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Abstract

In cognitive radio context, the parameters of coding schemes are unknown at the receiver. The design of an
intelligent receiver is then essential to blindly identify these parameters from the received data. The blind
identification of code word length has already been extensively studied in the case of binary error-correcting codes.
Here, we are interested in non-binary codes where a noisy transmission environment is considered. To deal with the
blind identification problem of code word length, we propose a technique based on the Gauss-Jordan elimination in
GF(q) (Galois field), with q = 2m, wherem is the number of bits per symbol. This proposed technique is based on the
information provided by the arithmetic mean of the number of zeros in each column of these matrices. The
robustness of our technique is studied for different code parameters and over different Galois fields.
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Introduction
Error-correcting codes are frequently used in modern
digital transmission systems in order to improve the com-
munication quality. These codes are designed to achieve
a good immunity against channel impairments by intro-
ducing redundancy in the informative data. Due to the
complexity of both encoding and especially decoding pro-
cedures, the majority of research and practical imple-
mentations of real-time embedded systems were often
restricted to encoders manipulating binary data, i.e., ele-
ments of the Galois field GF(2). Over the last decade,
low-density parity check (LDPC) codes and turbo codes
over GF(2) have attracted considerable interest of many
researchers due to their excellent error correction capabil-
ity. They have been generalized to finite fields GF(q) [1,2],
where q = 2m, and are among the most widely used error-
correcting codes in wireless communication standards. It
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has been shown in [1] that non-binary LDPC codes per-
form generally better than binary LDPC codes and turbo
codes. However, the major drawback of these codes is
their decoding complexity for a large Galois field order q
[3,4]. Low complexity decoding algorithms have recently
been proposed [5,6], thus allowing the use of non-binary
LDPC codes in practical implementations.
Our main research interests are focused on non-binary

error-correcting codes in order to blindly identify their
parameters. This topic is a part of a non-cooperative con-
text like a military interception or cognitive radio applica-
tions. In this case, the receiver has no knowledge about the
parameters used to encode the information at the trans-
mitter. The solution is to design an intelligent receiver
which is able to blindly identify the encoder parameters
from the only knowledge of the received data stream. This
blind identification function of the receiver permits to
increase the data rate transmission, since it will be unnec-
essary to transmit supplementary information about the
encoder parameters with the useful data. Such intelligent
receiver is able to adapt automatically itself to the devel-
opment of new high-performance coding schemes and the
fast evolution of new communication standards without
equipment change. In this work, we are only interested
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in blindly identifying the code word length of linear non-
binary block codes. In the case of the interception, this
parameter can not be transmitted. Likewise, if we want to
change the encoder or get out of the list of possible choice
of encoders, the code word length is not transmitted.
In this context, the published research results have been

restricted so far to the blind recognition of the code word
length of binary codes. To the best of our knowledge,
this paper introduces, for the first time, an approach to
blindly identify the code word length of non-binary codes
in noisy conditions. In this work, the aim is to blindly
identify the code word length from the only knowledge
of received data. The authors in [7] proposed a technique
of identification of non-binary LDPC parameters, but the
identification is not blind because it is based on using
a predefined candidate set of encoders which is known
by both the transmitter and the receiver. Furthermore,
this technique only works with LDPC codes unlike our
proposed technique, which is general and suitable for all
block codes. In our paper, the proposed blind identifica-
tion technique is based on a generalization of an existing
method used for binary codes. The principle of this gen-
eralization will be explained in this paper without speci-
fying in details its detection performances. So, we present
here state-of-the-art techniques to identify the code word
length of binary linear block codes. The idea of these tech-
niques is to find a basis of a dual code composed of parity
check relations. For this purpose, an approach based on
finding code words of small Hamming weight [8,9] was
improved by Valembois [10] by using statistical hypoth-
esis tests and recently by Cluzeau [11,12] and Côte [13].
A second approach based on linear algebra theory was
introduced in [14] for noiseless channel. This approach
permits to recover the length of code words by studying
behaviors of the rank of matrices composed of received
bits. However, the rank criterion was exploited without
providing an algebraic and theoretical justification of such
behavior. In [15], the use of this criterion was justified.
In [16], the rank criterion approach was generalized to
convolutional codes over GF(q), where q > 2, assuming
a noiseless transmission, but it was shown that this gen-
eralized technique can be also performed to non-binary
linear block codes. In noisy transmissions, a technique
based on the Gauss elimination in GF(2) was applied in
[17-19] to matrices composed of noisy received bits in
order to find the number of almost dependent columns
permitting the identification of the code word length
in the case of binary error-correcting codes. Indeed, an
almost dependent column of a matrix composed of noisy
received symbols corresponds to a column which may be
a linear combination of some preceding columns without
the presence of erroneous symbols and which leads to a
column that contains more zero elements after the Gauss
elimination.

Compared to previous works, we demonstrate here that
it is possible to generalize the blind identification tech-
nique proposed in [17,18] to non-binary block codes pro-
vided that the Galois field parameters (the cardinality and
the primitive polynomial) are known by the receiver. To
identify the primitive polynomial, an algorithm of iden-
tification was proposed in [20]. To achieve our purpose,
it is necessary to identify the number of almost depen-
dent columns in the matrices composed of noisy symbols
of GF(q) by studying the probability of detection of these
columns, denoted as Pi. In fact, the computation of Pi
is essential in order to determine an optimal detection
threshold. Assuming a transmission over q-ary symmet-
ric channel with an error probability pe, the techniques
based on finding a base of a dual code [18,19] for binary
codes require the knowledge of pe, where a hard decision
demodulation is considered. For this reason, we propose
here an approach which is more robust because it allows
us the blind identification of the code word length of non-
binary and binary block codes without using the error
probability pe. This approach is based on analyzing behav-
iors of the arithmetic mean of the number of zeros in
the columns of the matrices constructed by the Gauss
elimination in GF(q). In this paper, the proposed method
is a general method that should be applied to all non-
binary block codes even though most examples of codes
given here are non-binary LDPC codes. For this reason,
the properties of LDPC codes are not exploited by our
method.
This paper is organized as follows. In the ‘Technical

background’ section, we present the encoding process of
non-binary error-correcting codes. Then, the principle of
the blind identification of code parameters in the noiseless
case is described. The channel model used in this study is
also defined and justified in this section. In the ‘Blind iden-
tification of code word length in the noisy case’ section,
the blind identification method of the code word length
in noisy environment is described. A comparison in terms
of error probability and detection performances is shown
in the ‘Analysis and performances’ section. Finally, some
conclusions are drawn in the ‘Conclusions’ section and
planned future work is pointed out.

Technical background
Non-binary error-correcting codes
The use of an efficient coding system in the transmitter
as error-correcting codes is essential in order to fight dis-
turbances present on the transmission channel. For a long
time, cyclic codes such as BCH codes [21,22] and Reed-
Solomon codes [23] have been the most commonly used
as codes based on finite fields since they are characterized
by large minimum distances for a hard decision decod-
ing. The non-binary LDPC codes described by a sparse
parity check matrix with elements in GF(q) have been
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developed by Davey and MacKay in 1998 [1]. Significant
works on the design and the decoding complexity reduc-
tion of these codes have shown that they have a great
potential to replace Reed-Solomon codes in some appli-
cations of communication, such as space communications
[24], and storage systems [25,26]. In this paper, we focus
on the blind identification of code word length for the
non-binary block codes, but this proposed method can
also be applied to convolutional codes and concatenated
codes.
Let us present the encoding process of these codes over

GF(q). Actually, the principle of a transmission chain is
to send digital information from a source to one or more
receivers. The information yielded by the source is binary
data {0, 1} = GF(2). Each block of m information bits are
combined to generate a symbol of GF(q). Then, the gener-
ated non-binary information, denoted as d, is encoded by
one of the block codes over GF(q) listed above. For most
block error-correcting codes, a code word, denoted as c,
composed of non-binary symbols is obtained by themulti-
plication of the information d and a non-binary generator
matrix G:

c = d · G (1)

In the case of LDPC codes, the encoding process needs
the use of the parity check matrix, which is always sparse
compared to the other codes.
In most of the standards, such as long-term evolution

(LTE) standard [27], the encoding is performed in a sys-
tematic form in order to facilitate the decoding process
without degrading performances of the error correction.
For this reason, in the case of block codes, the required
parameters to perform the decoding operation are the
number of inputs, denoted as k, the code word length,
denoted as n, and a parity check matrix, denoted as H.
Indeed, the matrix H will be used by the decoder to
detect or/and to correct the errors. The recovered infor-
mation will be the first k symbols of the recovered code
word due to the systematic form used in the encoding.
Our aim in this research work is to blindly identify the
parameter n from non-binary received symbols which are
affected by noisy transmissions. In the noiseless context,
we have already demonstrated in [16] that we can identify
this parameter with the only knowledge of the received
data, provided that the Galois field parameters are known.
The principle of blind identification of the code param-
eter n in the noiseless case is recalled in the following
subsection.

Principle of blind identificationmethod of code word
length in the noiseless case
In this part, we assume that the channel introduces no
error. In [16], we have adapted the method proposed in

[28] to identify the parameters of convolutional codes
over GF(q), where q = 2m. We have shown that our
method for the noiseless case can be applied to block
codes. This method reshapes row-wise the received sym-
bols, denoted as r, under a matrix form, denoted as Rl, of
size (M × l). Indeed, Rl is filled by received symbols from
the top left corner to the bottom right as illustrated in
Figure 1.
The number of columns l varies between 1 and lmax and

the number of rowsM which depends on l is given by the
integer part

⌊L
l
⌋
where L is the length of a received symbol

stream. Then, the rank over GF(q) is calculated for each
matrix Rl. When all matrices Rl have full rank, it is impos-
sible to detect the existence of a code. Nevertheless, the
redundancy introduced by the code leads to rank deficien-
cies in some matrices Rl. Henceforth, the rank behaviors
of Rl allow us to detect the code and to identify its param-
eters, in particular the code word length. As demonstrated
in [15] and studied in [16], there are two possible rank
behaviors according to the number of columns l. If l is a
multiple of n (i.e., l = α · n, α ∈ N), the ranks of the
matrices Rl are proportional to the code rate k/n (i.e.,
rank(Rl) = l · k/n). Otherwise (i.e., l �= α · n), Rl have
full rank (i.e., rank(Rl) = l). Thus, the value of the rank
deficiency depends on code parameters (k and n). Indeed,
only two consecutive rank deficiencies are necessary to
determine all code parameters. The code word length n
can be determined by the difference between two values
of l corresponding to two consecutive rank deficiencies of
Rl. As shown in [16], the rank method gives good results
in a noiseless environment. A theoretical and algebraic
study of the behavior of the rank criterion, as well as par-
ticular cases which can occur for specific parameters of

Figure 1 Example of a matrix Rl. Example of a matrix construction
from the received symbols.
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codes, were presented in [15]. It was demonstrated that
most matrices Rl have full rank when l is not a multiple
of n, except for some particular cases which depend on
codes (generatormatrix). In a noisy environment, the rank
method can not be used, since all the matrices Rl have full
rank in this case.

Non-binary channel
In order to evaluate our blind identification algorithm,
we assume that the encoded sequences are transmitted
through a q-ary (non-binary, for q = 2m > 2) symmetric
channel (QSC) which is the simplest channel. However,
our proposed algorithms can work for every type of chan-
nel provided that the error probability pe computed at the
output of the demodulator is known. Indeed, we consider
that the blocks of the transmission chain, the modula-
tor, the transmission channel, and the demodulator can be
modeled by a non-binary channel, where a hard decision
demodulation is considered. In a cognitive radio context,
a multipath fading channel is used. This realistic chan-
nel leads to burst errors which can be corrected by using
an interleaver and error-correcting codes. In this context,
the errors at the output of a deinterleaver at the receiver
side can be modeled by a QSC when a decoding process
with hard decision will be used. The problem of a blind
identification of the interleaver period, as well as a blind
synchronization with the interleaver blocks was handled
in [14,18].
Let us define the q-ary symmetric channel which is the

generalization of the binary symmetric channel (BSC). In
fact, it is a discrete memoryless channel with an error
probability pe and composed of non-binary inputs and
non-binary outputs belonging to theGF(q), where q = 2m.
The symbols at the input of the channel are independent
and distributed uniformly with a probability equal to 1/q.
A symbol δ ∈ GF(q) at the channel input is received incor-
rectly with a probability pe/(q − 1) [29]. In other words,
it is replaced at the receiver by a different symbol β of
GF(q). The probability of correctly receiving a symbol is

equal to 1 − pe. The QSC channel is characterized by the
conditional probabilities:

p(r̃i = β|ri = δ) = pe
q − 1

, δ �= β

p(r̃i = δ|ri = δ) = 1 − pe
(2)

where the transmitted symbol is denoted ri, i.e., ri = ci, for
i ∈ {1, · · · , L}, and the noisy received symbol is denoted
r̃i such that r̃i = ri + ei with ei the transmission error
introduced in the symbol ri. An example of a non-binary
symmetric channel for q = 22 is depicted in Figure 2.
In the following section, we present the blind identifica-

tion method of the parameter n in a noisy framework.

Blind identification of codeword length in the
noisy case
In this part, we present the implementation method which
allows us to identify the code word length of a non-binary
code in a noisy environment. This method is based on
the concept of finding the rank-deficient matrices among
R̃l, ∀l ∈ {1, . . . , lmax}, corresponding to matrices having
at least one almost dependent column. Indeed, the matri-
ces R̃l are reshaped in the same way as Rl using the noisy
received symbols r̃i. In [19], a method devoted to deter-
mine these matrices in the case of binary codes was pre-
sented. However, this method requires the knowledge of
the error probability pe. In order to avoid this constraint,
we propose a method based on using the arithmetic mean
criterion in order to detect the rank-deficient matrices
which have some almost dependent columns without the
need of the error probability pe.

Principle
In a noiseless case, the rank criterion is used to find the
maximum number of linearly independent columns in the
matrices Rl. This allows us to derive the number of lin-
early dependent columns in Rl (columns which are linear
combinations of other columns). The finite-field Gauss

Figure 2 Non-binary symmetric channel. An example of a non-binary symmetric channel for q = 22.
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elimination method [30] has to be used to eliminate those
linear-dependent columns to zero. In noisy transmissions,
all matrices R̃l have full rank. Amatrix R̃l can be expressed
according to Rl by:

R̃l = Rl + El (3)

where El is the error matrix of size (M × l) constructed
in the same way as Rl using the errors induced by the
channel. Therefore, the dependence of the columns is dis-
turbed by the presence of errors in some received symbols.
In such context, the authors in [17,18] proposed to look
for the number of almost dependent columns in thematri-
ces composed of noisy received bits by using the Gauss
elimination over GF(2). Inspired by this idea, it is suffi-
cient, in the case of non-binary error correcting codes, to
apply the finite-field Gauss elimination in GF(q) to R̃l in
order to obtain a new matrix T̃l of size (M × l). This algo-
rithm gives also at output a matrix of size (l × l), denoted
Ãl, that describes the combination operations performed
to the columns of the matrix R̃l in order to obtain the
transformation matrix T̃l. A recall of the finite-field Gauss
elimination over GF(q) is presented in Algorithm 1. To
describe this algorithm, we denote Il the identity matrix
of size (l× l), x(l)

i the i-th column of a given matrix Xl and
x(l)
i (j) a coefficient of amatrixXl placed in the i-th column
and in the j-th row.

Algorithm 1 The finite-field Gauss elimination over
GF(q).
Require: R̃l
Ensure: T̃l and Ãl
Initialization: T̃l ← R̃l and Ãl ← Il
for i = 1 to l do

if the i-th element of the i-th column t̃(l)i (i) = 0 then
Permute the i-th column t̃(l)i with the first column t̃(l)i′
(i′ > i) that has a non-zero on its i-th element
Permute the column ã(l)

i with ã(l)
i′

end if
Multiply the columns t̃(l)i and ã(l)

i by v = 1/t̃(l)i (i) in order
to have t̃(l)i (i) = 1
for j = i + 1 to l do

Let b = t̃(l)j (i). Apply the following operation to the
columns t̃(l)i and t̃(l)j in order to have t̃(l)j (i) = 0:

t̃(l)j = t̃(l)j − b · t̃(l)i
Apply the following operations to the columns of the
matrix Al:

ã(l)
j = ã(l)

j − b · ã(l)
i

end for
end for

By means of this algorithm, the linear-dependent
columns in the matrix will be eliminated to zeros. The
whole matrix is considered in our proposed method
instead of only the lower part of the matrix R̃l as men-
tioned in [17]. It would be more accurate than assuming
that errors do not occur in the upper part of the matrix,
but it is not the real case.
We can note that the finite-field Gauss elimination over

GF(q) can be defined by a linear application given by:

R̃l · Ãl = T̃l (4)

In noiseless transmissions, the number of dependent
columns in Rl, for l = α · n, α ∈ N, corresponds to the
number of the zero columns in the matrix Tl which is the
result of the transformation of Rl by the finite-field Gauss
elimination in GF(q) (Rl ·Al = Tl). The matrix form of Tl
is described in Figure 3.
In fact, the dimension identification of a vector space

generated by a code C is equivalent to finding the

Figure 3Matrix form of Tl . An example of a matrix form of Tl for
l = α · n.
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dimension of a vector space generated by its dual code C⊥.
For any vector h belonging to C⊥ and for any code word
r of C, the relation between both is defined by r · hT = 0.
In noiseless conditions, the matrix Rn, for l = n, which is
composed ofM code words of length n, should satisfy:

Rn · hT = 0 (5)

We can note that h belongs to the kernel of Rn, denoted
as ker (Rn). So, we have C⊥ ⊂ ker (Rn). Since the depen-
dent columns in Rl multiplied by the columns a(l)

i permit
to have the zero columns in thematrixTl, the correspond-
ing columns a(n)

i will belong to ker (Rn) in which the dual
code C⊥ is contained. Therefore, finding the dependent
columns in Rl is equivalent to finding the columns a(l)

i
which belong to the dual code C⊥.
Due to the presence of errors induced by the channel in

R̃l, for l = α · n, the columns of T̃l corresponding to the
almost dependent columns in R̃l will contain some non-
zero symbols. Assuming that the first l rows and the pivots
of the matrix T̃l do not contain transmission errors, using
(3) and (4) allows us to write the matrix T̃l as:

T̃l = Tl + El · Al (6)

In this case, a vector h is a parity check relation (i.e.,
h ∈ C⊥) with high probability if the relation R̃l · hT has
a low Hamming weight [11]. However, the opposite is not
necessarily true. We can conclude that ã(l)

i belongs to C⊥

if the corresponding t̃(l)i = R̃l · ã(l)
i has a small Hamming

weight. In GF(q), the Hamming weight of a vector is the
number of non-zero elements in this vector. So, our aim is
to determine the columns t̃(l)i which have a high number
of zeros. The idea is to study the number of zeros in the
columns of the T̃l in order to detect the almost dependent
columns in R̃l.

Behaviors of the number of zeros in the columns of T̃l
Let Bl(i) be the number of zeros in the i-th column of T̃l,
t̃(l)i . Hence, the variable Bl(i) has two behaviors depend-
ing on whether the column ã(l)

i belongs to the dual code
C⊥ or not. This variable will be studied as a function of
ã(l)
i assuming that the bits that represent an element of
the GF(q), where q = 2m, are uniformly distributed and
independent from each other.

• If the column ã(l)
i does not belong to the dual code

C⊥, the variable Bl(i), for all i ∈[[ 1, l]], will follow a
binomial distribution of parameters M and 1/q with
a mean equal toM/q, denoted as B(M, 1/q).

• If the column ã(l)
i belongs to the dual code C⊥, the

variable Bl(i) will follow a binomial distribution with

parameters M and Pi, denoted as B(M, Pi). The
parameter Pi corresponds to the probability that a
coefficient t̃(l)i (j) of the column t̃(l)i is equal to 0(
i.e., Pi = Pr

[
t̃(l)i (j) = 0 | ã(l)

i ∈ C⊥
])

.

It is possible to limit the two behaviors of the variable
Bl(i) by computing an optimal threshold η̂opt such that:

{
If Bl(i) > η̂opt then ã(l)

i ∈ C⊥

If Bl(i) ≤ η̂opt then ã(l)
i /∈ C⊥ (7)

where η̂opt = M
q · ηopt is a real in the interval [ 0,M]. The

optimal threshold ηopt is able to minimize the probabil-
ity of wrong detection of a column ã(l)

i ∈ C⊥, denoted
as Pwd, which corresponds to the sum of the false alarm
probability, denoted as Pfa, and the probability of not
detecting a theoretical dependent column, denoted as Pnd.
The optimal threshold is determined by:

ηopt = argminη (Pwd) = argminη (Pnd + Pfa)

= argminη

(
1 +

∑M

j=
⌊
M
q ·η
⌋
+1

(
M
j

)
·

[
q−M · (q − 1)M−j − Pji · (1 − Pi)M−j

]) (8)

The normal distribution can be used to approximate the
binomial probabilities of Bl(i) whenM is large:

• If ã(l)
i ∈ C⊥:

Bl(i) → N (
μ0, σ 2

0
)

(9)

• If ã(l)
i /∈ C⊥:

Bl(i) → N (
μ1, σ 2

1
)

(10)

whereN (
μ0, σ 2

0
)
is the normal distribution of parameters

μ0 = M ·Pi and σ 2
0 = M ·Pi · (1−Pi) andN

(
μ1, σ 2

1
)
cor-

responds to the normal distribution of parameters μ1 =
M/q and σ 2

1 = M · (q − 1)/q2.
Henceforth, the optimal value of the threshold η̂ min-

imizing the probability of wrong detection Pwd can be
computed by:

η̂opt = argmin
η̂

(
1 − φ

(
η̂ − μ1

σ1

)
+ φ

(
η̂ − μ0

σ0

))
(11)

where φ(x) is the cumulative density function of the
standard normal distribution:

φ(x) = 1√
2 · π

·
∫ x

−∞
e−

t2
2 · dt (12)
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We can note that the optimal threshold η̂opt depends
on the parameters: M, q, and Pi. So, in order to delimit
the two behaviors of the variable Bl(i), it is necessary to
compute the probability Pi.

Computationof the probability Pi
In the case of binary codes, the probability Pi has been
calculated in [11]. But, it has never been studied in the
general case of codes over GF(2m). In fact, the compu-
tation of the parameter Pi is essential in order to detect
the almost dependent columns in R̃l by delimiting the two
behaviors of the variable Bl(i). Our aim is to investigate
this probability in the case of non-binary codes. In the
following, the theoretical study of Pi is presented.
For l = n and i a position of a column ã(l)

i contained in
C⊥, a coefficient t̃(l)i (j) of the column t̃(l)i can be obtained,
using (6), by:

t̃(l)i (j) = t(l)i (j) +
n∑

k=1
a(l)
i (k) · e(l)k (j) =

n∑
k=1

a(l)
i (k) · e(l)k (j)

(13)

where t(l)i (j) = 0 in the case of noiseless transmissions as
explained previously. Indeed, the sum

∑n
k=1 a

(l)
i (k) · e(l)k (j)

is null in this case because e(l)k (j) = 0, ∀k ∈ {1, · · · , n},
and ∀j ∈ {1, · · · ,M}. However, in the case of noisy trans-
missions, the coefficients e(l)i (j) ∈ GF(q) corresponds to
the errors introduced by the noisy channel in the sym-
bols r(l)i (j) ∈ GF(q) in order to generate the noisy symbols
r̃(l)i (j) ∈ GF(q). Our aim is to determine Pi the proba-
bility of detecting a zero coefficient in the column t̃(l)i
corresponding to having

∑n
k=1 a

(l)
i (k) · e(l)k (j) = 0:

Pi = Pr

[ n∑
k=1

a(l)
i (k) · e(l)k (j) = 0

]
(14)

Let Ni(l) be the minimum number of linear combinations
of columns required to obtain t̃(l)i . This number corre-
sponds also to the Hamming weight of the column ã(l)

i .
Then, there could be positions amongNi(l)where e(l)i (j) =
0. Thus, Pi can be defined as the probability of having∑s

k=1 a
(l)
i (k) · e(l)k (j) = 0 such that s is the number of

positions among Ni(l) where e(l)i (j) �= 0:

Pi = Pr [X = 0] +
Ni(l)∑
s=1

Pr

[
X = s,

s∑
k=1

a(l)
i (k) · e(l)k (j) = 0

]

(15)

where X is a random variable of the erroneous positions
number among Ni(l). Indeed, we show in Appendix that

the probability Pi of having t̃(l)i (j) = 0 can be determined
by:

Pi =
1 + (q − 1) ·

(
1 − pe · q

q − 1

)Ni(l)

q
(16)

In the case of GF(2) (i.e., q = 2), this probability can be
written as:

Pi = 1 + (1 − 2 · pe)Ni(l)

2
(17)

This expression corresponds to that used in [11].
In Figure 4, we represent the wrong detection probabil-

ity Pwd as a function of η̂/M and pe assuming q = 23,
w
(
ã(l)
i

)
= 20 and M = 2, 000. For each value of pe, the

optimal threshold η̂opt corresponding to a root of (11) is
computed. From Figure 4, we can deduce that the thresh-
old interval satisfying Pwd ≈ 0 decreases when the value
of pe increases.
We can conclude that studying the behaviors of Bl(i) in

order to identify n is based on the calculation of the opti-
mal threshold η̂opt. However, this threshold depends on
the value of the error probability pe which is unknown for
the receiver. So, the need to estimate this parameter is a
blocking step in the almost dependent columns method
and also leads to a lack of robustness.
In order to address these problems, we propose a new

iterative method based on the arithmetic mean of the
variable Bl(i) which do not depend on pe and where
the iterative process permits to improve the detection
probability.

New iterativemethod based on the arithmetic mean of the
variable Bl(i)
In this part, the proposed method based on the arith-
metic mean of the number of zeros in the columns of the
matrix T̃l is described. We recall that the Gauss elimina-
tion described in Algorithm 1 should be applied in order
to obtain T̃l. We show here that the identification of the
parameter n by our proposed method does not depend
on the error probability pe. In this method, in order to
improve the detection probability of n, an iteration pro-
cess is introduced. We consider the idea of the iterative
process proposed in [18,19]. The principle of this process
is to perform random permutations on the rows of the
matrix R̃l in order to obtain a new virtual realization of
the received data. These permutations permit to increase
the probability to obtain non-erroneous pivots during the
Gauss elimination.
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Figure 4 Probability Pwd according to η̂/M and pe. The probability of wrong detection of almost dependent columns Pwd according to η̂/M and

pe is represented for q = 23, M = 2, 000 and w
(
ã(l)
i

)
= 20.

The arithmetic mean of the variables Bl(i), ∀i ∈[[ 1, l]],
denoted El is defined by:

El =
∑l

i=1 Bl(i)
l

(18)

Property 1. If X1,X2, · · · ,Xm are independent random
variables respectively following:

N (
μ1, σ 2

1
)
,N (

μ2, σ 2
2
)
, . . . ,N (

μm, σ 2
m
)

the mean defined by (X1+X2+···+Xm)
m follows:

N
(

μ1 + μ2 + · · · + μm
m

,
σ 2
1 + σ 2

2 + · · · + σ 2
m

m2

)
(19)

We recall that the variable Bl(i) which is the number of
zeros in the i-th column of the matrix T̃l has two possible
behaviors depending on l:

• If l �= α · n, for α ∈ N, the variable Bl(i) follows a
normal distributionN (

μ1, σ 2
1
)
for all columns i of

T̃l. In this case, using the property 1, the mean El will
follow:

El → N
(

μ1,
σ 2
1
l

)
(20)

We can note that the mean El will be close toM/q.

• If l = α · n, for α ∈ N:

– If the i -th column is an almost dependent
column, the variable Bl(i) will follow the
normal distribution of parametersN (

μ0, σ 2
0
)
.

– If the i -th column is not an almost dependent
column, the variable Bl(i) will follow the
normal distribution of parametersN (

μ1, σ 2
1
)
.

Thereby, the mean El is given by:

El → N
(
Q(l) · μ0 + kl · μ1

l
,
Q(l)·σ 2

0 + kl·σ 2
1

l2

)

(21)

where Q(l) is the number of almost dependent
columns in the matrix R̃l such that:

Q(l) = Card
{
i ∈[[ 0, l]] ,Bl(i) > η̂opt

}
(22)

where Card(x) is the cardinal function which returns
the set size. kl = l − Q(l) is the number of
independent columns in the same matrix. In the
noiseless environment, the mean El is stable at:

El = M · (q · (n − k) + k)
q · n (23)
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We note two behaviors of El with respect to l = α · n or
l �= α · n:
⎧⎪⎪⎨
⎪⎪⎩
If l �= α · n then El ≤ M

q

If l = α · n then El >
M
q

(24)

The gap between these behaviors allows us to find the
matrices which have the number of columns l = α · n.
Let J be a set of l-values where the gap El − M

q > 0:

J =
{
l = 1, · · · , lmax|El − M

q
> 0
}

(25)

Thereby, the identified length of the code words will be
such that:

ñ = mode(diff(J )) (26)

where the functions diff(x) and mode(x) are defined by:

• Function diff(x): the output of this function is a
vector of size s − 1 and it corresponds to the
difference between two consecutive elements of the
vector x = (x(1) x(2) · · · x(s)):

diff(x) = (x(2) − x(1) · · · x(s) − x(s − 1)
)

(27)

• Function mode(x): this operation provides the value
which has the highest occurrence in the vector x.

The proposed iterative method of the code word length
identification is summarized in the Algorithm 2.

Algorithm 2The algorithm based on the arithmetic mean
calculation
Require: r̃,M, q and maximum number of iterations itmax
Ensure: Identified code word length ñ
Initialize the number of iterations it = 1
Initialize the stop criterion endit = 0
while endit = 0 do

for l = 1 to lmax do
Build matrix R̃l of size (M × l)
R̃l → T̃l = R̃l · Ãl
for i = 1 to l do

Count Bl(i)
end for
Compute El

end for
Create the set J (25)
if J is empty then

if it < itmax then
it = it + 1
Permute randomly the rows of R̃l

else
endit = 1

end if
else

Determine ñ (26)
endit = 1

end if
end while

Example 1. Let us consider the Reed-Solomon code,
denoted RS(15, 11), over GF(24) which is defined by: n =
15 and k = 11. The mean El normalized by M, which is
set to 1,000, is represented in Figures 5 and 6. In Figure 5,
a zero probability of error (i.e., pe = 0) is considered. For

Figure 5 Gap between the mean El/M and 1/q ofRS(15, 11) over GF(24) for pe = 0. The mean El normalized byM = 1, 000 is represented in
the case of pe = 0.
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Figure 6 Gap between the mean El/M and 1/q ofRS(15, 11) over GF(24) for pe = 0.01. The mean El normalized byM = 1, 000 is represented
in the case of pe = 0.01.

l �= α · n, we can verify that the mean El normalized byM
is stable at 1/q = 0.0625. For l = α · n, the mean El meets
(23):

1
q · n · (q · (n − k) + k) = 0.3125

So, the matrices of size l = α ·n have peaks for El
M − 1

q =
0.25 > 0. In Figure 6, the gap El

M − 1
q is represented with

respect to l when pe = 0.01 for one iteration of our algo-
rithm. According to (25), the set J is shown in Table 1.
Henceforth, using (26), the identified length of the code
words is ñ = 15.

Analysis and performances
The aim of our proposed algorithm is to blindly iden-
tify the length of non-binary code words in noisy envi-
ronment. This purpose can be reached with an average
complexity equal to O(M · l3max · itmax). Indeed, the pro-
posed algorithm performs ((lmax − 1) · itmax) processes of
Gaussian eliminations which have an average complexity
equal to O(M · l2), where l = 2 · · · lmax. So, the average
complexity is such that:

O
⎛
⎝M ·

itmax∑
it=1

lmax∑
l=2

l2
⎞
⎠ = O(M · l3max · itmax) (28)

Table 1 Sizes of thematrices R̃l for
El
M − 1

q > 0

l ∈ J 15 30 45

diff(J ) 15 15

The sizes of matrices for which El
M − 1

q > 0,J , and the set diff(J ) are given for

pe = 0.01 in the case of RS(15, 11) over GF(24).

In order to analyze the performances of our blind iden-
tification method, the probability of correct detection
of the code word length n is chosen as a performance
criterion. In the simulations, our method is applied to
the non-binary LDPC codes which became candidate for
future communication systems. For each simulation, 2,000
Monte Carlo trials are run where the data symbols are
randomly chosen at each trial. In this part, we focus on:

• the gain of the iteration process on the detection
probability of n

• the performance comparison in the case of different
channels

• the impact of increasing the Galois field dimension q
on the detection probabilities of n

• the impact of increasing the code word length n on
the detection probabilities for a given q

Gain of the iterative process
In our simulations, we consider a LDPC (n = 6, k = 3)
over GF(4). Figure 7 shows the probability of detecting n
according to pe for one, three, five, and ten iterations. We
can see that the gain between the first and the tenth itera-
tion is significantly important. Indeed, for pe = 0.07, with
one iteration, the detection probability is equal to 0.76
and it becomes equal to 0.99 after 10 iterations. We can
deduce that the iterative process improves significantly
the detection performances of the blind identification
method based on the mean calculation.

Performance comparison in the case of different channels
Let us illustrate the detection obtained by the proposed
method for a LDPC (n = 16, k = 8) over GF(8) when
an AWGN channel (the first channel) and a multipath
Rayleigh channel associated to an AWGN channel (the
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Figure 7 The detection probability of the method based on the mean calculation for LDPC (n = 6, k = 3) in GF(4). For LDPC (n = 6, k = 3)
in GF(4), the probability of detecting n is depicted compared with the error probability pe for one, three, five, and ten iterations.

second channel) are considered. In order to compensate
and reduce the inter-symbol interference (ISI) caused by
the multipath propagation, a linear mean square error
(MSE) equalizer of length 20 was used.
We evaluate the performances of our method when the

QAM or PAM modulation of order 8 (8-QAM and 8-
PAM) is used to transmit the symbols coded by LDPC
(n = 16, k = 8) over GF(8). In Figures 8 and 9, a

comparison of performances of our blind identification
method using 8-PAM or 8-QAM modulations in the case
of an AWGN channel and a multipath channel with path
number Lpath = 4 and itmax = 1 is presented. In Figure 8, a
comparison of the detection performances of our method
in the case of AWGN channel is depicted. We can see that
the proposedmethod for 8-QAMmodulation gives better
performances than for 8-PAM modulation when SNR<
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Figure 8 The detection probability of the method based on the mean calculation for LDPC (n = 16, k = 8) in the case of AWGN channel.
For LDPC (n = 16, k = 8) over GF(8), the detection probabilities of the method based on the mean calculation in the case of AWGN channel are
depicted when a 8-PAM and 8-QAMmodulations are used.



Zrelli et al. EURASIP Journal onWireless Communications andNetworking  (2015) 2015:43 Page 12 of 16

10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
et

ec
tio

n 
P

ro
ba

bi
lit

y 
of

 n

SNR (dB)

8−PAM, multipath Rayleigh channel
8−QAM, multipath Rayleigh channel

Figure 9 The detection probability of the method based on the mean calculation in the case of multipath Rayleigh channel. For LDPC
(n = 16, k = 8) over GF(8), the detection probabilities of our method are depicted in the case of multipath Rayleigh channel with Lpath = 4 when
8-PAM and 8-QAMmodulations are used.

18 dB. The gain between both is equal to 5 dB. However,
for SNR > 18 dB, the performances are similar and the
detection probability is equal to 1. To obtain the detec-
tion probabilities presented in Figure 9, the modulated
symbols by 8-PAM or 8-QAM modulations are transmit-
ted in a quasi-static Rayleigh fading multipath channel
with path number Lpath = 4, then the received symbols
are treated by the linear MSE equalizer of length 20. We
can observe that, in the case of 8-QAM, our proposed
method provides better performances than for 8-PAM. A
gain equal to 5 dB is exhibited. We have chosen to eval-
uate our proposed methods in the worst case of 8-PAM
modulation because our aim was to show that our method
has the best performances even in the case of the PAM
modulation.
In the following, the performance study of the impact of

n and q on the proposed method is presented.

Impact of increasing q
Let us consider a LDPC (n = 6, k = 3), constructed
in the Galois field GF(q), where q = 4, 8, 16. The matri-
ces R̃l are reshaped from L = 30, 000 received symbols
with l = 2, · · · , 30 and M = 1, 000. For each value of q,
the method based on the mean calculation is applied to
blindly identify the code word length of LDPC (n = 6,
k = 3) over GF(q) when itmax = 1. Figure 10 depicts the
probability of detecting the correct n by our blind identifi-
cation method according to the error probability pe in the
cases of GF(4), GF(8), and GF(16). This figure shows that

the curve behavior is nearly similar for all q = 4, 8, 16.We
can deduce that the method based on the mean calcula-
tion is slightly sensitive to the increase of the Galois field
dimension q.

Impact of increasing n
To evaluate the detection performances of our blind iden-
tification method, the impact of increasing the code word
length should be studied. In our simulations, we consider
two LDPC codes over GF(8), a LDPC (n = 6, k = 3) and
a LDPC (n = 16, k = 8). The matrices R̃l are reshaped
from L = 64, 000 received symbols with l = 2, · · · , 64
and M = 1, 000. For each code, the method based on the
mean calculation is applied to blindly identify the code
word length n when itmax = 1. Figure 11 shows the detec-
tion probabilities of n by the method based on the mean
calculation. We can note that the increase of the code
word length leads to lower detection performances with
our proposed method. Indeed, for pe = 0.01, the detec-
tion probability of the method of the mean calculation is
constant and equal to 1 in the case of the two codes. For
pe = 0.02, the detection probability decreases from 0.99
to 0.94.
In order to show that our method works in the case

of codes of a reasonable code word length, we computed
the detection probability of the Reed-Solomon code RS
(n = 31, k = 25) over GF(32) which corresponds to an
equivalent code over GF(2) of length m · n = 5 · 31 =
155. For an error probability pe = 0.01 and 1,000 trials
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Figure 10 Impact of the Galois field dimension q on the detection probability of n by the proposedmethod considering itmax = 1. For
LDPC (n = 6, k = 3), the probability of detecting the correct n by the method based on the arithmetic mean computation is depicted according to
the error probability pe in the cases of GF(4), GF(8), and GF(16).

of Monte Carlo, we obtained a detection probability of
0.87 for itmax = 50. This probability can be improved
by increasing the number of iteration of our algorithm.
For itmax = 100, we obtained a detection probability
of 0.95.

Conclusions
In this paper, we have introduced an algorithm devoted to
the blind identification of the code word length for a non-
binary code in a noisy transmission environment. Using
this algorithm, the code word length can be identified by
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Figure 11 Impact of increasing n on the detection probability for LDPC codes.Of sizes n = 6 and n = 16 by using the proposed method
considering itmax = 1. For LDPC (n = 6, k = 3) and LDPC (n = 16, k = 8) over GF(8), the probability of detecting the correct n by the method based
on the arithmetic mean calculation is depicted according to the error probability pe .
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calculating the arithmetic mean of the number of zeros
that occur in the columns of the matrix obtained by the
Gauss elimination. We have shown that the proposed
algorithm is robust because it does not require the estima-
tion of error probability, is insensitive to the high order of
Galois field, and has the best detection performances for
the most of modulation types. Furthermore, this method
provides better performances of detection when an itera-
tive process is considered in order to increase the prob-
ability to obtain non-erroneous pivots during the Gauss
elimination.
Our future work will focus on identifying the remain-

der of the non-binary code parameters as well as a parity
check matrix, permitting to implement a generic decoder
in a noisy environment. Furthermore, a method based on
using soft information that allows us to improve the per-
formances of the blind identification algorithms will be
published soon [31].

Appendix
Proof of Equation 8
We defineH0 andH1 by:

H0 if ã(l)
i ∈ C⊥ and H1 if ã(l)

i /∈ C⊥ (29)

The two behaviors of Bl(i) are limited in (7). The aim
of this appendix is to demonstrate (8). In order to deter-
mine the probabilities of Pfa and Pnd, we should study the
behaviors of the variable Bl(i) according to the hypotheses
H0 andH1:

Under the hypothesis H0: the variable Bl(i) follows a
binomial distribution B(M, Pi). So, the probability that
Bl(i) is greater than M

q · η is as follows:

Pr
[
Bl(i) >

M
q

· η | H0

]
=

M∑
j=�M

q ·η�+1

(
M
j

)
·Pji ·(1−Pi)M−j

(30)

Under the hypothesis H1: the variable Bl(i) follows a
binomial distribution B(M, 1/q). So, the probability that
Bl(i) is less than or equal to M

q · η is as follows:

Pr
[
Bl(i) ≤ M

q
· η | H1

]
=

�M
q ·η�∑
j=0

(
M
j

)
· (q − 1)M−j

qM

(31)

Using these two probabilities, we will calculate the false
alarm probability Pfa, the probability of not detecting a
theoretical dependent column Pnd and the probability of
detection Pdet.

Calculation of the false alarm probability Pfa: this
probability corresponds to decide that a column ã(l)

i
belongs to a dual code C⊥ even thought in reality it does
not belong. This probability can be determined by:

Pfa = Pr
[
Bl(i) >

M
q

· η | H1

]

=
M∑

j=�M
q ·η�+1

(
M
j

)
· (q − 1)M−j

qM

(32)

Calculation of the probability of not detecting a the-
oretical dependent column Pnd: this probability corre-
sponds to decide that a column ã(l)

i does not belong to C⊥
even thought in reality it belongs. This probability can be
determined by:

Pnd = Pr
[
Bl(i) ≤ M

q
· η | H0

]

=
�M
q ·η�∑
j=0

(
M
j

)
· Pji · (1 − Pi)M−j

(33)

Calculation of the probability of detection Pdet: this
probability is defined by:

Pdet = 1 − Pnd = Pr
[
Bl(i) >

M
q

· η | H0

]

=
M∑

j=�M
q ·η�+1

(
M
j

)
· Pji · (1 − Pi)M−j

(34)

Using (32) and (34), the optimal threshold can be deter-
mined by:

ηopt = argmin η (Pwd) = argmin η (Pnd + Pfa)

= argmin η (1 + Pfa − Pdet)

= argmin η

⎛
⎜⎜⎝1 +

M∑
j=
⌊
M
q ·η
⌋
+1

(
M
j

)

×
[
q−M · (q − 1)M−j − Pji · (1 − Pi)M−j

]⎞⎟⎟⎠
(35)

Proof of the equation (16)
The probability Pi is initially expressed by (15).
We denote P1(s) = Pr [X = s] and P2(s) = Pr
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[∑s
k=1 a

(l)
i (k) · e(l)k (j) = 0

]
such that these two proba-

bilities are independent. Henceforth, (15) becomes:

Pi = P1(0) +
Ni(l)∑
s=1

P1(s) · P2(s) (36)

Assuming that the errors are independent from each
other and uniformly distributed in GF(q)\{0}, the variable
X follows a binomial distribution with parameters Ni(l)
and pe. Thereby, the probability P1(s) is determined by:

P1(s) =
(
Ni(l)
s

)
· (pe)s · (1 − pe)Ni(l)−s (37)

The probability P2(s) is the probability of having∑s
k=1 a

(l)
i (k) · e(l)k (j) = 0 where e(l)k (j) ∈ GF(q)\{0}.

We demonstrate by the mathematical induction that the
probability P2(s) can be expressed by:

P2(s) = 1 − P2(s − 1)
q − 1

(38)

We have P2(0) = 1 because there are no erroneous posi-
tions. In the case of a single erroneous position, we have
P2(1) = 0. However, considering the example of GF(22),
the probability P2(s = 2) can be obtained by the matrix
M whose the indexes of rows and columns correspond to
non-zero elements of this field. The coefficients of this
matrix correspond to the sum over GF(22) of the indexes
of a row and a column.

M =
⎛
⎝0 3 2
3 0 1
2 1 0

⎞
⎠ (39)

If we have
(
a(l)
i (1), e(l)1 (j)

)
∈ (

GF(22)∗
)2, and (a(l)

i (2),

e(l)2 (j)
)

∈ (
GF(22)∗

)2, the probability of having a(l)
i (1) ·

e(l)1 (j) + a(l)
i (2) · e(l)2 (j) = 0 will be P2(2) = 3/9 = 1/3. The

computed probability verifies (38).
We assume that (38) is verified for s, and we demon-

strate it for s+1. If we have
∑s+1

k=1 a
(l)
i (k)·e(l)k (j) = 0, wewill

have e(l)s+1 = − 1
a(l)
i (s+1)

·∑s
k=1 a

(l)
i (k) · e(l)k (j) that belongs

to GF(q)∗ with a probability equal to 1/(q−1). Therefore,
the probability P2(s + 1) is determined by:

P2(s + 1) = Pr

(
e(l)s+1 ∈ GF(q)∗,

s∑
k=1

a(l)
i (k) · e(l)k (j) �= 0

)

= Pr
(
e(l)s+1 ∈ GF(q)∗

)
· Pr

( s∑
k=1

a(l)
i (k) · e(l)k (j) �= 0

)

= P2(s)
q − 1

= 1 − P2(s)
q − 1

(40)

In order to simplify the expression of P2(s), a change
of variable is done by considering ϕ(s) = (q − 1)s−1 ·
P2(s). When P2(s) is replaced by ϕ(s), the expression (38)
becomes:

ϕ(s) + ϕ(s − 1) = (q − 1)s−2 (41)

Denoting ρ(s) = (−1)s · ϕ(s), the expression (41) can be
written as:

ρ(s) = ρ(1) +
s−1∑
i=0

(1 − q)i (42)

but, the sum
∑s−1

i=0(1 − q)i is a geometric sequence of
common ratio 1 − q. So, it can be written as:

s−1∑
i=0

(1 − q)i = 1 − (−1)s−1 · (q − 1)s−1

q
(43)

The computation of ρ(1) gives ρ(1) = 0. Therefore,
using (43) and (41), the simplified expression of P2(s) is
written as:

P2(s) = (−1)s + (q − 1)s−1

q · (q − 1)s−1 (44)

Using (37) and (44), the overall probability Pi is given by:

Pi = 1
q ·
(∑Ni(l)

j=0
(Ni(l)

j
) · pje · (1 − pe)Ni(l)−j + (q − 1)

×∑Ni(l)
j=0

(Ni(l)
j
) ·
( −pe
q − 1

)j
· (1 − pe)Ni(l)−j

)

(45)

In order to simplify this equation, the Newton’s bino-
mial formula can be applied:

(Z + Y )Ni(l) =
Ni(l)∑
j=0

(
Ni(l)
j

)
· Zj · YNi(l)−j

Thus, the probability of having an element of the i-th
column of T̃l equal to 0 is determined by:

Pi =
1 + (q − 1) ·

(
1 − pe · q

q − 1

)Ni(l)

q
(46)
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