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Abstract

Let n > 3. In this paper, we study the quotient group By/[P,, P,| of the Artin braid
group By, by the commutator subgroup of its pure Artin braid group P,. We show that
By /[Py, Py] is a crystallographic group, and in the case n = 3, we analyse explicitly some
of its subgroups. We also prove that B, /[Py, Py] possesses torsion, and we show that there
is a one-to-one correspondence between the conjugacy classes of the finite-order elements of
B,/ Py, Py] with the conjugacy classes of the elements of odd order of the symmetric group
Sy, and that the isomorphism class of any Abelian subgroup of odd order of S, is realised
by a subgroup of By, /[Py, Py]. Finally, we discuss the realisation of non-Abelian subgroups
of S, of odd order as subgroups of By /[Py, Py, and we show that the Frobenius group of
order 21, which is the smallest non-Abelian group of odd order, embeds in B,/[P,, P,] for
alln > 7.
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1 Introduction

Let n € N. Quotients of the Artin braid group B, has been studied in various contexts,
and may be used to study properties of B, itself. It is well known that one such quotient

is the symmetric group S,, which may be expressed in the form B,/ <(712>B”, where
oy,...,0,—1 are the standard generators of B, (see Section 3), and <X>B " denotes the

normal closure subgroup of a subset X of B,,. Similar quotients of the form B,/ <Uf1>B",
where m € N, were analysed by Coxeter in [Co], who showed that this quotient is
finite if and only if (n,m) € {(3,3),(3,4), (3,5), (4,3), (5,3)}, and computed the quotient
groups in each case, and by Marin in [Mal] in the case (n,m) = (5,3) with the aim of
studying cubic Hecke algebras. The Brunnian braid groups Brun, have been studied in
connection with homotopy groups of the 2-sphere S> [BCWW, LW, O] by considering
quotients of B,,. For example, for all n > 3, there exists a subgroup G, of Brun, that is
normal in the Artin pure braid group P, such that the centre of P, /G, is isomorphic to
the direct product 77,,(S?) x Z (see [LW, Theorem 1] and [O, Theorem 4.3.4]).

In this paper, we study the quotient B, /[P, P,,] of B, for n > 3, where [P, P,] is
the commutator subgroup of P,. Our initial motivation emanates from the observa-
tion that B3/[P;, P3| is isomorphic to B3/ Bruns (see [O, Corollary 2.1.4] as well as [O,
Section 5.2] for other results about B3/ Bruns, and [LW, Proposition 3.9] and [O, Pro-
position 4.3.10(1)] for a presentation of B3/ Bruns). The quotient B, /[Py, P,| belongs
to a family of groups known as enhanced symmetric groups (see [Ma2, page 201]) and
analysed in [T]. It also arises in the study of pseudo-symmetric braided categories by
Panaite and Staic. They consider the quotient, denoted by PS,, of B, by the normal
subgroup generated by the relations Uiaijrllai = Ui+1(7i_1(7i+1 fori =1,2,...,n—2,and
they show that it is isomorphic to B, /[Py, P,,] [PS]. The results that we obtain in this
paper for B, /| Py, P,| are different in nature to those of [PS], with the exception of some
basic properties.

Crystallographic groups play an important role in the study of the groups of iso-
metries of Euclidean spaces (see Section 2 for precise definitions, as well as [Ch, D, W]
for more details). As we shall prove in Proposition 1, another reason for studying the
quotient B, /[Py, P,] is the fact that it is a crystallographic group:

PROPOSITION 1. Let n > 2. There is a short exact sequence:

1— 2"=V2 B, /[Py, Pyl -5 Sy — 1,
and the middle group By, /| Py, Py is a crystallographic group.

The aim of this paper is to analyse B, /[Py, P,;] in more detail, notably its torsion,
the conjugacy classes of its finite-order elements, and the realisation of abstract finite
groups as subgroups of B, /[Py, P,]. Since By is trivial and B, is isomorphic to Z, in
what follows we shall suppose that n > 3. In Section 2, we recall the basic definitions
and some results about crystallographic and Bieberbach groups. In Section 3, we recall
some standard information about B, and P,, and using the fact that the quotient B,,/P,
is isomorphic to S,, we shall see that B, /[P, P;] is an extension of the free Abelian
group P,/[P,, P,| by S, and we shall compute the associated action, which will enable
us to prove it is crystallographic. By analysing the action in more detail, we prove that
the torsion of B, /[Py, P, ] is odd:



THEOREM 2. If n > 3 then the quotient group By, /[Py, Py| has no finite-order element of even
order.

By restricting the short exact sequence involving B,,/[ Py, Py|, Pu/[Py, Px] and S, to
2-subgroups of the latter (see equation (9)), we are able to construct Bieberbach groups
of dimension n(n —1)/2 (which is the rank of P, /[P,, P,]), and show that there exist flat
manifolds of the same dimension whose holonomy group is the given 2-subgroup (see
Theorem 16).

In Section 4, we analyse the torsion of B, /[Py, P,] in more detail. In order to do so,
we shall make use of the induced action of certain elements wg, of B, /[P, P,]|, where
2 < r < n, on the basis (A j)1<i<j<n Of Pu/[Py, Pu]. The structure of the corresponding
orbits is very rigid, and allows us to express the existence of elements of B, /[Py, P,] of
order n in terms of the existence of solutions of a certain linear system. It will follow
from this that B, /[P, P,| has infinitely many elements of order n (see Proposition 19).
We then show that if 1 < n < m, the standard injective homomorphism of B, in By,
induces a injective homomorphism of B, /[Py, P,] in By, /[P, P

THEOREM 3. Let m and n be integers such that 2 < n < m.

(a) Consider the injective homomorphism 1: B, —> By, defined by 1(0;) = o0 for all 1 < i <
n — 1. Then the induced homomorphism i: By, /| Py, Pu]| — Bm/[Pm, Pm] of the corresponding
quotient groups is injective.

(b) If n = 3 and n is odd then B, /| Py, Py possesses elements of order n. Further, there exists
such an element whose permutation is an n-cycle.

(c) Let ny,ny,...,n; be odd integers greater than or equal to 3 for which Yi_, n; < m. Then
B /| P, Pu| possesses elements of order lem(ny, . . ., ny). Further, there exists such an element
whose cycle type is (nq, ..., ny).

Part (b) follows from part (a) and Proposition 19. In the course of the proof of The-
orem 3, we shall see that the direct product of the groups of the form B, /[ Py,, Py,;] injects
into B,/ P, P |, which will enable us to prove part (c). One consequence of Theorems 2
and 3 is the characterisation of the torsion of B, /[Py, P,] as that of the odd torsion of the
symmetric group S;:

COROLLARY 4. Let n = 3. The torsion of the quotient By, /| Py, Py, ] is equal to the odd torsion
of the symmetric group S,. Moreover, given an element 6 € Sy, of odd order r, there exists
B € By/[Pu, Py] of order r such that a(B) = 0. So given any cyclic subgroup H of S, of odd
order v, there exists a finite-order subgroup H of By/| Py, Py ] such that 7(H) = H.

In Section 5, we focus on the simplest non-trivial case, that of B3/[Ps, P3|, and we
describe the structure of the preimages of the subgroups of Sz under the induced ho-
momorphism B3 /[P;, P3] — S3. In the cases where these preimages are Bieberbach
groups, we describe the corresponding flat 3-manifold. We also carry out this analysis
for the group Bs/[Ps, P3] itself, and identify it in the international tables of crystallo-
graphic groups given in [BBNWS, HL], as well as for the quotient of B3/[P3, P3| by the
subgroup generated by the class of the full-twist braid.

In Section 6, we study the conjugacy classes of the elements and the cyclic subgroups
of B, /[Py, P,]. This is achieved in Propositions 27, 28 and 29 by studying in detail the
action of certain elements ¢, y and «, ; (the latter being a generalisation of «,) on the



basis (A;)1<i<j<n Of Pu/[Pn, Py]. 1t is straightforward to see that if any two elements
of By, /[Py, Py| are conjugate then their permutations have the same cycle type, and the
use of these propositions and a specific product of certain ¢, ; enables us to prove the
converse:

THEOREM 5. Let n > 3, and let k > 3 be odd. Two elements of B, /[Py, Py] of order k are
conjugate if and only if their permutations have the same cycle type. Thus two finite cyclic sub-
groups of By, /| Py, Py] of order k are conjugate if and only if their images under T are conjugate
inS,.

Consequently, given n > 3, we may determine the number of conjugacy classes of
elements of odd order k in B, /[Py, P;,].

From Lemma 9, it follows that the set of isomorphism classes of the finite subgroups
of B, /| Pu, Py is contained in the corresponding set of finite subgroups of S, of odd or-
der. One may ask whether this inclusion is strict or not. As we shall see in Corollary 4,
any cyclic subgroup of S, of odd order is realised as a subgroup of B, /[Py, P,]. Com-
bining Theorem 3(c) with a result of [Ho], this result may be extended to the Abelian
subgroups of S;:

THEOREM 6. Let n > 3. Then there is a a one-to-one correspondence between the isomorphism
classes of the finite Abelian subgroups of By, /| Pn, Py | and the isomorphism classes of the Abelian
subgroups of S,, of odd order.

In Section 7, we turn our attention to what is probably a more difficult open prob-
lem, namely the realisation of finite non-Abelian groups of S, as subgroups of the group
By /[Py, Py]. As a initial experiment, we consider the smallest value of n, n = 7, for
which S, possesses a non-Abelian subgroup of odd order. This subgroup is isomorphic
to the Frobenius group of order 21 that we denote by F. We show that F is indeed
realised as a subgroup of By/| Py, P7].

THEOREM 7. The quotient group By /| Py, P;| possesses a subgroup isomorphic to the Frobenius
group F.

It then follows from Theorem 3 that F is realised as a subgroup of B, /[P, P, ] for all
n = 7. In Proposition 35, we prove that By/[P7, P;| admits a single conjugacy class of
subgroups isomorphic to /. We remark that we do not currently know of an example
of a subgroup of odd order of S, whose isomorphism class is not represented by a
subgroup of B, /[Py, Py ].
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2 Crystallographic and Bieberbach groups

In this section, we recall briefly the definition of crystallographic and Bieberbach groups,
and we characterise crystallographic groups in terms of a representation that arises
from certain group extensions whose kernel is a free Abelian group of finite rank and
whose quotient is finite. We also review some results concerning Bieberbach groups
and the fundamental groups of flat Riemannian manifolds. For more details, see [Ch,
Section 1.1.1], [D, Section 2.1] or [W, Chapter 3]. From now on, we identify Aut(Z")
with GL(n, Z).

DEFINITION. A discrete and uniform subgroup I of R"” x O(n, R) < Aff(R") is said to
be a crystallographic group of dimension n. If in addition I1 is torsion free then I is called
a Bieberbach group of dimension n.

DEFINITION. Let @ be a group. An integral representation of rank n of ® is defined to be a
homomorphism @: ® — Aut(Z"). Two such representations are said to be equivalent
if their images are conjugate in Aut(Z"). We say that © is a faithful representation if it is
injective.

The following characterisation of crystallographic groups seems to be well known
to the experts in the field. Since we did not find a suitable reference, we give a short
proof.

LEMMA 8. Let I1 be a group. Then 11 is a crystallographic group if and only if there exist an
integer n € N and a short exact sequence

0 7n m-¢

b1 (1)

such that:

(a) D is finite, and

(b) the integral representation @: ® — Aut(Z"), induced by conjugation on Z" and defined
by O(¢)(x) = xm—!, where x € 7", ¢ € ® and 7 € I is such that {(71) = g, is faithful.

DEFINITION. If IT is a crystallographic group, the integer n that appears in the state-
ment of Lemma 8 is called the dimension of I1, the finite group ® is called the holonomy
group of I, and the integral representation ®@: & — Aut(Z") is called the holonomy
representation of I1.

Proof of Lemma 8. Let ® and II be groups, and suppose that there exist n € N and a
short exact sequence of the form (1) such that conditions (a) and (b) hold. Assume on
the contrary that I is not crystallographic. The characterisation of [D, Theorem 2.1.4]
implies that Z" is not a maximal Abelian subgroup of I, in other words, there exists
an Abelian group A for which Z" & A < II. Leta € A\Z". Then {(a) # 1 and
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O(Z(a))(x) = axa~! = x for all x € Z". Hence ®({(a)) = Idz:, which contradicts
the hypothesis that © is injective. We conclude that I is a crystallographic group of
dimension n with holonomy ®.

The converse follows from the paragraph preceding [Ch, Definition 1.6.2], since the
short exact sequence (1) gives rise to an integral representation @: ® — Aut(Z") that
is faithful by [Ch, Proposition 1.6.1]. ]

The following lemma will be very useful in what follows.

LEMMA 9. Let G, G’ be groups, and let f: G — G’ be a homomorphism whose kernel is tor-
sion free. If K is a finite subgroup of G then the restriction f |x : K — f(K) of f to K is an
isomorphism. In particular, with the notation of the statement of Lemma 8, if I1 is a crystallo-
graphic group then the restriction { |g : K — {(K) of C to any finite subgroup K of I1 is an
isomorphism.

Proof. Since Ker (f) is torsion free, the restriction of f to the finite subgroup K is inject-
ive, which yields the first part, and the second part then follows directly. O

COROLLARY 10. Let IT be a crystallographic group of dimension n and holonomy group ®,
and let H be a subgroup of ®. Then there exists a crystallographic subgroup of 11 of dimension
n with holonomy group H.

Proof. The result follows by considering the short exact sequence (1), and by applying
Lemma 8 to the subgroup {1 (H) of IT. O

DEFINITION. A Riemannian manifold M is called flat if it has zero curvature at every
point.

As a consequence of the first Bieberbach Theorem, there is a correspondence between
Bieberbach groups and fundamental groups of closed flat Riemannian manifolds (see [D,
Theorem 2.1.1] and the paragraph that follows it). We recall that the flat manifold de-
termined by a Bieberbach group I1is orientable if and only if the integral representation
®: & — GL(n,Z) satisfies Im (®) < SO(n,Z). This being the case, we say that IT is
an orientable Bieberbach group. By [W, Corollary 3.4.6], the holonomy group of a flat
manifold M is isomorphic to the group ®.

It is a natural problem to classify the finite groups that are the holonomy group of a
flat manifold. The answer was given by L. Auslander and M. Kuranishi in 1957.

THEOREM 11 (Auslander and Kuranishi [W, Theorem 3.4.8], [Ch, Theorem IIL.5.2]). Any
finite group is the holonomy group of some flat manifold.

3 Artin braid groups and crystallographic groups

In this section we prove Proposition 1 and Theorem 2, namely that if n > 3 then the
quotient group B, /[Py, Py| of the Artin braid group B, by the commutator subgroup
[Py, Py] of its pure braid subgroup P, is crystallographic and does not have 2-torsion.
As we shall see in Section 4, B, /[P, P,,] possesses (odd) torsion. We first recall some
facts about the Artin braid group B, on n strings. We refer the reader to [Ha] for more



details. It is well known that B, possesses a presentation with generators oy, ...,0,_1
that are subject to the following relations:

1 ()

oigj=ojoiforalll <i<j<n-
0;110i0i41 = 0;0;10; forall 1 <i<n—2. 3)

Leto: B, — S, be the homomorphism defined on the given generators of B, by o(c;) =
(i,i+ 1) forall 1 <i < n—1. Just as for braids, we read permutations from left to right
so that if o, B € S, then their product is defined by « - (i) = B(a(i)) fori = 1,2,...,n.
The pure braid group P, on n strings is defined to be the kernel of ¢, from which we
obtain the following short exact sequence:

1—P,— B, 55, —1. (4)

A generating set of P, is given by {A where:

i/j}1<i<j<n’
—_— . ... . 2 _1 . .. _1
Ajj=0j1 0110705 0. (5)

Relations (2) and (3) may be used to show that:

-1 -1 .2
Ai,j — 0-1_ e 0'__20'._10']._2 N 0'1-. (6)

] )

It follows from the presentation of P, given in [Ha] that P,/[P,, P,] is isomorphic to
2n=1)/2 and that a basis is given by the Ajj, where 1 <i < j < n,and where by abuse
of notation, the [P,, P, ]-coset of Ajj will also be denoted by A; j. Using equation (4), we
obtain the following short exact sequence:

1 —> P,/[Py, Py] —> Bu/[Py, Pu] %> S — 1, 7)

where 7: B, /[Py, P,] — Sy is the homomorphism induced by ¢. This short exact may
also be found in [PS, Proposition 3.2].

Since Bj is the trivial group and By/[P,, P,| =~ 7Z, we shall suppose in most of this
paper that n > 3. We shall be interested in the action by conjugation of B, on P, and
on P, /| Py, Py]. Recall from [LW, Lemma 3.1] (see also [MK, Proposition 3.7, Chapter 3])
thatforalll <k <n-—-landforalll<i<j<mn,

(

Aij ifk#i—1,i,j—1,j
A,-,ki+1 ifj =k

g = e it
Ai+1,j ifi=k<j—1
| At jAkjAk, ifi=k+1.

So the induced action of B, on P, /[Py, P,] is given by

(A ifk#i-1,4j—1,]
Aigy1 ifj=k

Ak ifj=k+1landi <k
Ak,k+1 ifj=k+1andi=k
Ay ifi=k<j—1

LAk,j ifi =k+1.

O'kAi,]'O'k_l = 4

(8)




A study of this action now allows us to prove Proposition 1.

Proof of Proposition 1. Suppose first that n = 2. Since B, = Z and [P, P»| = 1, we obtain
By/[Py, P,] = By =~ Z, and thus the group By/[P,, P»] is crystallographic. So assume
that n > 3, and consider the short exact sequence (7). We shall show that the induced
action @: S, —> Aut(Z""~1)/2) is injective, from which it will follow that the group
By /[Py, Py] is crystallographic. Using equation (8), if 1 < i < j < n, the automorphisms
induced by the elements ¢ and o, of B, are given by:

Azj ifi=2andj>4
Ayj ifi=1landj>3 Ayj ifi=3andj >4
nAijjo; =3 Ay ifi=2andj>3 and mA;jo; ={ Az ifi=1landj=2
Ajj otherwise Aip ifi=landj=3
(Aij otherwise.

These automorphisms are distinct and non trivial, so the image Im (¢) of ¢ possesses
at least three elements. Applying the First Isomorphism Theorem, the kernel Ker (¢) of
¢ is thus a normal subgroup of S, whose order is bounded above by n!/3. If n # 4, the
only normal subgroups of S, are the trivial subgroup, the alternating subgroup A, and
Sy itself, from which we conclude that Ker (¢) is trivial as required. Now suppose that
n = 4. The same argument applies, but additionally, Ker (¢) may be isomorphic to the
Klein group Z, @ Z3, in which case Im (¢) is of order 6. But by equation (8), the action
of 030201 on the basis elements of Py/[ Py, P4] is given by:

A1p— A1y — A3y —> Agz— Ajpand A3 — Apg — Ay,

Thus ¢(030207) is an element of Im (¢) of order 4, so Im (¢) cannot be of order 6. Once
more we see that Ker (¢) is trivial, and thus the associated integral representation is
faithful for all n > 3. It then follows from Lemma 8 that the group B, /[Py, P,] is crys-
tallographic. O

Using Proposition 1 and Corollary 10, we may produce other crystallographic groups
as follows. Let H be a subgroup of S;;, and consider the following short exact sequence:
Py
[Pi’ll Pi’l]

—H, -5 H -1 9)

1 —

induced by that of equation (7), where H,, is defined by:

< oT\(H)

H .
" [pn/pn]

(10)

The following corollary is then a consequence of Corollary 10 and Proposition 1.

COROLLARY 12. Let n > 3, and let H be a subgroup of S,. Then the group H, defined by
equation (10) is a crystallographic group of dimension n(n — 1) /2 with holonomy group H.

Our next goal is to prove Theorem 2, that the quotient groups B, /[Py, P,] do not
have 2-torsion.



Proof of Theorem 2. Let n > 3. Suppose on the contrary that there exists f € B, whose
[Py, Py]-coset, which we also denote by S, is of even order in B,,/[P,, P,]. By taking
a power of B if necessary, we may suppose that § is of order 2 in B, /[P, P,|. Since
P,/ Py, Py] is torsion free, it follows that g € B,,\P,. Conjugating by an element of B,
if necessary, we may suppose that () = (1,2)(3,4)---(k,k+1), where1 <k <n -1
and k is odd. Thus 82 € P,. Leta = 0103 - - - 03_»0%. Then o(B) = o(a), thus N = fa~!
belongs to P, and so:

B* = (Na)*> = N.aNa~!.a? (11)

in P, /[Py, P,] because ,82 € P,. Further, a? = A10A34 - Akit1, ocAllzuc_l = A1p by
equation (8), and if 1 < r < s < n then by equation (8), zxAr,Soc_l = Ajqpin B,/| Py, Py]
if and only if (r,5) = (1,2). In particular, if we express N (considered as an element
of Py/|Py, Py]) using the basis {Ai and if r is the coefficient of A, in this

expression then the coefficient of Aj , in the expression for g2 in equation (11) is equal
to 2r + 1, which contradicts the fact that ,BZ is trivial in P, /[ P,, P, ], and the result follows.
U

rj}1<i<]<n’

REMARKS 13. Let n > 3.

(a) Theorem 2 generalises [PS, Proposition 3.6], where it is shown that there is no ele-
ment B,, /[Py, P,] of order two whose image under @ is the transposition (1, 2).

(b) Theorem 2 implies that any finite-order subgroup of B, /[ P,, P,] is of odd order.

(c) Applying Proposition 1, Theorem 2 and Lemma 9 to the short exact sequence (7), the
restriction 7 |g : K — 0(K) of 7 to any finite subgroup K of B, /[Py, P,] is an isomorph-
ism. In particular, the set of isomorphism classes of the finite subgroups of B, /[Py, Py ]
is contained in the set of isomorphism classes of the odd-order subgroups of S;,.

As we shall now see, by choosing H appropriately, we may use Corollary 12 to
construct Bieberbach groups of dimension n(n — 1)/2 in B, /[Py, P,]. In Theorem 16, we
will give a statement for B, /[ P,, P, | analogous to that of Theorem 11 in the case that the
holonomy group is a finite 2-group.

LEMMA 14. Let n > 3, and let H be a 2-subgroup of S,. Then the group H, given by equa-
tion (10) is a Bieberbach group of dimension n(n — 1) /2.

Proof. Letn > 3, and let H be a 2-subgroup of S,,. Consider the short exact sequences (7)
and (9). By Corollary 12, H, is a crystallographic group of dimension (1 — 1)/2 with
holonomy group H. Since the kernel is torsion free, ¢ respects the order of the torsion
elements of H, [GG, Lemma 13]. In particular, the fact that H is a 2-group implies
that the order of any non-trivial torsion element of H,, is a positive power of 2. On the
other hand, by Theorem 2, the group B,/ Py, Py] has no such torsion elements, so the

same is true for Hn It follows that Hn is torsion free, hence it is a Bieberbach group of
dimension n(n — 1)/2 because P,/[P,, P,] = Z""~1)/2, O

REMARK 15. It is not clear to us whether the family of groups that satisfy the conclu-
sions of Corollary 12 (resp. of Lemma 14) contains all of the isomorphism classes of
crystallographic (resp. Bieberbach) subgroups of B, /[P, P,] of dimension n(n — 1) /2.

Lemma 14 enables us to give an alternative proof of Theorem 11 in the case that the
finite group in question is a 2-group, and to estimate the dimension of the resulting flat
manifold.



THEOREM 16. Let H be a finite 2-group. Then H is the holonomy group of some flat manifold
M. Further, the dimension of M may be chosen to be n(n — 1)/2, where n is an integer for
which H embeds in the symmetric group Sy, and the fundamental group of M is isomorphic to
a subgroup of By, /[Py, Py .

Proof. Let H be a finite 2-group. Cayley’s Theorem implies that there exists an in-
teger n > 3 such that H is isomorphic to a subgroup of S;;. From Lemma 14, H,is a
Bieberbach group of dimension n(n — 1)/2 with holonomy group H and is a subgroup
of B,,/| Py, Py]. By the first Bieberbach Theorem, there exists a flat manifold M of dimen-
sion n(n — 1)/2 with holonomy group H such that 7ry(M) = H,, (see [D, Theorem 2.1.1]
and the paragraph that follows it). O

For a given finite group H, it is natural to ask what is the minimal dimension of a
flat manifold whose holonomy group is H. Theorem 16 provides an upper bound for
this minimal dimension when H is a 2-group. This upper bound is not sharp in general,
for example if H = 7.

4 The torsion of the group B, /[ P,, P,]

Let n > 3. In this section we study the torsion elements of the group B,,/[P,, P,]. The
main aim is to show that if 6 € S, is of odd order r then there exists B € B, whose
[Py, Py]-coset projects to 6 in S, and is of order r in B, /[Py, P,| (see Corollary 4). We
begin by showing that if 7 is an odd number such that S,, possesses an element of order
r then B, /[Py, P,] also has an element of order r. By abuse of notation let o; = q,,(0%),
and let A; ; = Qn(Ai,j)z where q,,: B, — B, /[Py, P,] is the natural projection.

PROPOSITION 17. Letn = 3,let1 <i <j<r <mn,andletng, = 0102 ---0y_1 € Byy/[ Py, Py].
The following relations hold in B, /| Py, Py]:

A ifj<r—1 (12)
e i+1,j+1 )
“orAijtto, { Ay ifj=r. (13)

Proof. We first prove equation (12). If 1 < k <r —2 then

-1 -1 -1 -1 -1 -1
(Xo,rO'kDCOIr =01 0p10§0, 101 =071 -0'k0'k+10'k0'k+10'k 0y

-1 _-1_-1 -1
=01 Ok-10k+19k0k410) 10 O_1° 01 = Ok41-
Soifl1 <i < j < r—1 then ocO,rAi,]-ocarl = Aii1,+1 by equation (5), which proves
equation (12). So suppose that j = r. Lety = 0741 -- -0}_20'7,2_10}_2 - 0j41. Since 7y €
-1 -1 2.1
P,/| Py, P,], we have (0,i+1Y %y 1 € P,/| Py, Py], and thus 00,i+1YN ;41 and &g ;10; Xg i1
commute pairwise in P, /[Py, P,]. Hence:
-1 2 _—1 -1 -1 -1 2, -1 -1
O‘O,rAi,r‘Xo,r =01 0p_10p_1" " 0;410; 0'1'_,_1 o '0}_10}_1 o '01 = 00,i+170; Y 0‘0,1'_4.1
-1 2 -1 -1,-1 2 -1
= (&o,i+170%0 ;1) (0,107 0 ;1) (R0,i+1Y ™ &g 1q) = X0,i+107 g ;1
= 0'1 .. 0'10'120'1_1 .. .0'1_1

1 -1 2

= (0’1 .. 0'10'1 .. Ul)(o'l_ .. .0'1__10'1, Ui—l .. .0'1)(0—1 .. .U'ia'i .. .0'1)_1

10



-1 -1 2
— 0'1 R 0-1__10'1. Oi_q1-01 = Al,i+1

by equation (6), since the three bracketed terms in the penultimate line belong to the
quotient P,/[P,, P,] and so commute pairwise. This proves equation (13). O

We now apply Proposition 17 to determine the orbits in P, /[Py, P,| for the action
of conjugation by the element «g, € B, /[Py, Py]. If x € R, |x| shall denote the largest
integer less than or equal to x.

COROLLARY 18. Let n > 3. The set {Ai,j € Py/[ Py, Py] \ 1<i<j< n} is invariant under
the action of conjugation by the element w ,, and there are [”T_l orbits each of length n given
by:

&0,n X0,n &0,n X0,n &0,n X0,n
Ajrr— Agjua— o Apjn—— Arp—ji1— Aon—jra —

X0,n Xo,n
—> Ajy > Ay (14)

forj=1,..., [”T_lj If n is even then there is an additional orbit of length n/2 given by:

Corollary 18 plays an important role in the proof of the following proposition, which
states that if n is odd then the crystallographic group B, /[P, P,] possesses elements of
order n.

PROPOSITION 19. If n > 3 is odd then B, /| Py, P, possesses infinitely many elements of order
n.

Proof. Letn = 3beodd. For1 <i< (n—1)/2and1<j<n,let

TR A (15)
Ai—i—j—n,]' if i +7]>n.

By equation (14), the action by conjugation of ag,, on the ¢; ; is given by:

IXO, IXO, IXO, IXO, IXO, .
€1 — €2 — €in—1 — €in —s €1 fori = 1,..., (ﬂ — 1)/2 (16)

In particular, the set {e,-,]-}1 <i<( is a basis for P, /[P, P,]. The full-twist braid

n—1)/2,1<j<n
of B, may be written as (07 - - - 0,,—1)", or alternatively as the product H;?:z < i1 Ai,j).

This expression contains each of the A;; exactly once, and so &g, = Z ejj in

1<i<(n—1)/2
1<j<n

P, /[Py, Py], using additive notation for this group. Let N € P, /[P, P,,], and for 1 < i <
(n—1)/2and 1 <j < n,leta;; € Z be such that:

N = Z ﬂi’]'el"]'. (17)
1<i<(n—-1)/2
1<j<n

11



It follows from equation (16) that forallk =0,1,...,n -1,

k —k
DCO,HNOCO,TZ - Z al/]el/]+k’
1<i<(n-1)/2
1<j<n

where the second index of ¢; ;  is taken modulo n. Hence:

1, .2 -2 -
(N-apy)" =N+ o Nag , + 0, Nog -+ “g,n Nocoln” + 00 1

1’1(1’1—1)/2 n n
= Z Z aj,j Z €, + Z €,
i=1 j=1 j=1 1<i<(n—-1)/2
1<j<n
n(n—1)/2

n n
= Z Z ajj |+ 1 Z e |-
j=1 j=1

i=1
Thus (N - ag,)" is equal to the trivial element of P, /[ P, P, ] if and only if:

n
Dlajj|+1=0foralli=1,...,(n—1)/2. (18)
j=1

This system of equations admits infinitely many solutions in Z. For each such solution,
Nugy, is of finite order, and its order divides n. On the other hand, since o(Nwag,) =
(1,n,n—1,...,2), the order of Nuag, is at least n. We thus conclude that for any N €
P, /| Py, Py] given by the expression (17) whose coefficients satisfy the system (18), the
element Nag ,, is of order n in B, /[Py, Py]. O

As we shall now see, Proposition 19 implies part of Theorem 3, namely that if 3 <
n < m and n is odd then By, /[Py, Py | possesses elements of order n.

Proof of Theorem 3. Let m and n be integers such that 2 < n < m.

(a) By equation (5), ¢ restricts to an injective homomorphism ¢ |p, : P, — Py, given by
tlp, (Ajj) = Ajjforalll < i < j < n. We wish to prove that the induced homo-
morphism i: By, /[Py, Py] — Bu/[Pm, Pw] is injective. Since {A
the basis {Aiff}1<i<j<m
tient P,/[P,, P,], we see that the restriction 7 }pn JPu,Pu] ¢ Pn/[Pns Pu]l — Pm/[Pm, Pm] is
also injective. Using the short exact sequence (7) and the fact that the homomorphism

¢ induces an inclusion of S, in S;;, we obtain the following commutative diagram of
short exact sequences:

i'f}1<i<j<n is a subset of

of Py /[Pu, Pn], by regarding the Aj; as elements of the quo-

P, B,
1 S 1
[PTZIPH] [PHIPH] 5
l‘|Pn/[Pn,Pn] li
Py, B
1 S 1.

The injectivity of 7 is then a consequence of the 5-Lemma.
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(b) Suppose that 3 < n < m and that n is odd. Proposition 19 implies that B;,/[ Py, Py
possesses elements of order n. By part (a), 7 is injective, and so By, /[Py, P] also has ele-
ments of order n, which proves the first part of the statement. The second part follows
from the construction given in the proof of Proposition 19.

(c) Let ny,...,n; be odd integers greater than or equal to 3 such that Zle n < m,
let o: leg_l n SZ§—1 ,. denote the usual homomorphism that to a braid associates

1

its permutation, and let B, ., denote the corresponding mixed braid group, namely
the preimage under ¢ of the subgroup S, x --- x Sy, of Szg_l ..~ We first prove that

the group By,/[ P, P| possesses elements of order lem(ny,...,n). For 1 < i < t, let
@i By, — By,,..n, denote the embedding of B, into the ith factor of By,,...,n;- Since

@i([Pn;, Pyj]) < [PZ;_1 ”i’PZt‘—lni]’ the homomorphism ¢; induces a homomorphism
q). . n; N Bnl,nz,...,nt
" [Py, Py
[ n; 7’11] [sz:1 ni, let‘:l ni]

ition of the projection onto the it factor of B,, _n,, followed by the canonical projection

. Now let ¢;: By, n — ﬁ be the compos-
nir +n;

_Tm
[pnil Pnl]

i

B,, — . Under this composition, the normal subgroup Py = of By, is
i=1"

, hence the normal subgroup [PZtl 0 PZtl n{] of By,,...n, is sent to the

By,
trivial element of ﬁ, from which it follows that i; induces a homomorphism
nir+n;
— B B,
P;: et — %__. From the constructions of ¢; and 1;, we see that
[Pzt 0 pzt n-] [p”z” P”i]
i=1"1 i=1"i

¢;o@; = Idg, /ip, p,] forall1 <i <t and so the composition

Bn, Bn, g Buy my,...ny gr< < Bny B,
= X+ X X oo X — -
[PTZV Pnl] [Pnt/ Pnt] [let:l 1y szzl ”i] [Pnl, P”l] [P”t/ Pnt]
is the identity. Thus @7 x - - - x ¢y is injective, and the composition

By, Y% Bu,  grxxo By ny,...ms . BZzt’:l n N B )
[Pnl’ Pnl] [Pnt’ Pnt] [PZL1 n;’ PZ§:1 ”i] [PZE:l n;’ PZzt':l ”i] [Pm' Pm]
which we denote by @, is injective by part (a) and by the injectivity of the homomorph-
. . n; .
ism By, n — BZ§:1 " For1 <i <t lety; € m be an element of order n;
whose permutation is an n;-cycle; the existence of ; is guaranteed by part (b). Then

= (Y1,...,7) € M 2 x...x —"__jsof order lem(nq,...,n;), and
L L T o R T [P, Pu] et
the injectivity of ® implies that ®(7) € Tz ";) ] is also of order lem(ny,...,n¢). The
my L m
second part of the statement follows also. O

As a consequence, we are able to prove Corollary 4, which says that the torsion of
By /[Py, Py] is equal to the odd torsion of the symmetric group S,, and that the map
induced by ¢ from the set of finite cyclic subgroups of B, /[Py, P,,] to the set of cyclic
subgroups of S, of odd order is surjective.
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Proof. Let B € B,/[Py, Py] be a non-trivial element of finite order r. By Theorem 2, r
is odd. Lemma 9 implies that 7(f) is also of order r, so the torsion of B, /[Py, P,]| is
contained in the odd torsion of the symmetric group S,. Conversely, suppose that 0
is an element of S;, of odd order r > 3, and let 6 = 0,60, - - - 0; be a product of disjoint
non-trivial cycles, where 6; is an n;-cycle for alli = 1,...,t. Thenr = lem(ny,...,ny),
the n; are odd and greater than or equal to 3, and Y'_; 1; < n since the ; are disjoint.
By Theorem 3(c), B,,/| Py, P,] possesses an element -y of order r whose permutation has
cycle type (n1,...,1¢). So o(7) is conjugate to 6, and thus a suitable conjugate of 7y is
an element of order r whose permutation is equal to 6. The last part of the statement
follows in a straightforward manner. O

REMARK 20. In order to study the conjugacy classes of finite-order elements of the
group B, /[Py, P,], we will describe some of these elements in more detail in Section 6.

5 A study of some crystallographic subgroups of dimen-
sion 3 of B3/[P3, Pg]

Aswe saw in Section 3, the group B3 /[P, P3] is crystallographic and has no 2-torsion. In
this section, we further analyse this quotient and we study some of the crystallographic
subgroups of B3/[Ps, P3] of dimension 3, of the form &' (H), where H is a subgroup of
S3. In order to study these subgroups, it suffices to consider a representative of each
conjugacy class of subgroups of S3. We shall also comment on some other subgroups

of B3/[P3, P3]
PROPOSITION 21. Let H be a subgroup of S, and let Hj be given by equation (10).

(a) Let H = {1}. The crystallographic group Hj admits a presentation whose generators are
A1, A3, Az 3, with defining relations [A1,2/ A1’3] =1, [Al,Z/ Azlg] = 1and [A1,2/ Az/g,] =1.
(b) Let H = {(1,3,2)). The crystallographic group Hs is normal in Bs/[Ps, P3] and admits a
presentation given by:

* generators: Ay, Ap3, A13, %03, where ay3 = 0109 € B3/[P3, Ps].
e relations:

(i) [A12,A13] =1, [A12,A23] =1, [A13,A13] = 1.
(i) &35 = A3 = A12A13A23 (A3 is the class of the full-twist braid in P3/[P3, Ps]).

-1 -1 -1
(111) 060’3A1,20(0,3 = A2,3, 0(0,3A1,30(0’3 = ALQ, 0(0,3A2’30(0’3 = A1,3.

The Abelianisation (ﬁB)Ab of Hj is given by:

(F—h) o <A1,2,060,3 ‘ [A12,003] = 1,068,3 = Ai’,2>,

and is isomorphic to 7. @ Z3, where the factors are generated by A1, and Ajpay %
(c) Let H = ((1,2)). The crystallographic group Hs admits a presentation given by:
e generators: A1, A2z, A13,01.

e relations:
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(1) [A1p,A13] =1, [A12, Ars] =1, [Ar3, A13] = 1.
(ii) 07 = Aqp.
(111) 0'1A1,20'1_1 = Al,Zr 0'1A1,30'1_1 = A2,3, 0'1A2’30'1_1 = A1,3.

We have:

<ﬁ3)Ab = <A1,2, Av3,01 |[A1o,01] = 1,[A13,00] = 1,07 = A1,2> ~ 7@ 7.

(d) Let Hy = Ss. The crystallographic group Hsy = Bs/[Ps, P3] admits a presentation whose
generators are o1, 0, with defining relations 010201 = 020102 and (o; 1(72)3 = 1. We have

<FI3>Ab ={(01) = Z.

Proof. Part (a) follows from the fact that H; = Ps /[ P53, P5] if H is trivial. The present-
ations given in parts (b) and (c) may be obtained by applying the method of present-
ations of group extensions given in [J, Section 10.2]. In part (b), the normality of Hj
follows from that of Z3 in S3.

By [O, Lemma 4.3.9], the commutator subgroup [P, 3] is equal to the normal clos-

ure of [A1,2/ A2,3] in B3. Since [A1,2/ Azlg] = (0’1_10'2)3 and B3 = <0’1, (%) | 0102071 = 020102 >,
we thus obtain the presentation given in part (d). In each case, <ﬁ3> b is obtained in a

straightforward manner from the presentation of Hs. O

REMARK 22. The presentation of B3/[Ps, P3| of Proposition 21(d) also appeared in [O,
Proposition 4.3.10] and in [LW, Proposition 3.9].

THEOREM 23. Let H be a subgroup of Sz, and let H; be given by equation (10).

(a) Let H = {1}. Then Hj is isomorphic to the quotient P3/[Ps, P3], which is isomorphic to Z3.
The corresponding flat manifold is the 3-torus.

(b) Let H={(1,2)). Then H; is a Bieberbach group of dimension 3 with holonomy group Z,.
The corresponding flat Riemannian manifold is diffeomorphic to the non-orientable manifold %,
that appears in the classification of flat Riemannian 3-manifolds given in [W, Corollary 3.5.10].
(c) Let H = {(1,3,2)). Then Hj is isomorphic to the semi-direct product 7> x 73, where the

action is given by the matrix <E1)) § é) with respect to the basis (A1, Aa3, A13) of P3/[P3, Ps),
this quotient being identified with 73.

Proof. Part (a) is clear, so let us prove part (b). Theorem 2 implies that B3/[Ps, P3| has no
2-torsion, and so the subgroup Hj is a Bieberbach group of dimension 3 by Lemma 14.
Let X be the flat Riemannian manifold uniquely determined by ﬁ3, so that 711 (X) = P~I3.
The holonomy representation of Hjis a homomorphism of the form Z, — Aut(Z3),
where we identify Ps/[Ps, P;] with Z3. Relative to the basis (A1, A13, A23) of P3/[Ps, P3],
by equation (8), the image of the generator of Z, by this homomorphism is given by
the matrix <é ? g) whose determinant is equal to —1 . Thus X is a non-orientable flat
Riemannian 3-manifold with holonomy group Z,. Up to affine diffeomorphism, X is
one of the two manifolds #; or %, described in [W, Theorem 3.5.9]. Using the present-

ation of FI3 given in Proposition 21(b) we have H(X;Z) =~ Z?, and from the table in [W,
Corollary 3.5.10], we conclude that X = %,.
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Finally we prove part (c). The following short exact sequence:
1—>D3/[P5,P] — Hy — H — 1

admits a section given by sending the generator (1,3,2) of H to the element o7 Yoy of

H3, and so Hj is isomorphic to the semi-direct product of the form Z3 x Z3. Relative

to the basis (A1, Az3, A13) of P3/[Ps, P3|, the matrix of the associated action is equal to
001

<1 00 ) [
010

REMARKS 24.

(a) The subgroup of B3/[P;, P3| generated by the class of the full-twist braid A; ;A1 3423,
given by (1,1,1) in terms of the basis (A1, A13, Az3) of P3/[Ps, P3], is a normal sub-
group of B3/[P;, P;]. The associated quotient group admits the following presentation
that is obtained from a presentation of B3 /[ P3, P3]:

133
<(71,(72 ‘(72(7102 = 010201, (07 "02)° =1, A1pA13A23 = 1>-

The group G} given in the first theorem of [Ly, page 73] is generated by the set {«, 8, 7, p},
with relations:

2, B] = [p,a] = ° = p* = (0p)* =1, o™ =a™'p, opo ' =a”, ppp~! =ap.

A routine calculation shows that the map that sends A » (resp. Ai ;, Aq301, 07 L) to a
(resp. B, p, 0) extends to an isomorphism of the two groups.

(b) The group B3/|P;, P3] is the three-dimensional crystallographic group that appears
as 5/4/1:SPGR:02 of [BBNWS, page 71], and that corresponds to IT 161; OBT 1 in the
international table [HL].

(c) Let L be a crystallographic subgroup of B3/[P3, P53] of dimension 3, and consider
the subgroup (L) of S3. If 7(L) = {Id} then clearly L is isomorphic to Z>. If 7(L) =
{(1,2)) then L is a Bieberbach group. If (L) = ((1,3,2)) then the group L may be
Bieberbach or not, with holonomy Zs. For example, if L is the subgroup generated by
{(71 02, A% by A1 3 A3 3} then L is a proper crystallographic subgroup of & 1({(1,3,2)))
of dimension 3 with holonomy Z3 and that admits torsion elements, o ', for example.
On the other hand, if L is the subgroup generated by {Al 207 10, A1 Y A1 A3 } then L
is a proper subgroup of @ 1({(1,3,2))), and is a Bieberbach group of d1men51on 3 with
holonomy Z3. To see this, let L; = L nKer (0) = L n (A1, A13, Az3). Clearly L; is a
free Abelian group, so is torsion free. Using equation (8), we see that (Ajp0; ly)3 =
A1pA13A23, and since {(Al,ZI A13, A2,3)f }je 01,2} is a set of coset representatives of L;

in L, it follows that L; is generated by {Al 2A13A23, A1 2,Al 3,A } Note then that

{A1,2A1,3A2,3, A1 3/ A2 3} is a basis of L. Suppose that w is a non-trivial torsion element

of L. By Lemma 9, w must be of order 3. Now w ¢ L;, so there exist 8 € L; and
j € {1,2} such that w = O(Allz(fl_laz)]. Since 0 € L1, there exist Ay, A, A3 € Z such that
0 = (A1pA13A23)M A} AYY, and hence:

1= w3 = 9(A1’20'1_10'2)j9(A1,20'1_10'2)_j. (A1’20'1_10'2)2j9(A1’20'1_10'2)_2j. (A1,20'1_10'2)3j.
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Using once more equation (8), the relation (A1 207 Lop)3 = A12A13A23, and comparing
the coefficients of A;, A13 and Aj3, we obtain the equality 3(A; + A2 + A3) +j = 0,
which has no solution in Z. It follows that L is torsion free, and so is a Bieberbach
group of dimension 3 with holonomy Zj.

(d) There is no Bieberbach subgroup of B3/[Ps, P3| of dimension 3 that projects to S3,
since none of the ten flat Riemannian 3-manifolds have fundamental group with holo-
nomy S3 (see [W, Theorems 3.5.5 and 3.5.9]).

6 Conjugacy classes of finite-order elements of B, /[P, P, |

In this section, we study the conjugacy classes of finite-order elements of B, /[Py, Py].
The aim is to prove Theorem 5, which states that there is a bijection between the con-
jugacy classes of cyclic subgroups of odd order of B, /[Py, P,] and the set of conjugacy
classes of cyclic subgroups of odd order of the symmetric group S.

We begin with an elementary fact about conjugacy classes that will help to simplify
the study of our problem.

LEMMA 25. Let a, 3 € By, /[Pu, Pn] be two conjugate elements of finite order. Then o () and
0 (B) are permutations of odd order and have the same cycle type.

Proof. Since a, B are of finite order, their common order is odd by Theorem 2. The fact
that « and B are conjugate in B, /[Py, P,] implies that the permutations o («) and ()
are conjugate in S;. The result then follows since two permutations are conjugate in S,
if and only they have the same cycle type. O

In order to analyse the conjugacy classes of elements of finite order, Lemma 25 im-
plies that it suffices to choose a single representative permutation for each conjugacy
class of S, of odd order and to study the conjugacy classes of elements of B;,/[ P, P,,] of
tinite order that project to the chosen permutation.

Let us consider the action by conjugation of certain elements of B, /[P, P;| on the
group Py /[Py, Py]. If k,n = 3 and r > 0 are integers such that r + k < n, define J, 4, «, ;. €
B,/| Py, Py] by:

Ork = Opyk—1"" '%rk%l(f:% o and g = Opig Ot (19)
LEMMA 26. Let n,k > 3 and r > 0 be integers such that k is odd and r + k < n. Then 6, is of
order k in By, /| Py, Py, and satisfies:

-1
Ok = (Ar+kizllr+kAr+kL23,r+k' = Ar+k—1,r+k> L (20)

Furthermore, the action of conjugation by a, ;. on the basis elements A; ; of Py /[Py, Py] is given
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r

Ai,]' Z'fl',]'¢{7’+1,...,1’+k}

Ai+1,j+1 fr+l<i<j<r+k-1

A1 fr+l<i<j=r+k

zxr,kAi,]-oc;lg =9 Aij+1 fi<r+l<j<r+k-1 (21)
Airi1 ifi<r+landj=r+k

Aifj fr+l<i<r+k—landr+k<j<n

| Arj  fi=rt+k<j<n

and the action of conjugation by 6, i is the inverse action of «, j and is given by:

-

Ai,j Z'fl',]'¢{7’+1,...,1’+k}
Ai—l,j—l ifr+2<i<j<r+k
Aigk fr+l=i<j<r+k
S fAijb s = Aijo1 ifi<r+l<j<r+k (22)
Ajrik ifi<r+landj=r+1

Aiq)j ifr+l<i<r+kandr+k<j<n

[ Arik, ifr+1=iandr+k <j<n.

Proof. Letn > 3, k > 3 and r > 0 be integers such that k is odd and r + k < n. We start
by proving equation (20) and by showing that J, ; € B, /[Py, Py] is of order k. First let
r = 0. Then:

1 1

50k[x0k:0’k_1...0'k+10— ...0—_ 0'1"'0'ﬂ0—kj'”0—k—1
7 7 1 2 2

2

30

+

i1

2

2

(410k43 - O] = Ak#’kAkEs,k o A1k (23)

zo'k_l...o'k 31 k13

N‘

which yields the equality (20). Set N = <Ak+Tl kAk# e -Ar_1x)" L € Py/[Py, Py]. Then

&y ,150_ ]1060,]( = Nag by equation (23), and so ¢y and Nag are of the same order. Con-
sidering N and «(  to be elements of By/[Py, Px| for a moment, and using (15) and (17),
k=1
=z
we have N = — Z e; k—i, and so N satisfies the system of equations (18) (taking n = k
i=1
in that system). It follows from the proof of Proposition 19 that Nxg\ is of order k in
By/[Px, P], and so Jyx is of order k in By/[Py, P¢]. Since k < n, we deduce from The-
orem 3(a) that g, considered as an element of B, /[Py, P ], is also of order k.
Now assume thatr > 1. Let 1p denote the composition of the following homomorph-

isms:
By Br,k,n—r—k By

[Pkrpk] [pn/pn] [Pn,Pn]’

where the first homomorphism is induced by the inclusion By < B, ,_,_ of By in
the middle block of the mixed braid group B, s ,_,_, and the second homomorphism
is induced by the inclusion B,y ,,_,_x < Bj. In a manner similar to that for 7 in the
proof of Theorem 3(a), the homomorphism ¢ may be seen to be injective. For all 1 <
i <n-1,¢(0;) = 0,4, hence P(dpx) = 6,k and P(agx) = a, by equation (19). The
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By,

[P, P

injectivity of ¢ implies that J, ; is of order k in . Moreover, foralll <i <j<mn,

1P(Ai,j) = Ay1ir+j by equation (5), thus:

5ok = P(Jox) = ((A%kAk%k . -Ak_l,k) a[;;) by equation (23)

- <Ar+k%1,r+kAr+k2i3,r+k h 'Ar+k—1,r+k> %k

which is equation (20). This proves the first part of the statement. It remains to establish
equations (21) and (22). The first relation of (21) holds clearly. Applying ¥ to both sides
of equations (12) and (13) (and taking r = k) gives rise to the second and third relations
of (21). Finally, equation (8) yields the four remaining relations of (21). To obtain (22),
by equation (20), conjugation by &, ;d,  in P, /[Py, P,] is conjugation by an element of
Py /| Py, Py], which gives rise to the trivial action. So the actions by conjugation of a,
and 6, x on P, /[Py, P,] are mutual inverses. Equation (21) then implies equation (22). [

Another corollary of Theorem 3(c), which we now prove, is Theorem 6, which states
that there is a one-to-one correspondence between the finite Abelian subgroups of
B, /[Py, P;] and the Abelian subgroups of S, of odd order.

Proof of Theorem 6. First, it follows from Remarks 13(c) that the isomorphism class of a
finite Abelian subgroup of B, /[P, P,] is realised by a subgroup of S, (of odd order).
Conversely, let H be an Abelian subgroup of S, of odd order. Then H is isomorphic to
a direct product of the form Zy, x --- x Zy,, where fori = 1,...,7, k; is a power of an
odd prime number. By [Ho], >'_; k; < n. Let kg = 0. Then for [ = 1,...,r, the element
52;:(1) Kk belongs to B, /[Py, P,| and is of order k; by Lemma 26. By construction, the

52;;% Kk commute pairwise. The subgroup <(50,k1, ce 52;;11 kj,k,> is then isomorphic to

H since o ((5211 k. kz) is a k;-cycle in S;;, and the supports of such cycles are pairwise
j=1 Kjr

disjoint. O

The following two propositions are immediate consequences of Lemma 26.

PROPOSITION 27. Let n,k > 3 and r > 0 be integers such that k is odd, and suppose that
3 < r+k < n. Then the action of conjugation by 6, on P,/[P,, P,] restricts to an action on
theset A= {A;;| r+1<i<j<r+k}. Theorbits of this action partition the set A into 551
orbits each of length k and given by:

Or Or Or Or Or

Ar+1,r+i+1 — Ar+i,r+k — Ar+i—1,r+k—1 O S Ar+2,r+k—i+2 —

‘Sl’,k 5r,k 5r,k 5r,k . k -1

Aritrsk—is1 = Apik—ipsk = > Apgargiv2 = Arprpeian fori=1,..., T

Proof. The result follows from the second and third lines of equation (22). O

PROPOSITION 28. Let n,k > 3 and r > 0 be integers such that k is odd, and suppose that
3 <r+k < n. Then for each j > r + k, the action of conjugation by 5, , on P, /[Py, P,] restricts
to a transitive action on the set { A; ;| r +1 <i <r+ k}, whose orbit of length k is given by:

Or Or Or Or k Or
Arikj— Ak w2 Apnj = A — Arij- (24)
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Similarly, if i < r + 1, the action of conjugation by 6, on P,/ Py, P,] restricts to a transitive
action on the set A = { A; ; | 7+ 1 < j <r+k}, whose orbit of length k is given by:

(5 57’ k 5r,k ‘Sr,k ‘Sr,k
Az r+k ’ Az r+k—1 > > Ai,r+2 > Ai,r+1 > Ai,r+k~ (25)

Proof. Equation (24) (resp. equation (25)) follows from the 4" and 5% lines (resp. the 6
and 7" lines) of equation (22). O

PROPOSITION 29. Let n,k,I = 3andr,s = 0 be integers such that k and | are odd, 3 < r +k <
s+1lands+1<mn,and let {y = lcm(k,[). The action of conjugation by &, (05 ; on P, /[Py, Py |
restricts to an action on theset { A;j| r+1<i<r+kands+1<j<s+]1}, given by:

Aij1 fr+l<i<r+kands+1<j<s+l
Argrj1 Hfi=r+lands+1<j<s+l

Ai sy ifr+l<i<r+kandj=s+1
Apiksel ifi=r+landj=s+1

5r,k55,lAi,j (§r,kés,l ) 1=

The orbits of the action partition this set into kl /€y orbits of length £y given by combining (24)
and (25).

Proof. The result follows by applying Propositions 27 and 28 to the action of 4, x and J
on the elements of the set { A; | r+1<i<r+kands+1<j<s+I}. O

PROPOSITION 30. Let n > 3, and let B be an element of By, /| Py, Py|. If m = 0 is such that
0(B) belongs to the subgroup of Sy, isomorphic to Sy on the symbols {m +1,m +2,...,m + q}
then the action of B on the set { A; ; |1<i<j<morm+q+l1<i<j<n}is trzvzal

Proof. We just prove the claim for m = 0 since the remaining cases are similar. Let
1 < g < n—1. By Theorem 3(a), the inclusion : B; — B, induces an injective ho-
momorphism : B, /[Py, P;] — By/[Py, Py]. Since 0°(B) € Sy, there exists T € By/[Py, Py]
such that ¢(B) = 7(i(7)) is the identity permutation, and so there exists ' € Py/[ Py, P]
such that B = 1(7)B’. The result follows from equation (8) and the fact that g’ is central
in P, /[Py, Py]. O

Letn > 3,letkg = 0,let3 < ky < ky < ... < ks be odd, and suppose that Zizl ki <n
We define:

0= é(ko, ey ks) = (5k0,k15k1,k2(5k1+k2,k3 .- 52]5;% kj,ks’ (26)

where for all 0 </ < s —1, the element (SZ; Kok is given by equation (19). Since the
j=1 "%

Ol 4 ] commute pairwise and is of order k;, 1 by Lemma 26, it follows

=1 kjkiga Y kikra
that ¢ is of order lem(ky, . .., ks) in B, /[Py, Py| and:

0 =7(5) =0y 0, (27)

where fori =1,...,s, 6; is the k;-cycle defined by:
i—1 i—1 i
D+ k2, k| (28)
j=1 =1 j=1
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The order of the permutation 6 is also equal to lem(ky, kp, . . ., k). Using Propositions 27,
28,29 and 30, we shall now describe the orbits given by the action of conjugation by ¢
on the basis { A;; | 1 <i<j<n}of Py/[Py, Py). The associated partition will be useful
when it comes to proving Theorem 5.

THEOREM 31. Let n > 3,letkg = 0, let 3 < k; < ky < ... < ks be odd such that Z?zl ki<n

and let 6 € By, /[Py, Py ] be defined by equation (26). The following sets are disjoint and invari-
ant under the action by conjugation of 5 on the set of basis elements { A; ; | 1<i<j<n}of

Py /[P, Pul:
(a) {Ai,]- ‘ er;} ki+1<i<j<d)_qk }, where 1 < r < s. Under the given action, the

k’z_ L the index

orbits of this set are obtained from the relations e, j, ; N e pi1, Wherel < h <
t is taken modulo k,, and

e ns = {A ety kot FEE{L
A27:1 kl_t+1,23’:1 kj—t+1+h lft € {]’l + 1, NN ,kr}.
(b) {Ai,]- ‘er;% ki+1<i<dy_qkand ] ik <j< n}, where 1 < r < s. Under the

given action, the orbits of this set are obtained from the relations e, ; ; 2, ér,jt+1, Where the
index t is taken modulo ky, and e, ; ; = Azr—l kit ]..
1=1

(c){ 11’2 ki+1< leklandZ kl+1<j< ?zlkl}wherel p<g<
s. Under the given action, the orbits of this set are obtained from the relations ey 4., NN

k, k
p "
epqui+1, Wherel < v < em (ko k) (kp/kq>/ 1 <t <lem(ky, k;), and

e - A —1 —1 Vi
PARE = S 2, S0 k1ol

where the notation [x|, means the positive integer between 1 and n that is congruent to x
modulo n.
(d) {Aij| Yi_1 ki <i<j<n}. Under the given action, each A; ; is fixed.

Proof. Parts (a)-(d) follow from Propositions 27, 28, 29 and 30 respectively. O

Let kq, ..., ks be as in the statement of Theorem 31, and let B denote the basis of
P, /| Py, P, ] that consists of the following elements:

(a) e, wherel <r \sl <h<

(c) epgot, Wherel <p<qg<s 1<v<

(@) Ay,
An element of B will then be said to be of type (a), (b) (c) or (d) respectively. If A €
Py, /[Py, Py], it may thus be written uniquely in the following form:

_ My h ¢ My jt Mp,q,0,t m;
A= H €1t H er,]',t H €p,q,0,t H Ai,]' . (29)

where >J_; kj <i<j<n

1<r<s 1<r<s 1<p<g<s e ki<i<j<n
1<h<k7’7_1 Zs‘:1 k‘+1<j<n P =17
D =1 1<v< i

1<t<k, 1<t<k, cmKp.kq

1<t<lem(kp,ky)
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The following proposition allows us to decide whether B, /[P, P,,| possesses elements
of order lem(ky, .. ., ks).

PROPOSITION 32.Let n = 3, let kg = 0, let 3 < ki < ky < ... < ks be odd such that
Z}Ll ki < n, let 5 € By/[ Py, Py] be defined by equation (26), and let A € P, /[Py, Py] be given
by equation (29). Then the element AJ is of order lem(ky, . .., ks) if and only if the following
system of equations is satisfied:

( ky —1
Z Myt =0 foralll <r<sand1l<h < r2
1<t<k,
S
Z My =0 fOVﬂlllérésandej+1<]‘<n
1<t<k, P
< 30

Z Mpgot =0 foralll<p<qg<sandl<wo

1<t<lem(kp,ky)

S
m;;j =0 forallej<i<j<n
\ j=1

< PR I —
lem(kp, kq)

Proof. The argument is similar to that of the proof of Proposition 19. Let A be written
in the form of equation (29), and let ¢ = lem(ky, ..., ks). Since A € P, /[Py, Py], 0(Ad) =
0(6) = 0, where 6 is as defined in equation (27). The fact that 6 is of order ¢ implies that
the order of AJ, if it is finite, cannot be less than ¢. Since ¢ is of order ¢ by Lemma 26, it
follows that:

=[] &As. (31)

Let w; € B, and let g denote the length of the orbit of w; under the action of conjugation
by 6. By Theorem 31, g = k, if wy is of type (a) or (b), g = lem(ky, k;) if wy is of type (c),
and g = 1if wy is of type (d). Fori = 1,...,q, let w; = 6 1w;6~ (1 be the (distinct)
elements of the orbit of w;. So 9w;0~7 = w;, and since q divides ¢, we have:

/1 t/q
H(sjwi(s—]' — H skatiqy, 5= ka+i) — H Slw;67 — (wy -- .wq)f/q_
j=0 O<]<q 1 0<j<g—-1

O<k<i-1

If mj e Zthenfori=1,...,9, we have:

q 05
(HW) m (me)w—H( )" = (w1 wg) 1™ (32)
i=1

i=1

Combining equations (31) and (32) and using the fact that the orbits of the elements of
B are invariant under conjugation by ¢, it follows that (Ad)’ = 1 if and only if

m; = 0 for all wy € B, (33)

N.
e
—_
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where fori = 1,...,q, m; is the coefficient of w; that appears in equation (29). Taking w,
to be successively the element e, ;, 1 of type (a), the elemente, ;1 of type (b), the element

ep,q01 Of type (c), and the element A; ; of type (d), we conclude that (Ad)! = 1if and
only if the system of equations (30) is satistfied, and this completes the proof of the
proposition. O

We now prove Theorem 5 that concerns the conjugacy classes of finite-order ele-
ments of B, /[P, P,], and which is the main result of this section.

Proof of Theorem 5. Let 0 € S, be of order k. Conjugating 6 if necessary, we may sup-
pose that there exist odd integers 3 < k; < ... < k; such that >} ; k; < n and
k =lem(ky, ..., ks) for which 6 is of the form given by equation (27), and where the ele-
ments 6; of that equation are defined by equation (28). Let 6 € B,,/[ P, P,,] be defined by
equation (26), which we know to be of order k using Lemma 26. Now let § € B, /[Py, Py
be an element of finite order such that o () = 6. By Lemma 9, 8 is of order k. To prove
Theorem 5, it suffices to show that  and J are conjugate. Since they have the same
permutation, there exists A € B,,/[ P, P,,] such that = AJ, and we may write A in the
form of equation (29). With the notation of the proof of Proposition 32, equation (33)
holds by that proposition because AJ is of order lem(ky, . .., ks). To prove the theorem,
it suffices to show that Ad and ¢ are conjugate. To do so, we will exhibit X € P, /[Py, Py ]
for which XA5X~! = 4. This is equivalent to the following relation:

XAsX 167t = 1in P,/[P,, P,]. (34)
We start by writing X in the form of equation (29) as follows:

_ x}’,h,t xl’,j,t xp,q,z;,t xi,]‘
X = H €rt H Cr it H €p,q,0.t H Ai,]' ’ (35)

1<r<s 1<r<s 1<p<qg<s U ki<i<j<n
1<h<kl Y1 kjtl<jsn Pk =
TP / ISOS iem(fy k)

1<t<k, 1<t<k, em(kp kg

1<t<lem(kp,kq)

where the exponents are the coefficients of the elements of B. As we saw in the proof
of Proposition 32, it suffices to study the subsystems obtained from equation (34) that
correspond to the orbits of the action of conjugation by J. In particular, if wy € B and
w; = 6" lw16~ =1 are the elements of the orbit of w;, wherei =1, ..., g, then it follows
from equations (29), (34) and (35) that:

q q q
(1) (1) (1) =1t
i=1 i=1 i=1
where m; (resp. x;) is the coefficient of w; appearing in equation (29) (resp. in equa-
tion (35)), and xg = x,;. We conclude that:
xi_1—x;=m;foralli =1,...,qand for all choices of w; € B. (36)

Choosing x; € Z arbitrarily, the solution of the subsystem of equations obtained by
takingi = 2,...,q in equation (36) is given by x;_1 = x; + Z?:i mj, which determines x;
foralll = 1,...,q. The remaining equation, corresponding to i = 1, is satisfied, because:

q
Xg— X1 = — Z mj = my by equation (33).
j=2
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Hence the system of equations (36) possesses solutions for all choices of w; € B, and
so equation (34) admits solutions, from which it follows that AJ is conjugate to 6 by an
element of P, /[Py, P,]. This proves the first part of the statement. The second part is

then a direct consequence. ]
REMARKS 33.

(a) The number of conjugacy classes of permutations of order k in S, is equal to the
number of partitions (ny,...,1n,) of n, where n; e N, ny <mp < ... <m, di_4n =n

and lem(ny,...,n,) = k.

(b) It follows from Corollary 4 and Theorem 5 that if k is odd, ¢ induces a bijection
between the set of conjugacy classes of elements of order k in B, /[P, P;| and the set
of conjugacy classes of elements of order k in S;,. The same result also holds for finite
cyclic subgroups.

(c) Given an Abelian subgroup H of finite odd order of S;;, we saw in Theorem 6 that
B,/[ Py, Py] contains a subgroup G isomorphic to H. An open and more difficult ques-
tion is whether B,,/[P,, P, | contains a subgroup G such that ¢(G) = H.

7 Finite non-Abelian subgroups of B, /[P, P,]

As we saw in Theorem 2 and Lemma 9, any finite subgroup of B,,/[ P, P,,] is of odd or-
der, and embeds in S;,. Following the discussion of the previous sections, it is natural to
try to characterise the isomorphism classes of the finite subgroups of B, /[Py, P,] as well
as their conjugacy classes. For the question of isomorphism classes, this was achieved
for finite Abelian subgroups in Theorem 6, and for that of conjugacy classes, was solved
in Theorem 5 and Corollary 4 for cyclic groups. Going a step further, we may also ask
whether B,,/[P,, P,] possesses finite non-Abelian subgroups. Since any group of order
9 or 15 is Abelian, the smallest non-Abelian group of odd order is the Frobenius group of
order 21, which we denote by F. It admits the following presentation:

.F=<s,t‘s3=t7=1,sts_1=t2>. (37)

The group F is thus a semi-direct product of the form Z; x Zs3, and it possesses six
(resp. fourteen) elements of order 7 (resp. of order 3). As we shall see in Lemma 34, F
embeds in Sy, and as a first step in deciding whether B,,/[P;, P,| possesses finite non-
Abelian subgroups, one may ask whether 7 embeds in By /[P, P;]. The main result of
this section, Theorem 7, shows that the answer is positive. Theorem 3(a) then implies
that 7 embeds in B, /[ P,, P,| for all n = 7. In Theorem 38, we show that in By/|[ Py, P|,
there is a single conjugacy class of subgroups isomorphic to . The general questions
regarding the embedding in B, /[P, P,| of an arbitrary finite non-Abelian group of odd
order (for large enough 7) and the number of its conjugacy classes remain open.

We first exhibit a subgroup F( of Sy that is isomorphic to /. We shall see later in
Proposition 35 that any subgroup of Sy that is isomorphic to F is conjugate to (. In
what follows, we consider the following elements of Sy:

« = (1,3,4,2,5,6,7)and B = (1,2,3)(4,5,6). (38)

Let F( denote the subgroup of S; generated by {«, B}. As noted previously, we read our
permutations from left to right, to coincide with our convention for the composition of
braids.
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LEMMA 34. The subgroup Fo of Sy is isomorphic to F. Further, if G is a subgroup of Sy that is
isomorphic to F then G is generated by two elements o’ and ', where o' is a 7-cycle, the cycle
type of B’ is (3,3,1), and p'a’B'~! = a’.

Proof. The first part of the statement is obtained from a straightforward computation
using equations (37) and (38). For the second part, if G is a subgroup of Sy that is
isomorphic to F then it possesses a generating set {a’, f’}, where &’ is a 7-cycle, p’ is
of order 3, and p'a’f'~! = a’2. The cycle type of B is either (3,3,1) or (3,1,1,1,1).
Suppose that we are in the second case. Then ' = (ny, ny, n3) where ny, ny and n3 are
distinct elements of {1,...,7}. Hence the remaining four elements my, my, m3 and m, of
{1,2,3,4,5,6,7}\ {n1, np, n3} are fixed by p’. So there are two consecutive elements of
the 7-cycle o, denoted by m;, my, that belong to {my,my, m3, ms}. Since p'a’p'~1 = a2,
we have a1 (mj) = ap~'(m;) = p~1(my) = my, but this is different from a®(m;) =
a(my). This yields a contradiction, and shows that the cycle type of ' is (3,3,1). O

The rest of this section is devoted to proving that F embeds in B;/[P;, P;| and to
showing that in B/ P;, P7|, there is a single conjugacy class of subgroups isomorphic to
F. In this quotient, we define:

1 1

X = 090, 050, Land Y = 020306050405 1(72_ 1(71_ oy 102_ L (39)
Then 7(y) = « and using the notation of equation (19), y = 020360705 1(72_ 1 So y is
of order 7 by Lemma 26. Similarly, o(x) = B, x = 6o3033, and x is of order 3 (see the
discussion on page 20 just after equation (26)). We now prove Theorem 7 that asserts

the existence of a subgroup of B;/[P7, P7] isomorphic to the Frobenius group F.

Proof of Theorem 7. Consider the subgroup H of By7/[P;, P;] generated by {x,y}. By the
above comments, we know that o(y) = « and o(x) = 5, therefore o(H) = Fy. Let

1 1

R I S

Using the Artin relations (2) and (3), and equation (8), we have:

1. -1 -1_-1 -1 -1 -1 -1 _-1_-1_-1_-1
1 1 1 -1
0'2 .

yayx ly 2y =0y

0'40'5_10'10'2_1. 0'20'30'10'20'30'4_10'5_10'6_10'10'20'30'4_10'5_ Og O3
0’20’1_10'50'60'4_10'5_10'40'2

Lo2o,  osou0y Loy oy Loy touos Lo oaos ooy tog ooy

1 1

2 _— 11
050, o5 .

1

11 -1 -1 11
1

1 1

-1 -1_-1 -1_-1_ - P P
=A4,6A4,5.A4,5.c73c74c72 0] 04030, 05 020, 01020, 05 0407 .
11

s
Iy
Loso, os tono tog ooty o o oy

2 _—1 1 -1

. 2 1 _—
—A4,6.c73c74c72 0y
-1 1 -1 _—

2 1 -1

-1 -1 _
=Ay6A35.030, 0] 030,
1

Us

I S S

=A46A35A,5. 030, 0305 0, “0203
141 1 2 ]

=Ay6A35A, 54,6030, 0305 0203 02

—1A-14-1 -1 -1
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—1 -1 -1 -1
- A4’6A3,5 A215 A2,6 A5,6 A3’4A2,3 A2’4 .
Using equation (8) once more, we obtain:

xyx lyT? = 7—1A4,6A3,5A5;A52A;gA3,4A2,3A2—jry
= A4,7A1,7A1,6A2_}A2_%A2_,iA1,2A4_,é- (40)

Note that this shows that xyx~'y~2 is non trivial in the free Abelian group P;/[P;, P/],
which implies that H is not isomorphic to /. We now look for an element N € P; /[P, P]
such that if v = Ny then the subgroup (x, v) is isomorphic to F, where v is of order 7,
7(v) = a and xvx~! = v?. This last equality gives rise to the following equivalences:

xox 1 =% = xNyx_1 = NyNy — xyx‘ly_2 = xN-1x"L N. yNy‘l. (41)

We seek solutions N € P;/[P;, P7| of equation (41) taking into account equation (40) and
the fact that Ny is of order 7. In order to do so, we use additive notation, and we write

N in terms of the basis {A; ;}, cicjer Of P;/[P;, P;] as follows:

N= > pijAij (42)

1<i<j<7

where p; ; € Zforall 1 <i < j < 7. By equation (8) and Proposition 27, we see that the
orbits under the action of conjugation by y are of the form:

Arp—> Ay —> Az —> A5 —> Ap7 —> Ay —> Azs — Aqp
A1z —> A1y Agy —> Ase—> Ags —> Apg —> Azg—> Ay (43)
A1g— Azy— A1 —> Asy— Age — Ays — Apz —> A1y,

and the orbits under the action of conjugation by x are of the form:

Arpr— A1z — Agz— A1p Ayg— Ase—> Ays — Augp
Ag7r— A1y — Az — Agy Ayy — Ag7— Asy— Auy (44)
Az r— Aos— Ara— Aze  Ais— Agy — Are — Ais
Azs — Apy—> Aj 6 — Asps.
The first (resp. second) line of (44) may be obtained by applying Proposition 27 (resp.
Proposition 28) and Proposition 30, and the last two lines follow from Proposition 29.
Arguing in a manner similar to that of the proof of Proposition 19, and using the fact
that y is of order 7, we obtain:

6 6
o= = St = S (8 it = % (St
k=0 k=0 1<i<j<7 1<i<j<7

from which it follows that the sum of the coefficients corresponding to the elements of
each of the orbits given in (43) is zero:

P12+ Pa7+ P36 + P15+ P27 + Pae + P35 =0
P13+ P17+ Pe7 + P56 + P25+ Poa+ p3a =0 (45)
P14+ P37+ Pie+ P57+ P26+ Pas+ p23 = 0.
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Using equations (43) and (44) to compute first xNx ! and yNy~! and then equations (40),
(41) and (42), we obtain the following systems of equations:

(A12: —pa3+piat+pss=1 Az —pa+tpiz+psa=0
Ag7: —ps7tpazr+pia=1  Ai7: —p7+pi7tpiz=1
Asze: —PratpsetpPar=0  Agr: —paz+pe7+p17=0
A1s: —p2etP15tP36=0 Aseg: —pae+pPse+per =0
Ap7: —p3z+p7+p1s=—1 Azs: —p3e+pas5+pse=0

S Ase: —PastPaetpr=-1 Ay —pi3s+pratprs=-—1 (46)
Aszs: —pre+tP3stpae=0  Azsr —p15+p3atpra=0
Arg: —pastpratps=0  Aze: —p3atpretpsy=-—1
As7: —p17+tp37+p1a=0  Ags: —pse+pas+pre=0
A1e: —pratpietpsz=1 Axz: —p13+p23+pss=0
( As7: —pe7+ P57+ P16 =0.

One may check that the systems equation (45) and (46) together admit a solution, taking
for example all of the coefficients to be zero, with the exception of:

p27 =ps57=—land p35 = p16 = 1.

For these values of p; j, wehave N = A35 + Ay 6 — Az 7 — As 7, and it follows from above
that the subgroup (x, v) of By/[P;, P;] is isomorphic to F, which completes the proof of
the theorem. ]

We now analyse the conjugacy classes of subgroups isomorphic to F in By/[ Py, P;].
We first show that Sy possesses a single such conjugacy class.

PROPOSITION 35. Any two subgroups of Sy isomorphic to F are conjugate.

Proof. Let G be a subgroup of S; isomorphic to F. It suffices to show that G is conjugate
to Fp. By Lemma 34, G is generated by two elements a’ and p’, where a’ is a 7-cycle,
the cycle type of B’ is (3,3,1), and p'af’~! = a%. Conjugating G if necessary, we may
suppose that &’ = a. Now f'af~! = a?in G and Bap~! = a2 in Fy, from which it
follows that B~!p’ belongs to the centraliser of a. But since a is a complete cycle in Sy,
its centraliser is equal to {&). So there exists k € {0,1,...,6} such that g’ = Ba*, and
hence G = («, ') = {(a, B) = Fy as required. W

REMARK 36. For the purposes of the proof of Proposition 37, we shall study the ele-
ments of the form exe !, where € belongs to the centraliser of 8 in S;. This centraliser
may be seen to be of order 18, and consists of the elements of the form 7/(123)/, where
T=1(1,425236),0<i<5and0<j<2 Let:

_ -1 _
{ocl —(1,3,2)a(1,3,2)"t = (1,4,3,5,6,7,2), and )

ay = (4,6,5)(4,6,5)71 = (1,3,5,2,6,4,7).

A straightforward computation shows that:

a ifj=0
(1,2,3Va(1,2,3) 7 =343 ifj=1
el ifj =2,
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and Tat ! = 452, TapT ! = o Vand tayt™! = af forall0 <i <5and 0 <j <2 It

then follows that for al0 <i<5and 0 <j <2 here ex1sts z € {a, 1, a2} such that
71(123)/a(123) It is a generator of (z).

PROPOSITION 37. Suppose that H is a subgroup of By/|P;, P7] isomorphic to F. Then H is
conjugate to a subgroup of the form {x,v), where x is given by equation (39) and o(v) = .

Proof. Let H be a subgroup of By/[P7, P7] isomorphic to F. Since ¢(H) is a subgroup of
S7 isomorphic to F by Lemma 9, it follows from Proposition 35 that there exists p € S7
such that Fy = po(H)p~!. So if p € By/[Py, P;] is such that 7(p) = p then H; = pHp !
satisfies 0(Hy) = Fo. Let X,y € Hj be such that o(X) = B and 0(y) = «, where «
and B are given by equation (38). Now B = o(x), and since x and X are of order 3
and have the same permutation, Theorem 5 implies that they are conjugate. So there
exists A1 € By/[P;, P7] such that A;¥A; ' = x. Hence 7(A1)7(X)7(A)~! = 7(x), and
since 7(X) = o(x) = B, we conclude that 7(A1) belongs to the centraliser of p in S;. By
Remark 36, this centraliser is equal to (7, (1,2, 3)> and the fact that o(y) = « implies
that there exists z € {&, a1, ap} such that 7(A;yA] 1) is a generator of (z). Let:

e ifz=uw
Ay = 0102_1 if z =09
0405_1 if z = ay.
Note that Ay commutes with x, and by equation (47), 7(A, 'A1JA; ' 1) is a generator of
(a). Taking v to be the element of A, @ AL '), for which #(v) = «, the subgroup
Ay A1pH (A, A1p) 7 is then seen to be equal to (x, v), which proves the proposition. [

THEOREM 38. The group By/|P;, P;| possesses a unique conjugacy class of subgroups iso-
morphic to F.

Proof. From the proof of Theorem 7, B7/[P;, P;] possesses a subgroup Hy = (x, vg) iso-
morphic to F, where vy = Npy, and Ny = A1,6A3,5A£ ;Ag; Let H be a subgroup of
By/[P;, P7] isomorphic to F. By Proposition 37, up to conjugacy, we may suppose that

= (x,v), where 7(v) = a = 0(y) = 0(vp). Thus v = Ny, where N € P;/[P;, P;|. Again
from the proof of Theorem 7, the coefficients p; ; of N given by equation (42) satisfy the
systems of equations (45) and (46), and one may check that the general solution of these
two systems is of rank 6, and is given by:

(p12=—Te+Ta+r3—12+1 p13=—te—12
Pa7 =Te — T3+ 12 P17 =76 — 15— T4 —13+12
P36 =13 —12 P67 =15 + 14
P15 =12 P56 = —te +13—T2—1
pa7=—r5—14—r3—1 P25 ="te+ 11

\ Pae=—Te+TI5+Tyg+T13—12—1 p214=—1’4—7’3+7’2—1 (48)
p3s =T —tyg—T3+712+T1 p3l4=1’4—|—1’3+1
P14 =To P26 =173
P37 = —15 — T4 —13+13 Pas = —Te —T2— 11
P16 =75 P23 =11

\ P57 = T4
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where r1,...,1¢ € Z are arbitrary. So choose the values of the r; so that v = Ny. We
claim that there exists © € P;/|P;, P;] such that:

Ox0 ! =x, and (49)
Ovy0~! = v. (50)

This being the case, we have H = (x,v) = ®(x,v9) @1 = ®@Hy®!, in particular H and

Hy are conjugate in By/[Py7, P;|, which proves the statement of the theorem. To prove

the claim, let ® = Z 0;;A; ;- We must determine the coefficients 0; ; of © that satisfy
1<i<j<7

equations (49) and (50). By equation (44), equation (49) holds if and only if there exist

S1,...,S7 € Z such that:

s1=01p=013=03 so=0r7=017;=037
s3=1036 =05 =014 S4="035=004=01¢6 51)
S5 =046 =056 =045 S6="047 =067 =057

sy =015 =034 = 0.

Equation (50) may be written in the form ©. Np. y@'y~! = N. Using equation (44), we
obtain the following system of equations:

(P12 =012 —035 =51 —54 p13 =013 — 023 =51 — 57
pa7 =047 — 012 =S¢ — 51 p17 =617 —013 =52 — 51
P36 =636 — 047 = 53— S¢ pe7 =667 — 017 = S6 — $2
p15 =015 —036 =57 — 3 pse = 056 — 067 = S5 — S
p27 =107 —015—1=s3—57—1 pr5s="025—056=53—55

{ Pap =046 — 027 =85 — 52 P24 =024 —b25 =54 —53 (52)
pas =035 —046+1=54—55+1 p3qg="034—024=57—354
p14a =014 —035 =53 —51 P26 = bthe — 057 = S7— 56
p3z =037 —014 =52 —53 Pas = 045 — 026 = 55 — 87
P16 ="016—037+1=54—52+1 po3=023—045=51—55
(P57 =057 —016—1=35¢—54—1.

It remains to show that by choosing the sy appropriately, we obtain a system of coeffi-
cients that satisfy the equations of system (52). Consider the system:

f51—54=—1’6—|-1’4—|—1’3—1’2+1

S¢ —S1 ="tg—T13+717

S3 —S¢ =13 —17

3 (53)
S7 —83 =12
S) — 87 = —I'5 —T4—13
LS5—Sz=—7’6-i-7’5-i-1’4-i-1’3—1’2—1’1.

This system clearly possesses solutions in the sy in terms of the r;, obtained for example
by taking s4 to be an arbitrary integer, and by rewriting the other s in terms of s4, and
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the ;. For such a solution, the first six equations of the first column of (52) are satisfied
using equation (48). Using just (48) and (53), we now verify the remaining equations
of (52). For example:

s4—s5+1 =—((s1—54) + (6 —51) + (53 —56) + (57 —83) + (82 — 87) + (55 — 52)) + 1
=—((—re+ra+r3—ro+1)+(re —r3+12)+ (r3 — 1) + ro+
(—r5—r4—13)+ (16 +15+r4+r3—12—17))+ 1
=rg— T4 — T3+ 72+ 11 = P35

In a similar manner, one may check that the right-hand side of each of the equations of
the system (52) is equal to the left-hand side, using first (53) to express the si in terms
of the r;, and then using (48) to obtain the corresponding p; ;. The straightforward
computations are left to the reader. So with this choice of s;, we obtain values of the 0; ;
using equation (51) for which equations (49) and (50) are satisfied. Conversely, given
arbitrary r1,...,7¢ € Z and sy,...,s satisfying equation (53), we see that if the p; ;
are given by equation (52) and the 0; ; are given by equation (51) then equations (49)
and (50) are satisfied, and this completes the proof of the theorem. O

REMARK 39. We saw in Theorem 7 that the Frobenius group F embeds in B;/[P;, P7]. It
is the only finite non-Abelian subgroup of S; of odd order . To see this, besides 3 x 7,
which is the order of F, the possible orders of non-Abelian subgroups of odd order of
S;are 32 x5,32x5,3 x7,3x5x7and 3% x5 x 7. Further, if H is a subgroup of S
of odd order then it is necessarily a subgroup of A,. Indeed, any element & € H may
be decomposed as a product of disjoint cycles each of which is of odd length, and so
it follows that 1 € A,,. From the table of maximal subgroups of Ay given in [CCNPW,
page 10], we see that S; has no subgroup of order 32 x 5, 32 x 7, 3 x 5 x 7 or 3? x
5 x 7, and that if Sy possesses a subgroup K of order 3% x 5 then K is a subgroup of
Ag. It follows from the corresponding table for A¢ that there is no such subgroup (see
[CCNPW, page 4]).
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