 1.05 -114.03 3600 -114.03 1.27 -114.03 0.03
1M -117.8* -117.8 1.04 -117.8 3600 -117.8 1.68 -117.8 0.02
1L -118.51* -118.51 0.52 -117.8 3600 -118.51 2.55 -118.51 0.04
2S -92.09* -92.09 0.58 -92.09 3600 -92.09 0.6 -92.09 0.05
2M -104.81* -104.81 32.94 -104.81 3600 -104.81 2.3 -104.81 0.04
2L -107.64* -107.64 427.74 -107.64 3600 -107.64 6.44 -107.64 0.38
3S -99.49* -99.49 0.95 -99.49 3600 -99.49 1.66 -99.49 0.02
3M -106.59* -106.59 2.79 -106.59 3600 -106.59 2.01 -106.59 0.07
3L -107.87* -107.87 1.95 -107.87 3600 -107.87 2.63 -107.87 0.14
4S -100* -100 2.22 -100 3600 -100 1.72 -100 0.03
4M -106.72* -106.72 68.26 -106.72 3600 -106.72 2.36 -106.72 0.07
4L -109.27* -109.27 170.25 -109.27 3600 -109.27 5.04 -109.27 0.13
5S -76.29* -76.29 0.26 -76.29 3600 -76.29 0.64 -76.29 0.02
5M -76.29* -76.29 1.08 -76.29 3600 -76.29 1.28 -76.29 0.03
5L -84.21* -84.21 16.33 -84.21 3600 -84.21 2.21 -84.21 0.04

6S -370.06* -370.06 1452.76 -370.06 3600 -370.06 150.63 -370.06 0.7
6M -379.88* -372.4 3600 -374.257 3600 -379.88 247.88 -379.88 25.26
6L -387.2* - 3600 -368.876 3600 -387.2 474.15 -387.2 16.33
7S -401.11* - 3600 -296.725 3600 -401.11 291.29 -401.11 0.58
7M -406.17* - 3600 -368.565 3600 -406.17 86.7 -406.17 6.48
7L -407.48* - 3600 -355.716 3600 -407.48 710.62 -407.48 2.53
8S -380.76* - 3600 - 3600 -380.76 135.39 -380.76 26.12
8M -403.57* - 3600 - 3600 -403.57 290.77 -403.57 59.34
8L -407.48 - 3600 - 3600 -407.48 362.18 -407.48 20.51

9S -581.12 - 3600 - 3600 -552.65 3600 -581.12 117.4
9M -656.5 - 3600 - 3600 -463.82 3600 -656.5 10.90
9L -666.5 - 3600 - 3600 -663.47 3600 -666.5 17.81
10S -675.81 - 3600 - 3600 -675.81 3600 -675.81 162.42
10M -686.75 - 3600 - 3600 -685.31 3600 -686.75 150.63
10L -691.48 - 3600 -445.027 3600 -691.34 3600 -691.48 270.26

Heuristic solutions for VRPTWSyn 13

Table 3: Comparison of the solutions and computational times for the fairness objective

Data Best
MIP H SA-ILS

Sol CPU Sol CPU Sol CPU

1S 0* 0 444.1 0.03 3600 0 0.30
1M 0* 0 0.14 0 3600 0 0.45
1L 0* 0 0.16 0 3600 0 0.61
2S 0.01 0.04 3600 0.01 3600 0.01 0.30
2M 0.01 0.04 3600 0.01 3600 0.01 0.60
2L 0.01 - 3600 0.01 3600 0.01 0.81
3S 0.01 0.06 3600 0.01 3600 0.01 0.49
3M 0.01 0.06 3600 0.01 3600 0.01 0.65
3L 0.01 0.06 3600 0.01 3600 0.01 0.70
4S 0.07 0.13 3600 0.07 3600 0.07 0.61
4M 0.02 0.08 3600 0.03 3600 0.02 0.73
4L 0.02 0.08 3600 0.02 3600 0.02 0.46
5S 0.01 0.08 3600 0.01 3600 0.01 0.39
5M 0.01 0.08 3600 0.01 3600 0.01 0.69
5L 0.01 0.06 3600 0.03 3600 0.01 1.13

6S 0.11 - 3600 0.7 3600 0.11 2.35
6M 0.07 - 3600 0.56 3600 0.07 18.32
6L 0.12 - 3600 1.75 3600 0.12 0.57
7S 0.18 - 3600 1.59 3600 0.18 1.04
7M 0.15 - 3600 - 3600 0.15 0.97
7L 0.14 0.77 3600 - 3600 0.14 0.84
8S 0.36 - 3600 - 3600 0.36 1.36
8M 0.33 - 3600 - 3600 0.33 0.84
8L 0.32 - 3600 - 3600 0.32 1.19

9S 0.45 - 3600 - 3600 0.45 4.09
9M 0.23 - 3600 - 3600 0.23 3.43
9L 0.46 - 3600 - 3600 0.46 3.35
10S 0.22 - 3600 - 3600 0.22 3.57
10M 0.28 - 3600 - 3600 0.28 5.20
10L 0.25 - 3600 - 3600 0.25 6.22

From these results, we remark that SA-ILS finds all known optimal solutions
(20 of 30 when minimizing the total travel time and 24 of 30 when minimizing
the sum of preference) in very short computational times compared to the other
methods. The solution quality for the remaining instances is also better than the
one found in the literature.

For the total travel time, the algorithm strictly improved the best known so-
lutions for 8 instances of the data sets. Those instances are 7M , 8L, 9S, 9M ,
9L, 10S, 10M and 10L. For the sum of negative preferences, we could improve 5
instances. Those instances are 9S, 9M , 9L, 10M and 10L.

For the fairness objective, only the instances with 20 clients had been reported
with results in the literature. For example, the objective is completely ignored
in [6]. However, since our algorithm can produce feasible solutions for all the
objectives, Table 3 shows our complete results on this objective compared with
the ones from the literature. Unreported results are marked with a dash. In general,
we obtained solutions with better quality and within comparable computational
times. To summarize, our SA-ILS is clearly fast and efficient in optimizing the
three studied objectives.

14 Sohaib Afifi et al.

4 Conclusion

In this paper, we proposed a new approach to address VRPTWSyn. The approach
is based on a Simulated Annealing algorithm and featured a Local Search pro-
cedure. To the best of our knowledge, this is the first time that dedicated local
search heuristics have been proposed and evaluated on this variant of VRP. The
experiments conducted on the standard benchmark [7] for VRPTWSyn clearly
demonstrate the efficiency and the competitiveness of our approach compared
to the existing methods in the literature. The results also confirm that destruc-
tion/repair operator and local search heuristics can be efficiently adapted to sup-
port the synchronization constraints.

As a future work, we plan to develop efficient exact methods to solve VRPTWSyn
since there is still unsolved instances in the benchmark. In particular, having an
efficient algorithm being able to produce high quality feasible solutions in short
computational times, such as our SA-ILS, is a significant advantage. For exam-
ple, those solutions can be used as warm start for the exact methods. Another
interesting direction could be considering the three objectives at the same time,
e.g. addressing VRPTWSyn as a truly multi-objective problem, and developing a
population-based algorithm from SA-ILS, as similar to [3].

Acknowledgements This work was partially supported by the Regional Council of Picardy
and the European Regional Development Fund (ERDF), under PRIMA project. It was also
partially supported by the National Agency for Research, under ATHENA project, reference
ANR-13-BS02-0006-01. This work was carried out in the framework of the Labex MS2T, which
was funded by the French Government, through the program “Investments for the future”
managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

References

1. Afifi S, Dang DC, Moukrim A (2013) A simulated annealing algorithm for the
vehicle routing problem with time windows and synchronization constraints.
In: Proc. of LION-7, Lecture Notes in Computer Science, vol 7997, pp 259–265

2. Aho AV, Garey MR, Ullman JD (1972) The transitive reduction of a directed
graph. SIAM Journal on Computing 1(2):131–137

3. Baños R, Ortega J, Gil C, Márquez AL, De Toro F (2013) A hybrid meta-
heuristic for multi-objective vehicle routing problems with time windows.
Computers & Industrial Engineering 65(2):286–296

4. Baños R, Ortega J, Gil C, Fernandez A, De Toro F (2013) A simulated
annealing-based parallel multi-objective approach to vehicle routing problems
with time windows. Expert Systems with Applications 40(5):1696–1707

5. Bouly H, Dang DC, Moukrim A (2009) A memetic algorithm for the team
orienteering problem. 4OR 8(1):49–70

6. Bredström D, Rönnqvist M (2007) A branch and price algorithm for the
combined vehicle routing and scheduling problem with synchronization con-
straints. NHH Dept of Finance and Management Science Discussion Paper

7. Bredström D, Rönnqvist M (2008) Combined vehicle routing and scheduling
with temporal precedence and synchronization constraints. European Journal
of Operational Research 191(1):19–31

Heuristic solutions for VRPTWSyn 15

8. Chiang WC, Russell RA (1996) Simulated annealing metaheuristics for the
vehicle routing problem with time windows. Annals of Operations Research
63(1):3–27

9. Czech Z, Czarnas P (2002) Parallel simulated annealing for the vehicle routing
problem with time windows. Proc of 10th Euromicro Workshop on Parallel,
Distributed and Network-based Processing

10. Dang DC, Guibadj RN, Moukrim A (2013) An effective PSO-inspired algo-
rithm for the team orienteering problem. European Journal of Operational
Research 229(2):332–344

11. Dohn A, Rasmussen MS, Larsen J (2011) The Vehicle Routing Problem with
Time Windows and Temporal Dependencies. Networks 58(4):273–289

12. Drexl M (2012) Synchronization in vehicle routing a survey of VRPs with
multiple synchronization constraints. Transportation Science 46(3):297–316

13. El Hachemi N, Gendreau M, Rousseau LM (2013) A heuristic to solve the
synchronized log-truck scheduling problem. Computers & Operations Research
40(3):666–673

14. Fischetti M, Lodi A (2003) Local branching. Mathematical Programming 98(1-
3):23–47

15. Ioachim I, Desrosiers J, Soumis F, Bélanger N (1999) Fleet assignment and
routing with schedule synchronization constraints. European Journal of Op-
erational Research 119(1):75 – 90

16. Kirkpatrick S, Vecchi M, et al (1983) Optimization by simmulated annealing.
science 220(4598):671–680

17. Lenstra JK, Kan A (1981) Complexity of vehicle routing and scheduling prob-
lems. Networks 11(2):221–227

18. Li Y, Lim A, Rodrigues B (2005) Manpower allocation with time windows and
job-teaming constraints. Naval Research Logistics (NRL) 52(4):302–311

19. Potvin JY, Kervahut T, Garcia BL, Rousseau JM (1996) The vehicle rout-
ing problem with time windows part I: tabu search. INFORMS Journal on
Computing 8(2):158–164

20. Rasmussen MS, Justesen T, Dohn A, Larsen J (2012) The home care crew
scheduling problem: Preference-based visit clustering and temporal dependen-
cies. European Journal of Operational Research 219(3):598–610

21. Solomon MM (1987) Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Operations research 35(2):254–265

22. Solomon MM, Desrosiers J (1988) Time window constrained routing and
scheduling problems. Transportation science 22:1–13

23. Tavakkoli-Moghaddam R, Gazanfari M, Alinaghian M, Salamatbakhsh A,
Norouzi N (2011) A new mathematical model for a competitive vehicle rout-
ing problem with time windows solved by simulated annealing. Journal of
Manufacturing Systems 30(2):83–92

24. Toth P, Vigo D (2002) An overview of vehicle routing problems. The vehicle
routing problem 9:1–26

25. Van Breedam A (1995) Improvement heuristics for the vehicle routing prob-
lem based on simulated annealing. European Journal of Operational Research
86(3):480–490

26. Wen M, Larsen J, Clausen J, Cordeau JF, Laporte G (2009) Vehicle routing
with cross-docking. Journal of the Operational Research Society 60(12):1708–
1718

