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Abstract. In the dynamic analysis of structural engineering systems, it is
common practice to introduce damping models to reproduce experimentally

observed features. These models, for instance Rayleigh damping, account for

the damping sources in the system altogether and often lack physical basis. We
report on an alternative path for reproducing damping coming from material

nonlinear response through the consideration of the heterogeneous character

of material mechanical properties. The parameterization of that heterogeneity
is performed through a stochastic model. It is shown that such a variability

creates the patterns in the concrete cyclic response that are classically regarded
as source of damping.

Keywords: damping ; concrete ; nonlinear constitutive relation ; material hetero-
geneity ; stochastic field

1. Introduction

In the last few decades, a great deal of attention was paid to the comprehension
and modeling of damping mechanisms in inelastic time-history analyses (ITHA) of
concrete and reinforced concrete (RC) structures [2, section 2.4]. Figure 1, adapted
from [33], shows the uniaxial cyclic compressive strain-stress (E-Σ) response mea-
sured on a concrete test specimen. Throughout this paper, the term “uniaxial”
implies that there is only one loading direction and that the stress, respectively
strain, of interest is the normal component of the stress, respectively strain, vector
in the loading direction. In other words, when it comes to constitutive relation be-
tween stress and strain, the work presented thereafter is developed in a 1D setting.
In figure 1, the so-called backbone curve, which is the envelope of the response
(dashed line), shows the following phases: (i) an inelastic phase with positive slope
(E ≤ 2.7 × 10−3 for that particular example, where E is the measured strain),
and (ii) an inelastic phase with negative slope before the specimen collapses. For
concrete, no elastic phase can really be identified, and hysteresis loops appear in
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unloading-reloading cycles even for limited strain amplitudes. Other salient fea-
tures include: (i) a residual deformation after unloading, and (ii) a progressive
degradation of the stiffness (slope of the unloading-loading segments). The hys-
teresis loops are one of the sources of the damping that is observed in free vibration
recordings of concrete beams. Other sources include friction at joints [27] or at the
concrete-steel interface in reinforced concrete [14]. These other sources of damping
will not be discussed in this paper, where we will concentrate on material damping.
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Figure 1. Strain-stress concrete experimental response in pseudo-
static cyclic uniaxial compressive loading (adapted from [33]). Σ
and E are the homogeneous compression stress and strain in the
concrete test specimen that are measured in the loading direction.
Σ and E are spatial mean quantities in the sense that Σ is com-
puted as the load in the hydraulic cylinder of the testing machine
divided by the area of the specimen cross section, and E is com-
puted as the displacement of the cylinder divided by the length of
the concrete specimen.

Most classical uniaxial constitutive models of concrete for numerical simulation
do not dissipate any energy in unloading-reloading cycles (see e.g. figure 2 [top left]).
It is then common practice to add a viscous damping model (Rayleigh damping)
to the inelastic structural model, to reproduce phenomena that are experimentally
observed at the structural level (decreasing amplitude of displacements in free vi-
bration). However, Rayleigh damping is well known to lack physical justification,
even when care is taken to avoid generating spurious damping forces [7, 18].

Another class of approach aims at reproducing more precisely the features of
Figure 1 through elaborate inelastic constitutive relations. Figure 2 shows typi-
cal examples of uniaxial relations found in the literature. The relation described
in [9] [top left] defines different response phases for different strain intensities, with
an additional coefficient to control the loss of stiffness. The constitutive relation
described in [23] [bottom right] comes from a formulation developed in the frame-
work of thermodynamics with internal variables. It reproduces damping features
reasonably well, in particular for higher amplitudes, but requires the identifica-
tion of a rather large number of parameters. These first two types of relations
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Most classical uniaxial constitutive models of concrete for numerical simulation
do not dissipate any energy in unloading-reloading cycles (see e.g. figure 2 [top left]).
It is then common practice to add a viscous damping model (Rayleigh damping)
to the inelastic structural model, to reproduce phenomena that are experimentally
observed at the structural level (decreasing amplitude of displacements in free vi-
bration). However, Rayleigh damping is well known to lack physical justification,
even when care is taken to avoid generating spurious damping forces [7, 18].

Another class of approach aims at reproducing more precisely the features of
Figure 1 through elaborate inelastic constitutive relations. Figure 2 shows typi-
cal examples of uniaxial relations found in the literature. The relation described
in [9] [top left] defines different response phases for different strain intensities, with
an additional coefficient to control the loss of stiffness. The constitutive relation
described in [23] [bottom right] comes from a formulation developed in the frame-
work of thermodynamics with internal variables. It reproduces damping features
reasonably well, in particular for higher amplitudes, but requires the identifica-
tion of a rather large number of parameters. These first two types of relations
are somehow defined by parts for different loading regimes. They hence require a
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wider set of parameters and seem to contradict the seemingly smooth transition be-
tween regimes observed experimentally. The constitutive relation described in [48]
[top right] is heuristically defined from a database of experiments. It reproduces
unloading-reloading hysteresis mechanisms, but lacks a theoretical basis. Finally,
the relation described in [32] [bottom left] is based on a physical model of damage
and friction. It manages to dissipate energy in unloading-reloading cycles, but the
lack of obvious physical meaning for some parameters can render their identification
difficult.
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Figure 2. Typical strain-stress relations in pseudo-static cyclic
compressive loading for different models: [9] [top left], [48] [top
right], [32] [bottom left], and [23] [bottom right].

The main purpose of this paper is to present a multi-scale stochastic nonlinear
concrete model that can be accommodated in an efficient structural frame element
(fiber element), and that participates to the overall structural damping in dynamic
loading. In particular, this implies the developed concrete model be capable of rep-
resenting hysteresis loops in unloading-reloading cycles at macro-scale (the scale
where such behavior as in Figure 1 can be observed). In this work, this is achieved
by the introduction, at an underlying meso-scale, of spatial variability in the pa-
rameters. At meso-scale, an elasto-plastic response with linear kinematic hardening
and heterogeneous yield stress is considered. This choice is mainly driven by its
simplicity and its relevance is illustrated in the numerical applications.

The main issue with modeling the heterogeneity of the yield stress lies in the pa-
rameterization. On the one hand, local information on the heterogeneity of concrete
is available at a scale that we wish to avoid (because of the associated computa-
tional costs). On the other hand, identification becomes extremely difficult when
very fine models are considered. We therefore choose to model the heterogeneity of
the yield stress through a stochastic model. Hence, only three parameters control
that heterogeneity: a mean value, a variance, and a correlation length. The choice of
parameterizing the fluctuating field of constitutive parameters by statistical quan-
tities means that there might be fluctuations in the quantities of interest measured
for different realizations of the random model. However, as will become apparent
in the examples, some sort of homogenization comes in and these fluctuations can
rightfully be ignored.
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is available at a scale that we wish to avoid (because of the associated computa-
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4

parameterizing the fluctuating field of constitutive parameters by statistical quan-
tities means that there might be fluctuations in the quantities of interest measured
for different realizations of the random model. However, as will become apparent
in the examples, some sort of homogenization comes in and these fluctuations can
rightfully be ignored.

Several authors in the literature have considered random models of fluctuating
nonlinear materials [16, 20, 1, 35], in particular for concrete [21, 34, 26, 49, 45,
50, 30] or in the context of dynamic analysis [36, 28, 44]. We consider here a
modeling framework that is a combination of ingredients found in several previous
papers [29, 5, 21, 30], with a fluctuating yield stress modeled as a random field with
non-zero correlation length. However, the objective in these papers was to assess
the influence of parameter uncertainty on some quantity of interest. An objective
with the current paper is to observe the effect of randomness at a meso-scale on the
nonlinear stress-strain relation at macro-scale. The work herein presented should
therefore be seen as an innovative proposal for parameterization of a nonlinear
stress-strain relation.

In Section 2, we recall the theoretical formulation of the inelastic beam model
that will be used throughout this paper. The stochastic multi-scale constitutive re-
lation developed to represent concrete cyclic behavior in reinforced concrete frame
elements is introduced in section 3. Concrete behavior at macro-scale is retrieved
from the description of a meso-scale where elasto-plastic response with linear kine-
matic hardening and spatially variable yield stress is assumed. In particular, we
emphasize in sections 3.3 and 3.4 the heterogeneity of the yield stress and the pa-
rameterization of that heterogeneity through a random model. In section 4, we
report on the limiting case of vanishing correlation length and monotonic loading,
for which several results can be derived analytically. Section 5 presents numerical
applications of the model in the context of dynamic structural analysis of reinforced
concrete frame elements.

2. 2D continuum Euler-Bernoulli inelastic beam

Classical displacement-based formulation has been retained here although other
mixed formulations can in certain cases show better performances [46]. For the
sake of conciseness, we present the beam element in the 2D case, extension to 3D
is straightforward.

2.1. Euler-Bernoulli kinematics. We define the continuum beam B = {x ∈
R3|x1 ∈ [0, L]; x2 ∈ [−h/2, h/2]; x3 ∈ [−w/2, w/2]}. Such a beam has length L
and uniform rectangular cross-section S of size w×h. We consider an orthonormal
basis (i1, i2, i3) of R3, so that any material point in space x =

∑3
i=1 xiii. In the 2D

setting adopted here, Euler-Bernoulli kinematics can be written at any point x ∈ B
and at any time t ∈ [0, T ] as

(1) u(x, t) =

(
u1(x, t) = uS1 (x1, t)− x2θS3 (x1, t)
u2(x, t) = uS2 (x1, t)

)

with

θS3 (x1, t) =
∂uS2 (x1, t)

∂x1
.

u1 and u2 are the longitudinal and transversal components of the displacement
vector u at any point in the beam. uS1 and uS2 are rigid body translations and θS3
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is rigid body rotation of section S at position x1 along the beam axis. Thus, uS1 ,
uS2 and θS3 only depend on x1.

For small transformations, strain tensor reads E = 1
2

(
D(u) + DT (u)

)
, where

D(·) =
∑3
i=1

∂·
∂xi
⊗ ii, with ⊗ the tensor product and ·T the transpose operation.

Then, defining the axial strain εS = ∂uS1 /∂x1 and the curvature χS = ∂2uS2 /∂x
2
1,

it comes:

(2) E(x, t) = E(x, t) i1 ⊗ i1

with

(3) E(x, t) = εS(x1, t)− x2χS(x1, t) .

2.2. Variational formulation. Suppose B is loaded with forces per unit length
of beam b and concentrated forces applied at beam ends. A variational form of the
problem of finding u such that beam equilibrium is satisfied is: find u such that

(4) 0 =

∫

L

{∫

S

(
δεS − x2δχS

)
Σ dS

}
dx1 −

∫

L

δu · b dx1 − δΠbc ,

where δu is any kinematically admissible displacement field Σ = Σ · i1 ⊗ i1 with Σ
the stress tensor, · a matrix product here, and δΠbc the potential for the forces at
beam ends.

Introducing the normal and bending forces in the beam cross-sections as

(5) N =

∫

S

Σ dS and M = −
∫

S

x2Σ dS ,

equation (4) can then be rewritten as

(6) 0 =

∫

L

δeS · q dx1 −
∫

L

δu · b dx1 − δΠbc ,

where q = (N,M)
T

and eS =
(
εS , χS

)T
.

2.3. Inelastic constitutive behavior. Cross-section inelastic constitutive response
q(eS ; t) is thereafter represented using uniaxial material constitutive response Σ(E; x, t)
integrated over the cross-section, rather than using a direct relation between section
displacements and forces. This approach leads to what is often referred to as fiber
beam element.

With ∆ denoting an increment of some quantity, we introduce the tangent mod-
ulus D as ∆Σ = D ×∆E, that is, from equation (3),

(7) ∆Σ(x, t) = D(x, t)
(
∆εS(x1, t)− x2 ∆χS(x1, t)

)
.

Introducing relation (7) in (5), beam section inelastic constitutive equation reads
∆q = KS∆eS with tangent stiffness matrix

(8) KS(x1, t) =

[∫

S

(
1
−x2

)
D(x, t)

(
1 −x2

)
dS
]
.
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2.4. Numerical implementation (structural level). The finite element method
is used to approximate the displacement fields. Classically, we have for each ele-
ment u(x, t) = N(x)d(t) and eS(x, t) = B(x)d(t), where the vector d gathers the
displacements uS1 , u

S
2 , θ
S
3 at the element nodes, and matrices N and B gather the

classical shape functions for Euler-Bernoulli kinematics. Choosing, in equation (6),
δu = Nδd and δeS = Bδd, and then linearizing the resulting relation, we have

(9) K(k)
n ∆d(k)

n = r(k)n ,

where K =
∫
L

BTKSBdx1 and r = f −
∫
L

BTqdx1. f is the vector of nodal
forces calculated from b and from any concentrated force applied at a beam ends.
Subscript n refers to any time step in the loading history; superscript k refers to
any Newton-Raphson iteration.

For any integrable function g, line integrals are numerically approximated as∫
L
g(x)dx ≈ ∑Nl

l=1 g(xl)Wl where subscript l refers to a quadrature point and
Wl denotes quadrature weight and length. Section integrals are estimated as∫
Sl g(xl)dSl ≈

∑NF

F=1A
F g(xFl ), where AF is the section area of the so-called fiber

F and xFl is the position of the fiber centroid in the control section Sl at quadrature
point l.

3. Multi-scale uniaxial cyclic model for concrete

In this section, we present the core objective of the paper, which is a nonlin-
ear uniaxial constitutive model capable of representing salient features of concrete
compressive response in cyclic loading. It is based on a simple local (meso-scale)
elasto-plastic constitutive relation, for which the yield stress is modeled as a random
field. The spatial fluctuations of the yield stress induce at macro-scale constitutive
relation Σ(E) which resembles that encountered experimentally. Again, as already
stated in the introduction, the idea of considering an elasto-plastic constitutive re-
lation with fluctuating yield stress is not novel per se [29, 5, 21, 30]. It has been
proposed to assess effects of uncertain parameters on model outputs of interest for
engineering practice while our aim here is to stress on the fact that this can be seen
as a way of parameterizing material nonlinear constitutive relations. In particu-
lar, it will be shown that, in some circumstances, even if randomness is present at
meso-scale, our model can predict non-random outputs.

3.1. Meso- and macro-scale modeling of concrete. Concrete is a heteroge-
neous material (see figure 3). Two scales are classically considered for its modeling:
(i) a micro-scale at which each phase (aggregate, concrete, cement paste) is clearly
identified and modeled with its own constitutive relation; and (ii) a macro-scale at
which concrete is considered as homogeneous. The macro-scale is the relevant scale
for structural engineering applications but the behavior at that scale is strongly
influenced by phenomena occurring at the micro-scale. In particular, the geome-
try of the phases is important as it controls in a large part local concentrations
of stresses. As pointed out in the introduction to this paper, formulating and im-
plementing concrete constitutive laws at the macro-scale can then turn out to be
challenging, even in the uniaxial case, and especially when it comes to accounting
for material energy dissipation sources. We follow here another path, considering
a meso-scale at which the parameters of the constitutive relation are assumed to
vary continuously. This scale is intermediary between the macro-scale, at which
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the parameters are homogeneous, and the micro-scale, at which the parameters are
discontinuous. 7

Figure 3. Polished concrete section where the two phases human
eyes can see are represented: aggregates (crushed gravel and sand)
and cement paste in-between.

and stress at macro-scale Σ is computed as the spatial mean stress over R:

(11) Σ(E; θ) =
1

|R|

∫

R
σ(ϵ; θ)dR ,

where |R| denotes the area of the fiber section R, σ and ϵ the stress and strain at
meso-scale in the uniaxial case. That is, analogously to E and Σ, ϵ = ϵ · i1 ⊗ i1 and
σ = σ · i1 ⊗ i1, where ϵ and σ are the strain and stress tensors at meso-scale such
that the constitutive model is considered in a 1D setting. Besides, we enhance the
fact that Σ is computed as the spatial mean of σ(x) and not as the sample mean of
σ(θ). Local constitutive relation presented in section 3.2 below governs the relation
between heterogeneous stress field σ(x, t) and strain field ϵ(x, t).

Then, we introduce the tangent modulus at meso-scale D as ∆σ = D × ∆ϵ.
According to equations (7), (10) and (11), we have the tangent modulus at macro-
scale

(12) D(x, t; θ) =
1

|R|

∫

R
D(x, t; θ)dR .

We will see in the examples below that, for a wide range of relative correlation
length and size of the section R, Σ and D do not depend on θ. In that case,
even though the meso-scale model of concrete is stochastic, the resulting macro-
scale model is deterministic, and independent of the actual realization of the local
parameters that is being considered.

Finally, we recall that concrete specimens exhibit quasi-brittle behavior in ten-
sion with tensile strength generally 10 times smaller than compressive strength.
Besides, we point out here that it is at macro-scale that these notions of compres-
sion (Σ ≤ 0) and tension (Σ > 0) are relevant for the modeling presented in this
work.

3.2. Model of the uniaxial cyclic behavior at meso-scale. We now concen-
trate on the local uniaxial cyclic inelastic constitutive relation that will be consid-
ered in this paper at meso-scale. We define it to be a simple elasto-plastic model
with linear kinematic hardening, as illustrated in Figure 4. We provide here, in
the setting of computational inelasticity [41, 22], the assumptions and resulting
equations corresponding to this relation:

Figure 3. Polished concrete section where the two phases human
eyes can see are represented: aggregates (crushed gravel and sand)
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For practical implementation, the heterogeneity will be conveyed in our model
by the fluctuations of a random field p(x, θ), where θ represents randomness. Con-
sistently with the fiber beam formulation presented in the previous section, we
consider a mesh of fibers F spanning beam cross-sections S. These fibers have a
centroid located at position xFl and a cross-section denoted by R. In the spirit of
strain-controlled tests on concrete specimens (see figure 1 along with its caption),
strain E is assumed homogeneous over R:

(10) ε(x, t) = E(xFl , t) ∀x ∈ R ,

and stress at macro-scale Σ is computed as the spatial mean stress over R:

(11) Σ(E; θ) =
1

|R|

∫

R
σ(ε; θ)dR ,

where |R| denotes the area of the fiber section R, σ and ε the stress and strain at
meso-scale in the uniaxial case. That is, analogously to E and Σ, ε = ε · i1⊗ i1 and
σ = σ · i1 ⊗ i1, where ε and σ are the strain and stress tensors at meso-scale such
that the constitutive model is considered in a 1D setting. Besides, we enhance the
fact that Σ is computed as the spatial mean of σ(x) and not as the sample mean of
σ(θ). Local constitutive relation presented in section 3.2 below governs the relation
between heterogeneous stress field σ(x, t) and strain field ε(x, t).

Then, we introduce the tangent modulus at meso-scale D as ∆σ = D × ∆ε.
According to equations (7), (10) and (11), we have the tangent modulus at macro-
scale

(12) D(x, t; θ) =
1

|R|

∫

R
D(x, t; θ)dR .

We will see in the examples below that, for a wide range of relative correlation
length and size of the section R, Σ and D do not depend on θ. In that case,
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even though the meso-scale model of concrete is stochastic, the resulting macro-
scale model is deterministic, and independent of the actual realization of the local
parameters that is being considered.

Finally, we recall that concrete specimens exhibit quasi-brittle behavior in ten-
sion with tensile strength generally 10 times smaller than compressive strength.
Besides, we point out here that it is at macro-scale that these notions of compres-
sion (Σ ≤ 0) and tension (Σ > 0) are relevant for the modeling presented in this
work.

3.2. Model of the uniaxial cyclic behavior at meso-scale. We now concen-
trate on the local uniaxial cyclic inelastic constitutive relation that will be consid-
ered in this paper at meso-scale. We define it to be a simple elasto-plastic model
with linear kinematic hardening, as illustrated in Figure 4. We provide here, in
the setting of computational inelasticity [41, 22], the assumptions and resulting
equations corresponding to this relation:

(i) The total deformation ε is split into elastic (εe) and plastic (εp) parts:

(13) ε = εe + εp .

(ii) The following state equation holds (upper dot denotes derivative with re-
spect to time):

(14) σ̇ = Cε̇e ,

where C is the elastic modulus.
(iii) We impose that the stress σ corrected by α, the so-called back stress due

to kinematic hardening, satisfies yielding criterion

(15) φp = |σ + α| − σy ≤ 0 ,

where σy ≥ 0 is the yield stress. As yielding function φp(σ, α) is negative,
the material is elastic; otherwise, plasticity is activated and the material
state evolves such that the condition φp(σ, α) = 0 is satisfied.

(iv) A change in εp can only take place if φp = 0 and yielding occurs in the
direction of σ + α, with a constant rate γ̇p ≥ 0:

(16) ε̇p =

{
γ̇psign(σ + α) if φp(σ, α) = 0
0 otherwise

.

γ̇p is the so-called plastic multiplier.
(v) With H the kinematic hardening modulus, the evolution of α is defined as:

(17) α̇ = −Hε̇p = −γ̇pHsign(σ + α) .

Accordingly, admissible stresses σ and α remain in the set Ke = {(σ, α) | φp ≤ 0}
and two kinds of evolutions are possible:

(i) If (σ, α) ∈ K̄e = {(σ, α) | φp < 0}, the response is elastic:

(18) ε̇p = 0 ⇒ σ̇ = Cε̇ .

(ii) If (σ, α) ∈ ∂Ke = {(σ, α) | φp = 0}, any evolution is possible only if φ̇p = 0:

(19)
∂φp

∂σ
σ̇ +

∂φp

∂α
α̇ = 0 ⇒ γ̇p =

Csign(σ + α)ε̇

C +H
⇒ σ̇ =

CH

C +H
ε̇ .
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(i) The total deformation ϵ is split into elastic (ϵe) and plastic (ϵp) parts:

(13) ϵ = ϵe + ϵp .

(ii) The following state equation holds (upper dot denotes derivative with re-
spect to time):

(14) σ̇ = C ϵ̇e ,

where C is the elastic modulus.
(iii) We impose that the stress σ corrected by α, the so-called back stress due

to kinematic hardening, satisfies yielding criterion

(15) φp = |σ + α| − σy ≤ 0 ,

where σy ≥ 0 is the yield stress. As yielding function φp(σ,α) is negative,
the material is elastic; otherwise, plasticity is activated and the material
state evolves such that the condition φp(σ,α) = 0 is satisfied.

(iv) A change in ϵp can only take place if φp = 0 and yielding occurs in the
direction of σ + α, with a constant rate γ̇p ≥ 0:

(16) ϵ̇p =

{
γ̇psign(σ + α) if φp(σ,α) = 0
0 otherwise

.

γ̇p is the so-called plastic multiplier.
(v) With H the kinematic hardening modulus, the evolution of α is defined as:

(17) α̇ = −H ϵ̇p = −γ̇pHsign(σ + α) .

Figure 4. Compressive cyclic behavior at meso-scale. The yield
stress σy(x) fluctuates over the concrete section R: two local re-
sponses at two distinct material points x1 [left] and x2 [right] are
represented in the figure. During elastic loading/unloading, the
slope is C; in yielding phases, the slope is CH

C+H < C. With this
type of model first yielding occurs once σ = σy and the elastic do-
main keeps constant amplitude 2σy. For low values of σy , yielding
can be observed in compression both during loading and unloading
[right].
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C+H < C. With this
type of model first yielding occurs once σ = σy and the elastic do-
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can be observed in compression both during loading and unloading
[right].

It is then possible, from equations (18) and (19), to give the expression of the
tangent modulus D:

(20) σ̇ = Dε̇ with D =

{
C if (σ, α) ∈ K̄e
CH
C+H if (σ, α) ∈ ∂Ke .

It should be reminded at this point that, as mentioned in the introduction and
illustrated in Figure 4, the yield stress is assumed heterogeneous. The relation
presented here is therefore defined between stress and strain in each point in space
with a different yield stress.

3.3. Description of the yield stress random field. In this section, we describe
the choice that is made for the modeling of the heterogeneous yield stress: the yield
stress is represented by a 2D log-normal homogeneous random field over the con-
crete areaR. We note here that, to the best of our knowledge, there currently exists
no experimental dataset of local stress-strain uniaxial concrete responses recorded
at many points over a concrete area. Here, the choice of using random fields to con-
vey heterogeneity of the yield stress is mainly motivated by the effectiveness of the
method. We hope that this proposed interpretation of concrete meso-structure will
foster interaction between numerical and material scientists and help designing ex-
perimental investigations that would eventually support or invalidate the numerical
model we propose in this paper.

Let us then consider a probability space (Θ,Ω,Pr), where Ω is a σ-algebra of
elements of Θ and Pr is a probability measure. The 2D random field of yield stress
is constructed as a nonlinear point-wise transformation [17] Sy(x, θ) = f(G(x; θ))
of a homogeneous unit centered Gaussian random field G(x; θ) with given power
spectral density (PSD) SGG(κ). The PSD is chosen here as the product of triangle
functions with identical properties in the two orthogonal directions of the 2D plane,
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denoted by the subscript 1 and 2 throughout sections 3.3 and 3.4:

(21) SGG(κ) =
1

κ2u
Λ

(
κ1
κu

)
Λ

(
κ2
κu

)
,

where Λ(κ) = 1 − |κ| if |κ| ≤ 1 and cut-off wave numbers κu,1 = κu,2 = κu. For
wave numbers above the cut-off κu, the spectral density vanishes. In the spatial
domain, this PSD corresponds to the following autocorrelation function (the Fourier
transform of SGG(κ)):

(22) RGG(ζ) = sinc2
(κu

2π
ζ1

)
sinc2

(κu
2π
ζ2

)
,

where sinc(x) = sin(πx)/(πx). The random field G(x; θ) therefore fluctuates over
typical lengths `c,1 = `c,2 = `c = 2π/κu, the so-called correlation length.

The nonlinear point-wise transformation f controls the first-order marginal dis-
tribution of σy. In particular, it controls the desired expectation m and variance s2

of the yield stress homogeneous random field. In this paper, we choose to consider
a log-normal first-order marginal density, to ensure that the realizations are almost-
surely and almost everywhere positive, as expected. The nonlinear transformation
is then given by:

(23) Sy(x, θ) = exp(mG + sG ×G(x, θ)) > 0 ,

where

(24) mG = − ln

(
1

m

√
1 +

s2

m2

)
and sG =

√
ln

(
1 +

s2

m2

)
.

Other first-order marginal densities could be considered, for example using the
maximum entropy principle [37, 47, 42, 10, 11] or Bayesian identification [4, 19].
Also, the PSD function is translated by the nonlinear transformation f so that the
PSD of the yield stress and of the underlying Gaussian field are different, with
possible incompatibilities with the chosen first-order marginal density [17, 31, 38].
These important but technical issues go beyond the scope of this paper and will
not be further discussed here.
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Figure 5. Realizations of log-normal random fields over a square
of size d for different correlation lengths: [left] ℓc/d = 1, [center]
ℓc/d = 0.1, [right] ℓc/d = 0 (white noise). Coordinates x2 and
x3, previously introduced in the description of the beam element
in section 2, are reused here to recall that the random fields are
generated to parameter heterogeneous yield stress over beam cross-
section areas.

3.4. Numerical implementation (at each quadrature point in each beam
fiber). At each material point xF

l (quadrature point l, beam fiber F ), relations (10),
(11) and (12) have to be calculated.

On the one hand, Gaussian random field G is digitized using the spectral rep-
resentation method, in its FFT implementation [39, 13, 40]. As an illustration,
considering a 2D random field with identical properties in orthogonal directions 1
and 2 (see [40] for more details):

(25) G(p1∆x, p2∆x; θ) = Re

M−1∑

n1=0

M−1∑

n2=0

(
Bn1n2(θ) exp

(
2iπ

(n1p1

M
+

n2p2

M

))

+B̃n1n2(θ) exp
(
2iπ

(n1p1

M
− n2p2

M

)))

where i2 = −1, (p1, p2) ∈ [0, . . . , M − 1]2,

Bn1n2 = 2∆κ
√

SGG(n1∆κ, n2∆κ) exp(iφn1n2(θ))

B̃n1n2 = 2∆κ
√

SGG(n1∆κ, −n2∆κ) exp(iψn1n2(θ))(26)

and ∆κ = κu/N (N ∈ N⋆ → ∞), M ≥ 2N , φn1n2(θ) and ψn1n2(θ) are independent
random phase angles uniformly distributed in [0, 2π]. The resulting 2D random
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`c/d = 0.1, [right] `c/d = 0 (white noise). Coordinates x2 and
x3, previously introduced in the description of the beam element
in section 2, are reused here to recall that the random fields are
generated to parameter heterogeneous yield stress over beam cross-
section areas.
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3.4. Numerical implementation (at each quadrature point in each beam
fiber). At each material point xFl (quadrature point l, beam fiber F ), relations (10),
(11) and (12) have to be calculated.

On the one hand, Gaussian random field G is digitized using the spectral rep-
resentation method, in its FFT implementation [39, 13, 40]. As an illustration,
considering a 2D random field with identical properties in orthogonal directions 1
and 2 (see [40] for more details):

(25) G(p1∆x, p2∆x; θ) = Re

M−1∑

n1=0

M−1∑

n2=0

(
Bn1n2

(θ) exp
(

2iπ
(n1p1
M

+
n2p2
M

))

+B̃n1n2
(θ) exp

(
2iπ

(n1p1
M
− n2p2

M

)))

where i2 = −1, (p1, p2) ∈ [0, . . . ,M − 1]2,

Bn1n2 = 2∆κ
√
SGG(n1∆κ, n2∆κ) exp(iφn1n2(θ))

B̃n1n2
= 2∆κ

√
SGG(n1∆κ,−n2∆κ) exp(iψn1n2

(θ))(26)

and ∆κ = κu/N (N ∈ N? →∞), M ≥ 2N , φn1n2(θ) and ψn1n2(θ) are independent
random phase angles uniformly distributed in [0, 2π]. The resulting 2D random
field is periodic with a two-dimensional period L0 × L0 with L0 = M∆x = 2π/
∆κ. Realizations of log-normal random fields with different correlation lengths are
shown in figure 5.

On the other hand, a generic concrete section R is built as a square with edge
of length d and R is meshed by a square grid of N2

f identical squares. Then, the

mesh size is d/Nf and, for any integrable function g,
∫
R g(x)dR ≈ d2

N2
f

∑N2
f

f=1 g(xf ),

where xf is the position of the centroid of the f -th mesh over R.
Then, digitized random field Sy is mapped onto the xf ’s overR. To this purpose,

we impose L0 ≥ d, that is |R| is smaller or equal to a period of the random field, and
mapping is performed according to the following method. First, Nf is calculated
as:

(27) d = Int

(
d

∆x

)
∆x+ Res ⇒ Nf =

{
Int(d/∆x) if Res = 0
Int(d/∆x) + 1 otherwise

.

Then, at the N2
f points xf ∈ R, Sy(xf ; θ) is calculated as the linear interpolation

of the four digitized values of Sy(x; θ) in ]xf − ∆x,xf + ∆x]2, as illustrated in
figure 6.

With the spatially variable yield stress now known at each point xf , f ∈ [1, .., N2
f ]

in R, the equations presented in section 3.2 can be solved to update the variables at
meso-scale. This is done numerically at each of the N2

f positions following classical

return-mapping computational procedure [41, 22].
Finally, as a transition from compression to tension is detected during global

Newton-Raphson iterative process to solve structural equilibrium equations, that is

Σ
(k+1)
n > 0 while Σ

(k)
n ≤ 0, a local Newton-Raphson precess is implemented to find

the strain Ec for which Σ
(k+1)
n (Ec) = 0, to update the meso-structure accordingly,

and to set Σ
(k+1)
n = 0 and D

(k+1)
n = 0.

Before observing on numerical tests the shape of the stress-strain curves obtained
with this model, we turn to the simple case of vanishing correlation length (`c →
0). The interest of this particular case is that some analytical expressions can be
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derived, so that discussion is more straightforward. The more general case with
finite correlation length will be considered later in Section 5.1.

4. A particular case: vanishing correlation length and monotonic
loading

4.1. Preliminaries. The case of vanishing correlation length along with uniaxial
cyclic loading has been treated in a general setting. Indeed in [24], the stress-
strain uniaxial response is given as a probability density function (pdf) of stress
with respect to the time-dependent strain and a second-order exact expression of
the pdf evolution is computed solving the Fokker-Planck-Kolmogorov equation that
governs the problem. This latter method is valid for monotonic as well as cyclic
loading. Hereafter, the validity of the results is limited to monotonic loading, but
the problem is cast in a different and simpler mathematical setting that can be
solved analytically. These analytical developments shed light on some capabilities
of the model introduced in the previous section and that will be retrieved in the
more general case of non-zero correlation in Section 5.1.

4.2. Constitutive response at macro-scale. Let respectively denote Re and
Rp the shares of a fiber cross-section that remain elastic and yield. According
to the developments in section 3.2: Re(t; θ) = {x ∈ R | D(x, t; θ) = C} and
Rp(t; θ) = {x ∈ R | D(x, t; θ) = CH/(C+H)}. Also,Re∩Rp = ∅ andR = Re∪Rp.
Note thatRe andRp are time-dependent because D depends on the loading history.
We denote by |•| the area of •. Then, considering a subset A ofR, we have, ∀x ∈ R,
the probability measure Pr[x ∈ A] = |A|/|R|.
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Using the fact that |R| = |Re| + |Rp|, we first rewrite the tangent modulus at
macro-scale in equation (12) as:

(28) D =
1

|R|

(
|Re|C + |Rp| CH

C +H

)
=

C

C +H

( |Re|
|R| C +H

)
.

We now seek an explicit expression for |Re|/|R|.
First, suppose the state of the material is known at time t0, then we define the

trial stresses

(29) σtr(x, t) = σ0(x) + C(ε(t)− ε0) and αtr(x, t) = α0(x) ,

where subscript 0 refers to time t0. In the particular case of monotonic loading, a
necessary and sufficient condition for x to be in Rp at time t > t0 is φp,tr(x, t) ≥ 0,
that is σy(x) ≤ |σtr(x, t) + α0(x)| (see equation 15). We then have:

(30) |Re|/|R| = Pr[x ∈ Re] = 1− Pr[Sy(x) ≤ |σtr(x, t) + α0(x)|] .
Then, in the particular case of vanishing correlation length, the random variables

Sy(x) are independent and identically distributed over R. For the log-normal
distribution assumption made throughout this work, it means that the cumulative
density function of Sy(x) is, ∀x ∈ R:

(31) FSy(x)(σy) = Pr[Sy(x) ≤ σy] =
1

2

(
1 + erf

(
lnσy −mG√

2 sG

))
,

where erf is the so-called error function.
Finally, for the sake of simplicity and without any loss of generality, we assume

σ0 = α0 = ε0 = 0. Accordingly, and using equations (29), along with (24) to
replace mG and sG by the mean m and standard deviation s of the homogeneous
log-normal random field Sy, it comes:

(32)
|Re|
|R| = 1−FSy(x)(|Cε(t)|) =

1

2


1− erf




ln

(
|Cε(t)|
m

√
1 + s2

m2

)

√
2 ln

(
1 + s2

m2

)





 .

Equations (28) and (32) are used to plot figure 7 where the response of the model
at macro-scale is shown for different sets of mean and variance parameters for the
log-normal random yield stress field Sy.

4.3. Asymptotic response of the model at macro-scale. The following as-
ymptotic behaviors can be observed at macro-scale:

(i) Suppose s2/m2 approaches 0. Then, according to equation (32), |Re|/|R|
approaches the Heaviside’s function H(m−|CE(t)|), that is |Re|/|R| = 0 if
|CE(t)| > m and |Re|/|R| = 1 if |CE(t)| ≤ m. According to equation (28),
the model response at macro-scale is then as follows:

(33) Σ̇(t) = D(t)Ė(t) where D =

{
C if |CE(t)| ≤ m
CH
C+H if |CE(t)| > m

.

(ii) If s2/m2 → ∞, then |Re|/|R| → 0 and consequently Σ̇(t) → CH/(C +

H)Ė(t).
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Finally, for the sake of simplicity and without any loss of generality, we assume
σ0 = α0 = ϵ0 = 0. Accordingly, and using equations (29), along with (24) to
replace mG and sG by the mean m and standard deviation s of the homogeneous
log-normal random field Sy, it comes:

(32)
|Re|
|R| = 1 − FSy(x)(|Cϵ(t)|) =

1

2

⎛
⎜⎜⎝1 − erf

⎛
⎜⎜⎝

ln

(
|Cϵ(t)|

m

√
1 + s2

m2

)

√
2 ln

(
1 + s2

m2

)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

Equations (28) and (32) are used to plot figure 7 where the response of the model
at macro-scale is shown for different sets of mean and variance parameters for the
log-normal random yield stress field Sy.
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(iii) Now with finite and non-zero s2/m2:

(34) Σ̇(t) = D(t)Ė(t) where D →
{
C if E(t)→ 0
CH
C+H if E(t)→∞ .

These asymptotic responses at macro-scale are illustrated in figure 7 (plain lines).

5. Numerical applications

5.1. Concrete uniaxial compressive cyclic response at macro-scale. First
numerical applications aim at demonstrating the capability of the model introduced
above in section 3 to represent the response of concrete in uniaxial compressive
cyclic loading. Five model parameters need to be considered: elastic and harden-
ing moduli C and H, along with mean m, standard deviation s and correlation
length `c used to build realizations of a homogeneous log-normal random field that
parameterizes the fluctuations of the yield stress σy over beam sections.

The effects of m, s and `c on the material response at macro-scale will be further
investigated below. Right now however, we set:

• C = 27.5 GPa, which corresponds to the elastic modulus measured on
specimens made of the concrete actually cast to build the frame element
used in the next numerical application (Section 5.2).

• H = 0 according to both (i) the fact that H controls tangent modulus at
macro scale as strain becomes large (see equation (34)), and (ii) that we
seek a numerical response that ultimately exhibits null tangent modulus
in monotonic loading at macro-scale. We anticipate here stressing that
the model developed in previous sections is not capable of representing
the softening phase as strain increases while stress decreases (non-positive
tangent modulus).
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Figure 8. Sample mean (thick plain line) plus/minus standard
deviation (boundaries of the shaded areas) monotonic response at
macro-scale computed from a sample of 100 realizations of the
material structure at meso-scale with m = 30 MPa and s/m = 1
for the log-normal marginal law. Meso-structures are generated
with different correlation lengths: [left] ℓc/d = 0.1, [center] ℓc/
d = 0.2, [right] ℓc/d = 0.4. Cyclic response for one particular
realization of the meso-structure is also shown (thin plain line).

increases. The area R defined with ℓc/d = 0.1, N = 10 and M = 64, is statistically
representative in the sense that there is almost independence between the random
realization of the meso-structure and the response at macro-scale. We remark here
that the model is capable of representing variability from one concrete sample to
another and that this variability can bring information on the correlations in the
meso-structure. Suppose indeed that we had 100 concrete samples and a variability
of the responses at macro-scale close to that shown by the grey area in figure 8
[center] for instance. Then, the meso-structure of the tested concrete would be best
represented by the ratio ℓc/d = 0.2. Consequently, the sample standard deviation
can bring information on the actual correlation length.

Finally, we can notice that the shape of the cyclic response (thin line) represents
most of the salient features exhibited experimentally in uniaxial compression test
for concrete (remember figure 1). We point out here that strength degradation
(softening) along with stiffness degradation (observed experimentally one cycle after
another) are not represented by this model. However, a key point for representing
material damping is the capability of the model to generate local hysteresis loops
in unloading-loading cycles.

5.1.2. Influence of m and s on the macroscopic response. We use here, beside N =
10 and M = 64 (Nf = 64), ℓc/d = 0.1 so that little variability is expected to be
observed in the model response at macro-scale from one realization of the meso-
structure to another (see figure 8 [left]). Figure 9 shows material response at macro-
scale for different sets of mean m and standard deviation s of the log-normal random
field that conveys spatial variability in the material structure at meso-scale.

It can be observed that for a small value of s, response approaches bi-linear elasto-
plastic behavior (actually perfectly plastic because H is set to zero here) where there
is almost no hysteresis observed during unloading-loading cycle (figure 9 [left] and
[right]). This comes from the fact that, if s approaches 0, there is almost no spatial
variability of the yield stress because it is almost homogeneous over R and takes

Figure 8. Sample mean (thick plain line) plus/minus standard
deviation (boundaries of the shaded areas) monotonic response at
macro-scale computed from a sample of 100 realizations of the
material structure at meso-scale with m = 30 MPa and s/m = 1
for the log-normal marginal law. Meso-structures are generated
with different correlation lengths: [left] `c/d = 0.1, [center] `c/
d = 0.2, [right] `c/d = 0.4. Cyclic response for one particular
realization of the meso-structure is also shown (thin plain line).

5.1.1. Influence of `c on the macroscopic response. We first illustrate how `c in-
fluences the macroscopic response by considering the three following cases: (i) `c/
d = 0.1, (ii) `c/d = 0.2 and (iii) `c/d = 0.4. For each of these three cases, we
take N = 10 and M = 64, that is ∆x/d = 0.016 and Nf = 64 (see equation (27)).
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directions (`c = `c,1 = `c,2, N = N1 = N2, . . . ). Besides, a sample of 100 indepen-
dent homogeneous log-normal random fields with targeted mean m = 30 MPa and
coefficient of variation s/m = 1 for the marginal log-normal law is generated for
each case.

Resulting material responses at macro-scale are shown in figure 8. A first ob-
vious observation is that model response at macro-scale is much richer than at
meso-scale (see figure 4). We can then observe that sample mean response (thick
line) is not sensitive to the correlation length. However the variability of the macro-
scopic response from one realization of the meso-structure to another depends on
the correlation length: it is almost null for `c/d = 0.1 while it is enhanced as `c
increases. The area R defined with `c/d = 0.1, N = 10 and M = 64, is statistically
representative in the sense that there is almost independence between the random
realization of the meso-structure and the response at macro-scale. We remark here
that the model is capable of representing variability from one concrete sample to
another and that this variability can bring information on the correlations in the
meso-structure. Suppose indeed that we had 100 concrete samples and a variability
of the responses at macro-scale close to that shown by the grey area in figure 8
[center] for instance. Then, the meso-structure of the tested concrete would be best
represented by the ratio `c/d = 0.2. Consequently, the sample standard deviation
can bring information on the actual correlation length.

Finally, we can notice that the shape of the cyclic response (thin line) represents
most of the salient features exhibited experimentally in uniaxial compression test
for concrete (remember figure 1). We point out here that strength degradation
(softening) along with stiffness degradation (observed experimentally one cycle after
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another) are not represented by this model. However, a key point for representing
material damping is the capability of the model to generate local hysteresis loops
in unloading-loading cycles.
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Figure 9. Sample mean (plain line) plus/minus standard devia-
tion (dashed lines) response at macro-scale computed from a sam-
ple of 100 different realizations of the material structure at meso-
scale. Meso-structures are generated with different targeted mean
m and coefficients of variation s/m for the log-normal marginal
law: [left] m = 30 MPa and s/m = 0.1, 1, 3; [center] s = 30 MPa
and s/m = 0.6, 1, 3; [right] s/m = 1 and m = 10, 30, 50 MPa.

values close to its mean m; then the response at macro-scale coincides with that
at meso-scale (elasto-plasticity with H = 0 here). This is also in accordance with
what was shown already in figure 7.

Responses shown in figure 9 [left] lie in-between this latter extreme case and
the other extreme case of s approaching infinity. In this situation, log-normal
distribution approaches 0 all over the positive real semi-line and, consequently,
plasticity is activated almost everywhere over R resulting in a macro-scale response
that is perfectly plastic without elastic phase (that is here Σ = 0 for any E because
H = 0).

Also, it is shown in figure 9 that the value of the strain E at which stress Σ
reaches zero when unloading (residual plastic deformation) is much more sensitive
to parameter m than s. Furthermore, the thickness of the hysteresis loops obviously
depends on the so-called coefficient of variation s/m but it is not clear whether it
is more sensitive to either of the two parameters. Finally, the variability in the
sample of responses at macro-scale increases with s/m and is more sensitive to m
than s, at least as far as the range of values chosen here for both parameters is
concerned.

5.2. Damping in a reinforced concrete column in free vibration. We now
show how the material model developed in the previous sections can be used to
represent the experimental backbone curve of a concrete test specimen in uniaxial
loading. Then, we implement this material law in the fiber beam element presented
in section 2 and show how damping is generated in a reinforced concrete (RC)
column in free vibration. The observed damping does not result from the addition
of damping forces in the balance equation of the RC column but from the hysteresis
loops in the concrete material law at macro-scale.

5.2.1. Geometry of the column and loading. The column considered here corre-
sponds to the 1st-floor external column of the ductile (R = 4) RC frame tested
in [15, 25]. The loading is however here different: it consists of a mass M = 500 kg
imposed step by step and kept constant while the column oscillates in free vibration
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ple of 100 different realizations of the material structure at meso-
scale. Meso-structures are generated with different targeted mean
m and coefficients of variation s/m for the log-normal marginal
law: [left] m = 30 MPa and s/m = 0.1, 1, 3; [center] s = 30 MPa
and s/m = 0.6, 1, 3; [right] s/m = 1 and m = 10, 30, 50 MPa.

5.1.2. Influence of m and s on the macroscopic response. We use here, beside N =
10 and M = 64 (Nf = 64), `c/d = 0.1 so that little variability is expected to be
observed in the model response at macro-scale from one realization of the meso-
structure to another (see figure 8 [left]). Figure 9 shows material response at macro-
scale for different sets of mean m and standard deviation s of the log-normal random
field that conveys spatial variability in the material structure at meso-scale.

It can be observed that for a small value of s, response approaches bi-linear elasto-
plastic behavior (actually perfectly plastic because H is set to zero here) where there
is almost no hysteresis observed during unloading-loading cycle (figure 9 [left] and
[right]). This comes from the fact that, if s approaches 0, there is almost no spatial
variability of the yield stress because it is almost homogeneous over R and takes
values close to its mean m; then the response at macro-scale coincides with that
at meso-scale (elasto-plasticity with H = 0 here). This is also in accordance with
what was shown already in figure 7.

Responses shown in figure 9 [left] lie in-between this latter extreme case and
the other extreme case of s approaching infinity. In this situation, log-normal
distribution approaches 0 all over the positive real semi-line and, consequently,
plasticity is activated almost everywhere over R resulting in a macro-scale response
that is perfectly plastic without elastic phase (that is here Σ = 0 for any E because
H = 0).

Also, it is shown in figure 9 that the value of the strain E at which stress Σ
reaches zero when unloading (residual plastic deformation) is much more sensitive
to parameter m than s. Furthermore, the thickness of the hysteresis loops obviously
depends on the so-called coefficient of variation s/m but it is not clear whether it
is more sensitive to either of the two parameters. Finally, the variability in the
sample of responses at macro-scale increases with s/m and is more sensitive to m
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than s, at least as far as the range of values chosen here for both parameters is
concerned.

5.2. Damping in a reinforced concrete column in free vibration. We now
show how the material model developed in the previous sections can be used to
represent the experimental backbone curve of a concrete test specimen in uniaxial
loading. Then, we implement this material law in the fiber beam element presented
in section 2 and show how damping is generated in a reinforced concrete (RC)
column in free vibration. The observed damping does not result from the addition
of damping forces in the balance equation of the RC column but from the hysteresis
loops in the concrete material law at macro-scale.

5.2.1. Geometry of the column and loading. The column considered here corre-
sponds to the 1st-floor external column of the ductile (R = 4) RC frame tested
in [15, 25]. The loading is however here different: it consists of a mass M = 500 kg
imposed step by step and kept constant while the column oscillates in free vibration
consequently to a horizontal force F (t). The geometrical and loading characteristics
of the column are depicted in figure 10.
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of the column are depicted in figure 10.

Figure 10. Geometry and loading of the column.

5.2.2. Concrete constitutive model. In [25], the monotonic uniaxial response (back-
bone curve) of the concrete cast to build the RC column is detailed. It is used
here as the baseline to identify the parameters of the concrete model. According
to this report, we set C = 27.5 GPa, H = 0; then we use N = 10, M = 64
(Nf = 64) and ℓc/d = 0.1 to ensure a response at macro-scale that is almost in-
dependent of the realization of the meso-structure; finally, m and s are identified.
Figure 11 shows model response macro-scale (plain line) with m = 30.5 MPa and
s/m = 0.943. Comparing the numerical backbone curve (solid line) and the experi-
mental response (dashed line), this figure illustrates the capability of the developed
numerical model to represent actual experimental concrete monotonic response, at
least as far as the monotonic behavior is concerned. Note that no experimental
data was available for the cyclic behavior.
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Figure 11. Sample mean (—) response at macro-scale obtained
numerically from a sample of 2,000 meso-structures, along with
backbone curve (- -) recorded during uniaxial test on a specimen of
the concrete used to build the RC column of interest here. Targeted
mean and standard deviation of the marginal log-normal law are
m = 30.5 MPa and s/m = 0.943. No experimental data is available
for the cyclic behavior.
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5.2.2. Concrete constitutive model. In [25], the monotonic uniaxial response (back-
bone curve) of the concrete cast to build the RC column is detailed. It is used
here as the baseline to identify the parameters of the concrete model. According
to this report, we set C = 27.5 GPa, H = 0; then we use N = 10, M = 64
(Nf = 64) and `c/d = 0.1 to ensure a response at macro-scale that is almost in-
dependent of the realization of the meso-structure; finally, m and s are identified.
Figure 11 shows model response macro-scale (plain line) with m = 30.5 MPa and
s/m = 0.943. Comparing the numerical backbone curve (solid line) and the experi-
mental response (dashed line), this figure illustrates the capability of the developed
numerical model to represent actual experimental concrete monotonic response, at
least as far as the monotonic behavior is concerned. Note that no experimental
data was available for the cyclic behavior.

5.2.3. Steel cyclic model. Young modulus Cs = 224.6 GPa, yield stress Σy = 438
MPa and ultimate stress Σu = 601 MPa have been experimentally measured during
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s/m = 0.943. Comparing the numerical backbone curve (solid line) and the experi-
mental response (dashed line), this figure illustrates the capability of the developed
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uniaxial tests on longitudinal steel rebars [25]. An elasto-plastic model with kine-
matic hardening is used to represent steel response in cyclic loading. The model
implemented with these latter measured parameters is shown in figure 12.
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5.2.3. Steel cyclic model. Young modulus Cs = 224.6 GPa, yield stress Σy = 438
MPa and ultimate stress Σu = 601 MPa have been experimentally measured during
uniaxial tests on longitudinal steel rebars [25]. An elasto-plastic model with kine-
matic hardening is used to represent steel response in cyclic loading. The model
implemented with these latter measured parameters is shown in figure 12.
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Figure 12. Numerical cyclic response of a steel longitudinal rebar
used to build the frame. Cyclic behavior has not been observed
experimentally.

5.2.4. Free vibration – Structural damping. Those concrete and steel uniaxial con-
stitutive models are implemented in the fiber frame element presented in section 2.
The column is modeled with one frame element with Nl = 2 control sections and
NF = 6 fibers (actually layers here in the case of a 2D problem). As already men-
tioned in section 5.2.1, the mass M = 500 kg is imposed step by step and kept
constant while the column oscillates in free vibration consequently to the horizon-
tal force F (t). The column possibly exhibits nonlinear response while the mass M
is applied and while F (t) increases from 0 to F0. Figure 13 shows typical column
top-displacement time histories for two different values of F0. It can be observed
that damping depends on the amplitude of the oscillations: the column is clearly
damped for F0 = 15 kN (grey curve) while damping is much lower for F0 = 5 kN
(black curve). One can also notice the different vibration periods for both hori-
zontal forces; this is due to the fact that the larger force activates some nonlinear
mechanisms in the structure, which leads to an elongation of the structural vibra-
tion period. We finally stress again here that there is no damping force added
in the dynamic balance equations, such as for instance Rayleigh damping forces:
the damping effect shown in figure 13 only comes from the hysteresis loops in the
concrete response during unloading-reloading cycles.

We now define what we will refer to as “viscous-like damping ratio” and hereafter
denote by ξv. Considering the column top-displacement time history Xtop(t) in free
vibration, we appeal to the so-called log-decrement method to evaluate the modal
damping ratio ξv (see e.g. [8, §4.6]):

(35) ξv =
1

2πNc
ln

Xpeak
top (tN1)

Xpeak
top (tN2)

Xpeak
top (tN1) and Xpeak

top (tN2) are the amplitudes of any two peaks separated by Nc =
N2 − N1 cycles. It is worth recalling here that this is only valid in case damping is
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used to build the frame. Cyclic behavior has not been observed
experimentally.

5.2.4. Free vibration – Structural damping. Those concrete and steel uniaxial con-
stitutive models are implemented in the fiber frame element presented in section 2.
The column is modeled with one frame element with Nl = 2 control sections and
NF = 6 fibers (actually layers here in the case of a 2D problem). As already men-
tioned in section 5.2.1, the mass M = 500 kg is imposed step by step and kept
constant while the column oscillates in free vibration consequently to the horizon-
tal force F (t). The column possibly exhibits nonlinear response while the mass M
is applied and while F (t) increases from 0 to F0. Figure 13 shows typical column
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top-displacement time histories for two different values of F0. It can be observed
that damping depends on the amplitude of the oscillations: the column is clearly
damped for F0 = 15 kN (grey curve) while damping is much lower for F0 = 5 kN
(black curve). One can also notice the different vibration periods for both hori-
zontal forces; this is due to the fact that the larger force activates some nonlinear
mechanisms in the structure, which leads to an elongation of the structural vibra-
tion period. We finally stress again here that there is no damping force added
in the dynamic balance equations, such as for instance Rayleigh damping forces:
the damping effect shown in figure 13 only comes from the hysteresis loops in the
concrete response during unloading-reloading cycles.
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Figure 13. Top displacement time history in free vibration for
F0 = 5 kN (black) and F0 = 15 kN (grey). Mass M and horizon-
tal forces F0 are applied step-by-step during the first and second
seconds, then horizontal force F abruptly drops to zero and the
column oscillates in free vibration.

linear viscous, which in our case is not necessarily the case. Indeed, equations (35)
comes from the assumption that the envelope of the decaying top-displacement is
described as Xtop(t) = X0e

−2ξπft with f the modal frequency. Hence the terms
“viscous-like” to characterize the calculated damping ratios.
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Figure 14. Viscous-like damping ratio time history ξv for F0 =
5 kN (black) and F0 = 15 kN (grey).

Based on the top-displacement time histories in figure 13, figure 14 shows how ξv

decreases throughout free vibration time history for both values of F0. Viscous-like
damping ratios ξv(tN1), are computed according to equations (35), with Nc = 5.
Note that such damping ratios depend on the parameters m and s/m of the random
field along with the hardening parameter H at meso-scale. For the sake of illus-
tration, figure 15 shows other results for another set of material parameters that is
not optimal for representing the monotonic response in compression of the concrete
used to build the tested column. The capability of the proposed material model
for generating structural damping has been demonstrated and the development of
an automatic procedure for identifying the full set of parameters targeting accurate
representation of both cyclic concrete response and damping is left for future work.

6. Conclusions

In this paper, a multi-scale stochastic uniaxial cyclic model suitable for rep-
resenting most of the salient features of concrete nonlinear response observed in
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column oscillates in free vibration.

We now define what we will refer to as “viscous-like damping ratio” and hereafter
denote by ξv. Considering the column top-displacement time history Xtop(t) in free
vibration, we appeal to the so-called log-decrement method to evaluate the modal
damping ratio ξv (see e.g. [8, §4.6]):
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comes from the assumption that the envelope of the decaying top-displacement is
described as Xtop(t) = X0e

−2ξπft with f the modal frequency. Hence the terms
“viscous-like” to characterize the calculated damping ratios.

Based on the top-displacement time histories in figure 13, figure 14 shows how ξv

decreases throughout free vibration time history for both values of F0. Viscous-like
damping ratios ξv(tN1), are computed according to equations (35), with Nc = 5.
Note that such damping ratios depend on the parameters m and s/m of the random
field along with the hardening parameter H at meso-scale. For the sake of illus-
tration, figure 15 shows other results for another set of material parameters that is
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F0 = 5 kN (black) and F0 = 15 kN (grey). Mass M and horizon-
tal forces F0 are applied step-by-step during the first and second
seconds, then horizontal force F abruptly drops to zero and the
column oscillates in free vibration.

linear viscous, which in our case is not necessarily the case. Indeed, equations (35)
comes from the assumption that the envelope of the decaying top-displacement is
described as Xtop(t) = X0e

−2ξπft with f the modal frequency. Hence the terms
“viscous-like” to characterize the calculated damping ratios.
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Figure 14. Viscous-like damping ratio time history ξv for F0 =
5 kN (black) and F0 = 15 kN (grey).

Based on the top-displacement time histories in figure 13, figure 14 shows how ξv

decreases throughout free vibration time history for both values of F0. Viscous-like
damping ratios ξv(tN1), are computed according to equations (35), with Nc = 5.
Note that such damping ratios depend on the parameters m and s/m of the random
field along with the hardening parameter H at meso-scale. For the sake of illus-
tration, figure 15 shows other results for another set of material parameters that is
not optimal for representing the monotonic response in compression of the concrete
used to build the tested column. The capability of the proposed material model
for generating structural damping has been demonstrated and the development of
an automatic procedure for identifying the full set of parameters targeting accurate
representation of both cyclic concrete response and damping is left for future work.

6. Conclusions

In this paper, a multi-scale stochastic uniaxial cyclic model suitable for rep-
resenting most of the salient features of concrete nonlinear response observed in
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used to build the tested column. The capability of the proposed material model
for generating structural damping has been demonstrated and the development of
an automatic procedure for identifying the full set of parameters targeting accurate
representation of both cyclic concrete response and damping is left for future work.
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Figure 15. [top] Top-displacement time history in free vibration
and [bottom] viscous-like damping ratio time history ξv for a set of
material parameters that is not optimal for the column considered
above: m = 20 MPa, s/m = 10, C = 27.5 GPa and H = 10 GPa.

compressive experimental tests has been developed. It is based on the construction
of a meso-scale where the response at each material point is elasto-plastic with
kinematic hardening and heterogeneous yield stress. This implies that the transi-
tion from elastic to plastic regime occurs at a loading level that is different in each
material point. Heterogeneity is parameterized by a 2D homogeneous log-normal
random field. As a first illustration of the capabilities of the model, some analyt-
ical results are derived in the particular case of monotonic loading and vanishing
correlation length for the random field. Then, numerical simulations are performed
and the effects of the parameters of the random field – that is the mean m, coef-
ficient of variation s/m and correlation length ℓc – are investigated. It is shown
that for small values of the correlation length, material response at macro-scale
does not depend on the realization of the random field, showing that the devel-
oped model is suitable for an objective representation of the material behavior.
Besides, it is shown that the mean m and standard deviation s can be identified
so that the monotonic compressive response of an actual concrete test specimen
can be accurately represented by the developed model. The developed model how-
ever lacks the ingredients for representing both strength and stiffness degradation
mechanisms. Finally, the developed material model is implemented in a frame ele-
ment in the purpose of representing the dynamic response of an actual reinforced
concrete column. The numerical analysis of the column in free vibration shows the
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Figure 15. [top] Top-displacement time history in free vibration
and [bottom] viscous-like damping ratio time history ξv for a set of
material parameters that is not optimal for the column considered
above: m = 20 MPa, s/m = 10, C = 27.5 GPa and H = 10 GPa.

compressive experimental tests has been developed. It is based on the construction
of a meso-scale where the response at each material point is elasto-plastic with
kinematic hardening and heterogeneous yield stress. This implies that the transi-
tion from elastic to plastic regime occurs at a loading level that is different in each
material point. Heterogeneity is parameterized by a 2D homogeneous log-normal
random field. As a first illustration of the capabilities of the model, some analyt-
ical results are derived in the particular case of monotonic loading and vanishing
correlation length for the random field. Then, numerical simulations are performed
and the effects of the parameters of the random field – that is the mean m, coef-
ficient of variation s/m and correlation length ℓc – are investigated. It is shown
that for small values of the correlation length, material response at macro-scale
does not depend on the realization of the random field, showing that the devel-
oped model is suitable for an objective representation of the material behavior.
Besides, it is shown that the mean m and standard deviation s can be identified
so that the monotonic compressive response of an actual concrete test specimen
can be accurately represented by the developed model. The developed model how-
ever lacks the ingredients for representing both strength and stiffness degradation
mechanisms. Finally, the developed material model is implemented in a frame ele-
ment in the purpose of representing the dynamic response of an actual reinforced
concrete column. The numerical analysis of the column in free vibration shows the
capability of the developed material model to create patterns classically associated
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above: m = 20 MPa, s/m = 10, C = 27.5 GPa and H = 10 GPa.

6. Conclusions

In this paper, a multi-scale stochastic uniaxial cyclic model suitable for rep-
resenting most of the salient features of concrete nonlinear response observed in
compressive experimental tests has been developed. It is based on the construction
of a meso-scale where the response at each material point is elasto-plastic with
kinematic hardening and heterogeneous yield stress. This implies that the transi-
tion from elastic to plastic regime occurs at a loading level that is different in each
material point. Heterogeneity is parameterized by a 2D homogeneous log-normal
random field. As a first illustration of the capabilities of the model, some analyt-
ical results are derived in the particular case of monotonic loading and vanishing
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correlation length for the random field. Then, numerical simulations are performed
and the effects of the parameters of the random field – that is the mean m, coef-
ficient of variation s/m and correlation length `c – are investigated. It is shown
that for small values of the correlation length, material response at macro-scale
does not depend on the realization of the random field, showing that the devel-
oped model is suitable for an objective representation of the material behavior.
Besides, it is shown that the mean m and standard deviation s can be identified
so that the monotonic compressive response of an actual concrete test specimen
can be accurately represented by the developed model. The developed model how-
ever lacks the ingredients for representing both strength and stiffness degradation
mechanisms. Finally, the developed material model is implemented in a frame ele-
ment in the purpose of representing the dynamic response of an actual reinforced
concrete column. The numerical analysis of the column in free vibration shows the
capability of the developed material model to create patterns classically associated
to damping effects. In this simulation, damping does no come from some damping
forces added in the dynamic balance equation (e.g. Rayleigh damping) but from
the multi-scale stochastic nonlinear model. Although the underlying model is sto-
chastic, the simulations and results shown are the same for any realization of the
stochastic model.

The main research prospects lie (i) in the enhancement of the model at meso-
scale so that it can represent stiffness and strength degradation mechanisms at
macro-scale; (ii) in the precise characterization of the stochastic model based on
information from lower scales. This will consist in choosing, based on rational
arguments, the type of first-order marginal law and correlation model, as well as
the value of the corresponding parameters (mean, variance and correlation length).
Although in another context, such an interaction between structural and material
scientists has already been appealed for in [6]. Also, these issues could be considered
in the context of stochastic micro-meso scale transition [43, 3, 12].
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[15] André Filiatrault, Éric Lachapelle, and Patrick Lamontagne. Seismic performance of ductile

and nominally ductile reinforced concrete moment resisting frames. I. Experimental study.
Canadian Journal of Civil Engineering, 25:331–341, 1998.

[16] G. N. Frantziskonis. Stochastic modeling of heterogeneous materials – a process for the anal-
ysis and evaluation of alternative formulations. Mech. Mater., 27(3):165–175, 1998.

[17] M. Grigoriu. Simulation of stationary non-gaussian translation processes. J. Engr. Mech.

ASCE, 124(2):121–126, 1998.
[18] J F Hall. Problems encountered from the use (or misuse) of Rayleigh damping. Earthquake

Engineering and Structural Dynamics, 35:525–545, 2006.

[19] C. Howson and P. Urbach. Scientific reasoning. The Bayesian approach. Open Court Pub-
lishing Company, 3rd edition, 2005.

[20] C. Huet. An integrated micromechanics and statistical continuum thermodynamics approach

for studying the fracture behaviour of microcracked heterogeneous materials with delayed
response. Engr. Fracture Mech., 58(5-6):459–463 465–556, 1997.

[21] J. Huh and A. Haldar. Stochastic finite-element-based seismic risk of nonlinear structures. J.

Struct. Engr. ASCE, 127(3):323–329, 2001.
[22] Adnan Ibrahimbegovic. Nonlinear solid mechanics: Theoretical formulations and finite ele-

ment solution methods. Springer, 2009.
[23] Pierre Jehel, Luc Davenne, Adnan Ibrahimbegovic, and Pierre Léger. Towards robust
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