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We construct here new deformations of the AP breather (Akhmediev-Peregrine breather) of order N (or AP N breather) with 2N -2 real parameters. Other families of quasi-rational solutions of the NLS equation are obtained. We evaluate the highest amplitude of the modulus of AP breather of order N ; we give the proof that the highest amplitude of the AP N breather is equal to 2N + 1. We get new formulas for the solutions of the NLS equation, different from these already given in previous works. New solutions for the order 8 and their deformations according to the parameters are explicitly given. We get the triangular configurations as well as isolated rings at the same time. Moreover, the appearance for certain values of the parameters, of new configurations of concentric rings are underscored.

Introduction

We consider the one dimensional focusing nonlinear Schrödinger equation (NLS) to describe the phenomena of rogue waves. We recall that the term of rogue or freak wave was first introduced in the scientific community by Draper in 1964 [START_REF] Draper | Freak ocean waves[END_REF]. The rogue waves phenomenon plays actually a significant role in other fields; in nonlinear optics [START_REF] Solli | Optical rogue waves[END_REF], Bose-Einstein condensate [START_REF] Bludov | Matter rogue waves[END_REF], atmosphere [START_REF] Stenflo | Rogue waves in the atmosphere Jour[END_REF] and even finance [START_REF] Yan | Financial rogue waves[END_REF]. The first results concerning the NLS equation date from the works of Zakharov and Shabat in 1972 who solved it using the inverse scattering method [START_REF] Zakharov | Stability of periodic waves of finite amplitude on a surface of a deep fluid[END_REF][START_REF] Zakharov | Exact theory of two dimensional self focusing and one dimensinal self modulation of waves in nonlinear media[END_REF]. Its and Kotlyarov first constructed periodic and almost periodic algebro-geometric solutions to the focusing NLS equation in 1976 [START_REF] Its A R, Rybin | Exact integration of nonlinear Schrödinger equation Teore[END_REF][START_REF] Its | Explicit expressions for the solutions of nonlinear Schrödinger equation Dockl[END_REF]. It is in 1979 that Ma found the first breather type solution of the NLS equation [START_REF] Ma | The perturbed plane-wave solutions of the cubic nonlinear Schrödinger equation Stud[END_REF]. In 1983, the first quasi rational solution of NLS equation was constructed by Peregrine [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF]. Akhmediev, Eleonski and Kulagin obtained for the first time the second order rational solution and predicted the existence of an infinite hierarchy of higher-order rational solutions [START_REF] Akhmediev | Exact first order solutions of the nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions Sov[END_REF]. Other analogues of the AP breathers of order 3 and 4 were constructed using Darboux transformations, in a series of articles by Akhmediev et al. [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF][START_REF] Chabchoub | Super rogue waves : observation of a higher-order breather in water waves[END_REF]. Recently, many works about NLS equation have been published using different methods. Rational solutions of the NLS equation has been written as a quotient of two wronskians in 2010 [START_REF] Dubard | On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation[END_REF]. One year after, the present author constructed in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF] an other representation of the solutions of the NLS equation in terms of a ratio of two wronskians determinants of even order 2N composed of elementary functions using truncated Riemann theta functions; rational solutions were obtained when one of the parameters tends towards 0. Guo, Ling and Liu found in 2012 an other representation of the solutions as a ratio of two determinants [START_REF] Guo | Nonlinear Schröodinger equation: generalized Darboux transformation and rogue wave solutions[END_REF] using generalized Darboux transform. A new approach has been done by Ohta and Yang in [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation Pro[END_REF] using Hirota bilinear method. In the same year, the present author obtained rational solutions in terms of determinants which does not involve limits in [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF]. In 2013, we have constructed explicitly deformations of AP breather of order N depending on 2N -2 parameters by giving their expressions in terms of quotient of polynomials in x and t for the orders until N = 7, as given for example in [START_REF] Gaillard | The fifth order Peregrine breather and its eightparameters deformations solutions of the NLS equation[END_REF]. The present paper gives here other new multi-parametric families of quasi rational solutions of NLS of order N in terms of determinants (determinants of order 2N ) dependent on 2N -2 real parameters. New solutions different from all the previous one are obtained. With this representation, one recovers at the same time the ring or concentric rings structure and the triangular shapes also found by Ohta and Yang [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation Pro[END_REF], Akhmediev et al. [START_REF] Kedziora | Triangular rogue wave cascades[END_REF]. We construct solutions depending on 2N -2 parameters which give the AP breather as particular case when all the parameters are equal to 0 : for this reason, we will call these solutions, 2N -2 parameters deformations of the AP N breather. The paper is organized as follows. We construct new quasi rational solutions depending a priori on 2N -2 parameters at the order N . Then we prove that the highest amplitude of the modulus of the AP breather of order N is equal to 2N + 1. We construct the AP breathers for N = 1 to N = 10; we only give the corresponding plots of the modulus in the (x; t) plane. After, one constructs various figures to illustrate the evolution of the solutions according to the parameters for the order 8. One obtains at the same time triangular configurations and ring structures.

New wronskian representation of solutions of NLS equation

We consider the focusing NLS equation

iv t + v xx + 2|v| 2 v = 0. (1) 
We recall the main result obtained in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF].

Theorem 2.1 The function v defined by v(x, t) = W 3 (0) W 1 (0) exp(2it -iϕ) (2) 
is solution of the NLS equation [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF].

In (2), W r (y) = W (φ r,1 , . . . , φ r,2N ) is the wronskian of order 2N W r (y) = det[(∂ µ-1 y φ r,ν ) ν, µ∈[1,...,2N ] ], r = 1, r = 3. (3) 
The functions φ r,ν are defined by

φ r,ν (y) = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν (y) = cos Θ r,ν , N + 1 ≤ ν ≤ 2N, Θ r,ν = κ ν x/2 + iδ ν t -ix r,ν /2 + γ ν y -ie ν , 1 ≤ ν ≤ 2N. (4) 
The terms κ ν , δ ν , γ ν are functions of the parameters λ ν , ν = 1, . . . , 2N satisfying the relations

0 < λ j < 1, λ N +j = -λ j , 1 ≤ j ≤ N. (5) 
They are given by the following equations,

κ j = 2 1 -λ 2 j , δ j = κ j λ j , γ j = 1-λ j 1+λ j , κ N +j = κ j , δ N +j = -δ j , γ N +j = 1/γ j , j = 1 . . . N. (6) 
The terms x r,ν , (r = 3, 1) are defined by

x r,ν = (r -1) ln γν -i γν +i , 1 ≤ j ≤ 2N. ( 7 
)
The parameters e ν are given by

e j = ia j -b j , e N +j = ia j + b j , 1 ≤ j ≤ N, (8) 
where a j and b j , for 1 ≤ j ≤ N are arbitrary real numbers.

We choose here to give a new representation of the solutions of the NLS equation depending only on terms γ ν , 1 ≤ ν ≤ 2N . From the relations ( 6), [START_REF] Draper | Freak ocean waves[END_REF], we can express the terms κ ν , δ ν and x r,ν in function of γ ν , for 1 ≤ ν ≤ 2N and we obtain :

κ j = 4γ j (1+γ 2 j ) , δ j = 4γ j (1-γ 2 j ) (1+γ 2 j ) 2 , x r,j = (r -1) ln γ j -i γ j +i , 1 ≤ j ≤ N, κ j = 4γ j (1+γ 2 j ) , δ j = - 4γ j (1-γ 2 j ) (1+γ 2 j ) 2 , x r,j = (r -1) ln γ j +i γ j -i , N + 1 ≤ j ≤ 2N. (9)
We have the following new representation :

Theorem 2.2 The function v defined by v(x, t) = det[(∂ µ-1 y φ3,ν (0)) ν, µ∈[1,...,2N ] ] det[(∂ µ-1 y φ1,ν (0)) ν, µ∈[1,...,2N ] ] exp(2it -iϕ) (10) 
is solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0.
The functions φr,ν are defined by φr,j (y) = sin

2γ j (1+γ 2 j ) x + i 4γ j (1-γ 2 j ) (1+γ 2 j ) 2 t -i (r-1) 2 ln γ j -i γ j +i + γ j y -ie j , 1 ≤ j ≤ N, φr,N+j (y) = cos 2γ j (1+γ 2 j ) x -i 4γ j (1-γ 2 j ) (1+γ 2 j ) 2 t + i (r-1)
2 ln γ j -i

γ j +i + 1 γ j y -ie N +j , 1 ≤ j ≤ N, where γ j = 1-λ j 1+λ j , 1 ≤ j ≤ N. λ j is an arbitrary real parameter such that 0 < λ j < 1, λ N +j = -λ j , 1 ≤ j ≤ N.
The terms e ν are defined by e j = ia j -b j , e N +j = ia j + b j , 1 ≤ j ≤ N, where a j and b j are arbitrary real numbers, 1 ≤ j ≤ N. 3 Families of quasi-rational solutions depending on 2N -2 parameters of NLS equation in terms of a ratio of two determinants of order N .

In the following, to get quasi-rational solutions of the NLS equation, we have to take the limits λ 1 → 1 for 1 ≤ j ≤ N and λ 1 → -1 for N + 1 ≤ j ≤ 2N .

For this, we choose λ j = 1 -2jǫ 2 . When ǫ goes to 0, we realize limited expansions at order M of all the functions Φ r,ν . We use the following notations :

X j = 2γ j (1+γ 2 j ) x + i 4γ j (1-γ 2 j ) (1+γ 2 j ) 2 t -i ln γ j -i γ j +i -ie j , X N +j = 2γ j (1+γ 2 j ) x -i 4γ j (1-γ 2 j ) (1+γ 2 j ) 2 t + i ln γ j -i γ j +i -ie N +j , for 1 ≤ j ≤ N. Y j = 2γ j (1+γ 2 j ) x + i 4γ j (1-γ 2 j ) (1+γ 2 j ) 2 t -ie j , Y N +j = 2γ j (1+γ 2 j ) x -i 4γ j (1-γ 2 j ) (1+γ 2 j ) 2 t -ie N +j , for 1 ≤ j ≤ N. (12) 
The terms γ ν and e ν are defined by [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF]. We have any freedom to choose the terms a j and b j . This is the crucial point. We choose a j and b j in the form

a j = N -1 k=1 ãk j 2k+1 ǫ 2k+1 , b j = N -1 k=1 bk j 2k+1 ǫ 2k+1 , 1 ≤ j ≤ N. (13) 
In order to rewrite the quotient of wronskians defined in [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF], we use the following functions :

ϕ 4j+1,k = γ 4j-1 k sin X k , ϕ 4j+2,k = γ 4j k cos X k , ϕ 4j+3,k = -γ 4j+1 k sin X k , ϕ 4j+4,k = -γ 4j+2 k cos X k , ϕ 4j+1,N +k = γ 2N -4j-2 k cos X N +k , ϕ 4j+2,N +k = -γ 2N -4j-3 k sin X N +k , ϕ 4j+3,N +k = -γ 2N -4j-4 k cos X N +k , ϕ 4j+4,N +k = γ 2N -4j-5 k sin X N +k , 1 ≤ k ≤ N. ( 14 
)
We define the functions g j,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, we replace only the term X k by Y k .

ψ 4j+1,k = γ 4j-1 k sin Y k , ψ 4j+2,k = γ 4j k cos Y k , ψ 4j+3,k = -γ 4j+1 k sin Y k , ψ 4j+4,k = -γ 4j+2 k cos Y k , ψ 4j+1,N +k = γ 2N -4j-2 k cos Y N +k , ψ 4j+2,N +k = -γ 2N -4j-3 k sin Y N +k , ψ 4j+3,N +k = -γ 2N -4j-4 k cos Y N +k , ψ 4j+4,N +k = γ 2N -4j-5 k sin Y N +k , 1 ≤ k ≤ N (15)
The quotient of wronskians q(x, t) defined by

q(x, t) := det[(∂ µ-1 y φ3,ν (0)) ν, µ∈[1,...,2N ] ] det[(∂ µ-1 y φ1,ν (0)) ν, µ∈[1,...,2N ] ]
can be written as

q(x, t) = ∆ 3 ∆ 1 = det(ϕ j,k ) j, k∈[1,2N ] det(ψ j,k ) j, k∈[1,2N ] . (16) 
All the functions ϕ j,k and ψ j,k and their derivatives depend on ǫ and can all be prolonged by continuity when ǫ = 0. Then we use the expansions

ϕ j,k (x, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ϕ j,1 [l] = ∂ 2l ϕ j,1 ∂ǫ 2l (x, t, 0), ϕ j,1 [0] = ϕ j,1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ϕ j,N +k (x, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,N +1 [l]k 2l ǫ 2l + O(ǫ 2N ), ϕ j,N +1 [l] = ∂ 2l ϕ j,N +1 ∂ǫ 2l (x, t, 0), ϕ j,N +1 [0] = ϕ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1. ( 17 
)
We have the same expansions for the functions ψ j,k .

ψ j,k (x, t, ǫ) = N -1 l=0 1 (2l)! ψ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ψ j,1 [l] = ∂ 2l ψ j,1 ∂ǫ 2l (x, t, 0), ψ j,1 [0] = ψ j,1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ψ j,N +k (x, t, ǫ) = N -1 l=0 1 (2l)! ψ j,N +1 [l]k 2l ǫ 2l + O(ǫ 2N ), ψ j,N +1 [l] = ∂ 2l ψ j,N +1 ∂ǫ 2l (x, t, 0), ψ j,N +1 [0] = ψ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N. (18)
Then we get the following result :

Theorem 3.1 The function v defined by v(x, t) = exp(2it -iϕ) × det((n jk ) j,k∈[1,2N ] ) det((d jk ) j,k∈[1,2N ] ) ( 19 
)
is a quasi-rational solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0 depending on 2N -2 real parameters ãj , bj , 1 ≤ j ≤ N -1,
where

n j1 = ϕ j,1 (x, t, 0), 1 ≤ j ≤ 2N n jk = ∂ 2k-2 ϕ j,1 ∂ǫ 2k-2 (x, t, 0), n jN +1 = ϕ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N n jN +k = ∂ 2k-2 ϕ j,N +1 ∂ǫ 2k-2 (x, t, 0), d j1 = ψ j,1 (x, t, 0), 1 ≤ j ≤ 2N d jk = ∂ 2k-2 ψ j,1 ∂ǫ 2k-2 (x, t, 0), d jN +1 = ψ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N d jN +k = ∂ 2k-2 ψ j,N +1 ∂ǫ 2k-2 (x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N
The functions ϕ and ψ are defined in ( 14), [START_REF] Gaillard | Six-parameters deformations of fourth order Peregrine breather solutions of the NLS equation[END_REF].

Proof : We eliminate in each column k (and N + k) of the determinants appearing in q(x, t), the powers of ǫ strictly lower than 2(k -1) by combining the columns of them successively. We begin by the components j of the columns 1 and N +1; they are respectively equal by definition to

ϕ j1 [0]+0(ǫ) for C 1 , ϕ jN +1 [0]+0(ǫ) for C N +1 of ∆ 3 , and ψ j1 [0]+0(ǫ) for C ′ 1 , ψ jN +1 [0]+0(ǫ) for C ′ N +1 of ∆ 1 .
At the first step of the reduction, we replace the columns

C k by C k -C 1 and C N +k by C N +k -C N +1 for 2 ≤ k ≤ N , for ∆ 3 ; we do the same changes for ∆ 1 . Each component j of the column C k of ∆ 3 can be rewritten as N -1 l=1 1 (2l)! ϕ j,1 [l](k 2l -1)ǫ 2l and the column C N +k replaced by N -1 l=1 1 (2l)! ϕ j,N +1 [l](k 2l - 1)ǫ 2l for 2 ≤ k ≤ N . For ∆ 1 , we have the same reductions, each component j of the column C ′ k of can be rewritten as N -1 l=1 1 (2l)! ψ j,1 [l](k 2l -1)ǫ 2l and the column C ′ N +k replaced by N -1 l=1 1 (2l)! ψ j,N +1 [l](k 2l -1)ǫ 2l for 2 ≤ k ≤ N .
We can factorize in ∆ 3 and ∆ 1 in each column k and N + k the term k 2 -1 2 ǫ 2 for 2 ≤ k ≤ N , and so simplify these common terms in numerator and denominator. If we restrict the developments at order 1 in columns 2 and N + 2, we get respectively ϕ j1 [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF] + 0(ǫ) for the component j of C 2 , ϕ jN +1 [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF] + 0(ǫ) for the component j of C N +2 of ∆ 3 , and

ψ j1 [1] + 0(ǫ) for the component j of C ′ 2 , ψ jN +1 [1] + 0(ǫ) for the component j of C ′ N +2 of ∆ 1 . This algorithm can be continued until the columns C N , C 2N of ∆ 3 and C ′ N , C ′ 2N of ∆ 1 .
Then taking the limit when ǫ tends to 0, q(x, t) can be replaced by Q(x, t) defined by :

Q(x, t) := ϕ 1,1 [0] . . . ϕ 1,1 [N -1] ϕ 1,N +1 [0] . . . ϕ 1,N +1 [N -1] ϕ 2,1 [0] . . . ϕ 2,1 [N -1] ϕ 2,N +1 [0] . . . ϕ 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . ϕ 2N,1 [0] . . . ϕ 2N,1 [N -1] ϕ 2N,N +1 [0] . . . ϕ 2N,N +1 [N -1] ψ 1,1 [0] . . . ψ 1,1 [N -1] ψ 1,N +1 [0] . . . ψ 1,N +1 [N -1] ψ 2,1 [0] . . . ψ 2,1 [N -1] ψ 2,N +1 [0] . . . ψ 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . ψ 2N,1 [0] . . . ψ 2N,1 [N -1] ψ 2N,N +1 [0] . . . ψ 2N,N +1 [N -1] (20) 
So the solution of the NLS equation takes the form :

v(x, t) = exp(2it -iϕ) × Q(x, t)
So the obtain the result given in [START_REF] Stenflo | Rogue waves in the atmosphere Jour[END_REF]. 2

4 The AP breather of order N and its highest amplitude of the modulus equal to 2N +1

There is any freedom to choose γ j in such a way that the conditions on λ j are checked. We know from previous works [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF] that the AP breathers are obtained when all the parameters ãj and bj are equal to 0. In order to get the more simple expressions in the determinants, we choose particular solutions in the previous families.

Here we choose γ j = jǫ as simple as possible in order to have the conditions on λ j checked.

Theorem 4.1 The function v 0 defined by

v 0 (x, t) = exp(2it -iϕ) × det((n jk ) j,k∈[1,2N ] ) det((d jk ) j,k∈[1,2N ] ) ( ãj = bj =0, 1≤j≤N -1) (21) 
is the AP breather of order N solution of the NLS equation ( 1) whose highest amplitude in modulus is equal to 2N + 1.

Remark 4.1 In ( 21), the matrices (n jk ) j,k∈ [1,2N ] and (d jk ) j,k∈[1,2N ] are defined in [START_REF] Gaillard | Tenth Peregrine breather solution of the NLS Ann[END_REF].

Proof : We recall that AP N is the AP breather of order N . All the previous analytical and numerical studies ( [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF][START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF][START_REF] Gaillard | Six-parameters deformations of fourth order Peregrine breather solutions of the NLS equation[END_REF]) shows that the maximum of AP N is reached for (x, t) = (0, 0). We are going to establish that the value of the modulus of this solution AP N denoted v 0 (0, 0) is equal to 2N + 1. We need to analyze the functions ϕ k,1 , ϕ k,N +1 and ψ k,1 , ψ k,N +1 . We denote (l kj ) k,j∈ [1,2N ] the matrix defined by

l kj = ∂ 2j-2 ∂ǫ 2j-2 ϕ k1 (0, 0), l k,j+N = ∂ 2j-2 ∂ǫ 2j-2 ϕ k,1+N (0, 0), 1 ≤ j ≤ N, 1 ≤ k ≤ 2N,
and (l ′ kj ) k,j∈ [1,2N ] the matrix defined by

l ′ kj = ∂ 2j-2 ∂ǫ 2j-2 ψ k1 (0, 0), l k,j+N = ∂ 2j-2 ∂ǫ 2j-2 ψ k,1+N (0, 0), 1 ≤ j ≤ N, 1 ≤ k ≤ 2N, ∂ 0
∂x 0 ϕ meaning ϕ. We remark that with these notations, the matrix (l kj ) k,j∈ [1,2N ] evaluated in ǫ = 0 is exactly ((n kj ) ãj = bj =0, 1≤j≤N -1,x=0,t=0 ) k,j∈ [1,2N ] and the matrix (l

′ kj ) k,j∈[1,2N ] evaluated in ǫ = 0 is exactly ((d kj ) ãj = bj =0, 1≤j≤N -1,x=0,t=0 ) k,j∈[1,2N ]
, defined in [START_REF] Gaillard | Tenth Peregrine breather solution of the NLS Ann[END_REF]. We don't change the value of the quotient of the determinants in the solution v if we replace x 3,j = 2 ln γ j -i γ j +1 by 2 ln 1+iγ j 1-iγ j , because the terms -ix 3,j change in -ix 3,j + 2π. We have four cases to study depending on the parity of k. 1. We first study l kj . a. l k1 for k odd, k = 2s + 1, for x = 0 and t = 0.

l k1 = (-1) s sin(-i ln 1 + iǫ 1 -iǫ )ǫ k-2 = (-1) s 2ǫ 2s 1 + ǫ 2 = N +s t=s (-1) t 2ǫ 2t + O(ǫ 2N +2s ) = N t=0 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t ǫ 2t + O(ǫ 2N +1 ).
So we get : for t < s, 

0 ≤ t ≤ N -1, 0 ≤ s ≤ N -1, n 2s+1,t+1 = 0 if t < s, n 2s+1,t+1 = (-1) t 2 if t ≥ s. (22) 
b. l k1 for k even, k = 2s.

l k1 = (-1) s+1 cos(-i ln 1 + iǫ 1 -iǫ )ǫ k-2 = (-1) s+1 ǫ 2s-2 (1 -ǫ 2 ) 1 + ǫ 2 = (-1) s-1 2ǫ 2(s-1) + N +s t=s (-1) t 2ǫ 2t +O(ǫ 2N +2s+1 ) = N t=0 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t ǫ 2t +O(ǫ 2N +1 ).
So we get : for t < s -1,

1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = 0; for t = s -1, 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = (-1) s-1 ; for t > s -1, 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = (-1) t 2. It can be rewritten as Proposition 4.2 0 ≤ t ≤ N -1, 1 ≤ s ≤ N, n 2s,t+1 = 0 if t < s -1, n 2s,t+1 = (-1) s-1 if t = s -1, n 2s,t+1 = (-1) t 2 if t > s -1. (23) 
c. l kN +1 for k odd, k = 2s + 1.

l k,N +1 = (-1) s cos(i ln 1 + iǫ 1 -iǫ )ǫ 2N -k-1 = (-1) s ǫ 2N -2s-2 (1 -ǫ 2 ) 1 + ǫ 2 = (-1) s ǫ 2(N -s-1) + 2N -s t=N -s (-1) t+N +1 2ǫ 2t +O(ǫ 4N -2s+1 ) = N t=0 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t ǫ 2t +O(ǫ 2N +1 ).
So we get : for t < N -s -1,

1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = 0; for t = N -s -1, 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = (-1) s ; for t > N -s -1, 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = (-1) t+N +1 2. It can be rewritten as Proposition 4.3 0 ≤ t ≤ N -1, 0 ≤ s ≤ N -1, n 2s+1,N +1+t = 0 if t < N -s -1, n 2s+1,N +1+t = (-1) s if t = N -s -1, n 2s+1,N +1+t = (-1) t+N +1 2 if t > N -s -1.(24) d. l k,N +1 for k even, k = 2s. l k1 = (-1) s+1 sin(-i ln 1 + iǫ 1 -iǫ )ǫ 2N -k-1 = (-1) s+1 2ǫ 2N -2s 1 + ǫ 2 = 2N -s t=N -s (-1) t-N +1 2ǫ 2t + O(ǫ 4N -2s+1 ) = N t=0 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t ǫ 2t + O(ǫ 2N +1 ).
So we get : for t < N -s,

1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = 0; for t ≥ N -s, 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = (-1) t+N +1 2. It can be rewritten as Proposition 4.4 0 ≤ t ≤ N -1, 1 ≤ s ≤ N, n 2s,N +t+1 = 0 if t < N -s, n 2s,N +t+1 = (-1) t+N +1 2 if t ≥ N -s. (25) Then A 3 (N ) := ( N -1 l=1 (2l)!) -2 det((n jk ) j,k∈[1,2N ] ) ( ãj = bj =0, 1≤j≤N -1, x=0, t=0
) can be written as det((ñ ij ) i,j∈ [1,2N ] ) defined by

(-1) 0 × 2 (-1) 1 × 2 . . . (-1) N -2 × 2 (-1) N -1 × 2 0 0 . . . 0 (-1) 0 (-1) 0 (-1) 1 × 2 . . . (-1) N -2 × 2 (-1) N -1 × 2 0 0 . . . 0 (-1) 0 × 0 (-1) 1 × 2 . . . (-1) N -2 × 2 (-1) N -1 × 2 0 0 . . . (-1) 1 (-1) 0 × 0 (-1) 1 . . . (-1) N -1 × 2 (-1) N -1 × 2 0 0 . . . (-1) 1 × 2 (-1) 0 × . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . (-1) N -2 × 2 (-1) N -1 × 2 0 (-1) N -2 . . . (-1) 1 × 2 (-1) 0 × 0 0 . . . (-1) N -2 (-1) N -1 × 2 0 (-1) N -2 × 2 . . . (-1) 1 × 2 (-1) 0 × 0 0 . . . 0 (-1) N -1 × 2 (-1) N -1 (-1) N -2 × 2 . . . (-1) 1 × 2 (-1) 0 × 0 0 . . . 0 (-1) N -1 (-1) N -1 × 2 (-1) N -2 × 2 . . . (-1) 1 × 2 (-1) 0 × (26) 
Then we first factorize in each column j the term (-1) j-1 for 1 ≤ j ≤ N and (-1) N -j for N + 1 ≤ N + j ≤ 2N ; the common factor is (-1) N (N -1) equal to 1. We get the following determinant Then we realize the following transformations on the rows L j : we replace L j by L j -L j+1 for 1 ≤ j ≤ M -1. We get

A 3 (N ) = 2 2 . . . 2 
A 3 (N ) = 1 0 . . . 0 0 0 0 . . . 0 -1 1 0 . . . 0 0 0 0 . . . -1 0 0 1 . . . 0 0 0 0 . . . -1 0 0 1 . . . 0 0 0 0 . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . 1 0 0 -1 . . . 0 0 0 0 . . . 1 0 -1 0 . . . 0 0 0 0 . . . 0 1 -1 0 . . . 0 0 0 0 . . . 0 1 2 2 . . . 2 2 (28) 
We expand along the first row to obtain We expand the first determinant along the last column and the second one along the first column to obtain In this last relation the second determinant is nothing else but A 3 (N -1). Thus A 3 (N ) can be written as 2∆ 3 (N -1) + A 3 (N -1). We have to calculate ∆ 3 (N -1). We can expand this determinant first along the first row, then again along the first row of the new determinant. We get : 

A 3 (N ) = 0 0 . . . 0 0 0 0 . . . -1 0 1 0 . . . 0 0 0 0 . . . -
A 3 (N ) = 2 0 0 . . . 0 0 0 0 . . . 0 -1 1 0 . . . 0 0 0 0 . . . 0 -1 1 0 . . . 0 0 0 0 . . . -1 0 0 1 . . . 0 0 0 0 . . . - 1 
∆ 3 (N -1) = 1 0 . . . 0 0 0 0 . . . 0 0 1 0 . . . 0 0 0 0 . . . 0 -1 0 1 . . . 0 0 0 0 . . . 0 -1 0 1 . . . 0 0 0 0 . . . - 1 
(N ) = 2∆ 3 (N -1)+A 3 (N - 1) = A 3 (N -1) + 2; as A 3 (1) = 3, we get A 3 (N ) = A 3 (N -1) + 2 = A 3 (1) + 2(N -1) = 2N + 1.
2. Then we study the elements l ′ kj of the denominator of v 0 . a. l ′ k1 for k odd, k = 2s + 1, for x = 0 and t = 0.

l ′ k1 = (-1) s sin(0) = 0 So we get Proposition 4.5 0 ≤ t ≤ N -1, 0 ≤ s ≤ N -1, n 2s+1,t+1 = 0. (32) b. l 
′ k1 for k even, k = 2s. l ′ k1 = (-1) s+1 cos(0) = (-1) s+1 ǫ 2s-2 = N t=0 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t ǫ 2t + O(ǫ 2N +1 ).
So we get :

for t = s -1, 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = 0; for t = s -1, 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = (-1) s+1 . It can be rewritten as Proposition 4.6 0 ≤ t ≤ N -1, 1 ≤ s ≤ N, n 2s,t+1 = 0 if t = s -1, n 2s,t+1 = (-1) s+1 if t = s -1. (33) c. l 
′ kN +1 for k odd, k = 2s + 1. l ′ k,N +1 = (-1) s cos(0)ǫ 2N -k-1 = (-1) s ǫ 2N -2s-2 = N t=0 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t ǫ 2t + O(ǫ 2N +1 ).
So we get : 

for t = N -s -1, 1 (2t)! ∂ 2t ϕ k1 ∂ǫ 2t = 0; for t = N -s -1, 1 (2t) 
0 ≤ t ≤ N -1, 0 ≤ s ≤ N -1, n 2s+1,t+1 = 0 if t < N -s -1, n 2s+1,t+1 = (-1) s if t = N -s -1. (34) d. l ′ k,N +1 for k even, k = 2s. l ′ k1 = (-1) s sin(0)ǫ 2N -k-1 = 0 So we get Proposition 4.8 0 ≤ t ≤ N -1, 1 ≤ s ≤ N, n 2s,t+1 = 0. (35) 
Then

A 1 (N ) := ( N -1 l=1 (2l)!) -2 det((d jk ) j,k∈[1,2N ] ) ( ãj = bj =0, 1≤j≤N -1, x=0, t=0
) can be written as det(( dij ) i,j∈ [1,2N ] ) defined by

0 0 . . . 0 0 0 0 . . . 0 (-1) 0 (-1) 0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . (-1) 1 0 0 (-1) 1 . . . 0 0 0 0 . . . 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0 . . . (-1) N -2 0 0 (-1) N -2 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0 (-1) N -1 0 . . . 0 0 0 0 . . . 0 (-1) N -1 0 0 . . . 0 0 (36) 
In the previous determinant A 1 (N ), on each row, only one term is non equal to 0. Then we expand along the last row and again along the last row of the new determinant; we obtain the recurrence relation :

A 1 (N ) = -A 1 (N -1). As A 1 (1) = -1, this relation proves that A 1 (N ) = (-1) N .
3. Then we can evaluate the absolute value of the quotient |v 0 (0, 0

)| = | A3 A1 | = | 2N +1 (-1) N | = 2N + 1.
The maximum of amplitude of the modulus of the AP breather of order N is equal to 2N + 1. 2

5 An other simpler representation of families of quasi-rational solutions depending on 2N -2 parameters of the NLS equation

We saw in previous section that solutions of NLS equation given by [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF] can be written in function uniquely of terms γ. We recall that the terms γ j are given by γ j = 1-λ j 1+λ j , γ N +j = 1 γ j , 1 ≤ j ≤ N ; λ j is an arbitrary real parameter such that 0 < λ j < 1, λ N +j = -λ j , 1 ≤ j ≤ N . We can rewrite the result given in [START_REF] Gaillard | Wronskian representation of solutions of the NLS equation and higher Peregrine breathers[END_REF] in a simplest formulation as follows :

Theorem 5.1 The function v defined by v(x, t) = exp(2it -iϕ) × det((f (3) jk ) j,k∈[1,2N ] ) det((f (1) jk ) j,k∈[1,2N ] ) (37)
is a quasi-rational solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0, depending on 2N -2 real parameters ãj , bj , 1 ≤ j ≤ N -1 where f (r) jk = ∂ 2(k-1) ∂ǫ 2(k-1) γ 4j-1 sin 2γ 1+γ 2 x + 4i γ(1-γ 2 ) (1+γ 2 ) 2 t -i r-1 2 ln γ-i γ+i + N -1 l=1 (ã l + i bl )ǫ 2l+1 + (j -1) π 2 (ǫ=0) , f (r) 
jN +k = ∂ 2(k-1) ∂ǫ 2(k-1) γ 2N -4j-1 cos 2γ 1+γ 2 x -4i γ(1-γ 2 ) (1+γ 2 ) 2 t + i r-1 2 ln γ-i γ+i + N -1 l=1 (ã l -i bl )ǫ 2l+1 + (j -1) π 2 (ǫ=0) , 1 ≤ k ≤ N, 1 ≤ j ≤ 2N, r ∈ {1; 3}, ǫ ∈]0; 1[, γ = ǫ(1 -ǫ 2 ) 1/2 .
Proof : It is sufficient to use the formulation given in the previous section which needs four types of functions and to take λ = 1 -2ǫ 2 . 2

Remark 5.1 In the previous theorem, the expression ∂ 0 ∂ǫ 0 f (x) means f (x).

6 Quasi-rational solutions of order 8 with 14 parameters 6.1 Deformations of the AP 8 breather

We have already constructed the deformations of the AP N breathers with 2N -2 in a series of papers for the cases N = 3 to 7 [START_REF] Gaillard | Deformations of third order Peregrine breather solutions of the NLS equation with four parameters[END_REF][START_REF] Gaillard | Six-parameters deformations of fourth order Peregrine breather solutions of the NLS equation[END_REF][START_REF] Gaillard | The fifth order Peregrine breather and its eightparameters deformations solutions of the NLS equation[END_REF][START_REF] Gaillard | Ten parameters deformations of the sixth order Peregrine breather solutions of the NLS equation[END_REF][START_REF] Gaillard | Higher order Peregrine breathers, their deformations and multi-rogue waves[END_REF]. We only construct the patterns corresponding to the case N = 8 in order not to weight down the paper.

All the study conducted in this article and figures in particular show that the solutions obtained with this method are completely localized at the same time in time and space.

In this case we obtain a family of solutions depending on 14 parameters. The analytical expression and their two-parameters deformations can be found in [START_REF] Gaillard | Two parameters wronskian representation of solutions of nonlinear Schrödinger equation, eight Peregrine breather and multirogue waves[END_REF], the 14-deformations are found, but too monstrous to be published. We give plots of deformation of the AP breather of order 8 by variations of one parameter (we only present here the case of parameters a k = 0). In particular, we recover triangles as given in 2012 in [START_REF] Kedziora | Triangular rogue wave cascades[END_REF] and circular structures as already presented first in 2013 [START_REF] Kedziora | Classifying the hierarchy of nonlinear Schrödinger equation rogue-wave solutions[END_REF]. These structures appear as soon as a k or b k exceed a certain value. These structures most sensitive to the variation of the parameters a k or b k are those obtained for k = 1; a formation of a triangle appears as soon as a 1 or b 1 is greater than 100. The more k increases, the more the structures appear for large values of the parameter; for example for k = 7, the structures appear clearly for a 7 or b 7 about 10 8 . The heights of the peaks increase as k increases by 1 to 7; for k = 1, the maximum height is about 3, to increase until k = 7 where it becomes about 13. The dissipation of the structure is all the more slow as k is large.

Asymptotic behavior

In all these plots, in the case of order N , we see when only one of the parameters ãN-1 or bN-1 is not equal to 0 and one of these parameters tends to infinity the appearance of the AP breather of order N -2. This observation was first pointed out by Matveev. In fact, the computations show when the parameters ãN-1 or bN-1 tend to infinity, for order N , the appearance as factor of ã2

N -1 or ã2 N -1 of the analytic expression of the Akhmediev-Peregrine of order N -2. This fact is shown by computations but these results are too long to be presented in this paper.

Conclusion

We have constructed here new representations of solutions of the NLS focusing equation. These solutions appear as 2N -2-parameters deformations of the AP breather of order N . A subset of the solutions was built. With this subset, a proof that the maximum of the modulus of the breather of order N is equal to 2N + 1 was given. This result was conjectured by Akhmediev for the first time in 2010 [START_REF] Akhmediev | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF]; we also find this conjecture in the works of many authors, in particular we can mention Matveev [START_REF] Dubard | On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation[END_REF], He [START_REF] He | Generating mechanism for higher-order rogue waves[END_REF], Yang [START_REF] Ohta | General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation Pro[END_REF]. Akhmediev et al. gave first the proof of this result for N = 1 to N = 4 in the case of solutions without parameters in 2010 [START_REF] Akhmediev | Rogue waves, rational solutions, the patterns of their zeros and integral relations[END_REF]. Here we give another approach to the proof in the case of solutions depending on 2N -2 parameters at order N , for any nonnegative integer N . In the case of the variation of one parameter for N = 8, we obtain different types of configurations with a maximum of 36 peaks. For ã1 = 0 or b1 = 0 we obtain triangles with a maximum of 36 peaks; for ã2 = 0 or b2 = 0, we have 5 rings with respectively 5, 10, 5, 10, 5 peaks with one peak in the center. For ã3 = 0 or b3 = 0, we obtain 5 rings with 7 peaks on each of them with a central peak. For ã4 = 0 or b4 = 0, we have 4 rings with 9 peaks on each of them without central peak. For ã5 = 0 or b5 = 0, we have 3 rings of 11 peaks with in the center the Akhmediev-Peregrine of order 2. For ã6 = 0 or b6 = 0, we have 2 rings with 13 peaks and in the center the AP breather of order 4. For ã7 = 0 or b7 = 0, we have one ring with 15 peaks and in the center the AP breather of order 6. Many studies have been done these last years, but this is the first time that this study for order 8 is realized with 14 parameters. The expressions of the polynomials in x and t are found; they are too extensive to be published. We have only given the plots in order to illustrate the deformations of the solutions. Moreover, we recover the asymptotic behavior of the solutions in the cases where a 7 or b 7 are not equal to zero; in the case N = 8, for large values of these parameters, we see in the center of the ring formed of 2N -1 peaks, the appearance of breather of order N -2. This last result already mentioned by Akhmediev, He, should be proved in the next years, like many other properties about the appearance of the peaks depending on the different choices of parameters. The solutions given in this article are exact solutions to NLS equation. By construction, according to the theory, total energy is preserved and independent of time for this equation. These solutions represent quasi rational solutions of order N fixed by the condition which its modulus tends towards 1 when x or t tends to infinite and its highest maximum is localized at the point (x = 0; t = 0). In particular Akhmediev-Peregine breather AP N is distinguished by the fact that AP N (0; 0) = 2N +1, and that among the previous class, the solution which has a larger modulus. The solutions constructed in the article are deformations of Akhmediev-Peregrine breather of order 8, and it is well-known that this one is a solution to the NLS equation and does not contradict in no case the principle of conservation of total energy and total moment. Moreover, it is important to stress on the fact that the modulus of these solutions tend towards 1 when x or t tends towards infinite : the modulus of these solutions is a quotient of two polynomials of degree 72 in x and t; each coefficient of x 72 and t 72 of these polynomials representing the solutions is equal in the numerator and the denominator what proves the result of the asymptotic behavior of the solutions.

( 11 ) 2 . 1

 1121 RemarkIn the formula[START_REF] Gaillard | Two parameters wronskian representation of solutions of nonlinear Schrödinger equation, eight Peregrine breather and multirogue waves[END_REF], the determinants det[(∂ µ-1 y f ν (0)) ν, µ∈[1,...,2N ] ]are the wronskians of the functions f 1 , . . . , f 2N evaluated in y = 0. In particular ∂ 0 y f ν means f ν .

= ∆ 3 (N - 2 ) ( 31 )

 3231 So we get ∆ 3 (N -1) = ∆ 3 (N -2); as ∆ 3 (1) = 1, we clearly have ∆ 3 (N ) = 1, for each integer N ≥ 1. Thus we have the following recurrence relation A 3

!∂

  2t ϕ k1 ∂ǫ 2t = (-1) s . It can be rewritten as Proposition 4.7

Figure 1 :

 1 Figure 1: Solution of NLS, N=8; all parameters equal to 0, the AP 8 breather.

Figure 2 :

 2 Figure 2: Solution of NLS, N=8; a 1 = 10 2 : a regular triangle with 36 peaks; right : sight of top.

Figure 3 :

 3 Figure 3: Solution of NLS, N=8; ã2 = 10 6 , 7 rings with 5 peaks on each of them with in the center one peak; right : sight of top.

Figure 4 :

 4 Figure 4: Solution of NLS, N=8; ã3 = 10 8 , 5 rings with 7 peaks on each of them with a central peak; right : sight of top.

Figure 5 :

 5 Figure 5: Solution of NLS, N=8; ã4 = 10 10 , 4 rings with 9 peaks on each of them without central peak; right : sight of top.

Figure 6 :

 6 Figure 6: Solution of NLS, N=8; ã5 = 10 15 ; 3 rings of 11 peaks with in the center P 2 ; right : sight of top.

Figure 7 :

 7 Figure 7: Solution of NLS, N=8; ã6 = 10 20 , 2 rings with 13 peaks and in the center P 4 ; right : sight of top.

Figure 8 :

 8 Figure 8: Solution of NLS, N=8; ã7 = 10 10 , one ring with 15 peaks and in the center P 6 ; right : sight of top.
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