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Abstract

We construct here new deformations of the AP breather (Akhmediev-
Peregrine breather) of order N (or APN breather) with 2N−2 real pa-
rameters. Other families of quasi-rational solutions of the NLS equa-
tion are obtained. We evaluate the highest amplitude of the modulus
of AP breather of order N ; we give the proof that the highest ampli-
tude of the APN breather is equal to 2N +1. We get new formulas for
the solutions of the NLS equation, different from these already given
in previous works. New solutions for the order 8 and their deforma-
tions according to the parameters are explicitly given. We get the
triangular configurations as well as isolated rings at the same time.
Moreover, the appearance for certain values of the parameters, of new
configurations of concentric rings are underscored.

PACS numbers :
33Q55, 37K10, 47.10A-, 47.35.Fg, 47.54.Bd
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1 Introduction

We consider the one dimensional focusing nonlinear Schrödinger equation
(NLS) to describe the phenomena of rogue waves. We recall that the term
of rogue or freak wave was first introduced in the scientific community by
Draper in 1964 [7].
The rogue waves phenomenon plays actually a significant role in other fields;
in nonlinear optics [36], Bose-Einstein condensate [5], atmosphere [37] and
even finance [38].
The first results concerning the NLS equation date from the works of Za-
kharov and Shabat in 1972 who solved it using the inverse scattering method
[39, 40]. Its and Kotlyarov first constructed periodic and almost periodic
algebro-geometric solutions to the focusing NLS equation in 1976 [29, 30]. It
is in 1979 that Ma found the first breather type solution of the NLS equation
[33]. In 1983, the first quasi rational solution of NLS equation was con-
structed by Peregrine [35]. Akhmediev, Eleonski and Kulagin obtained for
the first time the second order rational solution and predicted the existence
of an infinite hierarchy of higher-order rational solutions [2, 3]. Other ana-
logues of the AP breathers of order 3 and 4 were constructed using Darboux
transformations, in a series of articles by Akhmediev et al. [1, 4, 6].
Recently, many works about NLS equation have been published using differ-
ent methods. Rational solutions of the NLS equation has been written as a
quotient of two wronskians in 2010 [8]. One year after, the present author
constructed in [9] an other representation of the solutions of the NLS equa-
tion in terms of a ratio of two wronskians determinants of even order 2N
composed of elementary functions using truncated Riemann theta functions;
rational solutions were obtained when one of the parameters tends towards
0. Guo, Ling and Liu found in 2012 an other representation of the solutions
as a ratio of two determinants [27] using generalized Darboux transform. A
new approach has been done by Ohta and Yang in [34] using Hirota bilinear
method. In the same year, the present author obtained rational solutions in
terms of determinants which does not involve limits in [12]. In 2013, we have
constructed explicitly deformations of AP breather of order N depending on
2N − 2 parameters by giving their expressions in terms of quotient of poly-
nomials in x and t for the orders until N = 7, as given for example in [16].
The present paper gives here other new multi-parametric families of quasi
rational solutions of NLS of order N in terms of determinants (determinants
of order 2N) dependent on 2N − 2 real parameters. New solutions different
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from all the previous one are obtained. With this representation, one recov-
ers at the same time the ring or concentric rings structure and the triangular
shapes also found by Ohta and Yang [34], Akhmediev et al. [31].
We construct solutions depending on 2N − 2 parameters which give the AP
breather as particular case when all the parameters are equal to 0 : for this
reason, we will call these solutions, 2N − 2 parameters deformations of the
APN breather.
The paper is organized as follows. We construct new quasi rational solutions
depending a priori on 2N − 2 parameters at the order N . Then we prove
that the highest amplitude of the modulus of the AP breather of order N
is equal to 2N + 1. We construct the AP breathers for N = 1 to N = 10;
we only give the corresponding plots of the modulus in the (x; t) plane. Af-
ter, one constructs various figures to illustrate the evolution of the solutions
according to the parameters for the order 8. One obtains at the same time
triangular configurations and ring structures.

2 New wronskian representation of solutions

of NLS equation

We consider the focusing NLS equation

ivt + vxx + 2|v|2v = 0. (1)

We recall the main result obtained in [9].

Theorem 2.1 The function v defined by

v(x, t) =
W3(0)

W1(0)
exp(2it− iϕ) (2)

is solution of the NLS equation (1).

In (2), Wr(y) = W (φr,1, . . . , φr,2N) is the wronskian of order 2N

Wr(y) = det[(∂µ−1
y φr,ν)ν, µ∈[1,...,2N ]], r = 1, r = 3. (3)

The functions φr,ν are defined by

φr,ν(y) = sinΘr,ν , 1 ≤ ν ≤ N,
φr,ν(y) = cosΘr,ν , N + 1 ≤ ν ≤ 2N,
Θr,ν = κνx/2 + iδνt− ixr,ν/2 + γνy − ieν , 1 ≤ ν ≤ 2N.

(4)
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The terms κν , δν , γν are functions of the parameters λν , ν = 1, . . . , 2N
satisfying the relations

0 < λj < 1, λN+j = −λj, 1 ≤ j ≤ N. (5)

They are given by the following equations,

κj = 2
√

1− λ2j , δj = κjλj, γj =
√

1−λj
1+λj

,

κN+j = κj, δN+j = −δj, γN+j = 1/γj, j = 1 . . . N.
(6)

The terms xr,ν , (r = 3, 1) are defined by

xr,ν = (r − 1) ln γν−i

γν+i
, 1 ≤ j ≤ 2N. (7)

The parameters eν are given by

ej = iaj − bj, eN+j = iaj + bj, 1 ≤ j ≤ N, (8)

where aj and bj, for 1 ≤ j ≤ N are arbitrary real numbers.
We choose here to give a new representation of the solutions of the NLS
equation depending only on terms γν , 1 ≤ ν ≤ 2N . From the relations (6),
(7), we can express the terms κν , δν and xr,ν in function of γν , for 1 ≤ ν ≤ 2N
and we obtain :

κj =
4γj

(1+γ2j )
, δj =

4γj(1−γ
2
j )

(1+γ2j )
2 , xr,j = (r − 1) ln

γj−i

γj+i
, 1 ≤ j ≤ N,

κj =
4γj

(1+γ2j )
, δj = −

4γj(1−γ
2
j )

(1+γ2j )
2 , xr,j = (r − 1) ln

γj+i

γj−i
, N + 1 ≤ j ≤ 2N.

(9)

We have the following new representation :

Theorem 2.2 The function v defined by

v(x, t) =
det[(∂µ−1

y φ̃3,ν(0))ν, µ∈[1,...,2N ]]

det[(∂µ−1
y φ̃1,ν(0))ν, µ∈[1,...,2N ]]

exp(2it− iϕ) (10)

is solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0.
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The functions φ̃r,ν are defined by

φ̃r,j(y) = sin
(

2γj
(1+γ2j )

x+ i
4γj(1−γ

2
j )

(1+γ2j )
2 t− i (r−1)

2
ln

γj−i

γj+i
+ γjy − iej

)

, 1 ≤ j ≤ N,

φ̃r,N+j(y) = cos
(

2γj
(1+γ2j )

x− i
4γj(1−γ

2
j )

(1+γ2j )
2 t+ i (r−1)

2
ln

γj−i

γj+i
+ 1

γj
y − ieN+j

)

, 1 ≤ j ≤ N,

where γj =
√

1−λj
1+λj

, 1 ≤ j ≤ N.

λj is an arbitrary real parameter such that 0 < λj < 1, λN+j = −λj, 1 ≤ j ≤ N.
The terms eν are defined by ej = iaj − bj, eN+j = iaj + bj, 1 ≤ j ≤ N,
where aj and bj are arbitrary real numbers, 1 ≤ j ≤ N.

(11)

Remark 2.1 In the formula (10), the determinants det[(∂µ−1
y fν(0))ν, µ∈[1,...,2N ]]

are the wronskians of the functions f1, . . . , f2N evaluated in y = 0. In par-
ticular ∂0yfν means fν.

3 Families of quasi-rational solutions depend-

ing on 2N − 2 parameters of NLS equation

in terms of a ratio of two determinants of

order N .

In the following, to get quasi-rational solutions of the NLS equation, we have
to take the limits λ1 → 1 for 1 ≤ j ≤ N and λ1 → −1 for N + 1 ≤ j ≤ 2N .
For this, we choose λj = 1 − 2jǫ2. When ǫ goes to 0, we realize limited
expansions at order M of all the functions Φr,ν .
We use the following notations :

Xj =
2γj

(1+γ2j )
x+ i

4γj(1−γ
2
j )

(1+γ2j )
2 t− i ln

γj−i

γj+i
− iej,

XN+j =
2γj

(1+γ2j )
x− i

4γj(1−γ
2
j )

(1+γ2j )
2 t+ i ln

γj−i

γj+i
− ieN+j,

for 1 ≤ j ≤ N.

Yj =
2γj

(1+γ2j )
x+ i

4γj(1−γ
2
j )

(1+γ2j )
2 t− iej,

YN+j =
2γj

(1+γ2j )
x− i

4γj(1−γ
2
j )

(1+γ2j )
2 t− ieN+j,

for 1 ≤ j ≤ N.

(12)
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The terms γν and eν are defined by (11). We have any freedom to choose the
terms aj and bj. This is the crucial point. We choose aj and bj in the form

aj =
N−1
∑

k=1

ãkj
2k+1ǫ2k+1, bj =

N−1
∑

k=1

b̃kj
2k+1ǫ2k+1, 1 ≤ j ≤ N. (13)

In order to rewrite the quotient of wronskians defined in (11), we use the
following functions :

ϕ4j+1,k = γ4j−1
k sinXk, ϕ4j+2,k = γ4jk cosXk,

ϕ4j+3,k = −γ4j+1
k sinXk, ϕ4j+4,k = −γ4j+2

k cosXk,

ϕ4j+1,N+k = γ2N−4j−2
k cosXN+k, ϕ4j+2,N+k = −γ2N−4j−3

k sinXN+k,

ϕ4j+3,N+k = −γ2N−4j−4
k cosXN+k, ϕ4j+4,N+k = γ2N−4j−5

k sinXN+k, 1 ≤ k ≤ N.

(14)

We define the functions gj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way,
we replace only the term Xk by Yk.

ψ4j+1,k = γ4j−1
k sinYk, ψ4j+2,k = γ4jk cosYk,

ψ4j+3,k = −γ4j+1
k sinYk, ψ4j+4,k = −γ4j+2

k cosYk,

ψ4j+1,N+k = γ2N−4j−2
k cosYN+k, ψ4j+2,N+k = −γ2N−4j−3

k sinYN+k,

ψ4j+3,N+k = −γ2N−4j−4
k cosYN+k, ψ4j+4,N+k = γ2N−4j−5

k sinYN+k, 1 ≤ k ≤ N

(15)

The quotient of wronskians q(x, t) defined by

q(x, t) :=
det[(∂µ−1

y φ̃3,ν(0))ν, µ∈[1,...,2N ]]

det[(∂µ−1
y φ̃1,ν(0))ν, µ∈[1,...,2N ]]

can be written as

q(x, t) =
∆3

∆1

=
det(ϕj,k)j, k∈[1,2N ]

det(ψj,k)j, k∈[1,2N ]

. (16)

All the functions ϕj,k and ψj,k and their derivatives depend on ǫ and can all
be prolonged by continuity when ǫ = 0.
Then we use the expansions

ϕj,k(x, t, ǫ) =
∑N−1

l=0
1

(2l)!
ϕj,1[l]k

2lǫ2l +O(ǫ2N), ϕj,1[l] =
∂2lϕj,1

∂ǫ2l
(x, t, 0),

ϕj,1[0] = ϕj,1(x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1,

ϕj,N+k(x, t, ǫ) =
∑N−1

l=0
1

(2l)!
ϕj,N+1[l]k

2lǫ2l +O(ǫ2N), ϕj,N+1[l] =
∂2lϕj,N+1

∂ǫ2l
(x, t, 0),

ϕj,N+1[0] = ϕj,N+1(x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1.

(17)
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We have the same expansions for the functions ψj,k.

ψj,k(x, t, ǫ) =
∑N−1

l=0
1

(2l)!
ψj,1[l]k

2lǫ2l +O(ǫ2N), ψj,1[l] =
∂2lψj,1

∂ǫ2l
(x, t, 0),

ψj,1[0] = ψj,1(x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N − 1,

ψj,N+k(x, t, ǫ) =
∑N−1

l=0
1

(2l)!
ψj,N+1[l]k

2lǫ2l +O(ǫ2N), ψj,N+1[l] =
∂2lψj,N+1

∂ǫ2l
(x, t, 0),

ψj,N+1[0] = ψj,N+1(x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N.

(18)

Then we get the following result :

Theorem 3.1 The function v defined by

v(x, t) = exp(2it− iϕ)×
det((njk)j,k∈[1,2N ])

det((djk)j,k∈[1,2N ])
(19)

is a quasi-rational solution of the NLS equation (1) ivt + vxx + 2|v|2v = 0
depending on 2N − 2 real parameters ãj, b̃j, 1 ≤ j ≤ N − 1, where

nj1 = ϕj,1(x, t, 0), 1 ≤ j ≤ 2N njk =
∂2k−2ϕj,1

∂ǫ2k−2 (x, t, 0),

njN+1 = ϕj,N+1(x, t, 0), 1 ≤ j ≤ 2N njN+k =
∂2k−2ϕj,N+1

∂ǫ2k−2 (x, t, 0),

dj1 = ψj,1(x, t, 0), 1 ≤ j ≤ 2N djk =
∂2k−2ψj,1

∂ǫ2k−2 (x, t, 0),

djN+1 = ψj,N+1(x, t, 0), 1 ≤ j ≤ 2N djN+k =
∂2k−2ψj,N+1

∂ǫ2k−2 (x, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

The functions ϕ and ψ are defined in (14), (15).

Proof : We eliminate in each column k (and N + k) of the determinants
appearing in q(x, t), the powers of ǫ strictly lower than 2(k − 1) by combin-
ing the columns of them successively. We begin by the components j of the
columns 1 and N+1; they are respectively equal by definition to ϕj1[0]+0(ǫ)
for C1, ϕjN+1[0]+0(ǫ) for CN+1 of ∆3, and ψj1[0]+0(ǫ) for C ′

1, ψjN+1[0]+0(ǫ)
for C ′

N+1 of ∆1.
At the first step of the reduction, we replace the columns Ck by Ck − C1

and CN+k by CN+k − CN+1 for 2 ≤ k ≤ N , for ∆3; we do the same changes
for ∆1. Each component j of the column Ck of ∆3 can be rewritten as
∑N−1

l=1
1

(2l)!
ϕj,1[l](k

2l−1)ǫ2l and the column CN+k replaced by
∑N−1

l=1
1

(2l)!
ϕj,N+1[l](k

2l−

1)ǫ2l for 2 ≤ k ≤ N . For ∆1, we have the same reductions, each component
j of the column C ′

k of can be rewritten as
∑N−1

l=1
1

(2l)!
ψj,1[l](k

2l− 1)ǫ2l and the

column C ′
N+k replaced by

∑N−1
l=1

1
(2l)!

ψj,N+1[l](k
2l − 1)ǫ2l for 2 ≤ k ≤ N .

7



We can factorize in ∆3 and ∆1 in each column k and N + k the term k2−1
2
ǫ2

for 2 ≤ k ≤ N , and so simplify these common terms in numerator and de-
nominator.
If we restrict the developments at order 1 in columns 2 and N + 2, we get
respectively ϕj1[1] + 0(ǫ) for the component j of C2, ϕjN+1[1] + 0(ǫ) for the
component j of CN+2 of ∆3, and ψj1[1] + 0(ǫ) for the component j of C ′

2,
ψjN+1[1] + 0(ǫ) for the component j of C ′

N+2 of ∆1. This algorithm can be
continued until the columns CN , C2N of ∆3 and C ′

N , C
′
2N of ∆1.

Then taking the limit when ǫ tends to 0, q(x, t) can be replaced by Q(x, t)
defined by :

Q(x, t) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1,1[0] . . . ϕ1,1[N − 1] ϕ1,N+1[0] . . . ϕ1,N+1[N − 1]
ϕ2,1[0] . . . ϕ2,1[N − 1] ϕ2,N+1[0] . . . ϕ2,N+1[N − 1]

...
...

...
...

...
...

ϕ2N,1[0] . . . ϕ2N,1[N − 1] ϕ2N,N+1[0] . . . ϕ2N,N+1[N − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1,1[0] . . . ψ1,1[N − 1] ψ1,N+1[0] . . . ψ1,N+1[N − 1]
ψ2,1[0] . . . ψ2,1[N − 1] ψ2,N+1[0] . . . ψ2,N+1[N − 1]

...
...

...
...

...
...

ψ2N,1[0] . . . ψ2N,1[N − 1] ψ2N,N+1[0] . . . ψ2N,N+1[N − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

(20)

So the solution of the NLS equation takes the form :

v(x, t) = exp(2it− iϕ)×Q(x, t)

So the obtain the result given in (37). 2

4 The AP breather of order N and its high-

est amplitude of the modulus equal to 2N+1

There is any freedom to choose γj in such a way that the conditions on λj
are checked. We know from previous works [9, 12] that the AP breathers are
obtained when all the parameters ãj and b̃j are equal to 0. In order to get the
more simple expressions in the determinants, we choose particular solutions
in the previous families.
Here we choose γj = jǫ as simple as possible in order to have the conditions
on λj checked.
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Theorem 4.1 The function v0 defined by

v0(x, t) = exp(2it− iϕ)×

(

det((njk)j,k∈[1,2N ])

det((djk)j,k∈[1,2N ])

)

(ãj=b̃j=0, 1≤j≤N−1)

(21)

is the AP breather of order N solution of the NLS equation (1) whose highest
amplitude in modulus is equal to 2N + 1.

Remark 4.1 In (21), the matrices (njk)j,k∈[1,2N ] and (djk)j,k∈[1,2N ] are de-
fined in (20).

Proof : We recall that APN is the AP breather of order N . All the pre-
vious analytical and numerical studies ([9, 12, 15]) shows that the maximum
of APN is reached for (x, t) = (0, 0). We are going to establish that the value
of the modulus of this solution APN denoted v0(0, 0) is equal to 2N + 1.
We need to analyze the functions ϕk,1, ϕk,N+1 and ψk,1, ψk,N+1.
We denote (lkj)k,j∈[1,2N ] the matrix defined by

lkj =
∂2j−2

∂ǫ2j−2
ϕk1(0, 0), lk,j+N =

∂2j−2

∂ǫ2j−2
ϕk,1+N(0, 0), 1 ≤ j ≤ N, 1 ≤ k ≤ 2N,

and (l
′

kj)k,j∈[1,2N ] the matrix defined by

l
′

kj =
∂2j−2

∂ǫ2j−2
ψk1(0, 0), lk,j+N =

∂2j−2

∂ǫ2j−2
ψk,1+N(0, 0), 1 ≤ j ≤ N, 1 ≤ k ≤ 2N,

∂0

∂x0
ϕ meaning ϕ. We remark that with these notations, the matrix (lkj)k,j∈[1,2N ]

evaluated in ǫ = 0 is exactly ((nkj)ãj=b̃j=0, 1≤j≤N−1,x=0,t=0)k,j∈[1,2N ] and the

matrix (l
′

kj)k,j∈[1,2N ] evaluated in ǫ = 0 is exactly ((dkj)ãj=b̃j=0, 1≤j≤N−1,x=0,t=0)k,j∈[1,2N ],

defined in (20). We don’t change the value of the quotient of the determi-
nants in the solution v if we replace x3,j = 2 ln

γj−i

γj+1
by 2 ln

1+iγj
1−iγj

, because the

terms −ix3,j change in −ix3,j + 2π.
We have four cases to study depending on the parity of k.
1. We first study lkj.
a. lk1 for k odd, k = 2s+ 1, for x = 0 and t = 0.

lk1 = (−1)s sin(−i ln
1 + iǫ

1− iǫ
)ǫk−2 = (−1)s

2ǫ2s

1 + ǫ2

=
N+s
∑

t=s

(−1)t2ǫ2t +O(ǫ2N+2s) =
N
∑

t=0

1

(2t)!

∂2tϕk1
∂ǫ2t

ǫ2t +O(ǫ2N+1).
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So we get : for t < s, 1
(2t)!

∂2tϕk1

∂ǫ2t
= 0 and for t ≥ s, 1

(2t)!
∂2tϕk1

∂ǫ2t
= (−1)t2. It can

be rewritten as

Proposition 4.1

0 ≤ t ≤ N − 1, 0 ≤ s ≤ N − 1,

n2s+1,t+1 = 0 if t < s, n2s+1,t+1 = (−1)t2 if t ≥ s. (22)

b. lk1 for k even, k = 2s.

lk1 = (−1)s+1 cos(−i ln
1 + iǫ

1− iǫ
)ǫk−2 = (−1)s+1 ǫ

2s−2(1− ǫ2)

1 + ǫ2

= (−1)s−12ǫ2(s−1)+
N+s
∑

t=s

(−1)t2ǫ2t+O(ǫ2N+2s+1) =
N
∑

t=0

1

(2t)!

∂2tϕk1
∂ǫ2t

ǫ2t+O(ǫ2N+1).

So we get : for t < s− 1, 1
(2t)!

∂2tϕk1

∂ǫ2t
= 0; for t = s− 1, 1

(2t)!
∂2tϕk1

∂ǫ2t
= (−1)s−1;

for t > s− 1, 1
(2t)!

∂2tϕk1

∂ǫ2t
= (−1)t2. It can be rewritten as

Proposition 4.2

0 ≤ t ≤ N − 1, 1 ≤ s ≤ N, n2s,t+1 = 0 if t < s− 1,

n2s,t+1 = (−1)s−1 if t = s− 1, n2s,t+1 = (−1)t2 if t > s− 1. (23)

c. lkN+1 for k odd, k = 2s+ 1.

lk,N+1 = (−1)s cos(i ln
1 + iǫ

1− iǫ
)ǫ2N−k−1 = (−1)s

ǫ2N−2s−2(1− ǫ2)

1 + ǫ2

= (−1)sǫ2(N−s−1)+
2N−s
∑

t=N−s

(−1)t+N+12ǫ2t+O(ǫ4N−2s+1) =
N
∑

t=0

1

(2t)!

∂2tϕk1
∂ǫ2t

ǫ2t+O(ǫ2N+1).

So we get : for t < N − s− 1, 1
(2t)!

∂2tϕk1

∂ǫ2t
= 0; for t = N − s− 1, 1

(2t)!
∂2tϕk1

∂ǫ2t
=

(−1)s; for t > N − s− 1, 1
(2t)!

∂2tϕk1

∂ǫ2t
= (−1)t+N+12. It can be rewritten as

Proposition 4.3

0 ≤ t ≤ N − 1, 0 ≤ s ≤ N − 1, n2s+1,N+1+t = 0 if t < N − s− 1,

n2s+1,N+1+t = (−1)s if t = N − s− 1, n2s+1,N+1+t = (−1)t+N+12 if t > N − s− 1.(24)
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d. lk,N+1 for k even, k = 2s.

lk1 = (−1)s+1 sin(−i ln
1 + iǫ

1− iǫ
)ǫ2N−k−1 = (−1)s+12ǫ

2N−2s

1 + ǫ2

=
2N−s
∑

t=N−s

(−1)t−N+12ǫ2t +O(ǫ4N−2s+1) =
N
∑

t=0

1

(2t)!

∂2tϕk1
∂ǫ2t

ǫ2t +O(ǫ2N+1).

So we get : for t < N − s, 1
(2t)!

∂2tϕk1

∂ǫ2t
= 0; for t ≥ N − s, 1

(2t)!
∂2tϕk1

∂ǫ2t
=

(−1)t+N+12. It can be rewritten as

Proposition 4.4

0 ≤ t ≤ N − 1, 1 ≤ s ≤ N,

n2s,N+t+1 = 0 if t < N − s, n2s,N+t+1 = (−1)t+N+12 if t ≥ N − s. (25)

Then A3(N) := (
∏N−1

l=1 (2l)!)−2 det((njk)j,k∈[1,2N ])(ãj=b̃j=0, 1≤j≤N−1, x=0, t=0) can

be written as det((ñij)i,j∈[1,2N ]) defined by
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(−1)0 × 2 (−1)1 × 2 . . . (−1)N−2
× 2 (−1)N−1

× 2 0 0 . . . 0 (−1)0

(−1)0 (−1)1 × 2 . . . (−1)N−2
× 2 (−1)N−1

× 2 0 0 . . . 0 (−1)0 × 2

0 (−1)1 × 2 . . . (−1)N−2
× 2 (−1)N−1

× 2 0 0 . . . (−1)1 (−1)0 × 2

0 (−1)1 . . . (−1)N−1
× 2 (−1)N−1

× 2 0 0 . . . (−1)1 × 2 (−1)0 × 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . (−1)N−2
× 2 (−1)N−1

× 2 0 (−1)N−2 . . . (−1)1 × 2 (−1)0 × 2

0 0 . . . (−1)N−2 (−1)N−1
× 2 0 (−1)N−2

× 2 . . . (−1)1 × 2 (−1)0 × 2

0 0 . . . 0 (−1)N−1
× 2 (−1)N−1 (−1)N−2

× 2 . . . (−1)1 × 2 (−1)0 × 2

0 0 . . . 0 (−1)N−1 (−1)N−1
× 2 (−1)N−2

× 2 . . . (−1)1 × 2 (−1)0 × 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(26)

Then we first factorize in each column j the term (−1)j−1 for 1 ≤ j ≤ N and
(−1)N−j for N + 1 ≤ N + j ≤ 2N ; the common factor is (−1)N(N−1) equal
to 1. We get the following determinant

A3(N) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 2 . . . 2 2 0 0 . . . 0 1
1 2 . . . 2 2 0 0 . . . 0 2
0 2 . . . 2 2 0 0 . . . 1 2
0 1 . . . 2 2 0 0 . . . 2 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 2 2 0 1 . . . 2 2
0 0 . . . 1 2 0 2 . . . 2 2
0 0 . . . 0 2 1 2 . . . 2 2
0 0 . . . 0 1 2 2 . . . 2 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(27)

Then we realize the following transformations on the rows Lj : we replace
Lj by Lj − Lj+1 for 1 ≤ j ≤M − 1. We get

A3(N) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0 0 0 0 . . . 0 −1
1 0 . . . 0 0 0 0 . . . −1 0
0 1 . . . 0 0 0 0 . . . −1 0
0 1 . . . 0 0 0 0 . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 1 0 0 −1 . . . 0 0
0 0 . . . 1 0 −1 0 . . . 0 0
0 0 . . . 0 1 −1 0 . . . 0 0
0 0 . . . 0 1 2 2 . . . 2 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(28)
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We expand along the first row to obtain

A3(N) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 . . . 0 0 0 0 . . . −1 0
1 0 . . . 0 0 0 0 . . . −1 0
1 0 . . . 0 0 0 0 . . . 0 0
0 1 . . . 0 0 0 0 . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 1 0 0 −1 . . . 0 0
0 0 . . . 1 0 −1 0 . . . 0 0
0 0 . . . 0 1 −1 0 . . . 0 0
0 0 . . . 0 1 2 2 . . . 2 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0 0 0 0 . . . 0 −1
0 1 . . . 0 0 0 0 . . . 0 −1
0 1 . . . 0 0 0 0 . . . −1 0
0 0 . . . 0 0 0 0 . . . −1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 1 0 0 −1 . . . 0 0
0 0 . . . 1 0 −1 0 . . . 0 0
0 0 . . . 0 1 −1 0 . . . 0 0
0 0 . . . 0 1 2 2 . . . 2 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(29)

We expand the first determinant along the last column and the second one
along the first column to obtain

A3(N) = 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 . . . 0 0 0 0 . . . 0 −1
1 0 . . . 0 0 0 0 . . . 0 −1
1 0 . . . 0 0 0 0 . . . −1 0
0 1 . . . 0 0 0 0 . . . −1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 0 0 0 −1 . . . 0 0
0 0 . . . 1 0 0 −1 . . . 0 0
0 0 . . . 1 0 −1 0 . . . 0 0
0 0 . . . 0 1 −1 0 . . . 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0 0 0 0 . . . 0 −1
1 0 . . . 0 0 0 0 . . . −1 0
0 1 . . . 0 0 0 0 . . . −1 0
0 1 . . . 0 0 0 0 . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 1 0 0 −1 . . . 0 0
0 0 . . . 1 0 −1 0 . . . 0 0
0 0 . . . 0 1 −1 0 . . . 0 0
0 0 . . . 0 1 2 2 . . . 2 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(30)

In this last relation the second determinant is nothing else but A3(N − 1).
Thus A3(N) can be written as 2∆3(N−1)+A3(N−1). We have to calculate
∆3(N − 1). We can expand this determinant first along the first row, then
again along the first row of the new determinant. We get :

∆3(N − 1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 . . . 0 0 0 0 . . . 0 0
1 0 . . . 0 0 0 0 . . . 0 −1
0 1 . . . 0 0 0 0 . . . 0 −1
0 1 . . . 0 0 0 0 . . . −1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 0 0 0 −1 . . . 0 0
0 0 . . . 1 0 0 −1 . . . 0 0
0 0 . . . 1 0 −1 0 . . . 0 0
0 0 . . . 0 1 −1 0 . . . 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 . . . 0 0 0 0 . . . 0 −1
1 0 . . . 0 0 0 0 . . . 0 −1
1 0 . . . 0 0 0 0 . . . −1 0
0 1 . . . 0 0 0 0 . . . −1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 1 0 0 −1 . . . 0 0
0 0 . . . 1 0 0 −1 . . . 0 0
0 0 . . . 0 1 −1 0 . . . 0 0
0 0 . . . 0 1 −1 0 . . . 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ∆3(N − 2) (31)

So we get ∆3(N−1) = ∆3(N−2); as ∆3(1) = 1, we clearly have ∆3(N) = 1,
for each integer N ≥ 1.
Thus we have the following recurrence relation A3(N) = 2∆3(N−1)+A3(N−
1) = A3(N − 1) + 2; as A3(1) = 3, we get A3(N) = A3(N − 1) + 2 =
A3(1) + 2(N − 1) = 2N + 1.

2. Then we study the elements l
′

kj of the denominator of v0.

a. l
′

k1 for k odd, k = 2s+ 1, for x = 0 and t = 0.

l
′

k1 = (−1)s sin(0) = 0

So we get
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Proposition 4.5

0 ≤ t ≤ N − 1, 0 ≤ s ≤ N − 1,

n2s+1,t+1 = 0. (32)

b. l
′

k1 for k even, k = 2s.

l
′

k1 = (−1)s+1 cos(0) = (−1)s+1ǫ2s−2

=
N
∑

t=0

1

(2t)!

∂2tϕk1
∂ǫ2t

ǫ2t +O(ǫ2N+1).

So we get : for t 6= s− 1, 1
(2t)!

∂2tϕk1

∂ǫ2t
= 0; for t = s− 1, 1

(2t)!
∂2tϕk1

∂ǫ2t
= (−1)s+1.

It can be rewritten as

Proposition 4.6

0 ≤ t ≤ N − 1, 1 ≤ s ≤ N,

n2s,t+1 = 0 if t 6= s− 1, n2s,t+1 = (−1)s+1 if t = s− 1. (33)

c. l
′

kN+1 for k odd, k = 2s+ 1.

l
′

k,N+1 = (−1)s cos(0)ǫ2N−k−1 = (−1)sǫ2N−2s−2

=
N
∑

t=0

1

(2t)!

∂2tϕk1
∂ǫ2t

ǫ2t +O(ǫ2N+1).

So we get : for t 6= N − s− 1, 1
(2t)!

∂2tϕk1

∂ǫ2t
= 0; for t = N − s− 1, 1

(2t)!
∂2tϕk1

∂ǫ2t
=

(−1)s. It can be rewritten as

Proposition 4.7

0 ≤ t ≤ N − 1, 0 ≤ s ≤ N − 1,

n2s+1,t+1 = 0 if t < N − s− 1, n2s+1,t+1 = (−1)s if t = N − s− 1. (34)

d. l
′

k,N+1 for k even, k = 2s.

l
′

k1 = (−1)s sin(0)ǫ2N−k−1 = 0

So we get

13



Proposition 4.8

0 ≤ t ≤ N − 1, 1 ≤ s ≤ N,

n2s,t+1 = 0. (35)

Then A1(N) := (
∏N−1

l=1 (2l)!)−2 det((djk)j,k∈[1,2N ])(ãj=b̃j=0, 1≤j≤N−1, x=0, t=0) can

be written as det((d̃ij)i,j∈[1,2N ]) defined by
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 . . . 0 0 0 0 . . . 0 (−1)0

(−1)0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . (−1)1 0

0 (−1)1 . . . 0 0 0 0 . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . (−1)N−2 0 0 (−1)N−2 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 (−1)N−1 0 . . . 0 0

0 0 . . . 0 (−1)N−1 0 0 . . . 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(36)

In the previous determinant A1(N), on each row, only one term is non equal
to 0. Then we expand along the last row and again along the last row of the
new determinant; we obtain the recurrence relation : A1(N) = −A1(N − 1).
As A1(1) = −1, this relation proves that A1(N) = (−1)N .
3. Then we can evaluate the absolute value of the quotient |v0(0, 0)| = |A3

A1
| =

| 2N+1
(−1)N

| = 2N + 1.
The maximum of amplitude of the modulus of the AP breather of order N
is equal to 2N + 1. 2

5 An other simpler representation of fami-

lies of quasi-rational solutions depending

on 2N − 2 parameters of the NLS equation

We saw in previous section that solutions of NLS equation given by (11)
can be written in function uniquely of terms γ. We recall that the terms γj

are given by γj =
√

1−λj
1+λj

, γN+j = 1
γj
, 1 ≤ j ≤ N ; λj is an arbitrary real

parameter such that 0 < λj < 1, λN+j = −λj, 1 ≤ j ≤ N .
We can rewrite the result given in (11) in a simplest formulation as follows :

Theorem 5.1 The function v defined by

v(x, t) = exp(2it− iϕ)×
det((f

(3)
jk )j,k∈[1,2N ])

det((f
(1)
jk )j,k∈[1,2N ])

(37)
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is a quasi-rational solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0,

depending on 2N − 2 real parameters ãj, b̃j, 1 ≤ j ≤ N − 1 where

f
(r)
jk = ∂2(k−1)

∂ǫ2(k−1)

(

γ4j−1 sin
[

2γ
1+γ2x+ 4iγ(1−γ2)

(1+γ2)2 t− i r−1
2 ln γ−i

γ+i +
∑N−1

l=1 (ãl + ib̃l)ǫ
2l+1 + (j − 1)π2

])

(ǫ=0)
,

f
(r)
jN+k = ∂2(k−1)

∂ǫ2(k−1)

(

γ2N−4j−1 cos
[

2γ
1+γ2x− 4iγ(1−γ2)

(1+γ2)2 t+ i r−1
2 ln γ−i

γ+i +
∑N−1

l=1 (ãl − ib̃l)ǫ
2l+1 + (j − 1)π2

])

(ǫ=0)
,

1 ≤ k ≤ N, 1 ≤ j ≤ 2N, r ∈ {1; 3}, ǫ ∈]0; 1[, γ = ǫ(1− ǫ2)1/2.

Proof : It is sufficient to use the formulation given in the previous section
which needs four types of functions and to take λ = 1− 2ǫ2.
2

Remark 5.1 In the previous theorem, the expression ∂0

∂ǫ0
f(x) means f(x).

6 Quasi-rational solutions of order 8 with 14

parameters

6.1 Deformations of the AP8 breather

We have already constructed the deformations of the APN breathers with
2N − 2 in a series of papers for the cases N = 3 to 7 [14, 15, 16, 17, 18]. We
only construct the patterns corresponding to the case N = 8 in order not to
weight down the paper.
All the study conducted in this article and figures in particular show that
the solutions obtained with this method are completely localized at the same
time in time and space.
In this case we obtain a family of solutions depending on 14 parameters. The
analytical expression and their two-parameters deformations can be found in
[10], the 14-deformations are found, but too monstrous to be published.
We give plots of deformation of the AP breather of order 8 by variations of
one parameter (we only present here the case of parameters ak 6= 0). In par-
ticular, we recover triangles as given in 2012 in [31] and circular structures
as already presented first in 2013 [32].
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Figure 1: Solution of NLS, N=8; all parameters equal to 0, the AP8 breather.

Figure 2: Solution of NLS, N=8; a1 = 102 : a regular triangle with 36 peaks;
right : sight of top.
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Figure 3: Solution of NLS, N=8; ã2 = 106, 7 rings with 5 peaks on each of
them with in the center one peak; right : sight of top.

Figure 4: Solution of NLS, N=8; ã3 = 108, 5 rings with 7 peaks on each of
them with a central peak; right : sight of top.
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Figure 5: Solution of NLS, N=8; ã4 = 1010, 4 rings with 9 peaks on each of
them without central peak; right : sight of top.

Figure 6: Solution of NLS, N=8; ã5 = 1015; 3 rings of 11 peaks with in the
center P2; right : sight of top.
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Figure 7: Solution of NLS, N=8; ã6 = 1020, 2 rings with 13 peaks and in the
center P4; right : sight of top.

Figure 8: Solution of NLS, N=8; ã7 = 1010, one ring with 15 peaks and in
the center P6; right : sight of top.
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These structures appear as soon as ak or bk exceed a certain value. These
structures most sensitive to the variation of the parameters ak or bk are those
obtained for k = 1; a formation of a triangle appears as soon as a1 or b1 is
greater than 100. The more k increases, the more the structures appear for
large values of the parameter; for example for k = 7, the structures appear
clearly for a7 or b7 about 10

8. The heights of the peaks increase as k increases
by 1 to 7; for k = 1, the maximum height is about 3, to increase until k = 7
where it becomes about 13. The dissipation of the structure is all the more
slow as k is large.

6.2 Asymptotic behavior

In all these plots, in the case of order N , we see when only one of the pa-
rameters ãN−1 or b̃N−1 is not equal to 0 and one of these parameters tends to
infinity the appearance of the AP breather of order N − 2. This observation
was first pointed out by Matveev. In fact, the computations show when the
parameters ãN−1 or b̃N−1 tend to infinity, for order N , the appearance as fac-
tor of ã2N−1 or ã2N−1 of the analytic expression of the Akhmediev-Peregrine
of order N − 2. This fact is shown by computations but these results are too
long to be presented in this paper.

7 Conclusion

We have constructed here new representations of solutions of the NLS focus-
ing equation. These solutions appear as 2N − 2-parameters deformations of
the AP breather of order N .
A subset of the solutions was built. With this subset, a proof that the maxi-
mum of the modulus of the breather of order N is equal to 2N +1 was given.
This result was conjectured by Akhmediev for the first time in 2010 [4]; we
also find this conjecture in the works of many authors, in particular we can
mention Matveev [8], He [28], Yang [34].
Akhmediev et al. gave first the proof of this result for N = 1 to N = 4 in
the case of solutions without parameters in 2010 [4]. Here we give another
approach to the proof in the case of solutions depending on 2N − 2 parame-
ters at order N , for any nonnegative integer N .
In the case of the variation of one parameter for N = 8, we obtain different
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types of configurations with a maximum of 36 peaks. For ã1 6= 0 or b̃1 6= 0 we
obtain triangles with a maximum of 36 peaks; for ã2 6= 0 or b̃2 6= 0, we have
5 rings with respectively 5, 10, 5, 10, 5 peaks with one peak in the center.
For ã3 6= 0 or b̃3 6= 0, we obtain 5 rings with 7 peaks on each of them with
a central peak. For ã4 6= 0 or b̃4 6= 0, we have 4 rings with 9 peaks on each
of them without central peak. For ã5 6= 0 or b̃5 6= 0, we have 3 rings of 11
peaks with in the center the Akhmediev-Peregrine of order 2. For ã6 6= 0 or
b̃6 6= 0, we have 2 rings with 13 peaks and in the center the AP breather of
order 4. For ã7 6= 0 or b̃7 6= 0, we have one ring with 15 peaks and in the
center the AP breather of order 6.
Many studies have been done these last years, but this is the first time that
this study for order 8 is realized with 14 parameters. The expressions of the
polynomials in x and t are found; they are too extensive to be published.
We have only given the plots in order to illustrate the deformations of the
solutions.
Moreover, we recover the asymptotic behavior of the solutions in the cases
where a7 or b7 are not equal to zero; in the case N = 8, for large values of
these parameters, we see in the center of the ring formed of 2N − 1 peaks,
the appearance of breather of order N − 2.
This last result already mentioned by Akhmediev, He, should be proved in
the next years, like many other properties about the appearance of the peaks
depending on the different choices of parameters.
The solutions given in this article are exact solutions to NLS equation. By
construction, according to the theory, total energy is preserved and inde-
pendent of time for this equation. These solutions represent quasi rational
solutions of order N fixed by the condition which its modulus tends towards
1 when x or t tends to infinite and its highest maximum is localized at the
point (x = 0; t = 0). In particular Akhmediev-Peregine breather APN is dis-
tinguished by the fact that APN(0; 0) = 2N+1, and that among the previous
class, the solution which has a larger modulus. The solutions constructed in
the article are deformations of Akhmediev-Peregrine breather of order 8, and
it is well-known that this one is a solution to the NLS equation and does not
contradict in no case the principle of conservation of total energy and total
moment.
Moreover, it is important to stress on the fact that the modulus of these
solutions tend towards 1 when x or t tends towards infinite : the modulus
of these solutions is a quotient of two polynomials of degree 72 in x and t;
each coefficient of x72 and t72 of these polynomials representing the solutions
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is equal in the numerator and the denominator what proves the result of the
asymptotic behavior of the solutions.
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