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Abstract

In this paper, a control volume finite element scheme for the capture of spatial patterns for a
volume-filling chemotaxis model is proposed and analyzed. The diffusion term, which generally
involves an anisotropic and heterogeneous diffusion tensor, is discretized by piecewise linear
conforming triangular finite elements (P1-FEM). The other terms are discretized by means of an
upstream finite volume scheme on a dual mesh, where the dual volumes are constructed around
the vertices of each element of the original mesh. The scheme ensures the validity of the discrete
maximum principle under the assumption that the transmissibility coefficients are nonnegative.
The convergence analysis is based on the establishment of a priori estimates on the cell density,
these estimates lead to some compactness arguments in L2 based on the use of the Kolmogorov
compactness theorem. Finally, we show some numerical results to illustrate the effectiveness of
the scheme to capture the pattern formation for the mathematical model.

Keywords: Finite volume scheme, Finite element method, Volume-filling, Chemotaxis,
Heterogeneous anisotropic tensor, Patterns.

1. Introduction

Patterns are the solutions of a reaction-diffusion system which are stable in time and station-
ary inhomogeneous in space, while pattern formation in mathematics refers to the process that,
by changing a bifurcation parameter, the spatially homogeneous steady states lose stability to
spatially inhomogeneous perturbations, and stable inhomogeneous solutions arise.

The pattern formation has been successfully applied to bacteria (see e.g. [1]) where we
investigate specific and necessary parameters to obtain stationary distribution of the disease.
Also, it has been applied to skin pigmentation patterns [2] to understand the diversity of patterns
on the animal coat pattern, and many other examples.

The pattern formation depends on two key properties: the first is to apply the seminal idea of
Turing [3] for a reaction-diffusion system and consequently determine the bifurcation parameters
for the generation of stationary inhomogeneous spatial patterns (also called Turing Patterns), and
the second is to apply a robust scheme to numerically investigate and capture the generation of
spatio-temporal patterns. One of the most popular reaction-diffusion systems that can generate
spatial patterns is the chemotaxis model.
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Saad)



Chemotaxis is the feature movement of a cell along a chemical concentration gradient either
towards the chemical stimulus, and in this case the chemical is called chemoattractant, or away
from the chemical stimulus and then the chemical is called chemorepellent. The mathematical
analysis of chemotaxis models shows a plenitude of spatial patterns such as the chemotaxis mod-
els applied to skin pigmentation patterns [4, 5] that lead to aggregations of one type of pigment
cell into a striped spatial pattern. Other models have been successfully applied to the aggre-
gation patterns in an epidemic disease [6], tumor growth [7], angiogenesis in tumor progression
[8], and many other examples. Theoretical and mathematical modeling of chemotaxis dates to
the pioneering works of Patlak in the 1950s [9] and Keller and Segel in the 1970s [10, 11]. The
review article by Horstmann [12] provides a detailed introduction into the mathematics of the
Keller-Segel model for chemotaxis.

In this paper, we present and study a numerical scheme for the capture of spatial patterns
for a nonlinear degenerate volume-filling chemotaxis model over a general mesh, and with in-
homogeneous and anisotropic diffusion tensors. Recently, the convergence analysis of a finite
volume scheme for a degenerate chemotaxis model over a homogeneous domain has been studied
by Andreianov et al. [13], where the diffusion tensor is considered to be proportional to the
identity matrix, and the mesh used for the space discretization is assumed to be admissible in
the sense of satisfying the orthogonality condition as in [14]. The upwind finite volume method
used for the discretization of the convective term ensures stability and is extremely robust and
computationally inexpensive. However, standard finite volume scheme does not permit handling
anisotropic diffusion on general meshes, even if the orthogonality condition is satisfied. The rea-
son for this is that there is no straightforward way to apply the finite volume scheme to problems
with full diffusion tensors. Various “multi-point” schemes, where the approximation of the flux
through an edge involves several scalar unknowns, have been proposed, see for e.g. [15, 16] for the
so-called SUCHI scheme, [17, 18] for the so-called gradient scheme, and [19] for the development
of the so-called DDFV schemes.

To handle the discretization of the anisotropic diffusion, it is well-known that the finite
element method allows for an easy discretization of the diffusion term with a full tensor. However,
it is well-established that numerical instabilities may arise in the convection-dominated case. To
avoid these instabilities, the theoretical analysis of the control volume finite element method
has been carried out for the case of degenerate parabolic problems with full diffusion tensors.
Schemes with mixed conforming piecewise linear finite elements on triangles for the diffusion
term and finite volumes on dual elements were proposed and studied in [20, 21, 22, 23, 24] for
fluid mechanics equations, are indeed quite efficient.

Afif and Amaziane analyzed in [23] the convergence of a vertex-centered finite volume scheme
for a nonlinear and degenerate convection-diffusion equation modeling a flow in porous media and
without reaction term. This scheme consists of a discretization of the Laplacian by the piecewise
linear conforming finite element method (see also [25, 26]), the effectiveness of this scheme was
tested in benchmarks of FVCA series of conferences [27]. Cariaga et al. in [24] considered the
same scheme for a reaction-diffusion-convection system, where the velocity of the fluid flow is
considered to be constant in the convective term.

The intention of this paper is to extend the ideas of [13, 23, 24] to a fully nonlinear degenerate
parabolic systems modeling the effect of volume-filling for chemotaxis. In order to discretize this
class of systems, we discretize the diffusion term by means of piecewise linear conforming finite
element. The other terms are discretized by means of a finite volume scheme on a dual mesh
(Donald mesh), with an upwind discretization of the numerical flux of the convective term to en-
sure the stability and the maximum principle of the scheme, where the dual mesh is constructed
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around the vertex of every triangle of the primary mesh.
The rest of this paper is organized as follows. In Section 2, we introduce the chemotaxis model
based on realistic biological assumptions, which incorporates the effect of volume-filling mecha-
nism and leads to a nonlinear degenerate parabolic system. In Section 3, we derive the control
volume finite element scheme, where an upwind finite volume scheme is used for the approxima-
tion of the convective term, and a standard P1-finite element method is used for the diffusive
term. In Section 4, by assuming that the transmissibility coefficients are nonnegative, we prove
the maximum principle and give the a priori estimates on the discrete solutions. In Section 5, we
show the compactness of the set of discrete solutions by deriving estimates on difference of time
and space translates for the approximate solutions. Next, in Section 6, using the Kolmogorov
relative compactness theorem, we prove the convergence of a sequence of the approximate so-
lutions, and we identify the limits of the discrete solutions as weak solutions of the parabolic
system proposed in Section 2. In the last section, we present some numerical simulations to
capture the generation of spatial patterns for the volume-filling chemotaxis model with different
tensors. These numerical simulations are obtained with our control volume finite element scheme.

2. Volume-filling chemotaxis model

We are interested in the control volume finite element scheme for a nonlinear, degenerate
parabolic system formed by convection-diffusion-reaction equations. This system is comple-
mented with homogeneous zero flux boundary conditions, which correspond to the physical be-
havior of the cells and the chemoattractant. The modified Keller-Segel system that we consider
here, is very similar to that of Andreianov et al. [13], to which we have added tensors for the
diffusion terms. Specifically, we consider the following system:{

∂tu− div (Λ (x) a (u)∇u− Λ (x)χ (u)∇v) = f (u) in QT ,

∂tv − div (D (x)∇v) = g (u, v) in QT ,
(2.1)

with the boundary conditions on ΣT := ∂Ω× (0, T ) given by

(Λ (x) a (u)∇u− Λ (x)χ (u)∇v) · η = 0, D (x)∇v · η = 0, (2.2)

and the initial conditions given by:

u (x, 0) = u0 (x) , v (x, 0) = v0 (x) , x ∈ Ω. (2.3)

Herein, QT := Ω × (0, T ), T > 0 is a fixed time, and Ω is an open bounded polygonal domain
in R2, with Lipschitz boundary ∂Ω and unit outward normal vector η. The initial conditions u0

and v0 satisfy: u0, v0 ∈ L∞ (Ω) such that 0 ≤ u0 (x) ≤ 1 and v0 (x) ≥ 0, for all x ∈ Ω.
In the above model, the density of the cell-population and the chemoattractant (or repellent)
concentration are represented by u = u(x, t) and v = v(x, t) respectively. Next, a(u) is a density-
dependent diffusion coefficient, and Λ(x) is the diffusion tensor in a heterogeneous medium.
Furthermore, the function χ(u) is the chemoattractant sensitivity, and D(x) is the diffusion
tensor for v. We assume that Λ and D are two bounded, uniformly positive symmetric tensors
on Ω (i.e ∀ξ 6= 0, 0 < T− |ξ|2 ≤ 〈T (x)ξ, ξ〉 ≤ T+ |ξ|2 < ∞, T = Λ or D). The function f (u)
describes cell proliferation and cell death, it is usually considered to follow the logistic growth
with certain carrying capacity uc which represents the maximum density that the environment
can support (e.g. see [28]). The function g(u, v) describes the rates of production and degradation
of the chemoattractant; here, we assume it is the linear function given by

g(u, v) = αu− βv, α, β ≥ 0. (2.4)
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Painter and Hillen [29] introduced the mechanistic description of the volume-filling effect. In the
volume-filling effect, it is assumed that particles have a finite volume and that cells cannot move
into regions that are already filled by other cells. First, we give a brief derivation of the model
below, where in addition we consider the elastic cell property; that is, we consider that the cells
are deformable and elastic and can squeeze into openings.

The derivation of the model begins with a master equation for a continuous-time and discrete
space-random walk introduced by Othmer and Stevens [30], that is

∂ui
∂t

= T +
i−1ui−1 + T −i+1ui+1 −

(
T +
i + T −i

)
ui, (2.5)

where T ±i are the transitional probabilities per unit of time for one-step jump to i± 1. Herein,
we shall equate the probability distribution above with the cell density.

In the volume-filling approach, and in the context of chemotaxis, the probability of a cell
making a jump is assumed to depend on additional factors, such as the external concentration
of the chemotactic agent and the availability of space into which the cells can squeeze and move.
Therefore, we consider in the transition probability the fact that the cells can detect a local
gradient as well as squeeze into openings. We take

T ±i = q (ui±1) (θ + δ [τ (vi±1)− τ (vi)]) , (2.6)

where q (u) is a nonlinear function representing the squeezing probability of a cell finding space
at its neighboring location, θ and δ are constants, and τ represents the mechanism of the signal
detection of the chemical concentration (for more details see [29, 30]). It is assumed that only a
finite number of cells, u, can be accommodated at any site, and the function q is stipulated by
the following condition:

q (u) = 0 and 0 < q (u) ≤ 1 for 0 ≤ u < u.

Clearly, a possible choice for the squeezing probability q is a nonlinear function (see [31] for more
details), defined by

q (u) =

{
1−

(u
u

)γ
, 0 ≤ u ≤ u,

0, u > u,
(2.7)

where γ ≥ 1 denotes the squeezing exponent. The case γ = 1 corresponds to the interpretation
that cells are solid blocks. However, the cells are elastic and can squeeze into openings. Thus
the squeezing probability should be considered as a nonlinear function.

Substituting equation (2.6) into the master equation (2.5) and assuming that the cell density
can diffuse in a heterogeneous manner in the space we get the first equation of system (2.1), with
the associated coefficients

a (u) = d1 (q (u)− q′ (u)u) , χ (u) = ζuq (u) , (2.8)

where d1 and ζ are two positive constants.
In this paper, we are interested in system (2.1) modeling the volume-filling chemotaxis process

in the general case and for which we set u = 1. Furthermore, we assume that the functions f
and χ are continuous and satisfy:

f (0) = f (u) = 0, χ (0) = χ (u) = 0. (2.9)
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3. CVFE discretization

Definition 3.1. (Primary and dual mesh)
Let Ω be an open bounded polygonal connected subset of R2. A primary finite volume mesh of
Ω is a triplet (T ,E ,P), where T is a family of disjoint open polygonal convex subsets of Ω
called control volumes, E is a family of subsets of Ω contained in straights of R2 with strictly
positive one-dimensional measure, called the edges of the control volumes, and P is a family of
points of Ω satisfying the following properties:

1. The closure of the union of all the control volumes is Ω, i.e. Ω =
⋃
K∈T K.

2. For any K ∈ T , there exists a subset EK of E such that ∂K = K\K =
⋃
σ∈EK

σ. Further-
more, E =

⋃
K∈T EK

3. There exists a Donald dual mesh M := {Mi, i = 1, . . . , Ns} associated with the triangula-
tion T := {Ki, i = 1, . . . , Ne}. For each triangle K ∈ T , we connect the barycenter xK
with the midpoint of each edge σ ∈ EK , and thus the barycenter of K ∈ T is such that
xK :=

⋂
M∩K 6=∅ ∂M ∈ K. We denote by xM the center of each dual volume M ∈ M

defined by xM :=
⋂
K∩M 6=∅ ∂K ∈ M . For each interface of the dual control volume M ,

we denote by σKM,M ′ := ∂M ∩ ∂M ′ ∩K the line segment between the points xK and the
midpoint of the line segment [xM , xM ′ ] and let £ := {σ ∈ ∂M\∂Ω,M ∈M } be the set
of all interior sides. Finally we denote by M int and M ext the set of all interior and all
boundary dual volumes respectively. We refer to Fig. 1 for an illustration of the primal
triangular mesh T and its corresponding Donald dual mesh M .

xK

σKM,M ′

σKM,M ′′

M M ′

xM xM ′

l

M ′′

xM ′′

Figure 1: Donald dual mesh: control volumes, centers, interfaces.

In the sequel, we use the following notations. For any M ∈ M , |M | is the area of M .
The set of neighbors of M is denoted by N (M) :=

{
M ′ ∈M / ∃σ ∈ £, σ = M ∩M ′

}
, and we

designate by dM,M ′ the distance between the centers of M and M ′. We define the mesh size by
h := size(M ) = supM∈M diam(M) and make the following shape regularity assumption on the
family of triangulations {Th}h:

There exists a positive constant κT such that: min
K∈Th

|K|
diam (K)

2 ≥ κT , ∀h > 0. (3.1)
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For the time discretization, we do not impose any restriction on the time step, for that we consider
a uniform time step ∆t ∈ (0, T ). We take N ∈ N∗ such that N := max {n ∈ N /n∆t < T}, and
we denote tn = n∆t, for n ∈ {0, . . . , N + 1}, so that t0 = 0, and tN+1 = T .
We define the following finite-dimensional spaces:

Hh :=
{
ϕh ∈ C0

(
Ω
)

; ϕh
∣∣
K
∈ P1, ∀K ∈ Th

}
⊂ H1 (Ω) ,

H0
h :=

{
ϕh ∈ Hh; ϕh (xM ) = 0, ∀M ∈M ext

}
.

The canonical basis of Hh is spanned by the shape functions (ϕM )M∈M , such that ϕM (xM ′) =
δM,M ′ for all M ′ ∈ Mh, δ being the Kronecker delta. The approximations in these spaces are
conforming since Hh ⊂ H1 (Ω). We equip Hh with the semi-norm

‖uh‖2Hh :=

∫
Ω

|∇uh|2 dx,

which becomes a norm on H0
h.

The classical finite elements P1 associated to the vertex xMi
(i = 1, . . . , Ns), where Ns is the

total number of vertices, is defined by

ϕMi
(xMj

) = δij , where ϕMi
is continuous and piecewise P1 per triangle.

Let wnM be an expected approximation of w (xM , tn), where w ≡ u or v. Thus, the discrete
unknowns are denoted by {wnM/M ∈Mh, n ∈ {0, . . . , N + 1}}.

Definition 3.2. (Discrete functions). Using the values of
(
un+1
M , vn+1

M

)
, ∀M ∈ Mh and n ∈

{0, . . . , N}, we determine two approximate solutions by means of the control volume finite element
scheme:

(i) A finite volume solution (ũh,∆t; ṽh,∆t) defined as piecewise constant on the dual volumes
in space and piecewise constant in time, such that:

(ũh,∆t (0, x) , ṽh,∆t (0, x)) =
(
u0
M , v

0
M

)
∀x ∈

◦
M, M ∈Mh,

(ũh,∆t (t, x) , ṽh,∆t (t, x)) =
(
un+1
M , vn+1

M

)
∀x ∈

◦
M, M ∈Mh,∀t ∈ (tn, tn+1],

where u0
M (resp. v0

M ) represents the mean value of the function u0 (resp. v0). The discrete
space of these functions namely discrete control volumes space is denoted by Xh,∆t.

(ii) A finite element solution vh,∆t as a function continuous and piecewise P1 per triangle in
space and piecewise constant in time, such that:

vh,∆t (0, x) = v0
h (x) ∀x ∈ Ω,

vh,∆t (t, x) = vn+1
h (x) ∀x ∈ Ω,∀t ∈ (tn, tn+1],

where vn+1
h (x) :=

∑
M∈Mh

vn+1
M ϕM (x) and v0

h (x) :=
∑

M∈Mh

v0
MϕM (x). The discrete space

of these functions namely discrete finite elements space is denoted by Hh,∆t.

In the sequel, we use the nonlinear and continuous function A : R −→ R defined by

A (u) =

∫ u

0

a (s) ds. (3.2)
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The function A is nonlinear, we denote by Ah,∆t = Ah (uh,∆t) the corresponding finite element
reconstruction in Hh,∆t, and by A (ũh,∆t) the corresponding finite volume reconstruction in
Xh,∆t. Specifically, we have

Ah (uh,∆t (t, x)) =
∑

M∈Mh

A
(
un+1
M

)
ϕM (x) , ∀x ∈ Ω, ∀t ∈ (tn, tn+1],

A (ũh,∆t (t, x)) = A
(
un+1
M

)
, ∀x ∈

◦
M, M ∈Mh, ∀t ∈ (tn, tn+1].

3.1. CVFE scheme for the modified Keller-Segel model

In order to define a discretization for system (2.1), we integrate the equations of system (2.1)
over the set M × [tn, tn+1] with M ∈Mh, then we use the Green–Gauss formula as well as the
implicit order one discretization in time, we get∫

M

(u (tn+1, x)− u (tn, x)) dx−
∑
σ⊂∂M

∫ tn+1

tn

∫
σ

Λ∇A(u) · ηM,σ dtdσ

+
∑
σ⊂∂M

∫ tn+1

tn

∫
σ

χ (u) Λ∇v · ηM,σ dtdσ =

∫ tn+1

tn

∫
M

f (u) dtdx,

∫
M

(v (tn+1, x)− v (tn, x)) dx−
∑
σ⊂∂M

∫ tn+1

tn

∫
σ

D∇v · ηM,σ dtdσ =

∫ tn+1

tn

∫
M

g (u, v) dtdx,

(3.3)

where ηM,σ is the unit normal vector outward to σ ⊂ ∂M .
We consider now an implicit Euler scheme in time, and thus the time evolution in the first

equation of system (3.3) is approximated as∫
M

(u (tn+1, x)− u (tn, x)) dx ≈
∫
M

(ũh,∆t (tn+1, x)− ũh,∆t (tn, x)) dx = |M |
(
un+1
M − unM

)
.

Note that f (u) is a nonlinear function. We denote by f (ũh,∆t) the corresponding piecewise
constant reconstruction in Xh,∆t, then the reaction term is approximated as∫ tn+1

tn

∫
M

f (u (t, x)) dtdx ≈
∫ tn+1

tn

∫
M

f (ũh,∆t (t, x)) dtdx = |M |∆tf
(
un+1
M

)
.

On the other hand, we distinguish two kinds of approximation in space. The first consists of
considering the finite element approach to handle the diffusion term, and the second consists of
using an upstream finite volume approach.
Let us focus on the discretization of the diffusion term of the first equation of system (3.3), we
have ∑

σ⊂∂M

∫ tn+1

tn

∫
σ

Λ∇A (u) · ηM,σ dtdσ ≈ ∆t
∑
σ⊂∂M

∫
σ

Λ∇Ah (uh,∆t (tn+1, x)) · ηM,σ dσ. (3.4)

The diffusion tensor Λ (x) is taken constant per triangle, we denote by ΛK the mean value of the
function Λ (x) over the triangle K ∈ Th, then one rewrites the right hand side of equation (3.4)
as

∆t
∑

K,K∩M 6=∅

∑
σ⊂∂M∩K

ΛK∇Ah (uh,∆t (tn+1, x))
∣∣∣
K
· ηM,σ |σ|

= ∆t
∑

K,K∩M 6=∅

1

2
∇Ah (uh,∆t (tn+1, x))

∣∣∣
K
· tΛKηK,l |l|

(3.5)
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where l ∈ EK such that M ∩ l = ∅, and ηK,l denotes the unit normal vector outward to the edge
l. For the transition between the first and the second line in approximation (3.5), we have used
a geometric property, that is∑

σ⊂∂M∩K

ηM,σ |σ| =
1

2
ηK,l |l| , ∀K ∈ Th such that K ∩M 6= ∅.

According to the definition of the approximate function ∇Ah (uh,∆t), one has

∇Ah (uh,∆t (tn+1, x))
∣∣∣
K

=
∑

M∈Mh

A
(
un+1
M

)
∇ϕM (x)

∣∣
K
. (3.6)

Note that, the P1-finite element bases are expressed in barycentric coordinates, thus∑
M ′,M ′∩K 6=∅

ϕM ′(x)
∣∣
K

= 1, and
∑

M ′,M ′∩K 6=∅

∇ϕM ′(x)
∣∣
K

= 0,

consequently, we have

∇Ah (uh,∆t (tn+1, x))
∣∣∣
K

=
∑

M ′,M ′∩K 6=∅

(
A
(
un+1
M ′

)
−A

(
un+1
M

))
∇ϕM ′

∣∣
K
. (3.7)

We note that, for a given K ∈ Th, we have

∇ϕM
∣∣
K

=
− |l|
2 |K|

ηK,l, ∀M ∈Mh such that M ∩K 6= ∅. (3.8)

Let us now introduce the transmissibility coefficient between M and M ′ defined by

ΛKM,M ′ = −
∫
K

Λ (x)∇ϕM (x) · ∇ϕM ′ (x) dx. (3.9)

As a consequence of (3.8)–(3.9), one has∑
σ⊂∂M

∫ tn+1

tn

∫
σ

Λ∇A(u) · ηM,σ dtdσ ≈ ∆t
∑

K,M∩K 6=∅

∑
M ′,M ′∩K 6=∅

ΛKM,M ′

(
A
(
un+1
M ′

)
−A

(
un+1
M

))
.

Next, we have to approximate the convective term in the first equation of system (3.3). For
that, we consider an upstream finite volume scheme according to the normal component of the
gradient of the chemoattractant v on the interfaces. So,

∑
σ⊂∂M

∫ tn+1

tn

∫
σ

χ (u) Λ∇v · ηM,σ dtdσ

≈ ∆t
∑

K,K∩M 6=∅

∑
σ⊂∂M∩K

∫
σ

Λ (x)χ (ũh,∆t (tn+1, x))∇vh,∆t (tn+1, x) · ηM,σ dσ.

In order to approximate the convective flux on each interface, let us firstly introduce an example
of approximation in the case where the function χ is nondecreasing. For that, we consider the
interface σKM,M ′ , and write∫
σK
M,M′

χ (ũh,∆t (tn+1, x)) Λ∇vh,∆t (tn+1, x)·ησ dσ ≈

{
|σKM,M ′ |χ

(
un+1
M

)
dV KM,M ′ , if dV KM,M ′ ≥ 0,

|σKM,M ′ |χ
(
un+1
M ′

)
dV KM,M ′ , if dV KM,M ′ ≤ 0,
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where dV KM,M ′ represents an approximation of the gradient of v on the interface σKM,M ′

dV KM,M ′ =
∑

M ′′,M ′′∩K 6=∅

vn+1
M ′′ ∇ϕM ′′

∣∣
K
· tΛKηKM,M ′ . (3.10)

Thus, the convective term is approximated as

∑
σ∈∂M

∫ tn+1

tn

∫
σ

χ (u) Λ∇v · ηM,σ dtdσ

≈


∆t

∑
K,M∩K 6=∅

∑
M ′,M ′∩K 6=∅

χ(un+1
M )ΛKM,M ′

(
vn+1
M ′ − vn+1

M

)
, if dV KM,M ′ ≥ 0,

∆t
∑

K,M∩K 6=∅

∑
M ′,M ′∩K 6=∅

χ(un+1
M ′ )ΛKM,M ′

(
vn+1
M ′ − vn+1

M

)
, if dV KM,M ′ ≤ 0,

where ΛKM,M ′ represents the transmissibility coefficient between M and M ′, given by equation
(3.9).

In the general case, we use numerical convection flux functions G of arguments (a, b, c) ∈ R3

which are required to satisfy the properties:



(a) G (·, b, c) is nondecreasing for all b, c ∈ R,

and G (a, ·, c) is nonincreasing for all a, c ∈ R;

(b) G (a, b, c) = −G (b, a,−c) for all a, b, c ∈ R;

(c) G (a, a, c) = χ (a) c for all a, c ∈ R;

(d) there exists C > 0 such that

∀ a, b, c ∈ R |G (a, b, c) | ≤ C (|a|+ |b|) |c| ;
(e) there exists a modulus of continuity ω : R+ → R+ such that

∀ a, b, a′, b′, c ∈ R |G (a, b, c)−G (a′, b′, c)| ≤ |c|ω (|a− a′|+ |b− b′|) .

(3.11)

In our context, one possibility to construct a numerical flux G satisfying conditions (3.11) is to
split χ into the nondecreasing part χ↑ and the nonincreasing part χ↓:

χ↑ (z) :=

∫ z

0

(χ′ (s))
+

ds, χ↓ (z) := −
∫ z

0

(χ′ (s))
−

ds.

Herein, s+ = max(s, 0) and s− = max(−s, 0). Then we take

G (a, b; c) = c+
(
χ↑(a) + χ↓(b)

)
− c−

(
χ↑(b) + χ↓(a)

)
. (3.12)

Notice that in the case χ has a unique local (and global) maximum at the point ũ ∈ (0, 1), we
have

χ↑ (z) = χ (min{z, ũ}) and χ↓ (z) = χ (max{z, ũ})− χ (ũ) .

For the discretization of the second equation of system (3.3), we define the transmissibility
coefficient DK

M,M ′ by

DK
M,M ′ =

∫
K

D (x)∇ϕM (x) · ∇ϕM ′ (x) dx. (3.13)

then we follow the same lines as for the discretization of the first equation.
We are now in position to discretize problem (2.1)–(2.3). We denote by Dh a discretization of
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QT , which consists of a primary finite element mesh Th and a Donald dual mesh Mh of Ω and
a time step ∆t > 0.
A control volume finite element scheme for the discretization of problem (2.1)–(2.3) is given by
the following set of equations: for all M ∈Mh,

u0
M =

1

|M |

∫
M

u0(x) dx, v0
M =

1

|M |

∫
M

v0(x) dx, (3.14)

and for all M ∈Mh and all n ∈ {0, . . . , N},

|M |
un+1
M − unM

∆t
−

∑
K,M∩K 6=∅

∑
M ′,M ′∩K 6=∅

ΛKM,M ′

(
A
(
un+1
M ′

)
−A

(
un+1
M

))
+

∑
K,M∩K 6=∅

∑
M ′,M ′∩K 6=∅

∣∣σKM,M ′

∣∣G (un+1
M , un+1

M ′ ; dV KM,M ′

)
= |M | f

(
un+1
M

)
,

(3.15)

|M |
vn+1
M − vnM

∆t
−

∑
K,M∩K 6=∅

∑
M ′,M ′∩K 6=∅

DK
M,M ′

(
vn+1
M ′ − vn+1

M

)
= |M | g

(
unM , v

n+1
M

)
, (3.16)

we recall that the unknowns are U =
(
un+1
M

)
M∈Mh

and V =
(
vn+1
M

)
M∈Mh

, n ∈ {0, . . . , N},
and that dV KM,M ′ is defined in equation (3.10), and the transmissibility coefficients ΛKM,M ′ and

DK
M,M ′ are given by (3.9) and (3.13) respectively. Notice that the discrete zero-flux boundary

conditions are implicitly contained in equations (3.15)–(3.16). The contribution of ∂Ω ∩ ∂M to

the approximation of

∫
∂M

D∇v · η dσ and

∫
∂M

Λ (∇A(u)− χ(u)∇v) · η dσ is zero, in compliance

with equation (2.2).
In this paper, we assume that the transmissibility coefficients ΛKM,M ′ and DK

M,M ′ are nonneg-
ative:

ΛKM,M ′ ≥ 0 and DK
M,M ′ ≥ 0, ∀M,M ′ ∈Mh,∀K ∈ Th. (3.17)

4. A priori analysis of discrete solutions

In this section, we prove the discrete maximum principle, then we establish the a priori
estimates necessary to prove the existence of a solution to the discrete problem (3.14)–(3.16) and
the convergence towards the weak solution. In the sequel, we denote by C a “generic” constant,
which need not have the same value through the proofs.

4.1. Nonnegativity of vh, confinement of uh

Lemma 4.1. Let (unM , v
n
M )M∈Mh,n∈{0,...,N+1} be a solution of the CVFE scheme (3.14)–(3.16).

Under the nonnegativity of transmissibilty coefficients assumption (3.17), we have for all M ∈
Mh, and all n ∈ {0, . . . , N + 1}, 0 ≤ unM ≤ 1 and 0 ≤ vnM . Moreover, there exists a positive
constant ρ = ‖v0‖∞ + αT , such that vnM ≤ ρ, for all n ∈ {0, . . . , N + 1}.

Proof. Let us show by induction on n that for all M ∈Mh, unM ≥ 0. The claim is true for n = 0.
We argue by induction that for all M ∈ Mh, the claim is true up to order n. Consider a dual
control volume M such that un+1

M = min {un+1
M ′ }M ′∈Mh

, we want to show that un+1
M ≥ 0. We

consider equation (3.15) corresponding to the aforementioned dual volume M , reorganize the
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summation over the edges and multiply it by −
(
un+1
M

)−
where for all real r, r = r+ − r− with

r+ = max(r, 0) and r− = max(−r, 0). This yields

− |M |
un+1
M − unM

∆t

(
un+1
M

)−
+

∑
σK
M,M′⊂∂M

ΛKM,M ′

(
A
(
un+1
M ′

)
−A

(
un+1
M

)) (
un+1
M

)−
−

∑
σK
M,M′⊂∂M

∣∣σKM,M ′

∣∣G (un+1
M , un+1

M ′ ; dV KM,M ′

) (
un+1
M

)−
= −f

(
un+1
M

) (
un+1
M

)−
.

(4.1)

Here, we use the extension by zero of the function f for u ≤ 0 since f (0) = 0, then the right
hand side of equation (4.1) is equal to zero.
The function A is nondecreasing then A

(
un+1
M ′

)
−A

(
un+1
M

)
≥ 0 and the assumption ΛKM,M ′ ≥ 0

implies that ∑
σK
M,M′⊂∂M

ΛKM,M ′

(
A
(
un+1
M ′

)
−A

(
un+1
M

)) (
un+1
M

)− ≥ 0.

From the assumptions on the numerical flux G, the function G is nonincreasing with respect to
the second variable and using the extension of χ ( recall that χ (u) = 0 for u ≤ 0), we get

G
(
un+1
M , un+1

M ′ ; dV KM,M ′

) (
un+1
M

)− ≤ G (un+1
M , un+1

M ; dV KM,M ′

) (
un+1
M

)−
= dV KM,M ′ χ

(
un+1
M

) (
un+1
M

)−
= 0.

Using the identity un+1
M =

(
un+1
M

)+ − (un+1
M

)−
and the nonnegativity of unK , we deduce from

equation (4.1) that
(
un+1
M

)−
= 0. According to the choice of the dual control volume M , then

min {un+1
M ′ }M ′∈Mh

is nonnegative; this ends the proof of the first claim.
The proof of nonnegativity of vnM , M ∈ Mh, n ∈ {0, . . . , N + 1}, follows the same lines as for

the proof for the nonnegativity of unM , since −g
(
unM , v

n+1
M

)(
un+1
M

)−
= −α |M |unM

(
vn+1
M

)−
+

β |M | vn+1
M

(
vn+1
M

)− ≤ 0.

In order to prove (by induction) that un+1
M ≤ 1, we take M such that un+1

M = max (un+1
M ′ )M ′∈Mh

.

Next, multiplying equation (3.15) by
(
un+1
M − 1

)+
, with the same arguments as in the above

proof, and using the extension by zero of the functions f and χ for u ≥ 1. We find that
(un+1
M − 1)+ = 0 and thus un+1

M ≤ 1 for all M ∈Mh.
Let us now focus on the last claim concerning the existence of a constant ρ such that vnM ≤ ρ.
We set ρn := ‖v0‖∞ + nα∆t, and suppose that vnM ≤ ρn, ∀M ∈ Mh (the claim holds for
n = 0). We want to show that vn+1

M ≤ ρn+1, for that we take the dual volume M such that
vn+1
M = max {vn+1

M ′ }M ′∈Mh
. Using scheme (3.16), one has

|M |
vn+1
M − ρn+1

∆t
+ |M |βvn+1

M −
∑

K,M∩K 6=∅

∑
M ′,M ′∩K 6=∅

DK
M,M ′

(
vn+1
M ′ − vn+1

M

)
= α |M | (unM − 1) + |M | v

n
M − ρn

∆t
.

(4.2)

Multiplying equation (4.2) by
(
vn+1
M − ρn+1

)+
, one can deduce that vn+1

M ≤ ρn+1 ≤ ρ, for all
n ∈ {0, . . . , N}. This ends the proof of the lemma.

4.2. A priori estimates

Proposition 4.2. Let (un+1
M , vn+1

M )M∈Mh,n∈{0,...,N}, be a solution of the control volume finite
element scheme (3.14)–(3.16). Under assumption (3.1) and assumption (3.17), there exists a
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constant C > 0, depending on Ω, T , ‖v0‖∞, α, and on the constant in (3.11)(d) such that

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

∣∣A (un+1
M

)
−A

(
un+1
M ′

)∣∣2

+

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

DK
M,M ′

∣∣vn+1
M − vn+1

M ′

∣∣2 ≤ C, (4.3)

and consequently, for all An+1
h =

∑
M∈Mh

A
(
un+1
M

)
ϕM ∈ Hh, and all vn+1

h =
∑

M∈Mh

vn+1
M ϕM ∈

Hh,
N∑
n=0

∆t
∥∥vn+1
h

∥∥2

Hh
≤ C, (4.4)

and
N∑
n=0

∆t
∥∥Ah (un+1

h

)∥∥2

Hh
≤ C. (4.5)

Proof. We multiply equation (3.15) (resp. equation (3.16)) by A
(
un+1
M

)
(resp. by vn+1

M ), and
perform a sum over M ∈Mh and n ∈ {0, . . . , N}. This yields

E1,1 + E1,2 + E1,3 = E1,4 and E2,1 + E2,2 = E2,3,

where

E1,1 =

N∑
n=0

∑
M∈Mh

|M |
(
un+1
M − unM

)
A
(
un+1
M

)
, E2,1 =

N∑
n=0

∑
M∈Mh

|M |
(
vn+1
M − vnM

)
vn+1
M ,

E1,2 =

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

(
A
(
un+1
M

)
−A

(
un+1
M ′

))
A
(
un+1
M

)
,

E2,2 =

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

DK
M,M ′

(
vn+1
M − vn+1

M ′

)
vn+1
M ,

E1,3 =

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

∣∣σKM,M ′

∣∣G (un+1
M , un+1

M ′ ; dV KM,M ′

)
A
(
un+1
M

)
,

E1,4 =

N∑
n=0

∆t
∑

M∈Mh

|M | f
(
un+1
M

)
A
(
un+1
M

)
, E2,3 =

N∑
n=0

∆t
∑

M∈Mh

|M |
(
αunM − βvn+1

M

)
vn+1
M .

Let B (s) =

∫ s

0

A (r) dr; we have B′′ (s) = a (s) ≥ 0, so that B is convex. From the convexity of

B, we have the following inequality

∀a, b ∈ R (a− b)A (a) ≥ B (a)− B (b) .

Using this inequality for the term E1,1, we obtain
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E1,1 ≥
N∑
n=0

∑
M∈Mh

|M |
(
B
(
un+1
M

)
− B (unM )

)
=

∑
M∈Mh

|M |
(
B
(
uN+1
M

)
− B

(
u0
M

))
.

Next, for the diffusive term E1,2, we reorganize the sum over edges. Then, we have

E1,2 =

N∑
n=0

∆t
∑

σK
M,M′∈£h

ΛKM,M ′

(
A
(
un+1
M

)
−A

(
un+1
M ′

))2

=
1

2

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

(
A
(
un+1
M

)
−A

(
un+1
M ′

))2
.

We estimate the convective term E1,3, and also gather by edges, one gets

E1,3 =

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

∣∣σKM,M ′

∣∣G (un+1
M , un+1

M ′ ; dV KM,M ′

)
A
(
un+1
M

)

=

N∑
n=0

∆t
∑

σK
M,M′∈£h

∣∣σKM,M ′

∣∣G (un+1
M , un+1

M ′ ; dV KM,M ′

) (
A
(
un+1
M

)
−A

(
un+1
M ′

))
.

Using the definition of the function G, the assumption (3.11)(d) and the boundedness of un+1
M ,

and applying the weighted Young inequality, one has

|E1,3| ≤
N∑
n=0

∆t
∑

σK
M,M′∈£h

∣∣σKM,M ′

∣∣ ∣∣G (un+1
M , un+1

M ′ ; dV KM,M ′

) (
A
(
un+1
M

)
−A

(
un+1
M ′

))∣∣ ≤ E1
1,3+E2

1,3,

where

E1
1,3 =

1

4

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

∣∣A (un+1
M

)
−A

(
un+1
M ′

)∣∣2 ,
E2

1,3 = C
N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

∣∣G (un+1
M , un+1

M ′ ; dV KM,M ′

)
σKM,M ′

∣∣2

≤ C
N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

∣∣dV KM,M ′

∣∣2 ∣∣σKM,M ′

∣∣2.
On the other hand, using the definition (3.10) of dV KM,M ′ , we get

∣∣ dV KM,M ′

∣∣ ∣∣σKM,M ′

∣∣ ≤ C ∑
M ′′,M ′′∩K 6=∅

∣∣vn+1
M ′′ − vn+1

M

∣∣ ∣∣∣∇ϕM ′′
∣∣
K

∣∣∣ ∣∣σKM,M ′

∣∣ .
Thanks to the shape regularity assumption (3.1), one can deduce that

∣∣∣∇ϕM ′′
∣∣
K

∣∣∣× ∣∣σKM,M ′

∣∣ ≤ C.

As a consequence,
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|E1,3| ≤
1

4

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

∣∣A (un+1
M

)
−A

(
un+1
M ′

)∣∣2

+ C

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

DK
M,M ′

∣∣vn+1
M ′ − vn+1

M

∣∣2.
The last estimation for the reactive term is given using definition (2.4) of g and the boundedness
of un+1

M , vn+1
M , and f . Then

E2,3 =

N∑
n=0

∆t
∑

M∈Mh

|M |
(
αunMv

n+1
M − β

(
vn+1
M

)2) ≤ N∑
n=0

∆t
∑

M∈Mh

α |M |unMvn+1
M ≤ αρT |Ω|.

E1,4 =

N∑
n=0

∆t
∑

M∈Mh

|M | f
(
un+1
M

)
A
(
un+1
M

)
≤ CT |Ω|.

Collecting the previous inequalities, one can deduce that there exists a constant C > 0, indepen-
dent of h and ∆t, such that

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

∣∣A (un+1
M

)
−A

(
un+1
M ′

)∣∣2

+

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

DK
M,M ′

∣∣vn+1
M − vn+1

M ′

∣∣2 ≤ C.
Let us focus on estimate (4.5), we denote by DK , K ∈ Th the mean value of the function D over
the triangle K, then using the previous estimates as well as the assumptions on the diffusion
tensor D, one has

C ≥
N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

DK
M,M ′

∣∣vn+1
M − vn+1

M ′

∣∣2

= 2

N∑
n=0

∆t
∑

M∈Mh

vn+1
M

∑
σK
M,M′⊂∂M

DK
M,M ′

(
vn+1
M − vn+1

M ′

)

= 2

N∑
n=0

∆t
∑

M∈Mh

∑
K∈Th

|K| vn+1
M ∇ϕM

∣∣
K
· tDK

∑
M ′∈Mh

vn+1
M ′ ∇ϕM ′

∣∣
K

=

N∑
n=0

∆t
∑
K∈Th

|K|DK

( ∑
M∈Mh

vn+1
M ∇ϕM

∣∣
K

)
·

( ∑
M ′∈Mh

vn+1
M ′ ∇ϕM ′

∣∣
K

)

=

N∑
n=0

∆t
∑
K∈Th

∫
K

D (x)∇vn+1
h · ∇vn+1

h dx ≥ 2D−

N∑
n=0

∆t

∫
Ω

∣∣∇vn+1
h

∣∣2 dx.

In the same manner, we obtain estimate (4.4). This ends the proof of the Proposition 4.2.
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4.3. Existence of a discrete solution

The existence of a solution to the control volume finite element scheme is given by the
following proposition.

Proposition 4.3. Under the shape regularity assumption (3.1) and the nonnegativity assumption
(3.17), there exists at least one solution

(
un+1
M , vn+1

M

)
(M,n)∈M×[[0···N ]]

for the discrete problem

(3.14)–(3.16).

The proof is provided with the help of the Brower fixed point theorem (e.g. see [32]). This
method is used in [13] and it is easy to adopt the proof in our case, thus we omit it.

5. Compactness estimates on discrete solutions

In this section, we derive estimates on differences of time and space translates necessary to
prove the relative compactness property of the sequence of approximate solutions using Kol-
mogorov’s theorem. Under the shape regularity assumption (3.1) and the nonnegativity of the
transmissibility coefficients assumption (3.17), we give the time and space translate estimates for
A (ũh,∆t) and ṽh,∆t given by Definition 3.2.

Lemma 5.1. Under assumption (3.1) and assumption (3.17), there exists a positive constant
C > 0 depending on Ω, T , α, u0 and v0 such that∫∫

Ω′×(0,T )

|w̃h,∆t (t, x+ y)− w̃h,∆t (t, x)|2 dtdx ≤ C |y| (|y|+ 2h) , w̃h,∆t = A (ũh,∆t) , ṽh,∆t,

(5.1)
for all y ∈ R2 with Ω′ = {x ∈ Ω, [x, x+ y] ⊂ Ω}, and∫∫

Ω×(0,T−τ)

|w̃h,∆t (t+ τ, x)− w̃h,∆t (t, x)|2 dtdx ≤ C (τ + ∆t) , w̃h,∆t = A (ũh,∆t) , ṽh,∆t,

(5.2)
for all τ ∈ (0, T ).

Proof. The proof of estimate (5.1) follows the same lines as in [14, Lemma 3.3, p.44] and using
the shape regularity assumption (3.1). For the sake of brevity, we do not provide it here.
Let us now focus on estimate (5.2). Let τ ∈ (0, T ) and t ∈ (0, T − τ). We define

Υ (t) :=

∫
Ω

|A (ũh,∆t) (t+ τ, x)−A (ũh,∆t) (t, x)|2 dx.

Set n0 (t) = [t/∆t] and n1 (t) = [(t+ τ) /∆t], where [x] = n for x ∈ [n, n+ 1), n ∈ IN .
Since A is nondecreasing, we have the following inequality∫∫

Ω×(0,T−τ)

|A (ũh,∆t) (t+ τ, x)−A (ũh,∆t) (t, x)|2 dtdx ≤ C
∫ T−τ

0

Υ(t) dt,

where, for almost every t ∈ (0, T − τ),

Υ (t) =
∑

M∈Mh

|M |
(
A
(
u
n1(t)
M

)
−A

(
u
n0(t)
M

))(
u
n1(t)
M − un0(t)

M

)
.

Note that the function Υ (t) may be written as

Υ (t) =
∑

M∈Mh

(
A
(
u
n1(t)
M

)
−A

(
u
n0(t)
M

))N−1∑
n=0

χn (t, t+ τ) |M |
(
un+1
M − unM

)
, (5.3)
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where, χn is the characteristic function defined by

χn (t, t+ τ) =

{
1 if (n+ 1) ∆t ∈ (t, t+ τ ],

0 if (n+ 1) ∆t /∈ (t, t+ τ ].

In equation (5.3), the order of the summation between n and M is changed and the scheme
(3.15) is used. Hence,

Υ (t) = ∆t

N−1∑
n=0

χn (t, t+ τ)
∑

M∈Mh

(
A
(
u
n1(t)
M

)
−A

(
u
n0(t)
M

))
× ∑

σK
M,M′⊂∂M

ΛKM,M ′

(
A
(
un+1
M ′

)
−A

(
un+1
M

))
−

∑
σK
M,M′⊂∂M

∣∣σKM,M ′

∣∣G (un+1
M , un+1

M ′ ; dV KM,M ′

)
+ ∆t

N−1∑
n=0

χn (t, t+ τ)
∑

M∈Mh

(
A
(
u
n1(t)
M

)
−A

(
u
n0(t)
M

))
× |M | f

(
un+1
M

)
.

We write Υ (t) = ∆t

N−1∑
n=0

χn (t, t+ τ) (Υ1 (t) + Υ2 (t) + Υ3 (t)), where

Υ1 (t) :=
∑

M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

(
A
(
u
n1(t)
M

)
−A

(
u
n0(t)
M

)) (
A
(
un+1
M ′

)
−A

(
un+1
M

))
,

Υ2 (t) :=
∑

M∈Mh

∑
σK
M,M′⊂∂M

∣∣σKM,M ′

∣∣ (A(un0(t)
M

)
−A

(
u
n1(t)
M

))
G
(
un+1
M , un+1

M ′ ; dV KM,M ′

)
,

Υ3 (t) :=
∑

M∈Mh

|M |
(
A
(
u
n1(t)
M

)
−A

(
u
n0(t)
M

))
f
(
un+1
M

)
.

It’s easy to see that

N−1∑
n=0

∆t

∫ T−τ

0

χn (t, t+ τ) Υ3 (t) dt ≤ C (τ + ∆t) .

For the first term, note that gathering by edges, using the basic triangle inequality, one has

Υ1 (t) ≤ 1

2

( ∑
M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

(
A
(
un+1
M ′

)
−A

(
un+1
M

))2
+

1

2

∑
M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

∣∣∣A(un1(t)
M

)
−A

(
u
n1(t)
M ′

)∣∣∣2

+
1

2

∑
M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

∣∣∣A(un0(t)
M

)
−A

(
u
n0(t)
M ′

)∣∣∣2).
Using the estimates (4.3), this implies that there exists a constant C > 0 independent of τ and

h, such that

N−1∑
n=0

∆t

∫ T−τ

0

χn (t, t+ τ) Υ1 (t) dt ≤ C (τ + ∆t) . Finally, applying the previous
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arguments, gathering by edges, and using each of the definition of G and the assumptions on it,
we get

Υ2 (t) dt ≤ C

2

( ∑
M∈Mh

∑
σK
M,M′⊂∂M

(∣∣∣A(un1(t)
M

)
−A

(
u
n1(t)
M ′

)∣∣∣2 +
∣∣vn+1
M − vn+1

M ′

∣∣2)

+
∑

M∈Mh

∑
σK
M,M′⊂∂M

(∣∣∣A(un0(t)
M

)
−A

(
u
n0(t)
M ′

)∣∣∣2 +
∣∣vn+1
M − vn+1

M ′

∣∣2)).
We use estimates (4.3) to deduce that

N−1∑
n=0

∆t

∫ T−τ

0

χn (t, t+ τ) Υ2 (t) dt ≤ C (τ + ∆t) .

Consequently, we obtain∫ T−τ

0

Υ (t) dt ≤
N−1∑
n=0

∆t

∫ T−τ

0

χn (t, t+ τ) (Υ1 (t) + Υ3 (t)) dt

+

N−1∑
n=0

∆t

∫ T−τ

0

χn (t, t+ τ) Υ2 (t) dt ≤ C (τ + ∆t) ,

for some constant C independent of τ and h. The proof of (5.2) for w̃h,∆t = ṽh,∆t follows in a
similar manner. This concludes the proof of the lemma.

6. Convergence of the CVFE scheme

We can prove the main result of this section. Specifically, we have the following lemmas.

Lemma 6.1. The sequences (A (ũh,∆t)−Ah (uh,∆t))h,∆t and (ṽh,∆t − vh,∆t)h,∆t converge strongly

to zero in L2 (QT ) as h→ 0.

Proof. Using the definition of the basis functions of the finite dimensional space Hh, we have for
all M ∈Mh and all K ∈ Th such that M ∩K 6= ∅

|A (ũh,∆t)−Ah (uh,∆t)|2 = |A (ũh,∆t) (tn+1, xM )−Ah (uh,∆t) (tn+1, x)|2

= |∇Ah (uh,∆t) (tn+1, x) · (xM − x)|2 , ∀x ∈ K ∩M

where xM is the center of the dual volume M ∈Mh.
Using estimate (4.5), one obtains

‖A (ũh,∆t)−Ah (uh,∆t)‖2L2(QT )

=

N∑
n=0

∆t
∑
K∈Th

∑
M,M∩K 6=∅

∫
K∩M

|∇Ah (uh,∆t) (tn+1, x) · (xM − x)|2

≤ h2
N∑
n=0

∆t
∑
K∈Th

∑
M,M∩K 6=∅

|K ∩M |
∣∣∣∇Ah (un+1

h

) ∣∣
K

∣∣∣2
≤ h2

N∑
n=0

∆t
∥∥Ah (un+1

h

)∥∥2

Hh
≤ Ch2,

17



consequently, we have ‖A (ũh,∆t)−Ah (uh,∆t)‖L2(QT ) −→ 0 as h → 0. In the same manner, we

prove that ‖ṽh,∆t − vh,∆t‖L2(QT ) −→ 0 as h→ 0.

Lemma 6.2. (Convergence of the scheme). Under the shape regularity assumption (3.1) and
the nonnegativity of the transmissibility coefficients assumption (3.17), there exists a sequence
(hm)m∈IN , hm → 0 as m→∞, and functions u, v defined in QT such that 0 ≤ u ≤ 1, both A(u)
and v belong to L2(0, T ;H1(Ω)), and

Ahm (uhm)→ A (u) and vhm → v a.e. in QT and strongly in Lp(QT ) for all p < +∞

Proof. Let us set Ãh,∆t := A (ũh,∆t) in QT and Ãh,∆t := 0 in R3 \ QT . Thanks to Proposition

4.2 and Lemma 4.1, one has
(
Ãh,∆t

)
⊂ L∞

(
R3
)
∩ L2

(
R3
)
. In order to verify the assumptions

of Kolmogorov’s compactness criterion, see [14, theorem 3.9, p:93], we note that the following
inequality is verified for any η ∈ R2 and τ ∈ R,∥∥∥Ãh,∆t (·+ η, ·+ τ)− Ãh,∆t (·, ·)

∥∥∥
L2(R3)

≤
∥∥∥Ãh,∆t (·+ η, ·)− Ãh,∆t (·, ·)

∥∥∥
L2(R3)

+
∥∥∥Ãh,∆t (·, ·+ τ)− Ãh,∆t (·, ·)

∥∥∥
L2(R3)

,

Now, using Lemma 5.1, we deduce that
∥∥∥Ãh,∆t (·+ η, ·+ τ)− Ãh,∆t (·, ·)

∥∥∥
L2(R2+1)

−→ 0, as η → 0

and τ → 0. This yields the compactness of the sequence
(
Ãh,∆t

)
in L2 (Ω).

Thus, there exists a subsequence, still denoted by
(
Ãh,∆t

)
, and there exists A∗ ∈ L2 (QT ) such

that
A (ũh,∆t) −→ A∗ strongly in L2 (QT ) .

Furthermore, as A is strictly monotone, there exists a unique u such that A(u) = A∗.
Since A−1 is well defined and continuous, then applying the L∞ bound on uh and the dominated
convergence theorem to ũh,∆t = A−1 (A (ũh,∆t)), we get

ũh,∆t −→ u a.e. in QT and strongly in Lp(QT ) for p < +∞.

According to Lemma 6.1, the sequences (A (ũh,∆t))h,∆t and (Ah (uh,∆t))h,∆t have the same limit,
as a consequence

Ah (uh,∆t) −→ A(u) strongly in L2(QT ) and a.e. in QT .

Similarly, translate estimates (5.1)–(5.2), the L∞ bound on vh,∆t in Lemma 4.1, and Lemma 6.1
ensure that, up to extraction of a subsequence,

vh,∆t → v a.e. in QT and strongly in Lp(QT ) for p < +∞.

This ends the proof of the lemma.

It remains to be shown that the limit functions u and v constitute a weak solution of the
continuous system. For this, let ψ ∈ D([0, T ) × Ω) be a test function and denote by ψnM :=
ψ(tn, xM ) for all M ∈ Mh and n ∈ {0, . . . , N + 1}. Multiply equation (3.15) by ∆t ψn+1

M , and
sum up over M ∈Mh and n ∈ {0, . . . , N}. This yields

Sh1 + Sh2 + Sh3 = Sh4
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Sh1 :=

N∑
n=0

∑
M∈Mh

|M |
(
un+1
M − unM

)
ψn+1
M , Sh4 :=

N∑
n=0

∆t
∑

M∈Mh

|M | f(un+1
M )ψn+1

M ,

Sh2 :=

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

G
(
un+1
M , un+1

M ′ ; dV KM,M ′

)
ψn+1
M

∣∣σKM,M ′

∣∣ ,
Sh3 :=

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

(
A
(
un+1
M

)
−A

(
un+1
M ′

))
ψn+1
M .

Performing a summation by parts in time and keeping in mind that ψN+1
M = 0 for all M ∈Mh,

we obtain

Sh1 =

N∑
n=0

∑
M∈Mh

|M |un+1
M ψn+1

M −
N∑
n=0

∑
M∈Mh

|M |unMψn+1
M

= −
N∑
n=0

∑
M∈Mh

∆t |M |unM
ψn+1
M − ψnM

∆t
−

∑
M∈Mh

|M |u0
Mψ

0
M

= −
N∑
n=0

∑
M∈Mh

∫ tn+1

tn

∫
M

ũh,∆t (x, t) ∂tψ (xM , t) dtdx−
∑

M∈Mh

∫
M

ũh,∆t (x, 0)ψ (xM , 0) dx.

Taking into account the assumptions on the data and using the Lebesgue theorem, it follows
that

Sh1 −−−−−→
h,∆t→0

−
∫ T

0

∫
Ω

u ∂tψ dtdx−
∫

Ω

u0ψ (·, 0) dx.

On the other hand, for the convergence of the third term Sh3 , we note that

Sh3 =

N∑
n=0

∆t

 ∑
M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′A
(
un+1
M

)
ψn+1
M −

∑
M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′A
(
un+1
M ′

)
ψn+1
M


= −

N∑
n=0

∆t
∑

M∈Mh

A
(
un+1
M

) ∑
σK
M,M′⊂∂M

ΛKM,M ′

(
ψn+1
M ′ − ψn+1

M

)

= −
N∑
n=0

∑
M∈Mh

∆tA
(
un+1
M

) ∑
K∩M 6=∅

∑
σK
M,M′⊂∂M∩K

∇ψn+1
∣∣
K
·t ΛKηM,σ |σ|

= −
N∑
n=0

∑
M∈Mh

∆tA
(
un+1
M

) ∑
σK
M,M′⊂∂M

∇ψn+1
∣∣
K
·t ΛKηM,σ |σ|

= −
N∑
n=0

∑
M∈Mh

∆tA
(
un+1
M

) ∫
∂M

Λ∇ψn+1 · η dσ

= −
N∑
n=0

∑
M∈Mh

∫ tn+1

tn

∫
M

A (ũh,∆t (t, x)) div (Λ∇ψ) dtdx

−−−−−→
h,∆t→0

−
∫∫

QT

A (u) div (Λ∇ψ) dtdx =

∫∫
QT

∇A (u) · Λ∇ψ dtdx.
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It remains to show that

lim
h,∆t→∞

Sh2 = −
∫ T

0

∫
Ω

Λ (x)χ(u)∇v · ∇ψ dtdx. (6.1)

For the convergence of Sh2 , we note that gathering by edges (thanks to the consistency of the
fluxes, see (3.11)(b)), we find

Sh2 = −1

2

N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

G
(
un+1
M , un+1

M ′ ; dV n+1
M,M ′

) (
ψn+1
M ′ − ψn+1

M

) ∣∣σKM,M ′

∣∣ .
For each triplet of neighbors M,M ′, and M ′′ pick for un+1

K,min the quantity defined by

un+1
K,min = min

M∈M ,M∩K 6=∅
{un+1

M }

Set

Sh,∗2 :=

N∑
n=0

∆t
∑

M∈Mh

∑
K,K∩M 6=∅

∑
M ′,M ′∩K 6=∅

χ
(
un+1
K,min

)
ψn+1
M dV n+1

M,M ′

∣∣σKM,M ′

∣∣ .
We have

Sh,∗2 =−
N∑
n=0

∆t
∑

M∈Mh

∑
K,K∩M 6=∅

χ
(
un+1
K,min

)
|K|ΛKψn+1

M ∇ϕM
∣∣
K
·

 ∑
M ′′,M ′′∩K 6=∅

vn+1
M ′′ ∇ϕM ′′

∣∣
K


= −

N∑
n=0

∆t
∑
K∈Th

|K|χ
(
un+1
K,min

)
ΛK

 ∑
M,M∩K 6=∅

ψn+1
M ∇ϕM

∣∣
K

·
 ∑
M ′′,M ′′∩K 6=∅

vn+1
M ′′ ∇ϕM ′′

∣∣
K

.
Introduce uh, uh defined by

uh|(tn,tn+1]×K := max
M,M∩K 6=∅

{un+1
M }, uh|(tn,tn+1]×K := min

M,M∩K 6=∅
{un+1

M }.

Consequently, we obtain

Sh,∗2 = −
N∑
n=0

∆t
∑
K∈Th

∫
K

χ (uh) ΛK∇vn+1
h,∆t · (∇ψ)

n+1
h dx = −

∫
QT

χ (uh) Λ∇vh,∆t · (∇ψ)h,∆t dtdx

Next, we show that
lim
h→0
|Sh2 − S

h,∗
2 | = 0. (6.2)

To do this, we begin by showing that |uh − uh| −→ 0 a.e. in QT .
By the monotonicity of A and thanks to the estimate (4.3), we have∫ T

0

∫
Ω

|A (uh)−A (uh) |2 dtdx ≤
N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

|K|
∣∣A (un+1

M ′

)
−A

(
un+1
M

)∣∣2

≤ C h2
N∑
n=0

∆t
∑

M∈Mh

∑
σK
M,M′⊂∂M

ΛKM,M ′

∣∣A(un+1
M ′ )−A(un+1

M )
∣∣2 ≤ C h2.
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Since A−1 is continuous, up to extraction of another subsequence, we deduce

|uh − uh| → 0 a.e. in QT . (6.3)

In addition, uh ≤ ũh,∆t ≤ uh; moreover, by Lemma 6.2, ũh,∆t → u a.e. in QT . Thus we see
that χ(uh)→ χ(u) a.e. in QT and in Lp(QT ), for p < +∞. Using Lemma 6.2 again, the strong
convergence of (∇ψ)h towards ∇ψ, and the weak convergence in L2 (QT ) of ∇vh,∆t towards ∇v,
we conclude that

lim
h→0

Sh,∗2 = −
∫ T

0

∫
Ω

χ(u)Λ∇v · ∇ψ dtdx.

To prove (6.2), we remark that

|G(un+1
M , un+1

M ′ , dV n+1
M,M ′)− χ(un+1

K,min) dV n+1
M,M ′ |

= |G(un+1
M , un+1

M ′ , dV n+1
M,M ′)−G(un+1

K,min, u
n+1
K,min, dV n+1

M,M ′)|

≤ |dV n+1
M,M ′ | ω(2|un+1

M ′ − un+1
M |).

Consequently,

|Sh2 − S
h,∗
2 | ≤

∫ T

0

∫
Ω

ω(2|uh − uh|) |∇vh,∆t · (∇ψ)h,∆t |dtdx.

Applying the Cauchy-Schwarz inequality, and the convergence (6.2), we establish (6.1).

Finally, we note that it is easy to see that Sh4 −−−−−→
h,∆t→0

∫
QT

f (u)ψ dtdx.

7. Numerical simulation in two-dimensional space

In this section, we exhibit various two-dimensional numerical results provided by scheme
(3.14)–(3.16) for the capture of spatial patterns for model (2.1) discussed in Section 2. Newton’s
algorithm is used to approach the solution Un+1 of the nonlinear system defined by equation
(3.15), this algorithm is coupled with a bigradient method to solve the linear systems arising
from the Newton algorithm as well as the linear system given by equation (3.16). Unless stated
otherwise, throughout this section, we consider that the cell density is initially set as a spa-
tially small random perturbation around the homogeneous steady state, and we assume zero-flux
boundary conditions. The simulations are performed on an unstructured triangular mesh of the
space domain Ω = (0, 10)× (0, 10). We suppose that the species cells follow the logistic growth
f (u) = µu (1− u/uc), where µ is the intrinsic growth rate, and uc is the carrying capacity of
the population. Production term g (u, v), squeezing probability q (u), cell diffusivity a (u), and
chemotactic sensitivity χ (u) are given by (2.4), (2.7), and (2.8) respectively.

The pattern formation for model (2.1) with the associated functions mentioned above has been
established in [31] using Turing’s principle and the linear stability analysis, where the diffusion
tensor is considered to be proportional to the identity matrix and the numerical simulations
are carried on a one-dimensional space, while in [33], the same analysis is provided whereas the
numerical simulations for the capture of spatial patterns are presented on a two-dimensional
domain, and using the standard finite volume scheme.

The nontrivial uniform steady state of system (2.1) is given by (us, vs) = (uc, αuc/β), and
through the pattern formation analysis provided in [31, 33], the instability region of this steady
state is determined by the following condition:

µ+ βa (uc)− αχ (uc) < −2
√
µβa (uc). (7.1)
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In order to verify the effectiveness of the proposed scheme, we consider three tests for the capture
of spatio-temporal patterns for model (2.1) with different diffusion tensors. For each test, we
choose a set of parameters, such that the instability condition (7.1) is satisfied. We fix d1 = 0.25,
uc = 0.25, u = 1.0, µ = 0.5, α = 10.0, β = 10.0, ζ = 20, and γ = 3. On the other hand, and in
the definition of the numerical flux function G defined by (3.11), we take

χ↑ (z) = χ (min {z, ũ}) and χ↓ (z) = χ (max {z, ũ})− χ (ũ)

where ũ = u
γ
√
γ+1

. Finally, we consider a small time step ∆t = 0.005 and a nonuniform primary

Figure 2: Pattern formation for the full chemotaxis model (2.1) on a 2-D domain Ω = (0, 10) ×
(0, 10) at time t = 0s with 0 ≤ u ≤ 1 (left) and at time t = 0.55s with 3.10−3 ≤ u ≤ 0.99 (right).

Figure 3: Pattern formation for the full chemotaxis model (2.1) at time t = 2.35s with 1.9×10−4 ≤
u ≤ 0.98 (left) and at time t = 40 s with 3.9×10−3 ≤ u ≤ 0.832 (right). The red dots (or rods)
represent the cell aggregation where cell density is higher than that of the blue area.

mesh with small refinement consisting of 14 336 triangles. Thus, the associated Donald dual
mesh consists of 7297 dual volumes.
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Test 1 (Isotropic case). Here, we establish the generation of spatial patterns for the volume-
filling chemotaxis model (2.1) with homogeneous diffusion tensors. In this test, we take Λ (x) =
D (x) = I2 (x) and initially the chemical concentration is set to be a constant equal to vs.

Figures 2–3 show for different moments, the pattern formation for model (2.1) with identity
diffusion tensors. We see that the random distribution of the cell density leads to a merging
process in all directions of the space at t = 0.55s, which continues for t = 2.35s then it stops
when the time t ≥ 20.75s, and new stationary spot patterns appear as shown at t = 40s.

Time evolution of the cell density. Here we consider the time evolution of the cell
density at fixed points in the right snapshot of Figure 3. Indeed, we want to show that the cell
density stabilizes at a certain moment; hence, we prove that the volume-filling chemotaxis model
(2.1) generates stationary spatial patterns. Figure 4 shows the evolution of the cell density with
respect to the time at point P1 (5.25; 6) in the red line, at point P2 (5; 1.25) in the green line, and
at point P3 (4.35; 8.1) in the blue line. We observe that the cell density at these points increases
and then decreases with response to the gradient of the chemoattractant which plays an essential
role to stop the aggregation of the cells. Next, the cell density stabilizes for all points when t is
greater or equal to 13 s. We note that the same results are obtained for the other spot patterns;
however, for the sake of brevity, they are not provided here.
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Figure 4: Evolution of the cell density with respect to the time at three different points: P1 (5.25; 6)
in the red line, P2 (5; 1.25) in the green line, P3 (4.35; 8.1) in the blue line.

Test 2 (Anisotropic case). In this test, we take anisotropic diffusion tensors of the form[
1 0
0 ξ

]
. We investigate the pattern formation for model (2.1) and consider that the particles

diffuse more rapidly in the x-axis direction than the y-axis direction, for that we take ξ = 0.5.
We pick up snapshots for the pattern formation at the same moments as for the isotropic case.

Figures 5–6 show the evolution of spatial patterns for model (2.1) for different time moments.
We observe that we have the same results as before (same patterning, and emerging process),
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except that more spot patterns are obtained and they are stretched in the horizontal direction
as shown in the last snapshot in figure 6.

Figure 5: Pattern formation for the full chemotaxis model (2.1) on a 2-D domain Ω = (0, 10) ×
(0, 10) at time t = 0s with 0 ≤ u ≤ 1 (left) and at time t = 0.55s with 4.10−3 ≤ u ≤ 0.98 (right).

Figure 6: Pattern formation for the full chemotaxis model (2.1) at time t = 2.35s with 3.2×10−4 ≤
u ≤ 0.98 (left) and at time t = 40 s with 4×10−3 ≤ u ≤ 0.827 (right).

The time evolution for the last plot in figure 6 for different spots is given in figure 7. It shows
that the stationary spot patterns are obtained when t ≥ 23.5s.

Test 3 (Heterogeneous anisotropic case). In this test, we decompose the domain Ω into
two regions Ω1 and Ω2, where Ω1 = (0, 10) × (0, 5] and Ω2 = (0, 10) × (5, 10). Moreover, we
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Figure 7: The evolution of the cell density with respect to the time at three different points:
P1 (5; 1.4) in the blue line, P2 (6.25; 5.45) in the green line, P3 (9.9; 8.05) in the red line.

assume that the diffusion tensors are anisotropic and heterogeneous, and are given by:

Λ (x) = D (x) =

(
1 0
0 λ (x)

)
, with

{
λ (x) = 0.5, if x ∈ Ω1,

λ (x) = 1.5, if x ∈ Ω2.

Figure 8: Pattern formation for the full chemotaxis model (2.1) on a 2-D domain Ω = (0, 10) ×
(0, 10) at time t = 0 s with 0 ≤ u ≤ 1 (left) and at time t = 0.5 s with 6.93 × 10−3 ≤ u ≤ 0.99
(right).
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Figure 9: Pattern formation for the full chemotaxis model (2.1) at time t = 49s with 3.67×10−3 ≤
u ≤ 0.88 (left) and at time t = 150 s with 4.3×10−3 ≤ u ≤ 0.8447 (right).
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Figure 10: The evolution of the cell density with time at three different points: P1 (5.70; 4.05) in
the blue line, P2 (3.28; 6.88) in the green line, P3 (2.80; 3.75) in the red line.

Figures 8–9 show the evolution of spatial patterns for model (2.1) for different time moments.
In region Ω2, where diffusion is more interesting in the y-axis direction, and at t = 0.5 s, we
see that the aggregations form quickly, and they are much larger than those formed in region
Ω1, which means that high diffusion in region Ω2 (compared to that in region Ω1) accelerate
the merging process. On the other hand, at t = 49 s the aggregations in region Ω2 disappear to
form 5 spatial patterns; whereas, a plenitude of spatial patterns is seen in region Ω1 compared
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to region Ω2. Therefore, there exists a high dependence between the rate of diffusion and the
generation of spatial patterns.

The time evolution for the last plot of figure 9 for different spots is given in figure 10. It
shows that stationary spot patterns are obtained when t ≥ 125 s.

Comparing figures 5-9, one can deduce that the patterning depends on diffusion coefficients,
it is also known to depend on the size of the domain. These results prove the robustness of the
control volume finite element scheme to capture spatial patterns for a volume-filling chemotaxis
model with anisotropic diffusion tensors.
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