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Résumé
Handwriting learning is a complex and multi-steps process where trainees are supposed to improve several psycho-
motor and cognitive skills. Intelligent tutoring systems are used for non-gestural teaching and are strategy-based,
whereas sensorial-feedback systems (visual, audio, haptic, ...) are widely used for gestural teaching. These ap-
proaches are reactive, improve learning performances, but do not integrate motor skill evolution through time.
We discuss two challenging issues i.e. user activity analysis and adaptive guidance for handwriting learning with
mixed reality systems.
L’apprentissage de l’écriture est un processus complexe impliquant différentes étapes de développement. Lors de
chacune de ces étapes, l’apprenant développe différentes capacités psychomotrices et cognitives. Les systèmes
tuteurs intelligents sont principalement utilisés dans le cadre de l’apprentissage de compétences non gestuelles,
et sont basées sur des stratégies. Les systèmes à retours sensoriels (visuels, sonores, haptiques, ...) sont quant
à eux largement utilisés dans le cadre de l’apprentissage de geste. Ces approches sont réactives, améliorent
l’apprentissage, mais ne prennent pas en compte l’évolution de l’apprenant et de ses capacités au cours du temps.
Nous discutons ici de deux enjeux du développement des systèmes d’apprentissage de l’écriture : l’analyse de
l’activité de l’utilisateur, et le guidage adaptatif pour l’apprentissage de l’écriture en environnement mixte.

Mots clé : Sensorial feedback, adaptation, teaching in
mixed reality, gestural interaction.

1. Introduction

Handwriting is a complex process, defined by van
Galen [VG91] as a "multi-component task implying cog-
nitive, psycho-motor and biophysical processes". It consists
in a motor gesture, where the performer constantly analyzes
and modifies his movement from his perception of his cur-
rent action, and his internal representation of the "ideal" ac-
tion. Furthermore, the writer not only reacts to his action, but
also has a spatial and temporal representation of the shape
he intends to draw. These representations imply a principle
of anticipation, which means that the performer has, besides
modifying in real-time his movement according to his per-
ception, to anticipate his future movements.

Thus, learning handwriting necessitates having a cogni-
tive representation of the shape to draw, and a perception
of the different steps necessary in order to construct this
shape (acceleration, angle, curve). Trainees learn handwrit-
ing through different steps, each step involving various skills
(cognitive, psycho-motor or biophysical [FP67]).

To help a trainee to learn these notions, every system (be
it technological or not) focuses on ways to make the trainee

explore, apprehend the letter and its components. In these
systems, the trainee has to practice at some point, through
observation and/or physically. For the trainee to evaluate his
performance, some systems give their own evaluation (by
grading and/or making the trainee’s performance more ex-
plicit), when other let trainees make their own evaluation.

In this paper, we give an overview of the different ways
existing systems intending to teach handwriting can help
the trainee on these various notions that are exploration and
evaluation. We also focus on the different senses the trainee
has to use to accomplish these tasks. From pedagogical and
cognitive studies conducted about motor skill and handwrit-
ing learning, we propose the idea that such systems would
benefit from adapting themselves to trainees’ activity.

2. State of the art

2.1. Visual exploration

Vision is a powerful yet natural sense that allows different
perceptions such as colors, shapes, and spatial variables such
as depth. Within the framework of learning, vision allows to
create an efficient sensorimotor strategy which will make the
subject able to perceive the object as a perceptual invariant
and/or adjust the strategy according to the constituted invari-
ant.
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When learning handwriting, trainees will go through dif-
ferent phases. At the beginning of learning, movements are
slow and feedback is important. Visual exploration makes
trainees understand various constituents of the shape, and
make a first strategy they will use to create it.

Trainees can understand spatial and temporal constituents
(in other word, the dynamic) of a letter from drawings called
ductus. Ductus are particularly used when learning calligra-
phy, showing how a letter must be constructed. Ductus give
information regarding order and direction, but also speed
and rhythm of writing.

Figure 1: Typography of letter with construction order used
by Bara [BGCSC04].

Previous work has shown the effect of visual explo-
ration in the context of learning the alphabetic princi-
ples [BGCSC04], where visual exploration on ductus, as
well as sequential visual exploration have been tested. This
last experiment revealed no difference between a sequential
visual exploration (a black dot moving following the outlines
of the letter) and a classical visual exploration (ductus, fig.1).
From this statement, Bara concluded that "the most impor-
tant component which can explain the efficiency of this in-
tervention lies in the active motor exploration of letter". In
the late 90’s, studies (Laguna, Blandin [BLP99]) have shown
that motor skill learning is better with physical practice as
opposed to observational learning.

2.2. Haptic exploration

A few studies have been conducted on purely haptic ex-
ploration (without any other sense, even visual). These stud-
ies mostly show poorer results than experiments conducted
on visual or visuo-haptic exploration [FKT02]. However,
haptic feedback can benefit in specific situation where visual
information is unreliable.

2.3. Visuo-haptic exploration

Together with visual exploration, haptic exploration
makes trainees explore the letter through a physical practice.
In [BGCSC04], Bara shows that adding haptic to visual ex-
ploration, by asking trainees to explore the relief letter with
their fingers and run their index finger along its outline in
a fixed exploratory order corresponding to its writing, im-
proved significantly their ability to recognize letters.

In [PGBdB∗07], Palluel-Germain tested another kind of
visuo-haptic exploration of letter to test its impact on hand-
writing acquisition. In this experiment, trainees were seated
in front of a table upon which the letters generated by the
visuo-haptic interface were displayed on a horizontal com-
puter screen. Children had to hold a pen attached to a force-
feedback arm which attracted the pen on the correct direc-
tion if the child veered off his production on the correct tra-
jectory, or did not produce the letter in a correct order (fig.
2).

Figure 2: The circuit game [PGBdB∗07] used to test the
impact of visuo-haptic exploration on handwriting learning.

Trainees were asked to perform two exercises. At first they
had to follow a road (fig. 2A), then they had to hold the pen
which moved "alone" along the outline of a projected letter.
Results have shown that trainees who performed these exer-
cises, compared to another group who wrote letter on a sheet
of paper (without haptic feedback), increased their handwrit-
ing ability with a greater average velocity and a smaller num-
ber of velocity peaks. However, Palluel-Germain argued that
these tasks remain a copy of already-projected letter, which
is not the same process as handwriting, where all the con-
stituents of the letter have to be retrieved from memory.

Many other works have experimented the effect of visuo-
haptic exploration on handwriting learning for the purposes
of learning [MES07,TBL02,BPIKS10,BPK05], rehabilitat-
ing [MMN05], or transferring [BBS12] motor handwriting
skills, showing promising results. In [TBL02], Teo used an-
other force-feedback arm (6 DOFs) to teach Chinese hand-
writing, with the particularity that the trainee’s performance
display is distant from the end of the pen (fig. 3). After train-
ing, subjects exhibited improvements in accuracy and move-
ment smoothness.

Mechanic properties of the pen can also impact learning,
as proven by [BPIKS10] where increasing inertia and vis-
cosity improved children handwriting.

2.4. Dependence to the teacher

In [BPK05], Bayart added the notion of progression to
visuo-haptic exploration, with different level of guidance for
the trainee. These different levels of guidance are illustrated
by the freedom let to the user. In full guidance, the pen
moves "alone" and the trainee only has to hold it. In partial
guidance mode, forces are applied to give directions and to
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Figure 3: Student learning to write the Chinese ideogram
"teacher" [TBL02].

correct errors. Finally, in simple correction mode, forces are
applied only when the trainee makes errors. Bayart added the
notion of progression to avoid the dependence to the teacher,
concern developed especially by Schmidt and Lee in the late
90’s and taken again by Feygin [FKT02]. Feygin went fur-
ther and split motor skill learning into three phases (fig. 4) :
cognitive (where trainees understand what they are supposed
to do), associative (trainees understand how to perform the
task) and autonomous (when they are self-sufficient in per-
forming the task). Any system aiming at assisting trainees
(be it by teaching, tutoring or helping) must take part of the
two first phases. Moreover, additional or augmented feed-
back on the third phase can be detrimental, since in this
phase the task is supposed to be automatized, the performer
using a proactive control based on his internal representation
of motor act [PGBdB∗07].

Figure 4: The three steps of handwriting learning.

Studies conducted on the dependence to the teacher is-
sue are somehow correlated to trainees’ activity. Some theo-
ries [GOT∗98] describe the idea that trainees should perform
on their own as much as possible. This idea does not ban
haptic from any form of learning system, but recommend
to let freedom to the trainee, in opposition to virtual fixture
where the trainee is fully guided, which provide him from
any kind of active performance.

Handwriting (and more generally motor skill) learning be-
ing a multi-steps process, a learning system should provide
accurate level of guidance depending on trainees’ progres-

sion through these steps. In [BPK05], the author takes the ex-
ample of bicycle riding learning : At the beginning trainees
need four wheels and a little push, then they can move with-
out the push, and at the end without the extra-wheels. The
same progression in the level of guidance for learning sys-
tems would remove ; or at least reduce ; the dependence to
the teacher.

2.5. Evaluation

2.5.1. Handwriting recognition

Handwriting recognition has been extensively studied, es-
sentially in order to digitize and make computer systems
able to understand handwritten texts. These fields tackled
the problem of handwriting recognition by using a poste-
riori recognition, meaning that the recognition is done after
the text has been completed. The two possibilities are online
and offline recognition [PS00]. When online recognition al-
lows to retrieve the gesture kinematics, offline recognition
only works like a test scan, and only computes the outlines.
For these reasons, online recognition offers the best results.

However, these solutions for a posteriori recognition do
not match well handwriting learning systems requirements
for recognition. Handwriting learning systems need not only
to recognize a character, but ideally to identify main differ-
ences between trainees’ performances and a model which is
seen by trainees as the objective. If it may be able to compute
this kind of recognition through other paradigms such as pat-
tern recognition, none of the studied systems have shown
this ability in the evaluation. The different kinds of evalua-
tion in current systems are developed in the following parts
of this paper.

2.5.2. Quantitative evaluation

Most handwriting learning systems use quantitative eval-
uation through algorithms such as Hidden Markov Models
or Dynamic Time Warping [KP01] to evaluate trainees’ per-
formances. The idea behind the use of these algorithms is
to compute the distance from the trainee’s performance to a
model which is seen as an "ideal" (fig. 5).

If distance between a trainee’s performance and a model
can be an indicator in the evaluation of this performance
(fig. 5), numerous factors cannot be evaluated by this method
such as rhythm or fluidity. Furthermore, this method cannot
identify any error. A trainee who wrote a "perfect" letter with
one big error that makes it unreadable can theoretically ob-
tain a better score than another trainee who wrote a readable
letter with a lot of small errors.

2.5.3. Qualitative evaluation

In [TBL02], Teo proposes to add smoothness evaluation
to distance measuring. To measure smoothness, Teo counts
the number of crossing between two lines representing the
raw path and the low-pass filtered path. Moreover, they eval-
uate the trainee’s motion (timing of the movement at dif-
ferent part of the stroke) by sampling the reference and the
trainee’s strokes, and expressing the distance from the start
to every point along the path as a function of arc length. The
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Figure 5: The DTW distance for various instances of the "i"
Japanese character [MES07].

distance between the two motions is then computed from the
error between the two curves. Following the same principle,
they evaluate the vertical forces applied on the pen. From
these results, they compute a final score using a linearly de-
creasing function.

By assessing various components of handwriting gesture,
these methods (similar evaluations can be found in other
studies [FKT02, ST05]) give a more precise evaluation of
a trainees’ performances. However, these methods only fo-
cus on trainees’ last gesture, which may not be an exhaustive
factor.

2.5.4. Cognitive evaluation

Various experiments have studied the impact of cog-
nitive factors such as attention or focus on handwrit-
ing performances. If these studies mostly show no di-
rect correlation between these cognitive factors and hand-
writing [TMWL06], they mostly rely on participants who
already master handwriting gesture, which according to
[FP67], mean that they passed the automation step of the
learning process, and hence no longer need to give the same
degree of attention as they used to need when they were
in the early steps of the learning process. For these rea-
sons, such results should, in our context, be taken with cau-
tion. Indeed, pedagogical studies on the early steps of motor
skill learning show the impact of sensitive perception (which
forces trainees to be focused) on learning [BLP99].

As we are taking the learning process on its whole, we
cannot underestimate the impact of attention or focus on
learning. Thus, we need a way to evaluate these factors. Even
though no studied systems have explored this kind of evalu-
ation, current technological solutions such as the eye-tracker
should make it possible to give some precious indicators
about trainees’ cognitive state.

3. Challenges

Current systems improve handwriting learning. However,
no study has been able to exhibit the impact of this im-
provement for each step of the learning process. As trainees

develop different skills in each step and thus need differ-
ent feedback (modality, temporality, level of explanation),
and as existing systems does not modify their behaviour
accordingly, we can hypothesize that handwriting learning
systems effect can benefit from an ability to adapt their be-
haviour to trainees. An adaptation resulting in various levels
of feedback for the trainee would reduce his dependence to
the learning system. Moreover, taking into account trainees
cognitive state in the adaptation model might also improve
the results. In this part, we discuss two areas of research
which would improve handwriting learning systems impact
on trainees’ learning according to our hypothesis. Develop-
ing all or part of these areas, and experiment on real trainees,
would allow to validate (or invalidate) the fact that handwrit-
ing learning systems would benefit from more accurate rep-
resentation of trainees’ activity on the one hand, and from
adapting its feedback to this vision of trainees’ activity on
the other hand. From these results, it would be interesting
to experiment a potential extension of these results to motor
skill learning, and more generally to learning.

3.1. User activity analysis

From previous works studied earlier in this document, we
can give an overview of main constituents of handwriting
which would draw a good picture of handwriting activity
(fig. 6).

Figure 6: Constituents of handwriting activity.

3.1.1. Cognitive recognition

More than previously studied variables, we added the
trainee’s cognitive state, which would rely on a measure of
his focus, and on a possible discontinuity in performances
which might suggest that he is no longer focused on his task.
Indeed, when humans can take into account the context when
evaluating a performance (a child is bored or does not want
to perform the task, and hence deliberately lower the quality
of his performance), a system cannot. Taking into account
performance discontinuities may enable systems to recog-
nize a performance that do not show the true level of the
trainee.

3.1.2. Shape recognition

If these criteria can be measured in real-time, a posteri-
ori indicators such as regular errors would improve trainees’
activity representation (fig. 7).

c© AFRV 2014.
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Figure 7: A regular error on the letter "a" [VS97].

3.1.3. Activity profile

From these real-time and a posteriori indicators, the sys-
tem can build a profile of a trainee’s activity. This profile
should depict the trainee’s level, and hence evaluate his po-
sition within the learning process illustrated in figure 4.

3.1.4. Evolution

Instead of erasing previous profile to replace it with the
current, it may be interesting to keep these profiles in order
to add a new evaluation criterion : the evolution of perfor-
mance.

3.2. Adaptive guidance

3.2.1. Level of guidance and diversified feedback

As previously stated in this document, studies have shown
that learning by practice show better results than learning by
observation. In other words, active learning show better re-
sults than passive learning. However, these results are not
fully applicable with handwriting learning, trainees needing
elicit feedback in the first stage of the process (like the pro-
cess of bicycle riding learning). For this reason, several at-
tempts have been made to propose different levels of guid-
ance to fit the trainee’s level. These systems do not use adap-
tive guidance but adaptable guidance [OR97], the difference
being that control on the level of guidance is held by the user
(in our case the trainee, or a human teacher who helps him
choose the appropriate level of guidance), not the system.
Adaptability only allows systems to provide a few levels of
guidance, which cannot suit trainees’ needs (fig. 8).

Figure 8: Difference between level of guidance provided by
systems and trainees’ needs.

To provide trainees with appropriate feedback throughout
his learning process, a system should be able to give diver-
sified feedback. A system can provide a diversity of feed-
back by modifying feedback modality (visual, visuo-haptic,
audio, ...), level of explicitness (from obvious to scarcely no-
ticeable, fig. 9) or feedback temporality (static or dynamic).

If further studies would be needed to clarify the impact of
feedback modalities, explicitness and temporality on learn-
ing, it has been proven [BBS12, WW80, BPK05] that mod-
ifying these aspects of feedback make trainees improve dif-
ferent skills, and hence impact learning positively.

Figure 9: Two levels of explicitness for a visual guidance.

By giving control of the level of guidance to the system,
adaptivity can increase the diversity of feedback provided to
trainees, and hence provide more tailored guidance. How-
ever, choosing adaptivity over adaptability add a new com-
plexity : the adaptation strategy.

3.2.2. Adaptation strategies

If adaptivity allows the system to give numerous levels
of feedback, it is necessary to formulate an adaptation strat-
egy. In other words, the system has to wonder when it has to
give which level of feedback. From an accurate analysis of a
trainee’s activity, it becomes possible to create stages where
level of guidance has to be changed (fig. 10).

Figure 10: Level of guidance decrease depending on stages
based on global evaluation of the trainee’s activity.

This strategy, based on a global evaluation computed
from various variables as illustrated in figure 6, might seem
naive. Indeed, as trainees develop their skills (rhythm, curve,
smoothness) differently, a more precise way to adapt to a
trainee’s activity would be to measure the evolution of these
skills separately, and deciding stages accordingly (fig. 11).

In this working hypothesis, the system detects that the
trainee is improving his rhythm and curve abilities. Rhythm
ability improves fast, but stagnates from t1. However, at t1
the trainee is improving his ability to write curves. Hence
the system chooses to stay at this stage even though rhythm
is no longer improved. At t2, abilities for rhythm and curves
both stagnates, hence the system chooses to change to the
next level of guidance.

Another strategy which would make the system choose

c© AFRV 2014.
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Figure 11: Analysis of trainee’s rhythm and curve ability at
a specific stage.

the level of guidance would be to use scenarios. However, as
trainees learn very differently, it would appear to be difficult
to choose the level of guidance without taking into account
trainees’ activity. For this reason, we did not develop this
possibility here.

4. Conclusion

In this paper, we gave a state of the art regarding handwrit-
ing learning systems. If previous studies results show that
these systems improve learning performances compared to
traditional learning, we make the assumption that they have
not reach their full potential due to a lack of levels of guid-
ance and diversified feedback, which make trainees depen-
dent to the teacher/system. Moreover, they do not take into
account that motor skill learning processes are multi-steps,
and hence trainees have different needs regarding guidance.
From this assumption, we present two main challenges that
would make it possible to model learning systems more tai-
lored to trainees : activity analysis and adaptive guidance.
For each of these challenges, we propose several areas of re-
search : cognitive and errors recognition as well as dynamic
activity profile to make systems have an accurate representa-
tion of the trainee’s activity over time ; adaptation based on
stages computed from global or local evaluations.

4.1. Future work

Based on these areas of research, we are currently work-
ing on a model which contains several sub-models for ana-
lyzing trainees’ activity (gestural as well as cognitive) over
time and adapting decision to this dynamic analysis in order
to provide diversified feedback. Along with this model, we
are creating a platform (similar to fig. 12) which will make
it possible to test our model.

Figure 12: A similar platform [ST05].
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