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Data describing human interactions often suffer from incomplete sampling of the underlying pop-
ulation. As a consequence, the study of contagion processes using data-driven models can lead to a
severe underestimation of the epidemic risk. Here we present a systematic method to correct this
bias and obtain an accurate estimation of the risk in the context of epidemic models informed by
high-resolution time-resolved contact data. We consider several such data sets collected in various
contexts and perform controlled resampling experiments. We show that the statistical information
contained in the resampled data allows us to build surrogate versions of the unknown contacts and
that simulations of epidemic processes using these surrogate data sets yield good estimates of the
outcome of simulations performed using the complete data set. We discuss limitations and potential

improvements of our method.

Human interactions play an important role in deter-
mining the potential transmission routes of infectious dis-
eases and other contagion phenomena [1]. Their measure
and characterisation thus represent an invaluable contri-
bution notably to the study of transmissible diseases [2].
In this context, the use of surveys and diaries in which
volunteer participants record their encounters [3-8] have
provided crucial insight, despite the memory biases in-
herent in self-reporting procedures [4, 9, 10]. Moreover,
new approaches have emerged to measure contact pat-
terns between individuals, using wearable sensors that
can detect the proximity of other similar devices [11-20].
Data gathering efforts have produced data sets describ-
ing the contact patterns between individuals in various
contexts in the form of temporal networks [15, 17, 21-24]:
nodes represent individuals and, at each time step, a link
is drawn between pairs of individuals who are in contact
[25]. Such data can inform models of epidemic spread-
ing phenomena to evaluate epidemic risks and mitigation
strategies [15, 22, 26-31].

However, most data sets suffer from population sam-
pling: despite efforts to maximise participation, for
instance through scientific engagement of participants
[24, 32], not all individuals accept to participate. Hence,
the collected data only contains information on con-
tacts occurring among a fraction of the population under
study.

Population sampling is known to affect the properties
of static networks [33, 34]: Various statistical properties
of a sampled network may differ from those of the com-
plete system under scrutiny [35], and several works have
focused on inferring network statistics from the knowl-
edge of incomplete, sampled network data [36-39]. Both
structural and temporal properties of time-varying net-
works are as well affected by sampling effects.

In addition, a crucial though poorly studied conse-
quence of population sampling is that simulations of dy-
namical processes in data-driven models can be affected.
For instance, in simulations of epidemic spreading, ex-

cluded nodes are by definition unreachable and thus
equivalent to immunised nodes. Due to herd vaccination
effects, the outcome of simulations of epidemic models
on sampled networks is thus underestimated. How to es-
timate the outcome of dynamical processes on contact
networks using incomplete data remains an open ques-
tion.

Here we tackle this issue for incompletely sampled data
describing networks of human face-to-face interactions.
We do not aim at inferring the true sequence of missing
contacts but at estimating the outcome of simulations of
models of epidemic spread in the whole population. To
this effect, we resample available data sets by excluding
at random a fraction of the individuals (nodes of the con-
tact network), measure how resampling affects relevant
network statistics and show that some crucial proper-
ties are stable under resampling. We exploit this sta-
bility to present a systematic method to construct surro-
gate contact sequences for the excluded nodes, using only
information available in the resampled data. We show
that the outcome of simulations performed on the recon-
structed data sets, obtained by the union of the resam-
pled and surrogate contacts, reproduces results obtained
on the complete data set, while using only the resampled
data severely underestimates the epidemic risk. We show
the efficiency of our procedure for data collected in three
widely different contexts: a conference, a high school and
a workplace.

RESULTS
Data & Methodology

We consider data sets describing contacts between indi-
viduals, collected by the SocioPatterns collaboration [17]
in three different settings: an office building ("InVS”)
[40], a high school (”Thiers13”) [24] and a scientific con-



ference ("SFHH”) [21, 22]. These data correspond to
the close face-to-face proximity of individuals equipped
with wearable sensors, at a temporal resolution of 20 sec-
onds [17, 18]. Table I summarises the characteristics of
each data set. The contact data are represented by tem-
poral networks, in which nodes represent the participat-
ing individuals and a link between two nodes ¢ and j at
time t indicates that the two corresponding persons were
in contact at that time. Moreover, the InVS and Thiers13
populations were structured in departments and classes,
respectively (see Methods).

To understand how sampling affects the properties of
the temporal networks, the outcome of simulations of dy-
namical processes, and, ultimately, how to compensate
for these effects, we consider as ground truth the available
data! and perform population resampling experiments by
removing a fraction f of the nodes uniformly at random.
We explore how several characteristics of the temporal
networks depend on f and how the outcome of numeri-
cal simulations of epidemic spread is biased by such re-
sampling. We then present a method for constructing
surrogate data using only information contained in the
resampled data and show that it allows us to obtain a
good estimate of the outcome of processes simulated on
the complete data set.

Specifically, we consider the Susceptible-Infectious-
Recovered (SIR) and the Susceptible-Infectious-
Susceptible (SIS) models of epidemic propagation. In
these models, a susceptible (S) node becomes infectious
(I) at rate 8 when in contact with an infectious node.
Infectious nodes recover spontaneously at rate p. In the
SIR model, nodes then enter an immune recovered (R)
state, while in the SIS model, nodes become susceptible
again and can thus be reinfected. @ The quantities
of interest are for the SIR model the distribution of
epidemic sizes, defined as the final fraction of recovered
nodes, and for the SIS model the average fraction of
infectious nodes i, in the stationary state. We also
calculate for the SIR model the fraction of epidemics
that infect more than 20% of the population and the
average size of these epidemics. For the SIS model, we
determine the epidemic threshold (3. for different values
of u: it corresponds to the value of § that separates an
epidemic-free state (i, = 0) for § < . from an endemic
state (i > 0) for 8 > f., and is thus an important
indicator of the epidemic risk. We refer to the Methods
section for further details on models and simulations.

To validate our method, we compare for each data set
the outcomes of simulations performed (i) on the whole
data set, (ii) on resampled data sets with a varying frac-
tion of nodes removed, f, and (iii) on reconstructed data
sets built to compensate for sampling effects.

1 Note that the full data sets are also samples of all the contacts
that occurred in the populations, as the participation rate was
lower than 100% in each case.

Resampled contact networks

Sampling affects the various properties of contact net-
works in different ways. The number of neighbours of
a node decreases as the fraction f of removed nodes in-
creases (Supplementary Fig. S1) since removing nodes
also removes links to these nodes. On the contrary, the
density of the resampled aggregated network, defined as
the number of links divided by the total number of possi-
ble links between the nodes, remains stable (Supplemen-
tary Fig. S2).

We moreover show in Supplementary Figs. S2-S4 that
the group structure of a population, as summarised by
contact matrices, is well preserved under resampling.
Contact matrices give a measure of the interaction be-
tween groups (here classes or departments). Here we
consider the link density matrix, where the element (i, j)
is given by the number of links between individuals of
groups ¢ and j in the aggregated contact network, nor-
malised by the total number of possible links between
these two groups?. Table II and Supplementary Fig. S2
show that the similarities between the original and sam-
pled matrices are high for all data sets (see Supplemen-
tary Figs. S3-S4 for the contact matrices themselves).

Finally, the temporal statistics of the contact network
are not affected by population sampling, as already noted
in [18] for other data sets: the distributions of contact du-
rations, of inter-contact durations, of number of contacts
per link and of cumulated contact durations (i.e., of the
link weights in the aggregated network) do not change
when the network is sampled (Supplementary Fig. S1).

Despite the robustness of these properties under sam-
pling, the outcome of simulations of epidemic spread is
strongly affected by the resampling (Figs. 1 and 2). In
particular, for large values of f, the probability of large
outbreaks in the SIR model vanishes (Fig. 1). As men-
tioned above, the reason is that the removed nodes act
as if they were immunised: sampling hinders the propa-
gation by removing transmission routes between the re-
maining nodes. As a result, the prevalence and the final
size of the outbreaks are systematically underestimated
by simulations of the SIR model on the resampled net-
work with respect to simulations on the whole data set
(Fig. 1), and the epidemic threshold of the SIS model is
overestimated (Fig. 2): resampling leads to a systematic
underestimation of the epidemic risk.

Estimation of epidemic sizes through simulations on
reconstructed temporal networks

We now develop a method able to compensate for the
bias due to population sampling in the simulations of

2 If n; denotes the number of individuals in group 4, the number
of possible links is equal to n;n;/2 for ¢ # j and to n;(n; —1)/2
for i = j.



epidemic spread. To this aim, we use only information
measured in the resampled network that has been shown
above to be robust under resampling, namely the density
of the aggregated contact network, the contact matrices
of link density and the distributions of number of contacts
per link and of contact and inter-contact durations. We
assume that the number of missing nodes in each group
is known, as well as the timelines of scheduled activity
(nights and weekends, during which no contact occurs).

For each data set, considered as ground truth, we cre-
ate resampled data sets by removing at random a frac-
tion f of the N nodes. We measure on each resampled
data set the contact network density, the contact ma-
trix of link densities between groups (for the structured
population cases) as well as the distributions mentioned
above. We then construct stochastic, surrogate versions
of the missing part of the network, as described in detail
in the Methods section: We create for each missing node
a surrogate instance of its links, in a way to keep the
density of the network and the density of links between
groups of nodes fixed (equal to the value measured in
the resampled data); we then create a synthetic timeline
of contacts on each surrogate link, extracted at random
from the measured distributions. The statistical proper-
ties of the resulting reconstructed (surrogate) networks,
obtained by the union of the resampled data and of the
surrogate links, are similar to the ones of the original data
(Table IT and Supplementary Figs. S5-S10). In particu-
lar, the method conserves the distribution of link weights
(W), the group structure (S), and the temporal (T) char-
acteristics of individual links; we thus refer to it in the
following as the WST method. We emphasise that our
aim is not to infer the true missing contacts, and we do
not compare the detailed structures of the surrogate and
original contact networks. Instead, we simply aim at ob-
taining a surrogate version of these contacts, such that
the resulting simulations of epidemic spread yield out-
comes close to the ones obtained when the whole data
set is used.

Figure 1 shows that the distribution of final epidemic
sizes for the SIR model on surrogate networks is much
closer to those obtained by simulating on the whole data
set than for the simulations performed on the resampled
networks. Instead of a severe underestimation of epi-
demic sizes, we obtain a slight overestimation. We quan-
tify this result in Fig. 3 where we display the fraction
of outbreaks that reach at least 20 % of the population
and the average epidemic size for these outbreaks, for
simulations performed on either resampled or surrogate
networks. In the case of resampled data, we rapidly lose
information about the size and even the existence of large
outbreaks, whereas this crucial information is well recov-
ered when using surrogate networks, even when a large
fraction of nodes are removed. We show in the Supple-
mentary Information that similar results are obtained for
different values of the spreading parameters. Moreover,
as shown in Fig. 2 and Supplementary Figs. S11-S12,
the phase diagram obtained for the SIS model when us-

ing reconstructed networks is much closer to the original
than for resampled networks, in particular concerning the
value of the epidemic threshold. Overall, simulations us-
ing the reconstructed network yield a much better esti-
mation of the epidemic risk than simulations using re-
sampled network data, for both SIS and SIR models.

When the fraction f of nodes excluded by the resam-
pling procedure becomes large, the properties of the re-
sampled data may start to differ substantially from those
of the whole data set (Figs. S1 & S2). As a result, the
distributions of epidemic sizes of SIR simulations deviate
from those obtained on the whole data set (Fig. 4), even if
the epidemic risk evaluation is still better than for simula-
tions on the resampled networks. Most importantly how-
ever, the information remaining in the resampled data at
large f can be insufficient to construct surrogate con-
tacts. This happens in particular if an entire class or
department is absent from the resampled data or if all
the resampled nodes of a class/department are discon-
nected (see Supplementary Information for details). We
investigate this limitation in the bottom plots of Fig. 3 by
showing the failure rate, i.e., the fraction of cases in which
we are not able to construct surrogate networks from the
resampled data. The failure rate increases gradually with
f for the InVS data since the groups (departments) are
of different sizes. For the Thiersl13 data, all classes are
of similar sizes so that the failure rate reaches abruptly
a large value at a given value of f. For the SFHH data,
we can always construct surrogate networks as the pop-
ulation is not structured.

Reconstruction methods using partial information

A natural question concerns how much information
is needed to build the surrogate networks. The WST
method uses the contact matrix of link densities and
the distributions of contact durations, inter-contact du-
rations and numbers of contacts per link. We investigate
here three alternative procedures that use less informa-
tion, still only computed from the resampled data:

e W: we construct surrogate networks that conserve
the overall link density and the distribution of
weights found in the resampled data. The group
structure (S) and temporal characteristics (T) of
contacts are not conserved.

e WS: in addition to the W construction, we here
use the contact matrix of link densities to conserve
the group structure (S) of the network.

e WT: we construct the surrogate links as in the W
method, without taking into account the link den-
sity contact matrix (S), but with contact timelines
on each surrogate link that conserve the temporal
characteristics (T) of the individual links.

Details of these methods are given in the Supplementary
Information.



The results of SIR simulations performed on the re-
sulting surrogate networks are shown in Fig. 3. All three
methods using partial information lead to a larger over-
estimation of the epidemic risk than the WST method.
The W method consistently gives the worst results, as
infections spread easier on random homogeneous graphs
than on structured graphs [41, 42]. Taking into account
the population structure yields slightly better results
(WS case), while using realistic contact sequences (i.e.,
taking into account the heterogeneity of contact numbers
and durations and the burstiness of contacts) has an even
stronger effect (WT). Overall, surrogate networks that
respect all these constraints (WST) yield the best re-
sults.

DISCUSSION

The understanding of epidemic spreading phenomena
have been vastly improved thanks to the use of data-
driven models. In the case of contact data, population
sampling represents however a serious issue: individuals
absent from a data set have the same role as immunised
individuals when epidemic processes are simulated. Feed-
ing sampled data into data-driven models can therefore
lead to severe underestimations of the epidemic risk and
might even a priori affect the evaluation of mitigation
strategies.

Here we have put forward a systematic method to
compensate for such underestimation in simulations per-
formed using sampled contact data and to obtain a good
estimate of the epidemic risk in the entire population,
as measured by the distribution of outbreak sizes and
by the epidemic threshold. To this aim, we have shown
how it is possible, starting from a data set describing the
contacts of only a fraction of the population of interest,
to construct a surrogate data set that uses only accessi-
ble information, i.e., quantities measured in the sampled
data: the contact network density, the densities of links
between groups in a structured population, and the dis-
tributions of numbers and durations of contacts and of
inter-contact durations. Simulations of epidemic spread-
ing on such surrogate data yield results similar to those
obtained on the complete data set, albeit with a small
overestimation of the risk (which, from a public health
point of view, is much better than a large underestima-
tion).

Strikingly, the method presented here yields good re-
sults even when a substantial part of the population is
excluded, in particular in estimating the probability of
large outbreaks. It has however two limitations when the
fraction f of excluded individuals is too large. First, the
construction of the surrogate contacts relies on the sta-
bility of a set of quantities with respect to resampling,
but the measured quantities start to deviate from the
original ones at large f. The shape of the distribution of
epidemic sizes may then deviate substantially from the
original one. Second, large values of f might even render

the construction of the surrogate data impossible due to
the loss of information on whole categories of nodes.

Another important point concerns the issue of how
much information should be included when construct-
ing the surrogate data. It is linked to the general is-
sue of how much information is needed to get an accu-
rate picture of spreading processes on temporal networks
[22, 27, 29, 43, 44]. On the one hand, we have shown that
using less information to build the surrogate data yields
worse results. On the other hand, the surrogate contacts
do not take into account any correlations between struc-
ture and activity in the temporal contact network, which
are known to influence spreading processes [21, 42, 44—
47]. This might be the cause of the systematic overesti-
mation of the epidemic sizes in simulations using recon-
structed data (Figs. 1 and 3). From this point of view,
our method could be improved by integrating into the
surrogate data complex correlation patterns measured in
the sampled data. It might for instance be possible to
use the temporal network decomposition technique put
forward in [47, 48] on the sampled data, in order to ex-
tract mesostructures such as temporally-localized mixing
patterns. The surrogate contacts could then be built in
a way to preserve such patterns.

Finally, we have considered uniform sampling of nodes,
corresponding to data collection in a population with a
participation rate smaller than 100%. It would be in-
teresting to consider as well other types of data losses,
due for instance to a partial coverage of the premises of
interest by the measuring infrastructure [17]. Moreover,
the population under study is (usually) not isolated from
the external world, and it would be important to devise
ways to include contacts with outsiders in the data and
simulations, for instance by using other data sources such
as surveys.
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METHODS

Data

Two of the data sets used in our study — the high
school (Thiers13) and the office building (InVS) — are
structured in groups corresponding respectively to classes
and departments. For the conference data (SFHH), we
instead do not have metadata on the participants, and
it has been shown in [22] that the aggregated network
structure was homogeneous.

The high school is structured in 9 classes, which form
three subgroups of three classes corresponding to their
specialisation in Mathematics-Physics (MP, MP*1, MP*2
with respectively 31, 29 and 38 students), Physics (PC,
PC*, PSI with respectively 44, 39 and 34 students), or
Biology (2BI01, 2BIO2, 2BIO3 with respectively 37, 35
and 39 students).

The office building is structured in 5 departments:
DISQ (Scientific Direction, 15 persons), DMCT (Depart-
ment of Chronic Diseases and Traumatisms, 26 persons),
DSE (Department of Health and Environment, 34 per-
sons), SRH (Human Resources, 13 persons) and SFLE
(Logistics, 4 persons).

SIR simulations

In the SIR model, all nodes are initially susceptible,
except one infectious node, the seed of the epidemic. A
susceptible node in contact with an infectious node be-
comes infectious at rate 8. Infectious nodes enter the
recovered state at rate u.

Spreading simulations are performed using the tempo-
ral networks of contacts (original, resampled or recon-
structed). We run each simulation until no infectious in-
dividual remains (nodes are thus either still susceptible or
have been infected and then recovered). If needed, the
sequence of contacts is repeated in the simulation [22].
We consider values of 5 and p yielding a non-negligible
epidemic risk, i.e., such that a rather large fraction of
simulations lead to a final size larger than 20% of the pop-
ulation (see Fig. 1): B =4 x 107%s71, yp =4 x 1077571
(InVS) or 4 x 1075s7! (SFHH and Thiers13). Other
parameter values are explored in the Supplementary In-
formation. For each set of parameters, the distribution
of epidemic sizes is obtained by performing 1,000 simu-
lations.

SIS phase diagram

In the SIS model infectious nodes become susceptible
again at rate p. Depending on the values of 8 and pu,
the outbreak can either die out or reach a stationary
state. For each value of u, there is a critical threshold
value for § where the system goes continuously from a
stationary state with no infectious nodes, to a stationary
state with a finite fraction of infectious nodes. In order
to determine this threshold, we follow [49] and write the
(

Markov chain equation for the probability pit) for a node

to be infectious at time ¢:

O 1 (17(17@1}?—1)) 11 (1,514%—1)])?—1)). (1)

J

Here A® is the adjacency matrix of the network at the
time ¢ (Ag? = 1 if there is a link between nodes 7 and j

at time ¢, and Az(;) = 0 otherwise). For each data set of
finite length T', we assume periodic boundary conditions
with AZ(;JFT) = AE?. This equation corresponds to the
extension of the individual-based mean field approach *
[50] to SIS processes on temporal networks. The equation
is iterated until a stationary state is reached, and we then
compute the average fraction of infectious nodes as

()

oo = ; s (2)
= TN

where T is the duration of the data set and N the number
of nodes.

Reconstruction algorithm

We consider a population P of N individuals (the
nodes of the contact network), potentially organised in
groups. We assume that_all the contacts taking place
among a subpopulation P of these individuals, of size
N = (1 — f)N, are known. This constitutes our resam-
pled data from which we need to construct a surrogate set
of contacts concerning the remaining n = N — N = fN
individuals for which no contact information is available:
these contacts can occur among these individuals and be-
tween them and the members of P. We assume that we
know the group to which each member of P\P belongs,
as well as the overall activity timeline, i.e. the intervals
during which contacts take place, separated by nights
and weekends. We construct the surrogate contacts as
follows:

1. we measure in the sampled data:

3 It does not take into account the dynamical correlations created
by the spreading process between the states of neighboring nodes.



e the density p of links in the time-aggregated
network;

e a row-normalised contact matrix C, in which
the element C'4p gives the probability for a
node in group A to have a link to a node of
group B;

e the list {7.} of contact durations;

e the list {7;.} of inter-contact durations;

e the list {p} of numbers of contacts per link;
2. we compute the number e of additional links needed

to keep the network density constant when we add
the n excluded nodes.

3. we construct each link according to the following
procedure:

e anode i is randomly chosen from the set P\P
of excluded nodes;

e knowing the group A that i belongs to, we ex-
tract at random a target group B with prob-
ability given by Cap;

e we draw a target node j at random from B (if
B = A, we take care that i # j) such that 4
and j are not linked;

o from {p}, we draw the number of contact
events p taking place over the link ij;

e the starting time to of the first ¢j contact is
drawn uniformly in the first activity interval
of the global activity timeline;

e we then sequentially draw the duration of a
contact from {7.} and the inter-contact du-
ration until the next contact from {7;.}, and
repeat until we have built p contacts;

e finally, we insert breaks defined by the activity
timeline.

When the fraction f of excluded nodes is large, the
method may be unable to construct the surrogate links
(see Supplementary Information).
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TABLES & FIGURES

Data set Type N | r T Dates
InVS |Office building| 92 {63 % |2 weeks|June 24th - July 5th 2013
Thiers13| High school |326[86 %| 1 week | December 2nd - 7th 2013
SFHH Conference [403|34 %| 2days June 3rd - 4th 2009

TABLE I. Data sets considered. For each data set we specify the type of social situation, the number N of individuals
whose contacts were measured, the corresponding participation rate r, the duration 7" and the dates of the data collection.

InVS CML | Thiers13 CML_ |

| /]

Resampled

10%
20%
40 %

0.996 [0.937,0.999
0.980 [0.889,0.994
0.925 [0.872,0.983

0.999 [0.998,0.999
0.996 [0.995,0.997
0.988 [0.983, 0.990

Reconstructed

10%
20%
40 %

0.942 [0.844,0.984
0.890 [0.652,0.953

[
[
0.976 [0.846,0.995
[
[

]
]
]
]
]
]

0.993 [0.985,0.995
0.977 [0.938,0.987

]

[ ]

[ ]

0.998 [0.994, 0.999)]
[ ]

[ ]

TABLE II. Similarities between the original contact matrices and the contact matrices of the resampled networks
(top) and of the reconstructed networks (bottom). Median and 90% confidence interval for the cosine similarity between
link density contact matrices (CML) for different values of f, the fraction of nodes removed from the original data. Values were
obtained from 100 independent realisations of the resampling and reconstruction procedures.
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FIG. 1. Comparison of the outcome of SIR epidemic simulations performed on resampled and reconstructed
contact networks. Distribution of epidemic sizes (fraction of recovered individuals) at the end of SIR processes simulated on
top of either resampled (left column) or reconstructed (right) contact networks, for different values of the fraction f of nodes
removed. The parameters of the SIR models are 8 = 0.0004 and 3/ = 1000 (InVS) or 3/p = 100 (Thiers13 and SFHH). The
case f = 0 corresponds to simulations using the whole data set, i.e., the reference case. For each value of f, 1,000 independent
simulations were performed.
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FIG. 2. Phase diagram of the SIS model for the original, resampled and reconstructed contact networks
(Thiers13 data set). Each panel shows the stationary value i of the prevalence in the stationary state of the SIS model,
computed as described in Methods (Eq. (2)), as a function of 8, for several values of p. Here we consider the example of the
Thiers13 data set. The epidemic threshold corresponds to the transition between icc = 0 and io > 0. Equations (1)-(2) are
computed in each case using either the complete data set (continuous lines), resampled data (dashed lines) or reconstructed
contact networks (pluses). The fraction of excluded nodes in the resampling is f = 20% for the left column and f = 40% for

the right column.
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FIG. 3. Outcome of SIR epidemic simulations performed on resampled contact networks and on networks
reconstructed using different methods. We compare in each case, and as a function of f, the fraction of outbreaks that
lead to a final fraction of recovered individuals 7o larger than 20 % of the population (top plots), and the average size of these
large outbreaks (middle plots). The dashed lines give the corresponding values for simulations performed on the complete data
sets. The different methods are (see text): reconstruction conserving only the link density and the distribution of weights of
the resampled data (W); reconstruction preserving, in addition to the W method, the group structure of the resampled data
(WS); reconstruction conserving link density, distribution of weights and distributions of contact times, of inter-contact times
and of numbers of contacts per link measured in the resampled data (WT); full method conserving all these properties (WST).
We also plot as a function of f the failure rate of the WST algorithm, i.e. the percentage of failed reconstructions (bottom
plots); in the SFHH case reconstruction is always possible as the population is not structured into groups. The SIR parameters
are f = 0.0004 and 8/p = 1000 (InVS) or 8/p = 100 (Thiers13 and SFHH) and each point is averaged over 1,000 independent
simulations.



12

10 10 T u 10
Percentage of
removed nodes
1 1 e 0% A- T0%
10" 10"} & SE- 0% V- 0% L
\ Mg gy
y/x¥e X
E , v K u
v
T 10 vy Y’\" N
v /)
A L]
-1
10 :

-2 -2 . . . .
1000 02 04 06 08 10 1000 02 04 06 08 1.0 0 02 04 06 08 10
Epidemic size Epidemic size Epidemic size

InVS Thiers13 SFHH

FIG. 4. Outcome of simulations of SIR processes unfolding on reconstructed contact networks for large values
of the fraction f of removed nodes. Distributions of epidemic sizes for simulations of SIR processes on reconstructed
networks and on the whole data set (case f = 0), similarly to Fig. 1, but for large values of the fraction f of removed nodes.
Here 8 = 0.0004 and 8/ = 1000 (InVS) or 8/p = 100 (Thiers13 and SFHH) and 1,000 simulations were performed for each
value of f. The distributions of epidemic sizes for simulations performed on resampled data sets are not shown since at these
high values of f, almost no epidemics occur.
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SUPPLEMENTARY INFORMATION

Effect of sampling on the temporal network of
contacts

As described in the main text, we consider temporally
resolved networks of contacts 7 in a population P of
N individuals and we perform a resampling experiment
by selecting a subpopulation P of these individuals, of
size N = (1 — f)N. We assume that only the contacts
occurring among the subpopulation P are known and we
compare the properties of the corresponding resampled
subnetwork 7 with those of the original network.

Figure S1 shows how population sampling affects sev-
eral statistical properties of the contact networks. On
the one hand, the degree distribution of the aggregated
network of contacts systematically shifts towards smaller
degree value. This is expected as each remaining node
has in the resampled network a degree which is at most
its degree in the original network, and is strictly smaller
if some of its neighbours are not part of the resampled
population. On the other hand, the statistical distribu-
tions of several quantities of interest are not affected by
sampling: This is the case of the quantities attached ei-
ther to single contacts or to single links, namely contact
and inter-contact durations, number of contacts per link
and link weights (the weight of a link is given by the total
duration of the contacts between the two corresponding
nodes).

Moreover, as shown in Fig. S2, the density of the ag-
gregated network, i.e. the ratio between the number of
links and the number of possible links, is on average con-
served by the random resampling procedure. It varies
however for different realisations of the resampling, and
the corresponding variance increases with the fraction f
of excluded nodes.

In the case of structured populations, Figures S3 &
S4 show that the stability of the resampled network’s
density holds at the more detailed level of the contact
matrices of link densities. In such matrices, the element
(i,4) is given by the number of links between individu-
als of groups 4 and j, normalised by the total number of
possible links between these two groups (if n; denotes the
number of individuals in group %, the number of possible
links is equal to n;n;/2 for i # j and to n;(n; —1)/2 for
i = j). These figures clearly illustrate how the diagonal
and block-diagonal structures are preserved, and Fig. S2
gives a quantitative assessment of this stability by show-
ing that the cosine similarity between contact matrices
between the resampled and original aggregated contact
networks remains high even for when a large fraction of
the nodes are excluded.

Properties of the reconstructed contact networks

As described in the main text and in particular in the
Methods section, we construct a surrogate set of con-

tacts concerning the fN individuals excluded by the re-
sampling. We compare here the properties of the result-
ing contact networks (obtained by merging the resampled
contact network 7 and the surrogate set of contacts) and
of the original contact network. 7.

Figure S5 shows that the degree distribution, which is
not constrained by the reconstruction procedure, devi-
ates from the original distribution. On the other hand,
the distributions of contact durations, inter-contact du-
rations, number of contacts per link and link weights are
preserved. Moreover, the link density contact matrices
of the reconstructed networks (Fig. S6 & S7) share a
high similarity with the original contact matrices, even
for high fractions of nodes excluded (Fig. S10).

For completeness, we also compute the contact matri-
ces in contact time density (CMT), in which each element
(i,7) is given by the total time in contact between indi-
viduals of groups ¢ and 7, normalised by the total number
of possible links between these two groups: it gives the
average time spent in contact by two random individuals
of groups ¢ and j. Figures S8, S9 and S10 show that the
structure of these matrices is well recovered by the recon-
struction method, with high similarity with the original
matrices.

Phase diagram of the SIS model for the conference
and office building data sets

We observe for the workplace and the conference the
same effect on the phase diagram of the SIS model as in
the high school: sampling leads to a shift of the epidemic
threshold to higher values and thus to an underestima-
tion of the epidemic risk. The phase diagram and the epi-
demic threshold are estimated more accurately by using
reconstructed networks, thus giving a better evaluation
of the epidemic risk (Fig.s S11 & S12).

Sensitivity analysis

In the main text, we have considered values of the SIR
model parameters leading to a non-negligible epidemic
risk and a value of 8 corresponding to slow processes. We
consider here several other values of the parameters, cor-
responding either to smaller epidemic risk (Fig. S13) or
to faster processes (Figs. S14 - S16). In all cases, simula-
tions performed on the resampled contact networks lead
to a strong underestimation of the epidemic sizes, with
distributions shifting to smaller values as f increases,
while the use of reconstructed data sets leads to a better
estimation and generally speaking a slight overestimation
of the epidemic risk. The estimation of the distribution of
epidemic sizes becomes worse when the processes become
faster, which might be due to the fact that temporal cor-
relations, which are present in the original data but not



in the surrogate contacts, play then a more important
role in the outcome of the spreading processes.

Detailed alternative reconstruction methods

We give here details on the alternative reconstruction
methods mentioned in the main text, which use less infor-
mation than the WST method. In each case we consider
the same setup as the complete method: a population P
of N individuals (the nodes of the contact network), po-
tentially organised in groups, for which we know all the
contacts taking place among a subpopulation P of size
N = (1 — f)N. For the remaining n = N — N = fN
individuals, no contact information is available, but we
know to which group they belong. We also have access
to the overall activity timeline, i.e. to the successive
intervals during which contacts can happen (daytimes),
and are excluded (nights and weekends). The alternative
reconstruction methods are the following:

W: We perform the reconstruction using only the net-
work density and the distribution of link weights,
both measured in the resampled network 7. The
algorithm goes as follows:

1. we measure in the resampled data:

e the density p of links in the time-
aggregated network;

e the list {w} of link weights (the weight of
a link is defined as the total contact time
between the two linked nodes);

2. we compute the number of links e that must
be added to keep the network density constant
when we add the n excluded nodes;

3. we construct e links according to the following
procedure:

e a node 7 is randomly chosen from the set
P\P of excluded nodes;

e a node j is randomly chosen from the set
P\{i} of all other nodes;

e from {w}, we draw the weight w of the
link ¢7;

e we compute n;; = w/At, where At = 20s
is the temporal resolution of the data set,
and we randomly choose n;; time windows
of length At within the activity windows
defined by the activity timeline as contact
events between ¢ and j.

WS: We perform the reconstruction using the network
density, the distribution of link weights and the
structure of the aggregated network given by the
link density contact matrix, all measured in the re-
sampled network 7. The algorithm goes as follows:

1. we measure in the resampled data:
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e the density p of links in the time-
aggregated network;

e a row-normalised contact matrix C, in
which the element Csp gives the prob-
ability for a node in group A to have a
link to a node of group B;

e the list {w} of link weights;

2. we compute the number of links e that must
be added to keep the network density constant
when we add the n excluded nodes;

3. we construct e links according to the following
procedure:

e a node ¢ is randomly chosen from the set
P\P of excluded nodes;

e knowing the group A that i belongs to, we
extract at random a target group B with
probability given by Cap;

e we draw a target node j at random from
B (if B = A, we check that j # i);

e from {w}, we draw the weight w of the
link i7;

e as for the W method, we extract at ran-
dom w/At contact events of length At =
20s within the activity timeline.

WT: We perform the reconstruction using the network
density, the distribution of link weights and the
temporal structure of the contacts given by the dis-
tributions of contact durations, inter-contact dura-
tions and number of contacts per link, all measured
in the resampled network 7. The algorithm goes
as follows:

1. we measure in the resampled data:

e the density p of links in the time-
aggregated network;

e the list {7.} of contact durations;
e the list {7;.} of inter-contact durations;
e the list {p} of numbers of contacts per
link;
2. we compute the number of links e that must

be added to keep the network density constant
when we add the n excluded nodes;

3. we construct e links according to the following
procedure:

e a node ¢ is randomly chosen from the set
P\P of excluded nodes;

e a node j is randomly chosen from the set
P\{i} of all other nodes;

e from {p}, we draw the number of contact
events p taking place over the link ij;

e the starting time ¢y of the first contact
between ¢ and j is drawn uniformly in the
first activity interval of the global activity
timeline;



e we then sequentially draw the duration of
a contact from {7.} and the inter-contact
duration until the next contact from {7;.},
and repeat until we have built p contacts;

e finally, we insert breaks defined by the ac-
tivity timeline.

Possible failure of the reconstruction method at
large f

The construction of the surrogate version of the miss-
ing links uses as an input the group structure of the
subgraph that remains after sampling, as given by the
contact matrix of the link densities between the different
groups of nodes that are present in P. Depending on the
characteristics of P and of the corresponding contacts,
the construction method can fail in several cases:

(i) if an entire group (class/department) of nodes in
the population is absent from P;

(ii) if the remaining nodes of a specific group
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(class/department) are all isolated in P’s contact
network;

(iii) if, during the algorithm, a node of P\P is selected
but cannot create any more links because it already
has links to all nodes in the groups B such that

Cap # 0.

Cases (i) and (ii) correspond to a complete loss
of information about the connectivity of a group
(class/department) of the population, due to sampling.
It is then impossible to reconstruct a sensible connec-
tivity pattern for these nodes. Case (iii) is more subtle
and occurs in situations of very low connectivity between
groups. For instance, within the contact network of P,
a group A has links only with another specific group B,
and both A and B are small; it is then possible that the
nodes of (P\P) N A quickly exhaust the set of possible
links to nodes of B during the reconstruction algorithm.
If a node of (P\P) N A is again chosen to create a link,
such a creation is not possible and the construction fails.
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FIG. S1. Effect of sampling on contact network properties. Comparison of the distributions of structural (node degrees
and link weights in the aggregated network of contacts) and temporal (contact durations, inter-contact times, number of contacts
per link) properties of the contact networks, for different fractions f of removed nodes. For each value of f, the distributions
are computed on a single realisation of the resampling.
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s.e.m.. (Right) Median cosine similarities between the link density contact matrices (CML) of resampled and full data sets, as
a function of f, for the structured populations (high school and offices). Results are averaged, for each value of f, over 1,000
realisations for the density and over 100 realisations for the similarities.
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the number of links between nodes of department A and nodes of department B in the contact network, normalised by the
maximum possible number of such links. For each value of f, each matrix element is an average over 100 realisations of the
sampling.
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FIG. S4. Effect of sampling: link density contact matrices (Thiers13). Comparison of the link density contact matrices
for the high school, for different fractions f of excluded nodes, with the original one (f = 0). Each matrix element AB gives the
number of links between nodes of class A and nodes of class B in the contact network, normalised by the maximum possible
number of such links. For each value of f, each matrix element is an average over 100 realisations of the sampling.
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FIG. S5. Properties of the reconstructed contact network. Same as Fig. S1 but for the reconstructed networks:
Distributions of structural (degrees and weights in the aggregated contact network) and temporal (contact times, inter-contact
times, number of contacts per link) properties of the surrogate contact networks, for different fractions f of nodes excluded.
For each value of f, the distributions are computed on a single reconstructed network.
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FIG. S6. Properties of the reconstructed contact network: link density contact matrices (InVS). Comparison of
link density contact matrices for the reconstructed network of the office building data, for different values of the fraction f of
excluded nodes, with the original one (f = 0). For each value of f, each matrix element is an average over 100 realisations of
the sampling.
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FIG. S7. Properties of the reconstructed contact network: link density contact matrices (Thiers13). Comparison
of link density contact matrices for the reconstructed network of the high school data, for different values of the fraction f of
excluded nodes, with the original one (f = 0). For each value of f, each matrix element is an average over 100 realisations of
the sampling.
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FIG. S8. Properties of the reconstructed contact network: time density contact matrices (InVS). Comparison of
the contact time density contact matrices for the reconstructed network of the office building data, for different fractions of
excluded nodes, f, with the original one (f = 0). Each matrix element AB gives the average time spent in contact between a
node of department A and a node of department B. For each value of f, each matrix element is an average over 100 realisations

of the sampling.
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FIG. S9. Properties of the reconstructed contact network: time density contact matrices (Thiers13). Contact
time density contact matrices for the reconstructed network of the high school data, for different fractions of nodes excluded,
f. Each matrix element AB gives the average time spent in contact between a node of class A and a node of class B. For each
value of f, each matrix element is an average over 100 realisations of the sampling.
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100 realisations of the reconstruction.
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FIG. S11. Phase diagram of the SIS model for original, resampled and reconstructed contact networks (InVS

data set).

Each panel shows the stationary value i~ of the prevalence in the stationary state of the SIS model, computed as

described in the Methods section, as a function of 3, for several values of u. Here we consider the example of the InVS data
set. The epidemic threshold corresponds to the transition between ioc = 0 and i > 0. The prevalence curves are computed in
each case using either the whole data set (continuous lines), resampled data (dashed lines) or reconstructed contact networks

(pluses). The fraction of exclued nodes in the resampling is f = 20% for the left column and f = 40% for the right column.
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FIG. S12. Phase diagram of the SIS model for original, resampled and reconstructed contact networks (SFHH
data set). Same as Fig. S11 for the SFHH (conference) data set.
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FIG. S13. Outcome of SIR epidemic simulations on reconstructed networks for different parameter values.
Distribution of epidemic sizes for simulations of SIR processes on reconstructed networks and on the whole data set (case
f = 0), for different values of the fraction f of excluded nodes. Each distribution is computed on 1,000 simulations of the
SIR process. Here 8 = 0.004, 8/u = 500 for the InVS, 8/u = 50 for Thiers13 and 3/p = 30 for SFHH. Each distribution is
computed on 1,000 simulations of the SIR process.
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FIG. S14. Outcome of SIR epidemic simulations on reconstructed networks for different parameter values. Same
as Fig. S13 for 8 = 0.004, 5/p = 1000 (InVS) or 5/p = 100 (Thiersl3 and SFHH). Each distribution is computed on 1,000
simulations of the SIR process.
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FIG. S15. Outcome of SIR epidemic simulations on reconstructed networks for different parameter values. Same

as Fig. S13 for 8 = 0.04, 8/p = 1000 (InVS) or 3/p = 100 (Thiers13 and SFHH). Each distribution is computed on 1,000
simulations of the SIR process.
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FIG. S16. Outcome of SIR epidemic simulations on reconstructed networks for different parameter values. Same
as Fig. S13 for 8 = 0.04, 5/p = 4000 (InVS) or 8/ = 400 (Thiers13 and SFHH).



