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Abstract This paper focuses on the detection of small

objects – more precisely on vehicles in aerial images –

on complex backgrounds such as natural backgrounds.

A key contribution of the paper is to show that, in such

situations, learning a target model and a background

model separately is better than training a unique dis-

criminative model. This contrasts with standard object

detection approaches for which objects vs. background

classifiers use the same model as well as the same types

of visual features for both. The second contribution

lies in the manifold learning approach introduced to

build these models. The proposed detection algorithm

is validated on the publicly available OIRDS dataset,

on which we obtain state-of-the-art results.

Keywords Detection · Low Resolution · Vehicles ·
Database · Aerial Imagery · Infrared

1 Introduction

Automatic Target Recognition (ATR), which is the task

of automatically detecting targets in images, has a long

history in the computer vision community. The pri-

mary aim of ATR systems is to assist or remove the

human role from the process of detecting and recogniz-

ing targets. Two typical applications are surveillance

and reconnaissance, which are applications of major

importance for safety. As explained by Wong [62], a
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surveillance mission over a 200 mile square area with a

one foot resolution (30cm), will generate approximately

1 : 5×1012 pixels of data. If the area is split in 10 million

pixels images, photo interpreters would have to exam-

ine over 100,000 images, which is an impractical work-

load and results in a delayed or incomplete analysis.

Furthermore, this delay would allow movable targets to

relocate so that they can not be found in subsequent

missions.

Contrasting with most of these recent approaches

on object detection, this paper focuses on the detection

of small rigid targets (such as vehicles), in any arbitrary

position, on complex textured backgrounds (see Fig. 2).

In addition to the targets size, orientation changes, as

well as complex highly textured backgrounds make the

task different. Indeed, it strongly contrasts with the

dominant trend in object detection which addresses the

detection of daily life objects in high quality images,

such as the PASCAL VOC challenge [17] – illustrated

Fig. 1 – that attracted most of the effort of the com-

munity during the 5 last years.

As we deal with surveillance applications, the task is

made even more difficult by the fact that some objects

can be camouflaged and, in general, do their best not

to be detected. Furthermore, it is often difficult to ob-

tain large training sets, as getting images of the desired

targets in real conditions is usually costly. Finally, ob-

ject’s context in image (i.e. the pixels surrounding the

objects) is not strongly correlated with the object itself

and we cannot base detections on context, in contrast

to other applications where it usually helps.

State-of-the-art methods for object detection rely

– in general – on the use of a discriminative classi-

fier trained to learn class boundaries in the represen-

tation space. One typical example is the well known

Dalal and Triggs’s person detector [10], which repre-
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Fig. 1 Illustrative examples of the PASCAL VOC 2007 chal-
lenges [17]. The detection task consists in detecting 20 dif-
ferent classes of objects such as the ’dog’, ’car’, ’table’ or
’motorbike’ classes visible in these images.

sents image pixels with Histogram of Oriented Gradi-

ent (HOG) features and classifies person vs. background

bounding boxes with Support Vector Machine (SVM)

classifiers [6].

However, this type of approach does not seem to be

relevant to the detection of small targets on complex

backgrounds. First, if the background is rich and the

number of (positive) training images is limited, learn-

ing reliable discriminative features without over-fitting

can not be done without strong regularization, which

contrasts with the need of having an accurate model

of the targets. Second, targets and backgrounds have

such different visual properties that it is hard to be-

lieve that the same models/features can be adapted to

both. Based on these observations, we propose a detec-

tion algorithm using two distinct models, one for the

background and another for the target, combined to

score the candidate windows.

Manifolds are good candidates to model accurately

small targets. If a target size is e.g. 40 × 40 pixels its

visual appearance lies in a 1, 600-d space despite the

fact that only a small number of parameters (among

them: the pose, the illumination, etc.) are sufficient to

explain its appearance. Manifolds are precisely adapted

to represent high dimensional subspaces that can be

generated from a space of fewer dimensions. Support-

ing this assumption, the work of Zhang [64] shows that

images of 3D objects seen from different view-points

can be represented as points on a low-dimensional man-

ifold. On the other hand, backgrounds do not require

(and can not) be modeled as accurately as targets. Re-

garding their modeling, we follow the work of [4] and

use a PCA-based manifold model. Finally, target and

Fig. 2 Typical images from the OIRDS dataset. Small size
vehicles can have any orientations. Shadows, highlights and
complex textured background make the task very challenging.

background models are combined within a probabilistic

framework.

This article is an extension of [40], providing a richer

description of the related works, more details on the

methods as well as a much more extensive experimental

validation.

The rest of the paper is as follows: we first intro-

duce the related work in Section 2, then present our

approach in Section 3, while finally Section 4 gives a

description of the related state-of-the art algorithms to

be compared with, as well as an experimental validation

of the proposed vehicle detector.

2 Related works

This section reviews different aspects of the target de-

tection task. It first presents state-of-the-art object de-

tectors, explaining how do they encode and classify im-

age regions of interest, within a sliding-window frame-

work. It then introduces some more specific works that

make use of manifolds in a detection context, as well as

presenting the various approaches used for learning the

manifolds.

2.1 State-of-the-art object detectors

Object detection has attracted a lot of attention in the

computer vision community, during the last ten years.

We first present the detectors addressing the task in

general (without any constraints on the size or the type
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of objects) and then our attention is drawn to vehicle

detectors and small target detectors.

Generic object detectors. The sliding window approach

is the prevailing approach in the recent literature (see

for example [10, 18, 56]). It consists in applying a classi-

fier function to all possible sub-images within an image

and taking the maximum of the classification score as

indication for the presence of an object in this region.

In this manner, the main difference between the differ-

ent detectors lies in the way images are represented by

visual features, as well as in the utilized classifier.

Regarding visual features, one of the most popu-

lar one for object detection is the HOG feature (His-

togram of Oriented Gradient) [10], that we describe

later in the paper. In addition, many other features

have been proposed such as Haar-like wavelets [56],

edgelets [63], shapelets [44], multi-scale spatial pyra-

mids [2], co-occurrence features [46],covariance descrip-

tors [54], color-self-similarity [57], and also Local Bi-

nary or Ternary Patterns [50, 59], Bag-sof-Words [8] or

finally, some combinations of such features e.g. [12, 16,

46, 57, 59].

In regards to classification, two different approaches

dominate. One of the most popular is the Support Vec-

tor Machine [6] which maximizes the margin between

positive examples and negative examples and has good

generalization properties. It has been used for example

in [10]. The other dominant classifier is boosting (Ad-

aboost [22] or its variant such as Gentle Boost [23]),

used in [56] and allowing to use cascades of classifiers.

Neural networks have also been used for object detec-

tion e.g. [58].

Several additional ideas have allowed the detector

to improve, such as the use of context learning e.g. [3,

7, 53], new kernels [55], efficient pruning strategies [34],

or Deformable Part Models [18].

The Deformable Part Model [18] is certainly the

generic detector giving the best results at the moment.

It relies on deformable parts and combines a margin-

sensitive approach for data mining hard negative ex-

amples with a formalism called latent SVM. The DPM

requires objects’ parts to be big enough to be detected

and is therefore not adapted to the detection of small

targets.

Some more recent work try to learn the features and

the classifier. It is all the algorithms based on convo-

lutional networks [35]. Even if these networks are an

old technique, they achieved great performances only

recently [31, 48].

Finally, it is worth pointing out that if object detec-

tion has progressed in the recent years, it is also because

several datasets allowing the detectors to be trained and

evaluated have been made publicly available. Among

them, we can cite the PASCAL VOC dataset [17], the

CALTECH dataset [13], the MIT face dataset [41] or

the ETHZ dataset [20].

Vehicle detection. More directly related to our prob-

lem, some approaches have been specially designed for

the detection of vehicles. In [66], Zhao and Nevatia pose

car detection as a 3D object recognition problem to ac-

count for the variations due to viewpoint and shadow

changes. They selected the boundary of the car body,

the boundary of the front windshield and the shadow

as the features, this information being represented by a

Bayesian network used to integrate all features. Their

experiments show promising results on challenging im-

ages, but the cars that are not on roads seem not to

be well detected. Eikvil et al. [15] use several differ-

ent features combined with Linear Discriminant Anal-

ysis [21]. A segmentation step, followed by two stages

of object classification is used. Their work is done in

the context of multispectral and panchromatic images,

and explicitly assumes vehicles positions are related to

the road network. They show interesting results, how-

ever the vehicles are so small that they can not be de-

tected without assuming they are on roads, explaining

why the road network is needed. In [49], Stilla et al.

propose different algorithms adapted to the different

sensors they use (color, thermal infrared, radar). They

also build local and global features from a 3D model,

and use context. [29] reports interesting vehicle detec-

tion results, obtained by using large and rich sets of

application-specific image descriptors. The features are

based on several geometric and color attributes repre-

sentative of the vehicles, and perform a Partial Least

Square analysis on them. They compare their approach

to HOG-SVM-like classifiers [10], obtaining similar per-

formance. Other works have addressed the detection of

small vehicles such as [15, 67]. However they required

the assumption that vehicles are on roads to make the

detection easier and hence cannot be used in our con-

text. Finally, it is worth noting that none of their exper-

iments can be reproduced because neither the protocols

nor the datasets are available.

Small object detection There are very few papers ad-

dressing the detection of small objects. These papers

are often based on the detection of salient regions. The

objects to be detected are then defined as the regions of

the image which do not have the same statistics as the

background e.g. [43, 47]. Among the rare papers which

tried to model small targets explicitly, we can mention

the work of [37], which – in addition to introducing a

new dataset of 36× 18 pixels pedestrian images – have
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shown that good performance can be obtained by com-

bining standard features such as Haar wavelets or HOG

features with SVM/boosting classifiers [16].

2.2 Manifolds used for object detection

Modeling object appearance with manifolds. A manifold

is a subspace embedded in a higher dimension space

which can be locally approximated by an Euclidean

subspace. It can be represented by a Euclidean sub-

space, called the latent space. The geodesic distances,

which are the shortest paths between too points inside

the manifold, are locally preserved in the latent space.

Fig. 3 gives an illustration by showing the relationship

between the manifold (E) and the Euclidean space (H).

Manifold learning has been used by several authors to

model object appearance in the context of detection

tasks. One of the most famous approaches is the Eigen-

faces of Pentland et al. [39], using Principal Compo-

nent Analysis [27] to build linear face manifolds that

can be used for face detection, extended to the detec-

tion of hands by [36]. The main idea is to perform a

Principal Components Analysis of the positive exam-

ples. Keeping only a few eigenvectors, which are called

Eigenfaces/Eigenhand, it is possible to easily compute

the distance to the object manifold (called Distance to

Feature Space).

Based on the same mechanisms, [4] uses PCA for

object detection by modeling background and objects

with linear manifolds. Interesting results are reported

on good quality images of cars and pedestrians, when

using high-dimensional manifolds. In [19], the authors

use autoencoders to build face manifolds for face detec-

tion. However, this approach is restricted by the lack of

background model, giving a lot of false alarms.

Our approach builds on all these recent works by

using the best current image features within a manifold

learning framework. The contribution of the paper lies

in the combination of two types of manifolds, namely

autoencoders for the targets and linear manifolds for

the backgrounds. As far as we know, this is the first

time such a model has been proposed.

Manifold learning. Several different types of algorithms

can be used to learn a manifold. Some of them are linear

methods, such as the Linear Discriminant Analysis [21],

the Independent Component Analysis [5] or the sim-

ple Principal Components Analysis [27]. For non linear

methods, some of them are based on the preservation

of geodesic distances such as the famous Isomap [52]

derived from Multidimensional Scaling [32] or the Dif-

fusion Maps [33]. Another alternative is to learn lin-

ear approximations of the manifold locally, which is
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Fig. 3 This figure give an illustration of the concept of man-
ifold. The vectors belonging to the original Euclidean space
H are spanned by the subspace E. The manifold on the top is
linear while other one is non-linear. f is a mapping function,
giving the correspondence between a point in the manifold in
the original space and its projection in the subspace.

done by the Local Linear Embedding [45], the Hessian

LLE [14], the Local Tangent Space Analysis [65] or the

Locality Preserving Projections [38]. Finally, other ap-

proaches learn the manifold in a global way, such as

the Maximum Variant Unfolding [61, 60], or autoen-

coders [30]. However, many of these algorithms have

been designed to visualize high-dimensional data in 2D

and only give the mapping f (see figure 3), and not

its inverse (required by our approach for the detection

task, as explained later). Interestingly, Principal Com-

ponents Analysis and its variants and Autoencoders can

be used to compute both f and f−1.

3 Our approach

We built our approach on the standard sliding window

framework and manifold learning algorithms. The con-

tribution of the approach lies in the model used in the

scoring function.

We follow the classic sliding window pipeline, which

is designed as follows: all the possible rectangular re-

gions (at any position and any scale) of a given aspect

ratio are evaluated, one by one, by an object classi-

fier. This is done in practice by using a multi-scale grid

(typically with a step-size of 8 pixels and a ratio of 2
1
10

between each scales such as done by [18]). The aspect

ratio of the sliding window is fixed. For objects with

fixed width-to-height ratios (e.g. faces) this is not a

problem. However, if the appearance of the object can

varies a lot (for example the front and size view of a
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car have very different aspect ratios) several distinct

classifiers are usually learned, one per aspect ratio, af-

ter clustering the set of training images accordingly to

their aspect ratio. In practice, in our experiments we

use only one single aspect ratio, computed, by averag-

ing the aspect ratios of the training images.

In this section we focus on the classifier, and more

specifically on the models which represent the appear-

ance of the target and the appearance of the back-

ground.

As explained in the introduction, we suggest using

two distinct probabilistic models, one for backgrounds,

another for objects. The score of a candidate window is

computed as their log-likelihood:

S(Xs) = log

(
pobj(Xl = obj|Xs)

pback(Xl = back|Xs)

)
(1)

where Xl is the unknown class of the window (Xl ∈
{obj, back}) andXs is the signature of the window (i.e.a

visual descriptor, such as the HOG descriptor). Prob-

abilities pobj and pback are given by the object and

background models respectively. Please note that, as we

have two distinct models, pobj 6= 1 − pback, which con-

trasts with standard approaches using a single model.

Both classes (objects and background) are modeled

by manifolds learned during a training stage. Let H

denotes the signature space (we use terms signatures

and visual features indistinctly) and Xs,t ∈ H the set of

training signatures representative of a class. We recall

that building a Riemannian manifoldM representative

of these signatures is equivalent to finding a function f ,

such as:

∀Xs,t ∈M,∃!Y ∈ Rn, Y = f(Xs,t) (2)

f is called the embedding of M, and is an isometric

function. In some works the notation LOG is used in-

stead of f noted and EXP instead of the inverse of f .

However, as we do use regular log and exp functions

later, we use the f and f−1 notation to avoid confu-

sion.

Obviously, if Xs lies on the manifold, f−1 ◦f(Xs) =

Xs. f
−1 ◦f projects any point of the input space on the

manifold M . By denoting PM = f−1 ◦ f , we can define

the distance to the manifold by:

DM(Xs) = ||Xs − PM(Xs)|| (3)

where ||y|| represent the Euclidean norm of y.

Finally, we use this distance to derive the probabil-

ity for a signature Xs to be generated by the manifold

M:

p(Xs ∈M|Xs) = α exp

(
−DM(Xs)

2

σ2
M

)
(4)

where α is a normalization factor and σ2
M a param-

eter of the model. In practice, as scores are given by
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Fig. 4 Illustration of the conceot of distance to the manifold.
Xs is a visual signature and X′s = f−1◦f(Xs) is its projection
on the manifold. On the top part of the figure the manifold
is linear while on the bottom part it is non linear.

a likelihood ratio (eq. (1)) and as we are only inter-

ested in ranking candidate windows, the normalization

factor can be ignored. The only remaining parameter is

the object/background ratio of σ2
M, estimated by cross-

validation. An illustration of the distance to the mani-

fold is presented in figure 4.

Following Eq (1), the score is given by the likelihood

ratio, which is in this case:

S =
Dmback(Xobs)

2

σmback
− Dmobj(Xobs)

2

σmobj
(5)

Where Dmback (resp. Dmobj) is the distance to back-

ground manifold (resp. to the target manifold). The ra-

tio of the two variances σmback

σmobj
is set by cross-validation.

Object manifolds. Object manifolds are learned by au-

toencoders [30]. Indeed, in addition to being reported

as being efficient for several computer vision tasks, they

make the computation of f and f−1 (which are both

required by previous equations) possible. Furthermore,

they allow very expressive models, whose complexity

can be adapted by varying their number of layers (3 in

our case) and hidden neurons (fixed by cross-validation

in our experiments), to be built. Autoencoders are non

linear versions of the Principal Components Analysis.

Autoencoders (Fig. 5) are symmetrical neural net-

works, which learn the identity function under con-

straints. The simplest autoencoder is made of 2 layers

in addition to the input layer (bottom row of Fig. 5).

One neuron from the layer i is connected to all the neu-

rons of layer i+1, and only to these neurons. We denote

as Wij the matrix of weights between the layer i and

the layer j. The layers are numbered from 0 (input) to
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N (middle layer) and then back from N (middle layer)

to 0 (output), as shown in Fig. 5. As the network is

symmetrical, we have:

dimension(Wji) = dimension(WT
ij ) (6)

Each layer j has an output y, given the layer input x:

y = h(Wijx) (7)

h is called the activation function, and is typically the

sigmoid function. When the activation function h is

linear for all the layers, the autoencoder computes a

PCA [30]. Contrary to this, using non-linear h func-

tions allow the network to approximate any function

[9].

To learn an autoencoder efficiently, it has to be ini-

tialized, as any neural network. In order to do so, the

Wij , ∀i = 0..N − 1 are initialized separately, from the

input layer to the middle layer. Each pair of layers and

its associated weights are considered as a Restricted

Boltzmann Machine [1], and the weights between the

layers are initialized using the contrastive divergence

algorithm [25]. We do not give more details here, as

this is not the main topic of the paper, encouraging the

reader to read [26] for further details. Once this step is

done, the network is unfolded, meaning that the weights

of the first layers are used to initialized the weights of

other layers:

Wij = Wji, ∀i = 0..N − 1 (8)

Finally, a standard back-propagation of the error can

be done [42] to jointly learn f and its inverse. The latent

space E can be accessed easily by reading the output

of the middle layer.

The autoencoder is trained by minimizing the re-

construction error of training examples:

Error =
∑

Xs,t∈train
||Xs,t − g ◦ f(Xs,t)||2 (9)

where f is the function connecting the input to the

central layer of the autoencoder, and g the function

connecting the central layer to the output.

g ◦ f is then equivalent to the previously mentioned

f−1 ◦ f . In the context of manifold learning, the net-

work is usually used to learn f and f only, providing

an embedding of data [26]. In contrast, we keep the full

network, which gives us the projection PM(Xs) we are

trying to find. In practice, we use sigmoid activation

functions and train autoencoders, after doing a con-

trastive divergence initialization [25], with a standard

back-propagation algorithm. Contrastive divergence is

the key to good results, as it helps the neural network

to focus on data that were given (instead of the iden-

tity function). In addition and to learn the manifold, we

take a representative set of training windows, compute

their signatures and optimize autoencoder parameters

as explained above.

W01

W12H H

E

W21

W10

H H
E

W01 W10

yx

z

Fig. 5 Two simple autoencoders. H is the input space and
E is the latent space. Top: a 5 layers autoencoder. Bottom:
the minimal autoencoder made of 3 layers.

Background manifold. Modeling background with too

complex models (i.e. using models with too many pa-

rameters), would be risky in terms of over-fitting. Our

hypothesis is that linear models such as the PCA is best

suited to model backgrounds. PCA finds a subspace

which minimizes the reconstruction error. We can use a

limited number of principal components and project the

data on them very easily. A signature Xs can be written

as Xs =
∑
βi ∗ PCi where β is the representation of Xs

in the PCA-projected space (PCi are the principal com-

ponent). We can then project Xs into a N-dimensional

subspace using the N first principal components.

Xs =
∑
i=1:N

βiPCi+
∑

j=N+1:M

βjPCj = P (Xs)+P̄ (Xs)(10)

P (X) is the projection of X on the manifold while P̄ (X)

is the projection on the space orthogonal to manifold.

Interestingly, ||P̄ (X)|| is the distance to the manifold,

which is proportional to the mean square reconstruc-

tion error. This can be seen as an approximation of the

distance to the manifold given by the first N compo-

nents, as DM(Xs) = P̄ (Xs). In our experiments, we

randomly sample background windows from training

images, compute their signatures and find the best ba-

sis by doing a SVD decomposition of their covariance

matrix.
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Post and pre processing. Our algorithm can use any

type of image features as input. For the post process-

ing, as for any usual sliding-window approach, a non-

maximum suppression is needed. We use a simple and

efficient iterative greedy strategy consisting in keeping

only the windows which have the maximum scores over

a disk (which radius is half the window width). We set

the windows so that they do not overlap more than 50

percent.

4 Experiments

4.1 Dataset and protocol.

This section presents experiments on the OIRDS dataset

[51], which is one of the rare publicly available dataset

for Automatic Vehicle Detection with aerial images.

OIRDS contains a set of approximately 1,000 aerial

images coming from different sources (e.g. USGS and

VIVID), for a total of about 1800 targets. Shadows,

specularities, occlusions, as well as the large intra-class

variability (e.g. regular cars, pickups, mini-vans, etc.)

make this dataset challenging. The dataset is provided

with rich annotations: distance from the camera to the

ground, target size (in pixels), bounding boxes, per-

centage of occlusion, type, etc. are given for each ve-

hicle. Fig. 2 shows typical images of this dataset. As

this dataset is very heterogeneous, we have separated a

dozen of images that were very different by their size.

This set will be further reported as the large-images set.

The rest of dataset is split in 10 folds and we evaluate

the performance using a 10 fold cross validation proce-

dure, by reporting the mean average precision (we use

the experimental protocol of [17]).

As we are primarily interested in knowing the per-

formance of our detector for small targets detection,

images were downscaled to produce a dataset in which

targets are not bigger than 40 × 40 pixels. It will be

called the small-images set (in opposition to the large-

images set).

4.2 Baseline algorithms

Unfortunately, no reproducible results have been pub-

lished so far on this dataset (nor on any publicly avail-

able dataset for small target detection, at least to our

knowledge). In consequence, we compared the perfor-

mance of our algorithm to different baselines.

First, we implemented the algorithm of [10], which

is an SVM-HOG sliding windows algorithm known to

obtain state-of-the-art results on such tasks. This algo-

rithm is presented section 2. The linear SVM classifier

is taken from the svmlight library [28].

In addition, we have also implemented a generative

model based on a Gaussian Mixture Model (GMM),

which is a reference for generative models. The Gaus-

sian mixture model learns a Gaussian mixture having

N Gaussian components computed to best fit positive

data. N is set by cross validation. In this case, the back-

ground is modeled by a GMM as well. Both models

are learned using the Expectation-Maximization algo-

rithm [11].

In order to provide comparisons with more power-

ful and more recent methods, we also experimented a

Convolutional Neural Network architecture [35], as well

as the popular Deformable Part Model [18], using the

released code provided by Felszenswalb (we used re-

lease 5). It is worth pointing out that the CNN takes

grayscale windows as input, learning its own features,

and that the DPM uses HOG31 features. The CNN we

used is composed of a convolutional layer, followed by

a downsampling layer, and finally, two fully connected

layers. We avoid using more layers, as the number of ex-

amples is not sufficient to avoid over-fitting (we would

have too few examples regarding to the number of pa-

rameters).

Finally, to illustrate the importance of using differ-

ent models for targets and backgrounds, we compare

our approach – which has a PCA-based model for the

background and an autoencoder for the targets – to the

same approach but using PCA/autoencoder for both

models (same model to represent backgrounds and tar-

gets).

Training data is obtained by cropping the positive
examples of the folds used for training (remember that

a 10-folds cross validation procedure is used) and 13,000

negative windows randomly sampled from the back-

ground (having no overlap with the targets). Moreover,

the training set is extended by adding positive exam-

ples obtained by flipping up/down/left and right and by

rotating the initial training set. This gives more posi-

tive examples to learn the model, resulting in a total of

about 3,800 positive examples per fold. As the step size

of our sliding window is of 8 pixels, when we crop posi-

tive images for training, we add a random shift up to 4

pixels to make the model more tolerant to small shifts.

Some typical positive and negative training examples

are given Fig. 6.

Regarding image signatures, we experimented with

three different signatures: (i) normalized raw level in-

tensities, often used in the literature for the detection

of small targets (ii) image gradients, which are more

robust to illumination changes and (iii) HOG features,

usually considered to be the best choice for this task.
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Fig. 6 Illustrative images of the OIRDS dataset. First row: 10 typical target-centered regions. Second row: some background
regions.

In practice, raw pixel intensities are computed as the

mean of the three color channels (OIRDS images are in

color). Gradient images are computed by a Sobel filter.

Finally, HOG31 is an histogram of oriented gradient,

with 8 pixels overlap cells of 16× 16 pixels. They con-

tain a 9 bins histogram of unsigned orientations con-

catenated with a 18 bins histogram of signed orienta-

tions. It is then normalized according to the neighbor

histogram, as explained in [18].

The manifold dimensionality of backgrounds mod-

els is of 40, 10 and 16 for intensity, gradient and HOG

signatures respectively. Autoencoders have 3 layers and

have respectively 35, 8 and 10 inner nodes for intensity,

gradient and HOG signatures. All these parameter val-

ues were determined by preliminary experiments on toy

data and remained fixed for the final experiments.

4.3 Complexity Analysis

The computation complexity is crucial when address-

ing automatic target recognition tasks. In practice, we

are more interested by the complexity of the test stage,

as learning can be done offline and once for all. All the

tested algorithm have a linear complexity with respect

to the number of windows in the sliding window pro-

cess. In addition, all the algorithms using a latent space

(PCA, autoencoders, etc.) have a complexity which is

also linear with respect to the dimensionality of the la-

tent space (i.e. doubling the dimensionality of the latent

space will result in doubling the number of operations).

Finally, all the algorithms have a linear complexity with

respect to the dimensionality of the input features.

Regarding the computational time, all the exper-

imented algorithms can be implemented with simple

operations (sums of products and lookup table for com-

plex functions) in such a way that they can be real-time.

Fig. 7 The 20 principal components of two PCA models: a
background model (two first rows), a car model (two second
rows).

4.4 Qualitative results and visualizations

Visualizing the models. Fig. 7 shows the first principal

components of (i) the PCA background model and (ii)

of a PCA car model, using raw pixel intensities as in-

put. We can note that the background model contains

more low frequency textures than the car model, and

that the car model’s first components can reconstruct

centered objects on a uniform or two-color background.

The principal components of the background models
are typical of natural images (see [24]).

Fig. 8 shows some typical templates, which our au-

toencoder can generate once trained with car images

(left hand-side). The right-hand side has been gener-

ated with an autoencoder learned with background re-

gions. In this case, the autoencoder focuses on intensity

differences, and does not learn any rotation, as we can

expect.

Fig. 9 shows candidate windows (1st row), their pro-

jections on the background manifold (obtained by PCA,

2nd row), as well as their projections on the car man-

ifold given by an autoencoder (last row). As it can be

noticed, target images are better reconstructed by the

target model than by the background one, and vice-

versa.

Error maps. Fig. 10 shows the error maps (i.e. image

in which the color of a pixel represents the distance

between the region centered on this pixel and the man-
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Fig. 8 Visualization of the target (left) and background
(right) manifolds learned by the autoencoders.

Fig. 9 Four candidate windows (first row), followed by their
reconstruction by the PCA background manifold (2nd row),
and by the target manifold learned by an autoencoder (last
row).

Fig. 10 From left to right: (i) the original image with the
maximum of likelihood pixel marked by a red cross, (ii) the
negative of the log error map given by the autoencoder, (iii)
the negative of the log error map given by the PCA, (iv) the
final log likelihood ratio. The negative of the log error map
−log(E), where E the reconstruction error is used for better
visualization.

ifold, see section 3 for details), according to a PCA-

background model or and autoencoder-target model.

We can see that autoencoder alone gives many false pos-

itives, and needs to be balanced with the PCA model.

This is due to the fact that the manifold learned by the

autoencoder can generate uniform patterns, which are

in fact vehicles with uniform intensity. This can easily

be removed thanks to the PCA, as an uniform back-

ground is easily reconstructed by its first few principal

components.

Detection results Fig. 13 shows the top false positives

(those having the highest scores) obtained with the

SVM detector and with the AE-PCA detector. The fig-

ure also shows the most difficult targets, i.e. those with

the lowest scores. Both are obtained on one specific fold.

Each window is enlarged a little bit to reveal its con-

text (i.e. the surrounding pixels). We can notice that

for both SVM and AE-PCA, with HOG features, some

hard negative windows looks to be positive, however

the localization is not accurate enough. This is because

the HOG features is computed using pixels that are a a

little outside the sliding window. We can also see that

the false positives are very different for SVM and AE-

PCA, but the lowest scored positives have some iden-

tical targets. It should be noted that specularities or

heavy shadows highly perturb the detection.

4.5 Setting up the parameters.

Different parameters have to be set, in particular di-

mensionality of the latent space for the PCA, the pa-

rameters of autoencoders, or the number of components

of the Gaussian Mixtures. We choose to fix them by

cross validation, on a validation set. Fig. 11 shows the

performance of the AE-PCA detector, for different di-

mensionalities of the latent space, when using raw pixel

intensities as input. We can see that there is a correla-

tion between both, with a flat optimum of the param-

eters.

The refinement step (i.e. the back-propagation step

described in section 3) is crucial to obtain good results,

as can be seen Fig. 12. We can see that going through

the refinement step allows significant performances to

be gained. We can also see that the optimum is decreas-

ing after 45 hidden neurons. Indeed, when this number

is too large, the constraint ensuring the autoencoder

learns the vehicles are too smooth, explaining why it

only learns the identity function.

It is important to notice that, as shown by Fig. 14,

reducing the reconstruction error on the targets by adding

neurons might results in over-fitting. At the end, adding

neurons is equivalent to removing constraints, and the

network becomes the identity function. Having a small

reconstruction error (which can be seen as a low train-

ing bias) is not a guarantee of the quality of the detec-

tor, in any case.

4.6 Quantitative results.

We have experimented with 7 different detectors. The

first one (so called AE-PCA) is the proposed one, us-

ing an autoencoder to model targets and a PCA based
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Classifier Features Top false positive windows

SVM Raw Intensity

AE-PCA Raw Intensity

SVM HOG

AE-PCA HOG

Classifier Features Top false negative windows

SVM Raw Intensity

AE-PCA Raw Intensity

SVM HOG

AE-PCA HOG

Fig. 13 Visualization of the top false positive windows (i.e. the negative regions with highest scores), on the 4 first rows, and
the top false negative windows (i.e. the positive windows with lowest scores), on the 4 last rows. All these images come from
a single fold.

manifold for backgrounds. The second is one of the state
of the art approaches for detection, namely the Dalal

and Triggs’s detector [10] (so called HOG-SVM). We

also compared our approach with the Deformable Part

Model of Felzenszwalb et al [18], as well as a Convolu-

tional Neural Network. In addition, we have also exper-

imented with three other detectors: the first one used

PCA to model both targets and backgrounds (PCA-

PCA), the second one used Gaussian mixture model,

here again for both targets and backgrounds (GM-GM),

and the last one used an autoencoder for both as well

(AE-AE). For these 7 detectors, we report the mean av-

erage precision over the 10 folds of the OIRDS datasets

in Table 1.

The main conclusion we can draw from these results

is that the proposed approach (the AE-PCA detector)

outperforms any other detector, for any type of feature.

The best results are obtained with HOG31 signatures.

We also observe that Gaussian Mixture Models do not

perform well in any case. Indeed, we have noticed that

the GMM tends to be specialized to a few images, show-

ing that EM gets stuck in local minima. From these re-

sults, we can also conclude that the HOG-SVM detector

is outperformed – when using gradient and gray level

signatures – by the PCA-PCA detector. HOG-SVM is

however better than PCA-PCA with HOG31 features.

The DPM was not able to give good results, as the

code was not designed to deal with so small targets.

Hard negative mining is done on images with no vehi-

cles, so we added aerial images of background to help

the DPM, but it was not sufficient.

In addition, we can also observe that using two au-

toencoders (one for the targets, the other for the back-

grounds) does not give better results, as the background

autoencoder fails to capture the diversity of the back-

grounds.

Finally, as mentioned before, we kept aside a dozen

images that are more difficult because of their large size,

for additional experiments (using the previously learned

classifiers). Targets are as small as previously but the
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Fig. 11 Mean Average precision on a validation test, for sev-
eral pairs of (number of PCA components, number of neurons
in the hidden layer).

Fig. 12 Mean Average precision on a validation set, as a
function of the number of neurons of the hidden layer, for
RBM and for RBM +back-propagation.

images cover a much larger area and hence produce

more false positive. Figure 15 illustrates the difficulty

of these images by presenting two regions of interest,

one being a positive example (i.e. a vehicle) the other

being a negative one. Even a human can hardly predict

which one is the positive one. Such large images hence

make the task even more challenging.

Results are given in Table 2. The performance is not

as good as on the regular OIRDS images, as expected,

as the images are much larger and include more dis-

Fig. 14 Each point of this plot represents the average preci-
sion of the detector as function of the average reconstruction
error during training. Each point correspond to a fixed au-
toencoder with a fixed number of neurons. The reconstruction
error is as low as the number of neurons is large.

Intensity Gradient HOG31

GMM-GMM 8.3% 21,3% 17.7%
HOG-SVM [10] 10.5% 35.2% 46.8%

DPM [18] – – 6.55%
CNN 34.1% – –

PCA-PCA 35.0% 37.9% 42.5%
AE-AE 35.3% 33.5% 47.5%

AE-PCA (ours) 35.5% 39.9% 48.9%

Table 1 Mean Average Precision on OIRDS for the five de-
tectors we experimented.

Intensity Gradient HOG31

HOG-SVM [10] 1.5% 12.1% 12.6%
AE-PCA (ours) 3.3% 16.4% 17.1%

Table 2 Mean Av. Precision on the large images.

tractors without containing more targets, i.e. there are

more possible false positive without having more true

positives. Here again our AE-PCA detector clearly out-

performs any other approaches.

5 Conclusions

This paper proposes an algorithm for the detection of

small targets on complex backgrounds, based on man-

ifold learning. The core of our contribution lies in a

new scoring function in which targets and background

are modeled by distinct and adapted models. Targets

are accurately modeled by an off-line learned autoen-

coder while background is modeled by a PCA based lin-

ear manifold. We have experimentally validated our ap-
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Fig. 15 Two region of interest extracted from the large im-
ages. Among these two, one is a positive example while the
other one is a negative one.

proach on a publicly available vehicle dataset, and show

results that outperform state-of-the-art algorithms.
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