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Wireless Mesh Networks (WMNs) are emerging as a key solution to provide broadband and mobile wireless connectivity in a flexible and cost effective way. In suburban areas, a common deployment model relies on OFDMA communications between WMN router nodes, with one WMN node installed at each user premises. In this paper, we investigate a possible user cooperation path to implement strategic resource allocation in OFDMA WMNs, under the assumption that users want to control their interconnection. In this case, a novel strategic situation appears: how much a WMN node can demand, how much it can obtain and how this shall depend on the interference with its neighbors. Strategic interference management and resource allocation mechanisms are needed to avoid performance degradation during congestion cases among WMN nodes. In this paper, we model the problem as a bankruptcy game taking into account the interference among WMN nodes. We identify possible solutions from cooperative game theory, namely the Shapley value and the Nucleolus, and show through extensive simulations of realistic scenarios that they outperform two state-of-the-art OFDMA allocation schemes, namely Centralized-Dynamic Frequency Planning, C-DFP, and Frequency-ALOHA, F-ALOHA. In particular, the Nucleolus solution offers best performance overall in terms of throughput and fairness, at a lower time complexity.

I. INTRODUCTION

Wireless Mesh Networks (WMNs) are emerging as a key solution to provide broadband and mobile wireless connectivity in a flexible and cost effective way. A common deployment model is based on OFDMA communications (e.g., WiMax channels) between WMN nodes, with a user subscription for the installation of one WMN router node at user premises; at user premises, the local access can be guaranteed using classical WiFi and Ethernet networks. In this paper, we investigate a user cooperation path for strategic resource allocation in OFDMA WMNs, under the assumption that users want to control their interconnection. In this case, a novel strategic situation appears: how much a WMN node can demand, how much it can obtain and how this shall depend on the interference with its neighbors? These questions pose an interesting research challenge.

Interference can occur among neighboring WMN nodes, especially in those suburban or emergency environments with a dense deployment of WMN equipment, when the coverage areas of WMN nodes overlap. Is such situations, it is likely that the shared spectrum is not enough to meet all demands, so that demand congestion can persistently occur; hence coordination or cooperation mechanisms are needed between independent users' routers to manage reciprocal interferences and resource allocation and avoid performance degradation during congestion cases. We can refer to such networking cases as collaborative wireless mesh networks.

In collaborative WMNs, nodes' interference levels and demands should be taken into account when allocating resources to them. We propose to model such situations using cooperative game theory, so that resource allocation solutions are strategically justified. Under the rationality hypothesis, users are willing to agree in a binding agreement fixing the game-theoretic resource allocation rule, motivated by the achievable gain in throughput and resiliency. Indeed, our results show that such approaches can grant important improvements in throughput and fairness. More precisely, we model the resource allocation problem as a bankruptcy game taking into account the interference among WMN nodes. We identify possible solutions from cooperative game theory, namely the Shapley value and the Nucleolus, and show through extensive simulations of realistic scenarios that they outperform two state-of-the-art OFDMA allocation schemes, namely Centralized-Dynamic Frequency Planning, C-DFP, and Frequency-ALOHA, F-ALOHA. In particular, the Nucleolus solution offers best performance overall in terms of throughput and fairness, at a lower time complexity.

The paper is organized as follows. Section II presents an overview of related works. In Section III, we analytically introduce the context of our work and formulate the problem as a bankruptcy game. Section IV describes our approach, followed by a presentation of simulation results in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Cooperative resource allocation in wireless networks has been considered in recent research works. The general objective is the computation of efficient allocations, while accounting for wireless node interference. In the following, we discuss a selection of relevant approaches.

A simple solution to OFDMA resource allocation consists in allowing random access to the spectrum in a first-infirst-served fashion, as proposed in [START_REF] Chandrasekhar | Spectrum allocation in tiered cellular networks[END_REF], where a variation of ALOHA for the OFDMA time-frequency domain is presented. However, in congestion situations this is expected to offer low throughputs, as discussed in details later in the paper. On the other hand, authors in [START_REF] Ahmed | On the Fairness of Frequency Domain Resource Allocation in Wireless Mesh Networks-A Survey[END_REF]- [START_REF] Brah | On the Lambert-W Function for Constrained Resource Allocation in Cooperative Networks[END_REF] propose Centralized -Dynamic Frequency Planning (C-DFP) mechanisms, implementable when the operator has full control of the WMN equipment. In [START_REF] Ahmed | On the Fairness of Frequency Domain Resource Allocation in Wireless Mesh Networks-A Survey[END_REF], authors present a suboptimal fair resource allocation scheme in WMNs that maximizes the throughput and guarantees a Quality of Service (QoS) level. In [START_REF] Saha | Channel Assignment in Virtual Cut-Through Switching based Wireless Mesh Networks[END_REF], authors stress the potential of effective interference detection for channel assignment, in virtual cut-through switching-based networks. Using information on link and possible interference, they solve the problem as an edge-coloring problem, where only chosen routes are considered for channel assignment. As decomposition of a master problem, in [START_REF] Brah | On the Lambert-W Function for Constrained Resource Allocation in Cooperative Networks[END_REF] the authors propose a distributed subcarrier allocation scheme based on the Lagrange dual approach and the Lambert-W function, consisting of maximizing the sum rate while satisfying minimum rate demand. Generally, centralized approaches do not take into account independency requirements for network nodes, which may appear as counter-productive in the situation considered in our work.

In [START_REF] Cheng | QoS-driven MAC-layer resource allocation for wireless mesh networks with non-altruistic node cooperation and service differentiation[END_REF] authors show how node cooperation can improve system performance and user satisfaction in WMNs; they propose two non-altruistic cooperative resource allocation approaches: one based on a centralized approach and the other based on distributed control, while taking into account subcarrier allocation, power allocation, partner selection/allocation, service differentiation, and packet scheduling. Following a similar path, in [START_REF] Lee | Fair allocation of subcarrier and power in an OFDMA wireless mesh networks[END_REF] authors propose a fair subcarrier and power allocation scheme to maximize the Nash bargaining fairness: WMN nodes hierarchically allocate groups of subcarriers to the clients, so that each mesh client allocates transmit power among its subcarriers to each of its outgoing links.

Adopting user cooperation assumptions and requirements close to [START_REF] Cheng | QoS-driven MAC-layer resource allocation for wireless mesh networks with non-altruistic node cooperation and service differentiation[END_REF] and [START_REF] Lee | Fair allocation of subcarrier and power in an OFDMA wireless mesh networks[END_REF], in this paper, we model the OFDMA allocation problem in WMNs as a cooperative game. We allow WMN router nodes to negotiate resources in multiple WMN node groups, where groups are locally detected as a function of interferer WMN node neighbors. Hence we target a solution in which the resource allocation is periodically pre-computed based on changing demands and interference maps. In particular, we consider dense environment situations in which the overall demand is quite often higher than the available bandwidth on the shared media, which mathematically corresponds to a bankruptcy game situation [START_REF] Aumann | Game Theoretic Analysis of a Bankruptcy Problem from the Talmud[END_REF], representable in canonical form [START_REF] Saad | Coalitional Game Theory in Wireless and Communications Networks[END_REF]. As detailed in the following, we investigate two solution concepts: the well-known Shapley value [START_REF] Shapley | Contributions to the Theory of Games[END_REF] (already adopted in a variety of situations in networking such as inter-domain routing [START_REF] Mycek | Cooperative Multi-Provider Routing Optimization and Income Distribution[END_REF] and network security [START_REF] Alpcan | A game theoretic approach to decision and analysis in network intrusion detection[END_REF]); and the less-known Nucleolus [START_REF] Schmeidler | The Nucleolus of a Characteristic Function Game[END_REF] used, for instance, in strategic transmission computation [START_REF] Han | Coalition Games with Cooperative Transmission: A Cure for the Curse of Boundary Nodes in Selfish Packet-Forwarding Wireless Networks[END_REF] [START_REF] Saad | Coalitional Game Theory in Wireless and Communications Networks[END_REF]), which shows additional interesting properties in bankruptcy situations.

III. CONTEXT AND PROBLEM FORMULATION

We consider a WMN network meshed using OFDMA WiMAX. Resources are expressed in the time-frequency domain, and are organized in subchannels. More precisely, we consider a total of 60 subchannels, corresponding to WiMAX standard operating with OFDMA in the PUSC (Partial Usage of Sub-Channels) mode for a system bandwidth of 20 MHz. A certain number of clients is attached to each WMN router node; client demands represent the required bandwidth, then translated in a number of required subchannels per WMN node.

As already mentioned, in urban dense environment, we expect that the overall demand often exceeds the available resources. Therefore, our objective is to find, for such congestion situations, a strategic resource allocation that satisfies throughput expectations while controlling the inter-node interference. In the following, we first present the corresponding optimization problem, then we highlight possible alternative solutions, and finally describe the properties of bankruptcy games along with possible solutions.

A. Notations

Let R be the set of WMN router nodes in the network, d i the demand of R i ∈ F, and x i the number of allocated resources to R i . Also, let I i be the interference set of R i , which corresponds to the set of nodes composed of R i and the nodes causing interference to R i . For example, consider the situation depicted in Fig. 1, with seven router; the number near each node represents the number of required subchannels. The corresponding interference sets are reported in Table II.

B. Related centralized optimization problem

For the sake of clarity, we model here the resource allocation problem as a centralized mono decision-maker optimization problem, i.e., as the C-DFP approaches mentioned in Section II. The problem can be formulated as:

objective f (d i , x i ) subject to 0 ≤ x i ≤ d i , ∀R i ∈ F j|Rj ∈Ii x j ≤ E, ∀I i x i ∈ Z + , ∀R i ∈ F
where E is the number of subchannels in an OFDMA frame (also referred to in the following as 'estate'). The objective typically depends on the demand and the allocated resources; it can be, e.g., the minimization of the maximum gap between demand and allocation, min max i

( d i -x i d i ).
The constraints are integrity constraints, on the allocated tiles to individual nodes and to nodes belonging to same interference sets. Later, we compare our approaches to this C-DFP solution highlighting the interest in strategic approaches and stressing the tradeoffs between them.

C. Possible distributed approaches

For each interference set, we have therefore a situation in which a group of WMN nodes can either: (i) randomly access the spectrum hoping that collision will not occur (e.g., as in F-ALOHA [START_REF] Chandrasekhar | Spectrum allocation in tiered cellular networks[END_REF]); or (ii) self-organize to define an online joint scheduling; or (iii) divide the available spectrum proportionally, (iv) rationally adapt the allocation to each mesh router claim and interference situation.

Clearly, (i) excludes any form of coordination and would favor opportunistic wealth-aversive behaviors (e.g., setting a minimum waiting time upon collision in F-ALOHA) that other nodes can not control. Approaches like (ii) risk to generate enormous signaling for large interference sets (likely in dense environments). Under (iii), inefficiency can arise whether many demands are less than the proportional share, and a weighted proportional share would favor cheating demands (higher claims than what is really needed).

The path forward is therefore towards cooperative approaches that dissuade malicious behaviors in setting demands, under an adequate binding agreement fixing common rules on shared information and allocation scheme. Before detailing our algorithmic approach, let us introduce the bankruptcy game that can model interactions among WMN nodes belonging to the same interference set. 

D. Bankruptcy game modeling

With a dense deployment of WMN nodes, one should expect situations in which the overall resource claim (i.e., sum of the demands) surpasses the number of available subchannels (E) in the shared spectrum. Assuming that WMN nodes, belonging to the same interference set, share information about respective demands, the interaction can be modeled as a cooperative coalitional game.

The choice of the game characteristic function, representing the profit attributed to each coalition of players in a canonical coalitional game, is an important tiebreak. We stay under the assumption that a coalition S of nodes, within the same given interference set I i , group apart so as to decide among them how to share the spectrum. In the most pragmatic case, they will be able to share what the other nodes have left after getting what they claimed. That is, E -i∈N \S d i , where N ≡ I i .

In order to avoid secessions, the utility function of the game should be superadditive, that is, the best coalition should be the grand coalition grouping all nodes in the same interference set:

v(S 1 ∪ S 2 ) ≥ v(S 1 ) + v(S 2 ), ∀S 1 , S 2 ⊂ N (1) 
where v(S) is the payoff of all nodes in S. Such a characteristic function corresponds, in fact, to what is known as 'bankruptcy game' precisely defined hereafter.

Definition III.1. A bankruptcy situation is defined by a pair (E, d) where E ≥ 0 is an estate that has to be divided among the members of N (the claimants) and d ∈ R

|N | + is the claim vector such that: E < i∈N d i (2) 
Definition III.2. A bankruptcy game [START_REF] Aumann | Game Theoretic Analysis of a Bankruptcy Problem from the Talmud[END_REF] is defined as G(N , v) where N represents the claimants of the bankruptcy situation and v is the characteristic function that associates to each coalition its worth defined as the part of the estate not claimed by its complement:

v(S) = max(0, E - i∈N \S d i ) , ∀S ⊆ N \{∅} (3) 
Equation ( 4) has been proven to be superadditive [START_REF] Owen | Game Theory[END_REF]. Moreover, it satisfies the supermodularity property [10] [15], stronger than the superadditivity, which means that the marginal utility of increasing a player's strategy rises with the increase in other player strategies:

v(S 1 ∪ S 2 ) + v(S 1 ∩ S 2 ) ≥ v(S 1 ) + v(S 2 ), ∀S 1 , S 2 ⊂ N . ( 4 
)
Supermodular games are also called convex games. 

WMN node

Interferers

R 1 {R 2 , R 3 } R 2 {R 1 , R 4 } R 3 {R 1 } R 4 {R 2 , R 5 } R 5 {R 4 , R 6 } R 6 {R 5 , R 7 } R 7 {R 6 }

TABLE II INTERFERENCE SETS

Steps WMN node sets

1 {R 1 , R 2 , R 3 } 2 {R 2 , R 4 , R 5 } 3 {R 1 , R 2 , R 4 } 4 {R 5 , R 6 , R 7 } 5 {R 4 , R 5 , R 6 } 6 {R 1 , R 3 } 7 {R 6 , R 7 }

E. Possible imputation schemes

Solutions to cooperative games are essentially qualified with respect to the satisfaction of rationality constraints, desirable properties and existence conditions. Namely, the Core of a game is the set of imputations that satisfies individual and collective rationality (one or a coalition gets at least what it would get without cooperating), and efficiency (all the estate is allocated). As already mentioned, a commonly adopted solution for cooperative games in networking is the Shapley value, because it shows desirable properties in terms of null player, symmetry, individual fairness, and additivity [START_REF] Shapley | Contributions to the Theory of Games[END_REF]. It is defined as:

Φ i (v) = S⊂N \{i} |S|!(N -|S| -1)! N ! [v(S ∪ {i} -v(S)] (5) 
i.e., computed by averaging the marginal contributions of each mesh router in the network in each strategic situation i.e., (players' permutation). In convex games as the bankruptcy games, the Shapley is the Core center. Nevertheless, the Shapley value is not consistent [START_REF] Aumann | Game Theoretic Analysis of a Bankruptcy Problem from the Talmud[END_REF], in the following sense.

Definition III.3. An allocation x = (x 1 , x 2 , ...., x N ) is consistent if ∀i = j the division of x i + x j , prescribed for claims d i and d j , is (x i ; x j ).

This means that no player or group of players can gain more by unilaterally deviating from a consistent solution since it will always obtain the same profit. For cooperative WMNs, this discourages clustering-like solutions inside an interference set. Another appealing solution concept, the Nucleolus, is not only consistent, but also the unique consistent solution in bankruptcy games, and is in the Core. However, it does not always satisfy null player, symmetry and additivity property (though small variations can fix these too). The Nucleolus is the imputation that minimizes the worst inequity. It is computed by minimizing the largest excess e(x, S), expressed as: e(x, S) = v(S) -

j∈S x j , ∀S ⊂ N (6) 
The excess e(x, S) measures the amount by which the coalition S falls short of its potential v(S) in the allocation x; the Nucleolus corresponds to the lexicographic minimum imputation of all possible excess vectors.

IV. AN ALGORITHMIC GAME APPROACH The game-theoretic approach we propose is composed of two main phases: an Interference Set Detection phase and a Bankruptcy Game Iteration phase. Formally, it represents a binding agreement between cooperating WMN nodes. 
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A. Interference Set Detection

Upon each significant change in demands or in network topology, each node determines the set of interferer nodes included inside its coverage area. WMN nodes are able to share their interference set with other nodes in the network.

Next, the list of interference sets are sorted, firstly with respect to their cardinality, and secondly with respect to the overall demands, both in a decreasing fashion; i.e., first the largest sets with highest overall demands.

B. Bankruptcy Game Iteration

In the second phase, resources are eventually allocated, proceeding with solving a bankruptcy game for each interference set, following the order in the sorted list from the first phase. The rational behind such an agreement is that we first solve the most critical bankruptcy situations. Strategically, in this way we do not penalize nodes that interfere less compared to nodes that interfere more, as well as nodes that claim a little compared to nodes that claim a lot.

Note that, since a node can belong to many interference sets, if it has already participated to a game in a previous game iteration, it is excluded from the next game iteration in which it appears. Each game iteration therefore includes only the nodes for which an allocation has not been computed yet. This corresponds in iterating a game differing in that:

• N includes only the unallocated nodes in the set;

• the estate E is decreased by the amount already allocated to the set's nodes. Note that, thanks to the sorting performed in the first phase, unallocated nodes have the guarantee that available resources remain.

C. An illustrative example

We consider a WMN composed of seven nodes as shown in Fig. 1, where the interference relationships are reported in Table I. To each node we associate a value representing the demand of attached clients (expressed in number of subchannels). The interference set list is presented in Table II; the first step includes the players of a bankruptcy game G(N , v) where N = {R 1 , R 2 , R 3 }, and the coalitional payoffs are given in Table III; v(N ) = E = 60 since no node has participated to any previous game.

Table IV reports the Shapley values (rounded) as well as the detail on each node's marginal contributions (columns).

For the Nucleolus, one starts at an arbitrary point such that x 1 + x 2 + x 3 = 60, e.g., (30,[START_REF] Shapley | Contributions to the Theory of Games[END_REF]20), as in the step-1 part of Table V. Then, one minimizes the largest excess, We move now to the second step, in this case the total estate to distribute among WMN nodes is not 60 subchannels any longer since R 2 has already participated to a game and obtained its resources; thus the new game is formed of two players, R 4 and R 5 , and the total payoff v(N ) is then equal to E -x 2 = 60 -16 = 44 subchannels (x 2 = 16 in the obtained Nucleolus solution), as reported in Table VI. The Shapley value computation for this second game is illustrated in Table VII. Moreover, for the Nucleolus, we obtain the step-3 part of Table V. Then, at the third step, R 1 , R 2 and R 4 have all taken their required resources, so there is no formed game in this step. At the fourth step, the total estate to distribute is equal to E -x 5 = 60 -37 = 23 subchannels, as reported in Table VIII. The Shapley value computation for this game is illustrated in Table IX. Moreover, for the Nucleolus, we obtain the step-4 part of Table V.

R 1 -x 1 -30 -25 -26 R 2 -x 2 -10 -16 -16 R 3 -x 3 -20 -19 -18 R 1 ∪ R 2 24-x 1 -x 2 -16 -20 -18 R 1 ∪ R 3 28-x 1 -x 3 -22 -16 -16 R 2 ∪ R 3 15-x 2 -
The algorithm stops at this point since all nodes have received their resources. As it can be noticed, the Nucleolus smoothes the maximum and the minimum allocation, preventing from extremely low and extremely high allocations for nodes that interfere a lot and interfere a little, respectively.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed game-theoretic approaches (i.e., Shapley value and Nucleolus) on large instances. C-DFP and F-ALOHA schemes, presented in Section II, are used as benchmarks: the first represents Payoff

∅ 0 R 4 0 R 5 30 R 4 ∪ R 5 44 TABLE VII SHAPLEY VALUE COMPUTATION Permutations R 5 R 6 R 4 , R 5 0 44 R 5 , R 4 14 30 Average 7 37 TABLE VIII COALITIONAL PAYOFFS Coalition Payoff ∅ 0 R 6 4 R 7 1 R 6 ∪ R 7 23 TABLE IX SHAPLEY VALUE COMPUTATION Permutations R 6 R 7 R 6 , R 7 4 19 R 6 , R 7 22 1 Average 13 10
the centralized solution, and the second the non-collaborative solution.

We simulated 1 realistic scenarios with three different network sizes (50 and 100 nodes) representing respectively low, medium and large densities. WMN nodes are randomly distributed in a 5km×5km area. Each node determines the set of its interferer included inside its coverage area. WMN clients are uniformly distributed within the WMN node area (SAHAR LE RAYON???), and each one of them uniformly generates its traffic demand that can be directly translated to a certain number of subchannels. We consider a typical OFDMA frame (downlink WiMAX frame) consisting of E = 60 subchannels.

Before delving into the exploration of the results, Fig. 2 gives an idea about the topologies obtained for the three datasets, with the node interference degree distribution (corresponding to the number of neighboring nodes causing interference). As it can be noticed, the number of isolated nodes that do not suffer from interference increases with the network size.

Let us now focus on the comparison among the different strategies based on the offered throughput, the allocation fairness and the computation time. The results are obtained over many simulation instances for each dataset, with a margin error less than 3%; we do not plot corresponding confidence intervals for the sake of presentation.

A. Throughput analysis Fig. 3 reports the mean normalized throughput (i.e., mean ratio of the number of allocated subchannels to the total demand; in the following referred to as throughput) for the three considered datasets. We can here appreciate how much the strategic constraints in game theory approach, and in particular the individual and collective rationality, contribute in avoiding low throughputs. In particular, we can assess that:

• At low throughputs, F-ALOHA and C-DFP offer very low performance, especially in dense environments; e.g., in the 100-node case with high interference, in F-ALOHA around 6% of the MRs obtain null throughput, and about 23% in C-DFP obtain a throughput less than 30%, while 1 Datasets and MATLAB codes are available at http://wwwphare.lip6.fr/wimesh/ResAll-GT.zip these numbers (percentage of nodes) are roughly halved with game-theoretic approaches. • The median throughput is always higher for the Nucleolus; e.g., in the 100-FAP case with high interference, 47% for the Nucleolus,39% for the Shapley value, 37% for F-ALOHA and 29% for C-DFP, and the gap between the Nucleolus and the other methods decreases at lower interference and node density levels. • At high throughputs, F-ALOHA shows a small benefit over the Nucleolus, but in all cases the median throughput of the Nucleolus is still the highest among all approaches. • Among the game-theoretic approaches, the Nucleolus persistently outperforms the Shapley value, with relevant differences at medium-low throughputs. All in all, the Nucleolus seems the most appropriate approach with respect to the offered throughput, especially in high density environments. Moreover, the C-DFP approach appears as the most inadequate one, and the F-ALOHA offers low throughputs to a significant portion of the WMN nodes.

B. Fairness analysis

We evaluate the fairness of the solutions using two aspects.

(i) with respect to the Jain's fairness index [START_REF] Jain | A Quantitative measure of fairness and discrimination for resource allocation in Shared Computer Systems[END_REF], defined as:

F I = N i=1 x i 2 / N N i=1 x 2 i (7)
reported in Table X. It is easy to notice that game-theoretic approaches give the highest fairness, thanks to the strategic constraints that avoid penalizing nodes presenting low interference degree and those with lower demands. Again, game- theoretic outperform the others, with important differences with the 100-node dataset.

(ii) Fig. 4 further investigates how the node interference degree is taken into account, illustrating the mean normalized throughput as a function of the interference degree (recall that the interference degree of each node corresponds to the cardinality of its interference set) for the 10-node case. We can assess that:

• The Nucleolus always outperforms the other methods.

• The Shapley value behaves similarly to F-ALOHA and C-DFP, especially for small networks, while in large networks it shows a roughly 5% better throughput than F-ALOHA and C-DFP. • Globally, C-DFP appears as the less performant solution. It seems appropriate to conclude that the interference degree is taken into account in a significantly different way with the Nucleolus, showing an interesting fairness performance certainly, especially desirable for dense environments.

C. Computation time analysis

Last but not least, it is important to assess if the overall good performance of game-theoretic approaches come at the expense of a higher time complexity. Fig. 5 reports boxplots (i.e., quartile boxes plus maximum, minimum and outliers) of the computation time for the three approaches -for the 100 node case. It is easy to notice that C-DFP has quite high computation times, on the order of dozens of seconds. A stronger dependence on the interference set size (higher for high interference levels) appears for the Shapley value, which is not surprising since the number of marginal contributions equals the factorial of the interference set size. In turn, the Nucleolus does not show any important dependence on the interference level, with a median computation time of roughly 3s for dense high-interference environments. 

VI. CONCLUSION

Wireless mesh networks (WMNs) based on Orthogonal Frequency Division Multiple Access (OFDMA) is a promising solution for high-speed data transmissions and wide-area coverage. In the case WMN customers desire a control of the WMN router coming with their subscription, strategic resource allocation mechanisms appear as desirable solutions. In this paper, we have investigated novel approaches based on the theory of cooperative games motivated by the fact that such approaches allow accounting for strategic interactions among independent WMN nodes, and by the intuition that they can offer better performance in dense environments.

In particular, this paper presented a game-theoretic approach for strategic resource allocation in OFDMA-based cooperative WMNs. Upon distributed detection of interference maps, our approach iterates bankruptcy games from the largest interference set with highest demand to the lower sets. We motivated the adoption of solutions from coalitional game theory, the Nucleolus and the Shapley value, highlighting how their properties can help meeting performance goals. Through extensive simulations using realistic datasets, we compared our gametheoretic approaches to state-of-the-art proposals. With respect to throughput and fairness, our approaches outperform the others. In particular, the Nucleolus solution is strictly superior to all the others, achieving higher throughputs. Moreover, computationally, the Nucleolus is far more competitive than the other approaches. The Nucleolus approach represents therefore a promising approach for resource allocation in future wireless mesh network deployments.
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TABLE I INTERFERENCE RELATIONSHIPS

 IRELATIONSHIPS 

TABLE X

 X 

		MEAN FAIRNESS INDEXES	
	Nodes	Nucleolus	Shapley Value	C-DFP	F-ALOHA
	50	0.863358	0.85666	0.83489	0.839741
	100	0.756731	0.729936	0.700218	0.69025