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, where L n is the differential operator built from a system (w 0 , . . . , w n ) of weight functions on [a, b] (which means that each w i is C n-i and positive on [a, b]) via the classical procedure [START_REF] Schumaker | Spline Functions[END_REF] L 0 F := F w 0 , L i F := 1 w i DL i-1 F, 1 i n.

(1) difopP

The EC-spaces which are good for design are those in which we can take w 0 = 1I, where 1I(x) = 1 for all x ∈ [a, b].

We now consider a fixed sequence of interior knots a < t 1 < • • • < t q < b and a fixed associated sequence of multiplicities m k , with 0 m k n for 1 k q. With t 0 := a, t q+1 = b and m 0 := m q+1 = n + 1, and with x [k] standing for x repeated k times, this provides us with the knot-vector

K := t 0 [m0] , t 1 [m1] , . . . , t q [mq] , t q+1 [mq+1] = (ξ n , . . . , ξ m+n+1 ), where m := q k=1 m k ,
We denote by C(K) the class of all (n + 1 + m)-dimensional spaces of piecewise Chebyshevian splines (for short PEC-splines) based on K. To build a space S ∈ C(K) we need the following ingredients:

-a sequence of section spaces E k , 0 k q: for each k,

E k ⊂ C n ([a, b]) contains constants and the space DE k is an n-dimensional EC-space on [t k , t k+1 ];
-a sequence of connection matrices M k , 1 k q: for each k, M k is a lower triangular square matrix of order (n -m k ) with positive diagonal entries.

The associated PEC-spline space S (containing constants) is the set of all continuous functions S : I → R such that 1) for k = 0, . . . , q, the restriction of S to [t k , t k+1 ] belongs to E k ;

2) for k = 1, . . . , q, the following connection condition is fulfilled:

S (t + k ), . . . , S (n-m k ) (t + k ) T = M k • S - k ), . . . , S (n-m k ) (t - k ) T , (2) connection 
The expression "PEC-splines" is used to stress that the pieces are taken from different EC-spaces. Due to the presence of connection matrices, PEC-splines are implicitly allowed to be geometrically continuous. By contrast, we use the expression Chebyshevian spline space in the simpler case where there exists a system (w 1 , . . . , w n ) of weight functions on [a, b] such that EC(1I, w 1 , . . . , w n ) ⊂ S, i.e., when all section-spaces are obtained as restrictions of a single EC-space good for design on the whole of [a, b], and when the splines are parametrically continuous ( i.e., all M k are identity matrices). The ordinary polynomial spline space of degree n (based on K) is obtained when

w 1 = • • • = w n = 1I.
Not all spaces of the class C(K) are of interest. This is why we consider the subclass C 0 (K) of all S ∈ C(K) which are good for design in the sense that they possess blossoms. Readers more precisely interested in blossoms are referred to [START_REF] Mazure | How to build all Chebyshevian spline spaces good for Geometric Design[END_REF] and other references therein. We limit ourselves to mentioning that, when S ∈ C 0 (K), each PEC-spline S ∈ S blossoms into a symmetric function s of n variables (its blossom) which, by nature, is defined on a restricted subset of [a, b] n containing the diagonal of [a, b] n on which s gives S. In this very difficult PEC-context, a major difficulty consists in proving that blossoms are pseudoaffine in each variable. This is the precise property which permits the development of all the classical CAGD algorithms (evaluation, knot insertion, subdivision). This leads to the following statements which highly justify our terminology "good for design". BSB Theorem 1.1. Any PEC-spline space S ∈ C 0 (K) possesses a B-spline basis which is its optimal normalised totally positive basis. Conversely, given S ∈ C(K), if S and any spline space derived from S by knot insertion possess B-spline bases, then S ∈ C 0 (K).

As is classical, a B-spline basis in S is a sequence N ∈ S, -n m, which is normalised ( i.e., m =-n N = 1I), each N being positive on the interior of its support [ξ , ξ +n+1 ], with some additional condition on its zeroes at the endpoints of its support. The total positivity of such bases ensures shape preserving control (see [START_REF] Goodman | Total Positivity and the Shape of Curves, Total Positivity and its Applications[END_REF]) and optimality should simply be understood as "the best possible" from this viewpoint, see [START_REF] Mazure | Blossoms and optimal bases[END_REF] and references therein.

We now consider a system (w 0 , . . . , w n ) of piecewise weight functions on [a, b], with the meaning that each w i is C n-i and positive separately on each [t + k , t - k+1 ]. With such a system we can associate linear piecewise differential operators L 0 , . . . , L n via the procedure already recalled in [START_REF] Costantini | Curve and surface construction using variable degree polynomial splines[END_REF]. We denote by ECP (w 0 , . . . , w n ) the set of all piecewise functions on [a, b] such that L n F is constant on [t + k , t - k+1 ] for k = 0, . . . q, with the additional requirement that

L i F (t + k ) = L i F (t - k
) for i = 0, . . . , n, and for k = 1, . . . , q. This space is (n + 1)-dimensional and it is an Extended Chebyshev Piecewise space on [a, b], in the sense that we can count the total number of zeroes of each non-zero of its elements, including multiplicities up to (n + 1), and this number is at most n. We conclude this section a constructive characterisation of the subclass C 0 (K) [?, ?], of which the most difficult is the "only if" part. Theorem 1.2. Let S ∈ C(K) be given. Then, S ∈ C 0 (K) if and only if there exists a system (w 1 , . . . , w n ) of piecewise weight functions on [a, b] such that ECP (1I, w 1 , . . . , w n ) ⊂ S.

2 Geometrically continuous piecewise Chebyshevian NURBS That a space S in the class C(K) belongs to the subclass C 0 (K) can also characterised by the existence of B-spline-like bases in the space DS obtained from S by (possibly left or right) differentiation and also in all spline spaces obtained from it via knot-insertion. Note that, a priori, splines in DS are not functions but piecewise functions. B-spline-like bases satisfy similar properties as those of a B-spline basis, not including normalisation.

In the rest of this section we consider a fixed PEC-spline space S in C 0 (K), and we denote by N k , k = -n, . . . , m its B-spline basis. One key-point to establish the "only if" part of Theorem 1.2 is the following result (see [START_REF] Mazure | How to build all Chebyshevian spline spaces good for Geometric Design[END_REF][START_REF] Mazure | Piecewise Chebyshev-Schoenberg operators: shape preservation, approximation and space embedding[END_REF]). This theorem has been exploited in [START_REF] Mazure | Piecewise Chebyshev-Schoenberg operators: shape preservation, approximation and space embedding[END_REF] to show the existence of infinitely many Schoenbergtype operators in S, permitting simultaneous approximation of a function and its first derivative.

Here, we exploit it in a different way, after observing that its equivalence (ii) ⇔ (iii) is actually an equivalence within the space DS. We can thus restate it in S rather than in DS, which yields: OM Theorem 2.2. Given a spline Ω = m -n ω k N k ∈ S, the following properties are equivalent: (i) the poles ω -n , . . . , ω m of Ω are all positive;

(ii) the spline Ω is positive on [a, b] and the space obtained after division of all elements of S by Ω belongs to the subclass C 0 (K).

Definition 2.3. For each spline Ω ∈ S with positive poles, the space obtained after division of all elements of S by Ω is called the rational spline space based on S and Ω. We denote it by R S; Ω .

We now assume that (i) of Theorem 2.2 holds. The B-spline basis in R S; Ω is the sequence

ω k N k Ω , k = -n, . . . , m. (3 

) GCPCNURBS

Accordingly, the rational spline space R S; Ω can also be described as the set of all continuous functions of the form For design, we have to take w 0 = 1I. Note that the QEC-context implies many more difficulties (see [START_REF] Mazure | Which spaces for design[END_REF]). As an example, for any real numbers p, q > n -1, the space E p,q spanned on [0, 1] by the (n + 1) functions 1, x, . . . , x n-2 , x p , (1 -x) q is a QEC-space on [0, 1], while it is an EC-space on [0, 1] if and only if p = q = n.

m -n α k ω k N k m -n ω k N k , α -n , . . . , α m ∈ R. ( 4 
To define the class QC(K) of all (n + m + 1)-dimensional space of (geometrically continuous) piecewise quasi-Chebyshevian (PQEC) splines we weaken the requirements on the section-spaces: if each E k is still assumed to contain constants, we only assume that

E k ⊂ C n-1 ([t k , t k+1 ]) and that DE k is an n-dimensional QEC-space on [t k , t k+1 ].
Apart from this change, the PQEC-spline space S is then defined exactly as previously when all multiplicities are positive. Without going into details, let us mention that if m k = 0 for some k ∈ {1, . . . , q}, to a connection of the type (2) between the (n -1) first left and right derivatives at t k we have to add a convenient relation between left and right Bézier points. As previously we have to introduce the subclass QC 0 (K) composed of all S ∈ QC(K) which are good for design in the sense that they possess blossoms. Of course this is a larger class than C 0 (K). In this larger framework, we can then state the exact analogue of Theorem 1.1, simply replacing "B-spline basis" by "Quasi-B-spline basis". The term "quasi" refers to the fact that the count of zeroes at the endpoints of the supports must take into account that the section spaces are not EC-spaces but QEC-spaces.

Given a system (w 0 , . . . , w n-1 ) of piecewise weight functions on [a, b], the associated piecewise differential operator L n-1 , and a two-dimensional C-space C ⊂ C 0 ([a, b]) on [a, b], denote by QECP (w 0 , w 1 , . . . , w n-1 ; C) the (n + 1)-dimensional space of all piecewise functions F on [a, b] such L n-1 F ∈ C and L i F (t + k ) = L i F (t + k ) for i = 0, . . . , n -1 and k = 1, . . . , q. This space is (n + 1)-dimensional Quasi-Extended Piecewise space in the sense that the total number of zeroes of a non-zero element is bounded above by n, multiplicities included up to n. Below, the analogue of Theorem 1.2 describes the class QC 0 (K) (including the possibility of zero multiplicities) see [START_REF] Mazure | Which spaces for design?[END_REF] Qexistence Theorem 3.1. Assume that S ∈ QC(K). Then S ∈ QC 0 (K) if and only if there exists a system (w 1 , . . . , w n-1 ) of piecewise weight functions on [a, b] and a two-dimensional C-space C on [a, b] such QECP (1I, w 1 , . . ., w n-1 ; C) ⊂ S.

The "only if" part relies from an analogue of Theorem 2.1 in the class QC 0 (K) for n 2. This in turn leads to the exact analogue of Theorem 2.2 simply replacing C 0 (K) by QC 0 (K). Within QC 0 (K) we can thus define geometrically continuous piecewise quasi-Chebyshevian NURBS as in (3), the rational spaces satisfying (4) and (5).

Conclusion

The class QC 0 (K) is the largest class of spline spaces with ordinary differentiability assumption on the section-spaces which can be used for Design (or Approximation or Isogeometric Analysis). The most famous examples of spaces in QC 0 (K) \ C 0 (K) are the so-called variable "degree" splines, that is, splines with, up to affine changes of variables, different E p,q as section-spaces [START_REF] Costantini | Curve and surface construction using variable degree polynomial splines[END_REF]2,[START_REF] Kaklis | Convexity preserving polynomial splines of non-uniform degree[END_REF]. We have insisted more on the smaller class C 0 (K) because EC-spaces [START_REF] Schumaker | Spline Functions[END_REF] are more classical tools than QECspaces [START_REF] Mazure | Which spaces for design[END_REF]9]. Moreover the recent results recalled in Section 1 have already appeared, which is not yet the case for their analogues in the more difficult class QC 0 (K), see [START_REF] Mazure | Which spaces for design?[END_REF].

Theorem 2.2 says in particular that the classical rational spline spaces are examples of spaces of parametrically continuous splines in the class C 0 (K). They can thus benefit from all properties developed within C 0 (K), see [START_REF] Mazure | Piecewise Chebyshev-Schoenberg operators: shape preservation, approximation and space embedding[END_REF] for instance. Compared to the degree n polynomial B-splines, one major interest of introducing the classical NURBS [START_REF] Farin | NURBS: from Projective Geometry to Practical Use[END_REF][START_REF] Fiorot | Rational curves and surfaces: applications to CAD[END_REF] was the shape effects permitted by the parameters ω -n , . . . , ω m defining them. The class QC 0 (K) provides us with such a great variety of shape parameters (coming either from the section-spaces or from the connection matrices) that it may seem useless to add new parameters to introduce NURBS in it, all the more so as this does not increase the class QC 0 (K). Nevertheless, given S ∈ QC 0 (K), it will be interesting to investigate how its own shape parameters interact with the positive parameters defining all rational spline spaces based on S.
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  Geometrically continuous piecewise Chebyshevian splines for design Throughout this note we work with a fixed interval [a, b], a < b, and a fixed positive number n. An (n + 1)-dimensional space E ⊂ C n ([a, b]) is an Extended Chebyshev-space (for short EC-space) on [a, b] if any non-zero element of E vanishes at most n times on [a, b], counting multiplicities up to (n + 1), or equivalently if any Hermite interpolation in (n + 1) data on [a, b] has a unique solution in E. Because we are working on a closed bounded interval, this important class of spaces coincides with the class of all spaces of the form EC(w 0 , . . . , w n ), defined as the set of all functions F ∈ C n ([a, b]) for which L n F is constant on [a, b]

1 .

 1 For a spline Σ = m -n σ k N k ∈ S the following properties are equivalent: (i) the poles σ -n , . . . , σ m of Σ form a strictly increasing sequence; (ii) W := DΣ has positive coordinates in any B-spline-like basis of DS; (iii) the piecewise function W is positive on [a, b] and, if we define the piecewise differential operator L by LF = DF/W , then the spline space LS lies in the class C 0 (K).

  ) RAT By analogy with the classical rational splines we say the functions in (3) are geometrically continuous piecewise Chebyshevian NURBS. One can check that, for each Ω ∈ S satisfying (i) of Theorem 2.2 S = R R S; Ω ; 1 Ω . (5) reciprocal 3 Geometrically continuous piecewise quasi-Chebyshevian NURBS An (n + 1)-dimensional space E ⊂ C n-1 ([a, b]) is said to be a Quasi-Extended Chebyshev-space (for short QEC-space) on [a, b] if any non-zero element of I vanishes at most n times on [t k , t k+1 ], counting multiplicities up to n, or, equivalently, if any Hermite interpolation problem in (n + 1) data involving at least two distinct points in I has a unique in E. If C is a two-dimensional Chebyshev space (C-space) on [a, b] (which is the same as being a QEC-space on [a, b]) and if L n-1 is associated with a system (w 0 , . . . , w n-1 ) of weight functions on [a, b], then the set QEC(w 0 , . . . , w n-1 ; C) composed of all functions F ∈ C n-1 ([a, b]) for which L n-1 F ∈ C is an (n + 1)-dimensional QEC-space on [a, b]. Actually, all (n + 1)-dimensional QEC-space on [a, b] are of this form [9].