
HAL Id: hal-01131424
https://hal.science/hal-01131424

Submitted on 16 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A reputation-based approach using collaborative
indictment/exculpation for detecting and isolating

selfish nodes in MANETs
Lotfi Zaouche, Sofiane Aitarab, Anfel Khireddine, Mawloud Omar, Enrico

Natalizio, Abdelmadjid Bouabdallah

To cite this version:
Lotfi Zaouche, Sofiane Aitarab, Anfel Khireddine, Mawloud Omar, Enrico Natalizio, et al.. A
reputation-based approach using collaborative indictment/exculpation for detecting and isolating self-
ish nodes in MANETs. International conference on advanced Networking, Distributed Systems and
applications (INDS 2014), Jun 2014, Béjaia, Algeria. �hal-01131424�

https://hal.science/hal-01131424
https://hal.archives-ouvertes.fr

A reputation-based approach using collaborative
indictment/exculpation for detecting and isolating selfish

nodes in MANETs
Lotfi Zaouche(1), Sofiane Ait Arab(2), Anfel Khireddine(3),

Mawloud Omar(3), Enrico Natalizio(1), Abdelmadjid Bouabdallah(1)
(1) Heudiasyc Lab - UMR CNRS 7253, Université de Technologie de Compiègne, <name.surname>@hds.utc.fr

(2) LISSI Lab - Université de Paris Est Créteil, sofiane.aitarab@gmail.com
(3) LIMED Lab – Université de Bejaia, Algérie, {khireddine.anfel@gmail.com, mawloud.omar@gmail.com}

Abstract—Collaboration between nodes in Mobile Ad hoc
Networks (MANETs) is very important for the proper
functioning of the network. This is an assumption that has to be
fulfilled in the design of routing protocols. However, this is not
always true since some nodes could misbehave in order to have
some benefits or simply avoid wasting resources. In this paper we
question this assumption that does not take into consideration the
bad behavior of nodes involved in the routing protocols. We
analyze the characteristics of the existing solutions, and we
propose a reputation-based mechanism that isolates selfish nodes
based on control packets generated as a result to nodes’
observations on the behavior of other nodes. We propose a
mathematical framework to increase/decrease the reputation of a
node depending on the situation and the observation condition.
We show via simulation that our solution achieve remarkable
improvements in the delivery rate of packets, more than
satisfying results concerning false positive and false negative, and
it shows that the overhead caused by our system is negligible.

Keywords—MANET; selfish behavior; reputation system;

I. INTRODUCTION

In Wireless Sensor Networks (WSN), collaboration
between nodes is essential. If a source and destination of data
flow are not in line of sight, the information should be
transmitted along intermediate nodes, along a path established
and maintained by the network. Routing in such conditions
becomes a complex task, especially as energy resources are
limited, and nodes can legitimately become selfish and refuse
to route other nodes’ packets to preserve their energy. The need
for cooperation between nodes to ensure the functioning of the
network conflicts with the individual interest of each node to
spend its energy solely for data for which they are the source or
the destination. We can identify two types of non-cooperative
nodes: faulty/malicious nodes and selfish nodes.
Faulty/malicious nodes belong to the class of nodes that are
either defective and therefore cannot follow a well-defined
protocol, or intentionally malicious, thus trying to attack the
system [5].

Although the problem of selfishness is a form of passive
attack, it still causing a negative impact on network’s
performances. Numerous studies have been performed to
evaluate the impact of the presence of selfish nodes in an ad
hoc network [6, 7, 9]. The non-cooperation of a node implies
that packets passing through this node will be lost. The
mentioned problem calls for solutions that force the selfish
nodes to cooperate in the network and if necessary, excluding
them. Such solutions would greatly increase the network
performance. In this work, we are interested in the study of the
proposed problem of selfishness in mobile ad hoc networks.

Our contribution is summarized in the following points: We
propose an improvement of the TWOACK scheme [3], aimed
at considerably decreasing the number of control packets. Also,
the TWOACK scheme is only able to detect a selfish link,
whereas our solution detects the selfish node. We propose

reward/punishment model for cooperative/selfish nodes by
taking into consideration all nodes that participate in the
deliverance of a packet.

The rest of the paper is organized in four sections. In
Section II, we present the state of the art of solutions for the
problem of selfishness. In Section III we present our solution
approach. Section IV is devoted to the presentation of the
simulation results. Section V concludes the paper.

II. RELATED WORK

Since the transmission of a message imposes a cost (energy
and other resources) to the nodes, a selfish node will need an
inducement or reward for transmitting messages from others
[8]. There are two types of solutions to encourage selfish nodes
in ad hoc mobile network to cooperate: credit-based systems
and reputation-based system.

A. Credit-based system

Systems based on credit provide incentives to nodes to
ensure network functionality. To achieve this virtual goal, a
payment system may be implemented. Nodes are paid to rely
other nodes’ packets. This kind of system can be implemented
using two models: the Packet Purse Model (PPM), and Packet
Trade Model (PTM) [2].

In [8], the authors proposed an interesting solution called
SPRITE. When a node receives a message, it keeps a receipt of
this message, then when it has a fast connection to the Credit
Clearance Service (CCS) it reports its receipts of the messages
it received/transmitted. CCS then determines the charge and the
credit of each node involved in the transmission of the message.

In this type of solution, we are facing new problems such as
the centralization/decentralization of the paying authority, false
receipts and sometimes the solution needs to address not only
software issues but also hardware ones.

B. Reputation-based System

A reputation-based system relies on the observations of
nodes to other nodes. Since one observation does not allow a
direct and objective measure of malicious nodes, it is necessary
that each node maintains a degree of confidence in respect of
all the nodes it has observed. The value of this confidence is
influenced by observations on the behavior of nodes. In this
type of system, the reputation calculation is either performed
locally at each node, or by the distribution of reputations stored
in the nodes within the network.

TWOACK scheme [3] is based on reputation. A node that
transmits/broadcasts a message, is informed that the following
node has completed its task by forwarding the message at his
turn, by receiving from the two hops next node a special
acknowledgment called TWOACK packet. Each node that
receives a message must send an acknowledgment to the node
two hops back in the message path. The message path is the
path that has been given by the routing protocol. To detect a
misbehaving node, the source maintains a list of IDs of

messages that he has not received TWOACK packet yet, and
each node maintains a unique list of data structure for each
transmission link that it uses.

S-TWOACK (Selective-TWOACK) [3] and 2ACK [4]
schemes aims at reducing network congestion caused by the
large number of TWOACK packets sent. The first is inspired
by the principle of the sliding window, acknowledging a certain
number of well received messages. The second one
acknowledges only a part of them, and includes a certification
mechanism for the security of its packets.

In respect of the presented solutions, our proposal consists
in optimizing the control packets. We do not generate control
packet until something does not work in the message delivery,
whereas TWOACK generates control packet during all
transmissions. Consequently, the more selfish nodes are
discovered, the less control packets are generated.

III. PROPOSED APPROACH

Since it is the less constraining in the architectural design,
and there is no need to have special hardware, we choose to
work on Credit-based systems to force the nodes to participate
with other nodes, in order to keep a good reputation and keep
being well served by others.

A good solution should: (i) guarantee the detection of
selfish nodes, (ii) penalize the selfish nodes, and avoid, in the
routing phase, those excluded because they do not cooperate
anymore (iii) be able to know if it is necessary to give a second
chance to a node who wants to repent.

A. Assumptions

We assume that the links are bidirectional. We also assume
that a certification service public key is set up and used to
encrypt the messages circulating in the network, including
messages that are unique to our system, and guarantee data
integrity.

B. Operating details of our approach

The principle of our approach is quite simple, and relies on
multi-hop acknowledgment. Several studies justify and prove
that two hops is an efficient number of hops for the
acknowledgments [3, 4]. Based on these studies, we choose to
make two hops acknowledgment, because it will make the
indictment of a node more precise than in the case with higher
number of hops. Messages used by the system are described in
Table I.

TABLE I. MESSAGES LIST
Message Definition

2HopAck Message sent by a node Ni to Ni-2 node.
SelfExculpation

Packet sent to the source by the last node that tried to
transmit the message to report the refusal of a node to
transmit the message,

Selfish_Detection

Packet sent by a node that does not receive the
exculpation of his successor, thus accusing him of
being selfish. It must be said here that if for example
the message is sent by a node Ni, then the node Ni-1
will not accept to transmit that packet only if Ni+1 has
exculpated Ni by sending a 2HopAck packet to him.

SelfishAlert

Packet sent in order to report the detection of a selfish
node.

Knowing that we have made the assumption that a
certification service is implemented in the network, 2HopAck
and SelfExculpation messages will be encrypted to ensure their
integrity and authenticity.

Let consider that a node Ns wants to send a message to Nd.
Ns builds a path to Nd by using any routing protocol, but
avoiding the known selfish nodes. By sending this packet, all
nodes that are on its path will wait for an acknowledgement of
the destination for an Ack_Delay time. Upon the reception of
the acknowledgment is received, each node increases the

reputation of following nodes in the path. If the timeout
Ack_Delay expires and no acknowledgment is received, each
node Ni involved in the message transfer, send a 2HopAck
message, to the node Ni-2, who was two hops back in the
message path to prove that the node Ni-1 who was the
intermediate is innocent. When the node Ni-2 receives this
message, it will increase the reputation of the nodes Ni-1 and Ni.
When after a delay, Exculpation_Delay, the node Ni sees that
the node Ni+1 did not send the 2HopAck packet to node Ni-1, it
exculpates itself by sending the previous nodes a package
SelfExculpation and hold Ni+1 responsible for the failure of the
transmission of the message, and decreases its reputation.
Nodes receiving this message start increasing the reputation of
nodes that transmitted the message to the node Ni, and since
they do not know which node caused the problem, they will
penalize the two nodes Ni and Ni+1, by decreasing the reputation
of the node that seems most selfish. If after a delay, a node Ni
does not receive the 2HopAck packet from node Ni+2, and the
node Ni+1 does not proclaim its innocence, then it will be
indicted by the node Ni, and will be signaled to the source node.
All nodes in the path receiving this indictment will reduce the
reputation of node Ni+1, and increase the reputation of other
intermediate nodes. In addition, when a node receives a packet,
it will check the message path, and will increase the reputation
of all intermediate nodes from the source to him.

Each node holds a table named TrustTable that stores the
values of reputation he has for other nodes. Whenever a node
obtains an observation about a node, it updates the value of its
reputation if it has an entry in the table for this node, if no entry
in the table corresponds to this node, then it will create a new
entry for this node and save the value inside. Initially, each
node gives an initial reputation to neighboring nodes. In
addition, each node holds a data table called PostTable, which
stores the identifier of the messages it transmits, and the path it
takes. When the destination sends an acknowledgment to the
source to confirm the receipt of a message, all nodes that
receive this acknowledgment, in their PostTable checks if there
is a message that matches the packet acknowledged, then
deletes the corresponding line. And nodes do the same when
they receive SelfExculpation or SelfishDetection packets. If a
timeout after no acknowledgment is received for a message, the
line for this message will be deleted after it has sent the
message to the node 2HopAck two hops back, as explained
above to exonerate one hop rear's node.

In order to more quickly detect selfish nodes, it is preferable
that the network nodes collaborate by exchanging knowledge
on the behavior of other nodes. In order not to clutter the
network messages, the nodes transmit the values of the
reputation of a node only if it changes by a certain threshold.
The value of the threshold should be well studied; a value too
small will make the collaboration stronger and therefore more
effective, but will increase the load on the network, and will be
a waste of energy to the nodes. Also, taking a bigger value will
reduce the network load, but it will also reduce nodes
collaboration, making the detection of selfish nodes slower.

C. Reward and punishment computation

Formulas’ parameters and functions are detailed in Table II.
TABLE II. PARAMETER LIST

Parameter/function Definition
RSD Positive value to add to the reputation of a

node having transmitted a message.
PNSD Positive value to subtract of the reputation

of a node as a punishment for failing to
transmit a message.

APNSD Positive to subtract also the node that seems
to be the selfish node value.

RSM Positive value to add to the reputation of a
node as a reward for reporting the bad
behavior of a node.

RST Positive value to add to the reputation of a
node as a bonus for sending 2HopAck
packet.

lastBroadcastedTrusti(j) The last value of reputation had broadcast
the node i about the node j.

Ack_Delay

The time that a node has to wait for
acknowledgment of the message he
collaborated to transmit. After that, the node
Ni launches Exculpation_Delay.

Exculpation_Delay

The time node Ni must wait for the
2HopAck packet from Ni+1 toward Ni-1.
Beyond this period, the node Ni sends a
packet SelfExculpation.

Others_Exculpation_Delay

The time a node Ni must wait 2HopAck
packet from node Ni+2 exculpating the node.
Ni+1.

 ���������	
 The initial reputation of each node.
 ���������	
 Change threshold that must wait before

broadcasting the new reputation of a node.
Threshold The threshold for which a node is

considered selfish if it goes below it.
WitnessRate The required rate of nodes accusing a node

to be selfish, to be considered as such
throughout the network.

MPS(i, j) A function that returns 1 if the reputation of
the node j is greater than those of node i,
and returns 0 otherwise.

Trusti(j) A function that returns a reputation of node j
that holds node i, which is stored in the
TrustTable.

Upon receipt of a reputation value of a node, a new
reputation value is calculated for this node, taking into account
the value received and the value we already had. To avoid
defamatory values that distort the reputation of the nodes, we
can take into account the values received with a low impact
factor. We apply the following formula to calculate a new value
of reputation taking into account the values received:

�
������� =
�� ∗ �
������� + ∑
��������� ��!��"#$

$%& '
� + #

Where (is the factor that is given to the reputation we have
already calculated previously, receivedReputaion is the value
of reputation received from any node.

When a node detects that the reputation of another node has
fallen below a certain threshold, it broadcasts a packet named
SelfishAlert, containing its identity and the identity of the
accused node. Each node receiving this message will save it. If
at a certain time you get a number of accusation for a given
node, equal to WitnessRate, then this node will be considered
selfish by all network nodes. This technique speeds up the
process of detecting selfish nodes in the network.

The WitnessRate parameter is very important. Indeed, high
levels reduce the rate of false accusations caused by defamatory
information sent by malicious nodes, but the detection of
selfish nodes becomes longer. A smaller rate ensures that the
detection of selfish nodes is faster, but false positive rate could
increase.

Ni rewards Ni+1 for sending the message to Ni+2 as follow:
�
�����)�*&� = �
�����)�*&� + �+, (1)

And rewards Ni+2 for confirming it as follow:
�
�����)�*-� = �
�����)�*-� + �+� (2)

When Ni receives a message from Ni-1, it applies:
�
�����)$' = �
�����)$' + �+,, ∀	01	 ∈ {04, 06,… ,0894} (3)

A node penalizes his successor after it did not send
2HopAck packet, using the following formula:
�
�����)�*-� = �
�����)�*-� − 	<)+, (4)

When a node receives a SelfExculpation packet of a node k,
it executes:
�
�����)$' = �
�����)$' + �+,, ∀	01	 ∈ {08*6, 08*=, … , 0>94} (5)

�
�����)?� 	= 	�
�����)?�	–	�1	 −	�
�����)?�'	 ∗ 	<)+,	 −
B<+�)? ,)?*&�	 ∗ 	C<)+,	 + 	B<+�)?*&,)?� 	∗ 	�+B

 (6)

�
�����)?*&� = �
�����)?*&� − �1 − �
�����)?*&�' ∗ <)+,
−	B<+�)?*&,)?� 	∗ 	C<)+,

 (7)

If we receive an acknowledgment of the destination these
will be applied to each node Ni path:
�
�����)$' = �
�����)$'	+ �+,, ∀	01	 ∈ {08*4, 08*6, … , 0D94} (8)

�
�����)�*-� = �
�����)�*-�	+ 	�+� (9)

If no exoneration is sent neither by the node Nk itself nor by
the node that follows it, a Selfish_Detection packet is sent, and
the reputation of node Nk will be reduced by all nodes in the
path receiving this message by applying formula (4).

IV. PERFORMANCE EVALUATION

 In this section we will describe the simulation
environment and we will show the simulation results.

A. The simulation environment

For our simulation campaigns, we implemented TWOACK
and our protocol on Java. We simulated an ad hoc network with
50 mobile nodes. Selfish nodes are randomly selected from
these 50 nodes with a percentage ranging from 0 to 40% in
steps of 5%. These nodes move according to the Random
Waypoint model. The maximum speed of a node is 15 m/s and
the maximum idle time is 3 s. Network nodes have the same
range that is equal to 150 meters. The deployment surface of
nodes is 1000 * 1000 m². Each node sends a message according
to Poisson distribution with parameter E=10 ms. Finally, the
simulation time is 300 seconds, and we repeat it 50 times each
time we increment the selfish nodes rate in the network. To
show that we are tolerant to collisions, we assume that the
packets loss rate is 5%. As shown in [10], this packet loss rate
is sufficient. Table III. summarizes these parameters.

TABLE III. SIMULATION PARAMETERS
Parameter Value

Number of nodes 50
Rate selfish nodes 0-40 % (step 5%)
Maximum Speed 15 m/s
Maximum idle time 3 s
Radius increased 150 m
Width of the area 1000 m
Length of the area 1000 m
Simulation time 300 s
 ���������	
 0.75
Threshold 0.25
RSD 0.1
PNSD 0.15
APNSD 0.05
RST 0.05
RSM 0.03
 ���������	
 0,2
WitnessRate 5 %

The important thing to show here as an input, is the rate of
selfish nodes in the network, and the time to. Concerning the
output, first, we will show the delivery ration of messages.
Right after, we will present the overhead caused by the control
packet generated by our protocol.

B. Results and discussion

 Impact of selfish nodes on message delivery

As shown in Fig. 1, our approach gives excellent results;
indeed the lower bound of the success rate of message delivery
exceeds 86%. Initially, in the absence of selfish nodes in the
network, the rate of rescues message reaches 97%, then
increasing the rate of selfish nodes in the network, the delivery
rate decreases to 86% when the selfish node rate reaches 40%.
And we can see that TWOACK degrades significantly when
the selfish rate increases. This is due to the fact that they do not
discover the selfish note, but the failing link. So whenever a
selfish node moves and create a new link with another node, it
can behave as it likes.

When we fix the selfish rate to 40% as shown in Fig. 2, we
have at the beginning a message delivery rate of 86% because
we have not yet detected the selfish nodes, and as and as these
nodes are selfish and discovers that avoids, we the message
delivery rate increases till 95%, and it corresponds exactly to
the 5% of assumed collision. Meanwhile, TWOACK stabilizes
between 40 to 45%.

Fig.1: Packet delivery ratio

Fig.2: Packet delivery ratio over time

Control packets overhead on the network

 The Fig. 3 shows the evolution of the protocol overhead
over time. This is important to show to argue if our solution is
too heavy to be interesting or not. Unfortunately, we did not see
this kind of figure in the studied work. We can see that our
solution is a very light one comparing to TWOACK. We do not
exceed 4% of the network traffic, and we can do less than 1%
in favorable condition. In fact, what makes control packets in
our solution does not reach 0% is only caused by failing links,
false detections, and collisions. Concerning TWOACK, we see
that the control packet decreases, but this is only because the
packets do not reach them destination and therefore no control
packets are generated.

Fig.3: Routing overhead

Fig.4: Routing overhead over time

In the Fig. 4, we can see that the two protocols have
stabilized over time. Our solution stabilizes in 1.3% and
TWOACK in 8.7%. Another time, as we said before, we do not
0% only because of false detections, collisions and link failing.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach for detecting selfish
nodes. The simulation results that we obtained were largely
sufficient, and have proven the effectiveness and robustness of
our approach. As noted in the previous section, our approach
goes beyond 90% regarding the detection rate of selfish nodes,
which avoids these and offer a delivery rate high enough
messages (more than 91%). The evaluation of our approach
with respect to time clearly demonstrates its advantages. In fact
as the time passes, the rate of successful delivery of messages
increases, and the message loss decreases. When 40 of network
nodes are selfish, the initial packet delivery ratio is 86% of all
the sent packets, which increases to 95% over time.

REFERENCES
[1] H. Miranda and L. Rodrigues "Preventing selfishness in open mobile ad

hoc networks". 23rd International Conference on Distributed Computing
Systems Workshops, May 2003.

[2] S. D. Khatawkar, U. L. Kulkarni, K. K. Pandyaji "Detection of Routing
Misbehavior in MANETs", International Conference on Computer and
Software Modeling IPCSIT vol.14 IACSIT Press. Singapore 2011.

[3] Kash yap Balakrishnan, Jing Deng, Pramod K. Varshney. "TWOACK:
Preventing Selfishness in Mobile Ad Hoc Networks", Wireless
Communications and Networking Conference, IEEE, Vol. 4, March 2005.

[4] Kejun Liu, Jing Deng, Pramod K. Varshney, and Kashyap Balakrishnan
«An Acknowledgment-based Approach for the Detection of Routing
Misbehavior in MANETs". IEEE Transactions on Mobile Computing, Vol.
6, Issue: 5, May 2007.

[5] S. Marti, T. Giuli, K. Lai, and M. Baker, "Mitigating routing
misbehavior in mobile ad hoc networks». In Proceedings of the Sixth
International Conference on Mobile Computing and Networking. Boston
2000.

[6] Satyanarayana Vuppala, Alokparna Bandyopadhyay, Prasenjit
Choudhury, Tanmay De. "A Simulation Analysis of Node Selfishness in
MANET using NS-3". Int. J. of Recent Trends in Engineering and
Technology, Vol. 4, No. 1, November 2010.

[7] Shailender Gupta, C. K. Nagpal, Charu Singla. “Impact of selfish node
concentration in manets”. International Journal of Wireless & Mobile
Networks (IJWMN) Vol. 3, No. 2, April 2011.

[8] Shen Zhong, Jiang Chen, Yang Richard Yang, "Sprite: A Simple, Cheat-
Proof, Credit- Based System for Mobile Ad-Hoc Networks". Twenty-
Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies. vol. 3, April 2003.

[9] Sundararajan, A.Shanmugam. "Modeling the Behavior of Selfish
Forwarding Nodes to Stimulate Cooperation in MANET", International
Journal of Network Security & Its Applications (IJNSA), Vol 2, No. 2,
April 2010.

[10] Constantinos Dovrolis, Parameswaran Ramanathann, "Proportional
differentiated services, part II: loss rate differentiation and packet
dropping", Eighth International Workshop on Quality of Service, June
2000.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Percentage of Misbehaving Nodes (%)

P
ac

ke
t D

el
iv

er
y

R
at

io

Our solution
TWOACK

0 0.5 1 1.5 2 2.5 3

x 10
5

40

45

50

55

60

65

70

75

80

85

90

95

Time (ms)

P
ac

ke
t D

el
iv

er
y

R
at

io
 P

ro
gr

es
s

Our solution
TWOACK

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Percentage of Misbehaving Nodes (%)

P
ro

to
co

l O
ve

rh
ea

d

Our solution
TWOACK

0 0.5 1 1.5 2 2.5 3

x 10
5

0

1

2

3

4

5

6

7

8

9

10

Time (ms)

P
ro

to
co

l O
ve

rh
ea

d
P

ro
gr

es
s

Our solution
TWOACK

