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Abstract

Interactive classification aims at introducing user preferences in the learning process to

produce individualized outcomes more adapted to each user’s behaviour than the fully au-

tomatic approaches. The current interactive classification systems generally adopt a single-

label classification paradigm that constrains items to span one label at a time and conse-

quently limit the user’s expressiveness while he/she interacts with data that are inherently

multi-label. Moreover, the experimental evaluations are mainly subjective and closely de-

pend on the targeted use cases and the interface characteristics. This paper presents the

first extensive study of the impact of the interactivity constraints on the performances of

a large set of twelve well-established multi-label learning methods. We restrict ourselves

to the evaluation of the classifier predictive and time-computation performances while the

number of training examples regularly increases and we focus on the beginning of the clas-

sification task where few examples are available. The classifier performances are evaluated

with an experimental protocol independent of any implementation environment on a set

of twelve multi-label benchmarks of various sizes from different domains. Our comparison

shows that four classifiers can be distinguished for the prediction quality: RF-PCT (Random

Forest of Predictive Clustering Trees, Kocev (2012)), EBR (Ensemble of Binary Relevance,

(Read et al., 2011)), CLR (Calibrated Label Ranking, Fürnkranz et al. (2008)) and MLkNN

(Multi-label kNN, Zhang and Zhou (2007)) with an advantage for the first two ensemble
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classifiers. Moreover, only RF-PCT competes with the fastest classifiers and is therefore

considered as the most promising classifier for an interactive multi-label learning system.
Keywords:

interactive learning, multi-label learning, comparative study.

1. Introduction

By integrating some user preferences in a classification process, human-centered systems

aim at producing individualized outcomes more adapted to each user’s behavior than the

fully automatic approaches (e.g. Amershi et al. (2015); Porter et al. (2013); Amershi (2011);

Lintott et al. (2008); Fails and Olsen Jr (2003); Ware et al. (2001)). When the preferences

are made explicit, they can be integrated in the learning model, for instance by defining

some constraints on the dataset (Wagstaff et al., 2001; Bilenko et al., 2004). Otherwise, an

alternative is to let the user interact with the system which dynamically learns from his/her

behavior. As recently defined by Amershi et al. (2015) « interactive machine learning is a

process that involves a tight interaction loop between a human and a machine learner, where

the learner iteratively takes input from the human, promptly incorporates that input, and

then provides the human with output impacted by the results of the iteration ».

In a classification framework, the learning algorithm tries to quickly build a first predic-

tive model from a restricted set of examples given by the user and it presents him/her with

personalized predictions. For instance, to query a Video on Demand (VoD) catalogue for a

good film to watch, a user defines his/her target concepts such as « Funny », « Masterpiece

», and « Fairytale » and with an adapted interface he/she labels a small set of familiar

films (e.g. Ice Age (« Funny »), Avatar (« Masterpiece », « Fairytale »)) (see Figure 1).
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A classification algorithm tries to capture the user’s preferences and to learn a predictive

model which provides the user with other relevant films from the catalogue. To strengthen

the predictive performance of the model, the user regularly inspects the quality of the pre-

dictions and possibly corrects the misclassified examples (i.e. relevance feedback (Stumpf

et al., 2007; Salton and Buckley, 1997)).

Figure 1: Interactive classification of a VoD catalogue (a toy example).

The increasing importance currently given to personalized contents has led to the devel-

opment of several interactive classification systems for various real-world applications: e.g.

image classification (Fogarty et al., 2008), file selection (Ritter and Basu, 2009), gesture

classification (Fiebrink et al., 2009), document classification (Drucker et al., 2011), alarm

triage (Amershi et al., 2011) and profile classification in social networks (Amershi et al.,

2012). Some experimental results on the targeted domain are promising but each of these

approaches adopts a single-label classification paradigm that constrains items to span one

label at a time. This simplifying framework significantly limits the user’s expressiveness

while he/she interacts with data that are inherently multi-label.

Learning from multi-label data has received significant attention over the past few years

from machine learning and its related communities (Zhang and Zhou, 2013; Madjarov et al.,

2012; Sorower, 2010; Tsoumakas et al., 2010; Tsoumakas and Katakis, 2007). Initially devel-

oped for text categorization (Schapire and Singer, 2000), approaches have been extended to
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diverse application domains: classification of multimedia contents including image (Boutell

et al., 2004), audio (Lo et al., 2011) and video (Snoek et al., 2006), web and rule mining

(Ozonat and Young, 2009; Rak et al., 2005), bioinformatics (Clare and King, 2001), tag

recommendation (Katakis et al., 2008) and information retrieval (Yu et al., 2005).

Our final objective in the next future is to integrate a multi-label approach into an

interactive classification system to allow users to label examples with several subjective

labels of interest and consequently express complex search queries on data; VoD being one

of our privileged application field. And the first major issue common to all developers of

such a system is: which multi-label classifier should we choose? The efficiency of a real-life

interactive machine learning system depends on different factors such as, in particular, the

quality of the learner, the data visualization display and the interaction tools. In this paper,

we restrict ourselves to the analysis of the learner behaviours without taken into account

the human interface dimension and we evaluate their performances with an experimental

protocol independent of any implementation environment.

More precisely, we here consider the two following major constraints: learning from

few training examples in a limited time. And we study the impact of these constraints

on the performances of a large set of twelve well-established algorithms from the three

major families of multi-label learning methods: five problem transformation methods, two

algorithm adaptation methods and five ensemble methods. We evaluate each classifier on

a collection of nested training sets of increasing sizes and we focus on the beginning of

the classification process where the number of examples is limited. The literature presents

a wide range of measures for the evaluation of the classifier predictive performances (e.g.

(Tsoumakas et al., 2010; Zhang and Zhou, 2013)) but there is no consensus on the podium of

the « best » measures. We here focus on the most useful criteria in the interactive context:

ranking labels by relevance, ranking examples by relevance and classifying labels. These

criteria have led us to select four measures from the literature (Ranking Loss, Accuracy,
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F1-score and multi-label Balanced Error Rate BER) and to propose an adaptation of the

Ranking Loss for evaluating the quality of the label example ranking. For consolidating our

conclusions, we additionally consider five classical measures: Coverage, One Error, Average

Precision, Hamming Loss and Exact match. The computational efficiency of the classifiers

is measured by both the running time observed in the experiments and the theoretical

computational complexities required for training and testing the models.

The comparison of the twelve algorithms is performed on a set of twelve multi-label

benchmarks of various sizes from five different domains (music, audio, image, biology and

text). It shows that, for the learning quality criteria, the four classifiers which significantly

outperform the others are: the problem transformation method CLR (Calibrated Label

Ranking, Fürnkranz et al. (2008)), the algorithm adaptation method ML-kNN (Multi-Label

k Nearest Neighbours, Zhang and Zhou (2007)), and the ensemble methods EBR (Ensem-

ble of Binary Relevance, Read et al. (2011)) and RF-PCT (Random Forest of Predictive

Clustering Trees, Kocev (2012)). A precise analysis of the difference in their predictive per-

formances concludes that RF-PCT is the best classifier, closely followed by EBR. However,

when considering the time criteria, only RF-PCT competes with the fastest classifiers that

are the least accurate classifiers. Let us note that RF-PCT was already the best performing

classifier for large training data sets (Madjarov et al., 2012).

The rest of the paper is organized as follows. Section 2 presents some related recent

works both in interactive classification and in multi-label learning. In Section 3, we precisely

define the constraints considered in our interactive multi-label classification problem. The

experimental protocol and the benchmark datasets are described in Section 4. Section 5

presents the classifier comparison for the learning efficiency with a limited training set and

Section 6 presents the learning and predicting time evaluations.
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2. Related Work

We first briefly present some interactive classification systems which have been recently

developed. Then, we list the multi-label classifiers used in our comparisons and we recall

the performances obtained from published extensive comparisons.

2.1. Interactive classification

In this section, we have retained five recent interactive classification systems to illustrate

the potentialities of the user-centered approaches.

CueFlik (Fogarty et al., 2008) is an image classifier that automatically recognizes a

user’s desired visual concept (e.g. scenic, visually busy, or colourful images). The user

queries a catalogue of images and selects some images with and without the desired visual

characteristics from the obtained results. A kNN algorithm re-ranks the images using a

similarity measure whose parameters are learned from the user’s actions.

Smart selection (Ritter and Basu, 2009) is a file classifier to perform complex file

search queries (e.g. selection of all files that contain the substring "old"). To train the

classifier, the user only clicks few desired files. Using boosted decision trees, the system

selects the rest.

iCluster (Drucker et al., 2011; Basu et al., 2010) is a document classifier that detects

preferred documents. The user defines a set of desired labels and associates each document

with the label that better describes it. From a restricted training set, the system provides

two predictions: for a new example, a ranking of its predicted labels, and for a selected

label, a ranking of its top(20) predicted new examples. It uses a hybrid learning mechanism

that combines a logistic regression classifier with a metric learner.

CueT (Amershi et al., 2011) is an alarm classifier that helps network operators to triage

alarms. A operator first defines a set of labels and then manually labels a restricted number

of alarms according to their severity. From the triaging decisions, the system uses a nearest
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neighbour strategy combined with an adaptive distance function to predict the label of a

new incoming alarm in the network.

Regroup (Amershi et al., 2012) is a profile classifier that recognizes desired profiles in

a social network. To explain a target profile, a user selects some friends with the desired

characteristics. Using a Naïve Bayes classifier, the system re-ranks the remaining friend set

according to their probability to belong to the group.

These systems show that interactive classification presents attractive properties for real-

life applications. However, all of them constrain users to associate examples with a single

label, which seems artificial for decisions on data that generally imply a combination of

labels. For instance, images in CueFlik may contain many visual concepts, documents in

iCluster may talk about several subjects and users in Regroup may belong to different social

groups.

2.2. Multi-label classification

Generally speaking, the multi-label classification approaches can be categorized in three

main families. The problem transformation methods are probably the most popular

approaches. They do not learn directly from the multi-label data: they transform the multi-

label learning problem into one or several single-label classification or regression problems.

The algorithm adaptation methods adapt existing learning algorithms to learn from

multi-label data. The ensemble methods or meta-methods involve a collection of learners

to make multi-label predictions. These learners belong to one of the two previous families.

An exhaustive description is beyond the scope of this paper. We here restrict ourselves to

a brief presentation of the twelve approaches retained for our comparison. They are among

the mostly-studied multi-label classifiers and they include the classifiers that Madjarov et al.

(2012) have recommended from their recent extensive experimental study.
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2.2.1. Problem transformation methods

We have selected five approaches plus a baseline.

Binary Relevance (BR) (Schapire and Singer, 2000) is probably the most popular

transformation method. It learns one binary classifier for each label independently. For a

new instance, it outputs the union of the labels predicted by the learned models.

Classifier Chain (CC) (Read et al., 2011) is an extension of BR that trains the

classifiers in a random chain and extends the feature space associated with each classifier

with the labels of the previous classifiers in the chain. For a new instance, like BR, CC

presents the union of the labels predicted by each classifier in the chain.

Label Powerset (LP) (Tsoumakas and Katakis, 2007) considers each label set as a

single atomic label and then trains a single-label multi-class classifier. For a new instance,

LP predicts the most likely label set.

Calibrated Label Ranking (CLR) (Fürnkranz et al., 2008) extends the Ranking by

Pairwise Comparison method (RPC) (Hüllermeier et al., 2008) by introducing an additional

virtual label to separate the relevant labels from the irrelevant ones. For a new instance,

CLR returns the average vote on all models for each label.

Hierarchy Of Multi-label classifiERs (HOMER) (Tsoumakas et al., 2008) recur-

sively constructs a tree of LP classifiers which consider small label subsets. The labels of

each node are distributed into several disjoint subsets using a balanced clustering algorithm

such that each child node is associated with a different cluster. For a new instance, HOMER

starts with the root classifier and follows a recursive process forwarding this instance to the

multi-label classifiers of the child nodes.

The Baseline computes the frequency of each label set in the training set. For a new

instance, it returns the most frequent label set.

The problem transformation methods are flexible: they are free to use any existing

single-label base classifier. However, their efficiency mainly depends on the choice of this
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base learner. In general, two base-learners are commonly used (Tawiah and Sheng, 2013;

Madjarov et al., 2012; Read, 2010): Support Vector Machine (SVM) (Platt, 1999) and C4.5

decision tree (Quinlan, 1993) with an advantage to SVM in terms of prediction quality.

This choice has been further confirmed in an extensive comparative study of the effect of

single-label classifiers on problem transformation methods (Read, 2010). However, in this

study, the computation time constraint was not critical (up to 24 hours). Here, due to the

strong computation time constraint in our interactive learning framework, we have selected

C4.5 decision tree for its lower computational complexity: unlike SVM, it only requires a

selected number of features to build a predictive model.

2.2.2. Algorithm adaptation methods

In this second group, we select two adaptation methods.

Multi-Label k Nearest Neighbours (ML-kNN) (Zhang and Zhou, 2007) is a bi-

nary relevance method which combines the standard lazy learning algorithm kNN and the

Bayesian inference. As a lazy learner, ML-kNN does not learn a model but only estimates

the prior and posterior probabilities from the training data. For a new instance, it retrieves

its k nearest examples and measures the frequency of each label in this neighborhood. It

combines this frequency with the estimated probabilities and finally determines its label set

from the maximum a posteriori principle.

Instance-Based learning as Logistic Regression for the Multi-Label case

(IBLR_ML) (Cheng and Hüllermeier, 2009) is an extension of MLkNN that combines

instance-based learning and logistic regression. Unlike MLkNN, it allows to capture the

potentially existing interdependencies between the labels: it uses the labels of neighbours

as additional features in a meta logistic regression scheme. For a new instance, as a binary

relevance approach, it combines the predictions of all learned models.
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2.2.3. Ensemble methods

In this third group, we select four ensemble methods.

RAndom k-labELsets (RAkEL) (Tsoumakas and Vlahavas, 2007) generates an en-

semble of LP classifiers. Each LP classifier is trained with a different random label subset

of small size. For a new instance, RAkEL outputs the average vote on all models for each

label.

Ensemble of Classifier Chains (ECC) and Ensemble of Binary Relevance

(EBR) (Read et al., 2011) are ensemble methods that use a bagging strategy with CC and

BR respectively. For a new instance, ECC and EBR output the average votes on all models

for each label, like RAkEL.

Random Forest of Predictive Clustering Trees (RF-PCT) (Kocev et al., 2007;

Kocev, 2012) is an ensemble method that uses Predictive Clustering Trees (PCTs) as base

classifiers. PCTs use a standard top-down induction of decision trees. For diversity, classifiers

are trained with a bagging strategy and by selecting a random subset of the feature set at

each node of the trees. For a new instance, the predictions of all decision trees are summed

using a distribution vote approach.

2.3. Comparative studies of multi-label learning algorithms

Experimental studies have evaluated the predictive performances of the different algo-

rithms in different contexts. Table 1 recalls the results of the main publications where each

study (Reference) is described by its number of classifiers (#Classifiers), number of datasets

(#Datasets), number of evaluation criteria (#Criteria) and the set of recommended classi-

fiers (Recommendation). Let us note that, in the quoted studies, the classifiers are always

trained on a large number of examples, and that the computation time limitation is very

loose (up to many days in some cases). The recent study of Madjarov et al. (2012) which

stands out of the others for its comprehensiveness and extensiveness is our point of reference.
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Reference #Classifiers #Criteria #Datasets Recommendation

(Li et al., 2006) 6 9 2 BR and ML_ADTree1

(Nasierding and Kouzani, 2012) 7 4 8 TREMLC2, MLkNN and BR

(Madjarov et al., 2012) 12 16 11 RF-PCT, HOMER, BR and CC

(Tawiah and Sheng, 2013) 6 5 11 MLkNN, RAkEL, CC and BR

Table 1: The most relevant experimental studies of multi-label learning algorithms.

3. Problem statement

In this section, we first formally define the considered learning problem. Then, we precise

the selected performance measures for the two main interactivity constraints: learning to

generalize from a limited training set and learning and predicting in a very limited time.

3.1. Learning model

In the following, we consider a set F = {f1, f2, . . . , fm} of m numerical features fi

(dom(fi) ∈ R), and a set D = {x1, x2, . . . , xn} of n unlabelled examples xi described by the

m features (dom(xj) ∈ Rm). At the beginning t0 of the process, we assume that the user

defines a set Lt0 = {λ1, λ2, . . . , λq} of q desired labels λi (dom(λi) ∈ {0, 1}) and that he

selects a small set Tt0 of n0 examples that he/she labels either positively or negatively. More

precisely, let yi (dom(yi) ∈ {0, 1}q) be the binary vector which describes the labels given to

an example xi: yji = 1 (resp. 0) if the label λj is positively (resp. negatively) associated

to xi. The set Tt0 of the labelled examples can be defined by Tt0 = {(xi, yi)| i = 1..n0 and

|y+
i | + |y−i | = q} where |y+

i | and |y−i | are respectively the number of positive and negative

labels of xi. Gradual relevance can be used to label the examples (e.g. (Cheng et al., 2010))

but we here restrict ourselves to the binary relevance case where the user provides a simple

’yes’ (1) or ’no’ (0) answer.

From the multi-label training set Tt0 , a multi-label learning algorithm learns a predictive

model ht0 . The learned model predicts the most likely label set ŷi = ht0(xi) for each selected
11



example xi ∈ S ⊂ D where S is a test set with |S| >> |Tt0|. If the predictions provided

by the model do not align well with the user’s preferences, he/she can boost the predictive

performance by correcting the mistakes or adding few more examples and the learning

process is run again. In our proposed experimental protocol (see subsection 4.1), we do not

simulate the user selection and correction. We restrict ourselves to the evaluation of the

classifier predictive and time-computation performances while new examples are provided.

Generally, the multi-label learning algorithms predict a vector of real-valued confidence

outputs. To transform these real values into binary ones, a threshold function is needed. We

here use a fast and effective threshold method Pcut (Proportional Cut Method) introduced

in (Read, 2010)). It chooses the z value which minimizes the label cardinality difference

between the training data set T and the classified test data set S where fz : [0..1]q → {0, 1}q

is a threshold function that turns values greater than z into ones (1) or zeros (0) otherwise:

PCut = argmin
z ∈ {0.00,0.001,...,1.00}

∣∣∣∣∣∣ 1
|T |

|T |∑
i=0
|y+
i | −

1
|S|

|S|∑
i=0
|fz(ŷi)+|

∣∣∣∣∣∣
This threshold method was mainly used for large training sets. However, we here assume

that the average number of labels in a limited or a large training set is not significantly

different.

3.2. Constraint 1 : Learning to generalize from a limited training set

From decision theory, it is well-known that users have a limited focus when it comes to

making decisions (Simon, 1955). Asking a user to provide a large number of examples to

explain a desired concept is consequently a hard task which must be avoided. For the eval-

uation of the classifier efficiency with a limited training set, we consider five complementary

measures relevant for the requirements that are considered in priority in multi-label learning

applications: ranking labels by relevance, ranking examples by relevance and classifying la-

bels. Moreover, we consolidate the obtained results with five additional measures classically
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used in the literature. Table 2 provides a summary of these evaluation criteria called quality

criteria in the following. We describe them below.

3.2.1. Requirement 1: Ranking labels by relevance

In practice, users are mostly interested in a label ranking for a given example. Con-

sequently, when an example is selected, the learning system must present its most likely

labels at the top of the prediction list. To evaluate the classifier performances for ranking

the example labels, we select a common criterion: Ranking Loss (RL). It is defined in the

interval [0..1] and its lowest values indicate the best performances. RL measures the num-

ber of times where relevant and irrelevant labels are reversely ordered. Formally, let ri be a

ranking function that sorts the labels of each example xi in descending order with respect

to their prediction precision ŷi : ri(λa) = k, k ∈ {1, 2, . . . , q}, if ŷai is the kth larger value

among the ŷi values. The RL of a classifier on a test set S is defined by

RL = 1
|S|

|S|∑
i=1

1
|y+
i | × |y−i |

|(λa, λb) ∈ y+
i × y−i : ri(λb) < ri(λa)|

3.2.2. Requirement 2: Ranking examples by relevance

Users can also be interested in an example ranking for one or a set of labels. Therefore,

when a label or a combination of labels is selected, the learning system must present its most

likely examples at the top of the prediction list. To evaluate the classifier performances for

ranking the label examples, we have adapted the RL definition and we define the macro-

averaged Ranking-Loss criterion (macro-RL) which measures the number of times that rel-

evant and irrelevant examples are reversely ordered. As for the RL definition, macro-RL is

defined in the interval [0..1] and its lowest values indicate the best performances. Formally,

let |γ+
i | and |γ−i | be respectively the number of positive and negative examples associated

with the label λi. Let γ̂i (dom(γ̂i) ∈ [0..1]|S|) be the real-valued vector which describes the

prediction precisions associated with the examples xi ∈ S for the label λi. Then, let r′i be a
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ranking function that sorts each vector γ̂i in descending order: r′i(xa) = k, k ∈ {1, 2, . . . , |S|},

if γ̂ai is the kth larger value among the γ̂i values. The macro-RL of a classifier on a test set

S is defined by

macro−RL = 1
|L|

|L|∑
i=1

1
|γ+
i | × |γ−i |

|(xa, xb) ∈ γ+
i × γ−i : r′i(xb) < r′i(xa)|

3.2.3. Requirement 3: Label classification

As previously mentioned, a label ranking is essential in a multi-label learning system but

a label classification may be sometimes desired. Consequently, when an example is selected,

the learning system must only present its most likely labels. To evaluate the classifier

performances to correctly classify the example labels, we select three criteria: Accuracy and

F1-score and the multi-label Balanced Error Rate (BER). In Madjarov et al. (2012), the

Accuracy and the F1-score criteria help to detect the best classifiers and the BER criterion

is adapted when the evaluation datasets are unbalanced (e.g. Slashdot (Read et al., 2011)).

The Accuracy (Godbole and Sarawagi, 2004) for a single example xi is defined by the

Jaccard similarity coefficient between its ground truth yi and the predicted label set ŷi.

More precisely, it is defined by

Accuracy = 1
|S|

|S|∑
i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

The F1-score (Spyromitros et al., 2008; Tsoumakas and Katakis, 2007) is commonly

used in information retrieval but it is also popular in multi-label classification. It is the

harmonic mean between the precision and the recall criteria of each example xi:

F1 − score = 1
|S|

|S|∑
i=1

2× |yi ∩ ŷi|
|y+
i |+ |ŷi+|

TheBER (Chen and Lin, 2006) has mostly been used to evaluate single-label predictions

but we here adapt it for the evaluation of multi-label predictions. It is defined by the ratio
14



of incorrectly classified labels per example where TPi, TNi, FPi and FNi are the number of

respectively true positive, true negative, false positive and false negative labels of an example

xi:

BER = 1
|S|

|S|∑
i=1

1
2 ×

(
FPi

FPi + TNi

+ FNi

FNi + TPi

)

All these criteria are defined in the interval [0..1] and their highest values indicate the

best performances except for the BER criterion whose smallest value indicate the best

performances.

3.2.4. Additional quality criteria

In a previous work on multi-label classification, Tsoumakas et al. (2010) have organized

the quality criteria into two groups: (i) the ranking-based measures which compare the

predicted label ranking with the ground truth label ranking and (ii) the bipartition-based

measures which are based on the comparison of the predicted relevant labels with the ground

truth relevant labels. In order to limit bias induced by quality criteria selection in the

conclusion, we have added five well-known quality criteria from each group: (i) Coverage,

One-error and Average precision and (ii) Hamming lost and Exact match. Criteria from (i)

(resp. (ii)) contribute to the evaluation of the requirement 1 Section 3.2.1 (resp. requirement

3 Section 3.2.3). Their definitions are recalled in Appendix 2.
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Quality Criteria Abbreviation Min/Max Domain Ranking/Classification

Ranking Loss RL Min [0..1] Ranking-based

Macro-averaged Ranking Loss macro-RL Min [0..1] Ranking-based

Coverage Coverage Min [0..|L|] Ranking-based

One error One error Min [0..1] Ranking-based

Average precision Average precision Max [0..1] Ranking-based

Accuracy Accuracy Max [0..1] Bipartition-based

Hamming Loss Hamming Loss Min [0..1] Bipartition-based

Exact match Exact match Max [0..1] Bipartition-based

F1-score F1-score Max [0..1] Bipartition-based

Balanced Error Rate BER Min [0..1] Bipartition-based

Table 2: A summary of the selected criteria for the evaluation of the prediction quality.

3.3. Constraint 2 : Learning and predicting in a very limited time

In an interactive framework, the response of the learning system must be short: whenever

a user adds new examples, the learning system must quickly adjust its current understanding

and provide him/her with predictions as fast as possible. In Human-Computer Interaction,

interactive systems are often required to provide users with a response in less than 100

ms (Dabrowski and Munson, 2001); as far as we know, this constraint is currently too

strong here and we relax it to few seconds. For each classifier, we compute the number

of seconds required to learn from a limited training data, and we predict labelsets of large

test data. Obviously, we are aware that the computation time mainly depends on the

implementation of the classifiers, and that the obtained results might only provide tendencies

of their computational complexities.

4. Experimental setting

We first describe the experimental protocol proposed to evaluate the classifier perfor-

mances in a simplified interactive context which allows classifier comparisons under the
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same conditions. Then, we present the twelve multi-label classification benchmark problems

used for the evaluations and the chosen classifier parameters.

4.1. Experimental protocol

Evaluating the relevance of classifiers for an interactive environment is a complex task

and, unfortunately, due to the novelty of this research field, there is still no standard or

widely accepted framework to compare different approaches. In works presented in Section

2.1, the evaluation is mainly subjective: a small sample of users rated the quality of the

developed systems for different tasks. Some authors additionally introduced “objective”

measures (e.g. prediction accuracy, average trial time and learning speed). However, they

only considered just one or a very restricted set of classification algorithms –often chosen

without solid arguments- and few datasets –often one only-. The experimental evaluations

closely depend on the chosen targeted use cases and the interface characteristics. The

significance of their conclusions is consequently limited.

To draw general conclusions helpful for guiding the choice of a suitable classifier during

the development of an interactive multi-label classification system, we use a simplified sim-

ulation where the training sets regularly increase while staying small. The objective is to

detect the classifiers which are able to "continuously" learn well with very limited training

sets in a reasonable time. More precisely, we focus on the beginning of the classification task

where few examples (from 2 to 64 examples) are available. In practice, this phase is crucial

for catching the user interest and confidence in the system.

To avoid bias in the comparisons, all the classifiers are trained with the same training

examples. The principle of the experimental protocol is the following. Each dataset is

divided into a small training set and a large test set. From each training set, training

subsets of restricted sizes are successively created such that each one fits into the other.

Thereafter, each classifier is trained with the nested data subsets and its performances are

evaluated for each training data subset size on the same test set. This process allows to
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precisely follow the evolution of the classifier performances while the training set grows. It

is repeated several times as precisely described below.

1. Divide each dataset D into 5 distinct folds. Use each fold for training (T = 20% of D)

and the 4 remaining folds for testing (S = 80% of D). In total, there are 5 sets Ti (i

= 1 to 5) for training and 5 sets Si (i = 1 to 5) for testing (i.e. 5 cross-validation).

2. From each training set Ti (1≤i≤5), extract s sets of p nested training subsets of size 21,

22, . . . to 2p.

3. Associate each classifier with the 5× s× p training subsets of all folds (5× s training

data sets for each size). For each training subset size and for each criterion, evaluate

its average performance for the 5 test sets. Then, average on all datasets.

For all the experiments, s was fixed to 10 and p to 6, which corresponds to a number

of 300 train-test evaluations for the 5-cross validation. The threshold (p = 6) is consistent

with real-life experiments. From our practical experience, we have observed that users do

not annotate more than 64 examples by themselves without any assistance of a learning

algorithm.

This online learning approach is adapted for the beginning of the interaction where the

model is more likely to change (i.e. concept-drift). In practice, users define their desired

concepts mainly in real time while interacting with data and the learning system, and they

mostly have no clear idea about the concepts they have in mind before the interaction starts

(i.e. concept flexibility (Amershi, 2011)).

4.2. Data sets

We use twelve different multi-label classification benchmark problems most of which were

selected in various previous studies. Our experimental corpus includes datasets with different

scale from five different application domains (music, image, audio, biology, text). The basic

statistics (Table 3) confirm that they cover a wide range of situations. In particular, their
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number of features varies from 71 to 49060 which allows to evaluate the classifier behaviours

in a large scale, and the number of labels varies from 6 to 30 labels as users are mostly

interested in a limited number of labels. The datasets are briefly described below.

Emotions (Trohidis et al., 2008) is a small dataset which describes pieces of music by

71 numerical features. They can be labelled with 6 possible emotions: sad-lonely, angry-

aggressive, amazed-surprised, relaxing-calm, quiet-still, and happy-pleased. Yeast (Elisseeff

and Weston, 2001) is a biological dataset where genes are described by 103 numerical fea-

tures. They can be associated with 14 biological functions. Scene (Boutell et al., 2004)

is a dataset where images are described by 294 numerical features. They can be anno-

tated with up to 6 concepts: beach, sunset, field, fall-foliage, mountain, and urban. Birds

(Briggs et al., 2013) is a small dataset where 645 ten-second audio recordings of bird sounds

are described by 260 numerical features. They can be labelled with up to 19 bird species.

Slashdot (Read et al., 2011) is a sparse text dataset where documents are defined by 1079

binary features. They can be associated with 20 subject categories (e.g. linux, technology,

science). IMDB (Read et al., 2011) is a sparse dataset where movies are defined by 1001

binary features. They can be tagged with up to 28 genres (e.g. Romance, Comedy, Drama).

Genbase (Diplaris et al., 2005) is another microbiological dataset where genes are described

with 1186 binary features. They can be associated with 27 biological functions.

TMC (Srivastava and Zane-Ulman, 2005) is a sparse text dataset of flight readiness and

discrepancy reports. It is described by 49060 binary features. The reports can be associated

with up to 22 labels representing the problems being described. The four remaining text

datasets (Arts, Business, Health and Computers) are web pages collected through the

hyperlinks from Yahoo!’s top directory. Each data set is associated with four of Yahoo!’s top

categories ("Arts & Humanities", "Business & Economy", "Computers & Internet", "Health"),

and each page is labelled with one or more second level subcategories. In these four datasets,

the minimum (maximum) values of |L| and |F| are 24 (30) and 21924 (34096), respectively.
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The diversity of the data sets considered in our experimentation is confirmed by the

distributions of three classical criteria which measure their « multi-labelled-ness » (see Table

3 for the numerical values):

1. Label Cardinality (LCard) is arguably the most common measure of multi-labelled-

ness in the literature (Tsoumakas and Katakis, 2007). It evaluates the average number

of labels associated with each example in a dataset D:

LCard(D) = 1
n

n∑
i=1
|y+
i |

2. Label Density (LDens) relates to LCard, but takes into account the size of the

label space. It is equal to the ratio of the average number of the example labels in a

dataset D by the label number q (Tsoumakas and Katakis, 2007):

LDens(D) = 1
n

n∑
i=1

|y+
i |
q

= LC

q

3. Proportion of Unique label combinations (PUniq) is a new measure of multi-

labelled-ness which was recently introduced by (Read, 2010). It indicates the regularity

or uniformity of the labelling scheme. Precisely, it evaluates the proportion of label

sets which are unique across the total number of examples in a dataset D:

PUniq(D) = |yi|∃! xi : (xi, yi) ∈ D|
n

In our selected evaluation datasets, LCard values are mostly smaller than 2.0 except

for Yeast where examples are associated in average with more than 4.0 labels. Indeed, the

low label cardinality is common to textual and multi-media data where most examples are

associated with a single-label, and the "multi-labelled-ness" has only been used to avoid

ambiguities. LDens values are mostly very low because labelling is usually very sparse

except for Emotions and Yeast where 30% of the labels are associated on average with each
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example. The low values of PUniq indicate that the labelling is generally regular except for

IMDB and TMC where more than 20% of the examples are associated with unique labelsets

(i.e. irregular labelling).

In an interactive classification framework, waiting for the successive results must be

reduced. Therefore, to obtain real estimations of the average learning and prediction times

of the classifier, we here only select random samples of 1000 examples from the original

datasets -expect for Emotions which is already small.

Dataset Domain |F| |D| |L| LCard PUniq LDens

Emotions Music 71 592 6 1.86 0.04 0.31

Yeast Biology 103 1000 14 4.2 0.14 0.30

Scene Image 294 1000 6 1.07 0.01 0.18

Birds Audio 260 645 19 1.01 0.21 0.05

Slashdot Text 1079 1000 20 1.19 0.09 0.06

IMDB Text 1001 1000 28 1.94 0.27 0.07

Genbase Biology 1186 662 27 1.25 0.05 0.05

Arts Text 23146 1000 24 1.66 0.18 0.07

Business Text 21924 1000 28 1.55 0.07 0.05

Health Text 30605 1000 25 1.63 0.11 0.06

Computers Text 34096 1000 30 1.44 0.10 0.05

TMC Text 49060 1000 22 2.18 0.23 0.1

Table 3: Basic statistics of the selected multi-label benchmarks (|F|: number of features, |D|: number of
examples, |L|: number of labels, LCard: Label Cardinality, PUniq: Proportion of Unique label combinations,
LDens: Label Density)

4.3. Classifier parameters

The selected classifiers have been described in section 2.2. The parameters chosen for the

experiments follow the recommendations from the literature -except for three approaches: for

HOMER which was trained with the implementation’s default parameters, and for MLkNN

and IBLR_ML, we set the number of neighbours to 1 as the number of training examples

is very limited. The classifier parameters are precised in Table 4. Implementations of the

selected classifiers are available in the following multi-label machine learning libraries that
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are most widely used in the literature: MeKA3, MULAN 4 and CLUS5.

Classifier parameters Library Reference

LP / MeKA /

CC / MeKA /

ECC N = 10× q MeKA Read et al., 2009

BR / MeKA /

EBR N = 10× q MeKA Read et al., 2009

RAkEL1 N = 10 and k = q/2 MULAN Tsoumakas et al., 2007

RAkEL2 N = 2× q and k = 3 MULAN Tsoumakas et al., 2007

MLkNN k = 1 MULAN ours

IBLR_ML k = 1 MULAN ours

HOMER k = 3 MULAN default

CLR / MULAN /

RF-PCT N = 100, m′ = 0.1× |F|+ 1 CLUS Kocev 2011

Table 4: The input parameters of each multi-label classifier where q is the number of labels, N is the
number of base learners for the ensemble methods, m′ is the number of features selected at each node in
RF-PCT, and k could be the number of label subsets, the size of label subsets or the number of neighbours
respectively for HOMER, RAkEL and instance-based methods.

5. Experimental results I: learning from a limited training set

Tables 5-9 present the results obtained for the quality criteria defined in subsection 3.2.

The average performance of each classifier is given for each training data size (from 2 to 64).

The classifier predictive performances significantly improve as new training examples are

provided, especially when the training data size is greater than 8 -except for the macro-RL.

Let us note that, unsurprisingly, they all struggle to learn from the smallest training sets

of size 2 –which explains their very close poor performances-. Moreover, the differences

between the classifier performances increase with the number of training examples. The

differences are confirmed by a Friedman statistical test (with a 5% significance level) for all

criteria but the BER criterion.
3meka.sourceforge.net
4mulan.sourceforge.net
5dtai.cs.kuleuven.be/clus
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For the major quality criteria (RL and macro-RL), the ensemble method RF-PCT out-

performs the other classifiers for all training data sizes (Tables 5-6). It is closely followed

by EBR, CLR and MLkNN which belong to the three multi-label method families. The Ne-

menyi post-hoc analysis does not reveal any statistical difference between these classifiers.

The detailed results obtained for three representative training data sizes (4, 16 and 64 ex-

amples) show that the best classifiers remain the same whatever the dataset (see Appendix

1 – Tables .13 to .18); this is confirmed by a Friedman statistical test.

When considering the other quality criteria (Accuracy, F1-score and BER), the podium

remains the same and RF-PCT remains the winner (Tables 7 and 9). Let us recall that

RF-PCT and CLR were already among the best multi-label classifiers for the RL, Accuracy

and F1-score criteria in the extensive study of Madjarov et al. (2012) which does not take

the interactive constraints into account. In the previous study, EBR was not evaluated and

MLkNN only performed well for the RL criterion with poor results for the Accuracy and the

F1-score. The critical diagrams obtained from the statistical tests (Friedman and Nemenyi

post-hoc) for the main quality criteria are given in Appendix 3 (Figures .2-.4).

The main conclusion is that the learning capabilities of the ensemble methods RF-PCT

and EBR remain good whatever the training set size. Additional details are given bellow

for each criterion.

5.1. Ranking Loss (RL)

A precise analysis places RF-PCT first for all training data sizes. It is followed by CLR,

EBR and MLkNN which obtain very close performances with a very slight advantage to

CLR intrinsically optimizes this criterion; this is confirmed by a Friedman statistical test. In

contrast, BR and CC, which were favourite in Madjarov et al. (2012), loose their effectiveness

for small training sets. Moreover, when the number of training examples increase, each

classifier was able to improve its ranking performance - except HOMER which has also

previously provided poor performances for large training data sets. It seems that HOMER
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is more adapted for domains with a large label number (hundreds and more) (Tsoumakas

et al., 2008).

Some remarks can also be drawn for the different classifier families. For the ensemble

learning methods, EBR is better than a single BR, ECC is slightly better than a single

CC and RAkEL1 slightly outperforms RAkEL2. For the problem transformation methods,

CC does not outperform BR and they obtain very close performances as in Madjarov et al.

(2012). For the algorithm adaptation methods, MLkNN outperforms IBLR_ML and this

result differs from previous results obtained by (Cheng and Hüllermeier, 2009) with large

training data sets.

2 4 8 16 32 64

Baseline 0, 39± 0, 13 0, 37± 0, 14 0, 35± 0, 14 0, 34± 0, 13 0, 34± 0, 13 0, 33± 0, 13

LP 0,34± 0,13 0, 34± 0, 11 0, 32± 0, 11 0, 30± 0, 11 0, 28± 0, 11 0, 26± 0, 11

CC 0,34± 0,13 0, 33± 0, 12 0, 31± 0, 11 0, 29± 0, 10 0, 26± 0, 11 0, 24± 0, 11

RAkEL1 0, 35± 0, 13 0, 34± 0, 12 0, 32± 0, 12 0, 29± 0, 11 0, 26± 0, 11 0, 24± 0, 11

RAkEL2 0, 35± 0, 12 0, 36± 0, 13 0, 34± 0, 13 0, 31± 0, 13 0, 28± 0, 13 0, 25± 0, 13

MLkNN 0,34± 0,13 0, 32± 0, 13 0, 28± 0, 11 0, 24± 0, 09 0, 20± 0, 08 0, 18± 0, 08

HOMER 0, 43± 0, 10 0, 41± 0, 11 0, 39± 0, 12 0, 38± 0, 13 0, 37± 0, 14 0, 35± 0, 15

IBLR-ML 0,34± 0,13 0, 32± 0, 13 0, 30± 0, 11 0, 26± 0, 10 0, 23± 0, 09 0, 20± 0, 08

CLR 0,34± 0,13 0,31± 0,13 0, 28± 0, 12 0, 24± 0, 10 0, 20± 0, 07 0, 17± 0, 07

ECC 0, 37± 0, 13 0, 33± 0, 13 0, 31± 0, 13 0, 28± 0, 13 0, 25± 0, 12 0, 22± 0, 11

BR 0,34± 0,13 0, 33± 0, 12 0, 31± 0, 11 0, 28± 0, 10 0, 25± 0, 10 0, 23± 0, 10

EBR 0,34± 0,13 0, 32± 0, 12 0, 28± 0, 11 0, 24± 0, 09 0, 20± 0, 07 0, 17± 0, 07

RF-PCT 0,34± 0,13 0,31± 0,12 0,27 ± 0,11 0,23± 0,08 0,18± 0,06 0,15± 0,06

Table 5: The average performances of each classifier for each training set size for the Ranking Loss criterion
(RL).

5.2. Macro-averaged Ranking Loss (macro-RL)

To our knowledge, the ability of multi-label classifiers to correctly rank examples of each

label has not yet been evaluated. Table 6 shows that the ensemble method RF-PCT is

clearly the best for all training set sizes -except for the smallest size where all classifiers

suffer. It is followed by the ensemble methods ECC and EBR. This is confirmed by a
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Friedman statistical test. However, when the size of the training set increases, all classifiers

struggle to improve their predictions except RF-PCT. It seems that the multi-label learning

algorithms inherently focus on the label ranking and do not consider the example ranking.

2 4 8 16 32 64

Baseline 0,49± 0,02 0, 49± 0, 02 0, 49± 0, 02 0, 49± 0, 02 0, 49± 0, 02 0, 49± 0, 02

LP 0,49± 0,02 0, 48± 0, 02 0, 47± 0, 03 0, 45± 0, 04 0, 43± 0, 07 0, 41± 0, 08

CC 0,49± 0,02 0, 48± 0, 02 0, 47± 0, 02 0, 46± 0, 03 0, 44± 0, 05 0, 43± 0, 07

RAkEL1 0,49± 0,02 0, 48± 0, 02 0, 47± 0, 03 0, 44± 0, 05 0, 42± 0, 07 0, 39± 0, 09

RAkEL2 0,49± 0,02 0, 48± 0, 02 0, 47± 0, 03 0, 44± 0, 05 0, 42± 0, 08 0, 39± 0, 09

MLkNN 0,49± 0,02 0, 49± 0, 02 0, 47± 0, 03 0, 45± 0, 06 0, 43± 0, 08 0, 42± 0, 10

HOMER 0,49± 0,02 0, 48± 0, 02 0, 47± 0, 03 0, 45± 0, 05 0, 44± 0, 07 0, 43± 0, 08

IBLR-ML 0,49± 0,02 0, 49± 0, 02 0, 48± 0, 02 0, 47± 0, 04 0, 44± 0, 07 0, 42± 0, 11

CLR 0,49± 0,02 0, 48± 0, 02 0, 47± 0, 03 0, 45± 0, 05 0, 42± 0, 08 0, 38± 0, 10

ECC 0,49± 0,02 0, 48± 0, 02 0, 46± 0, 04 0, 43± 0, 07 0, 40± 0, 09 0, 38± 0, 10

BR 0,49± 0,02 0, 48± 0, 02 0, 47± 0, 02 0, 46± 0, 04 0, 44± 0, 06 0, 42± 0, 07

EBR 0,49± 0,02 0, 48± 0, 02 0, 46± 0, 04 0, 43± 0, 07 0, 40± 0, 09 0, 38± 0, 10

RF-PCT 0,49± 0,02 0,46± 0,03 0,43± 0,06 0,39± 0,09 0,35± 0,11 0,32± 0,12

Table 6: The average performances of each classifier for each training set size for the macro-averaged Ranking
Loss criterion (macro-RL).

5.3. Accuracy, F1-score and BER

As the ranking measures have priority in an interactive multi-label classification frame-

work, we only retain the best classifiers according to RL and macro-RL to deepen our

understanding of their behaviours with the other evaluation criteria (accuracy, F1-score,

BER). For the accuracy and the F1-score (Tables 7 and 8), RF-PCT is still the most effi-

cient for all training set sizes except for the smallest training set size where CLR is more

efficient. Nemenyi post-hoc tests confirm that RF-PCT is significantly better than MLkNN

for the F1-score and the Accuracy. However, for the BER criterion (Table 9), the classifiers

obtain very close performances for all training data sizes which is confirmed by a Friedman

statistical test.
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2 4 8 16 32 64

MLkNN 0, 17± 0, 10 0, 20± 0, 10 0, 24± 0, 11 0, 28± 0, 13 0, 31± 0, 13 0, 33± 0, 16

CLR 0,19± 0,10 0, 21± 0, 11 0, 24± 0, 12 0, 26± 0, 12 0, 30± 0, 12 0, 34± 0, 13

EBR 0, 18± 0, 10 0, 20± 0, 10 0, 26± 0, 11 0, 30± 0, 13 0, 33± 0, 14 0, 38± 0, 16

RF-PCT 0, 18± 0, 10 0,24± 0,12 0,28± 0,13 0,33± 0,12 0,39± 0,13 0,44± 0,17

Table 7: The average performances of the top(4) classifiers for each training set size for the Accuracy
criterion.

2 4 8 16 32 64

MLkNN 0, 22± 0, 14 0, 27± 0, 13 0, 32± 0, 14 0, 36± 0, 15 0, 40± 0, 16 0, 42± 0, 18

CLR 0,26± 0,14 0, 28± 0, 15 0, 31± 0, 15 0, 35± 0, 15 0, 40± 0, 15 0, 43± 0, 15

EBR 0, 24± 0, 13 0, 27± 0, 13 0, 33± 0, 14 0, 37± 0, 15 0, 40± 0, 16 0, 45± 0, 18

RF-PCT 0, 24± 0, 14 0,29± 0,14 0,34± 0,15 0,39± 0,14 0,45± 0,15 0,51± 0,17

Table 8: The average performances of the top(4) classifiers for each training set size for the F1-score criterion.

2 4 8 16 32 64

MLkNN 0, 40± 0, 10 0, 38± 0, 10 0,34± 0,10 0,31± 0,10 0, 28± 0, 10 0, 27± 0, 11

CLR 0,38± 0,11 0,37± 0,10 0,34± 0,10 0, 32± 0, 09 0,28± 0,09 0, 26± 0, 09

EBR 0, 39± 0, 10 0,37± 0,09 0,34± 0,10 0, 32± 0, 10 0, 30± 0, 10 0, 28± 0, 10

RF-PCT 0, 39± 0, 10 0,37± 0,09 0, 35± 0, 09 0, 32± 0, 08 0,28± 0,08 0,25± 0,09

Table 9: The average predictive performance of the top(4) classifiers for each training set size for the BER
criterion.

Let us note that our conclusions are consolidated by the results obtained for the addi-

tional quality criteria introduced in Section 3.2.4 (see Appendix 2). The best results are still

overall obtained by the ensemble methods RF-PCT and EBR (see Tables .19-.23).

6. Experimental results II: Learning and Predicting in a limited time

Tables 10 and 11 present the average number of seconds measured for testing and train-

ing the classifiers. For the prediction time, four classifiers stand out of the rest of classifiers:

two ensemble methods RF-PCT and RAkEL1 and two problem transformation methods LP
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and HOMER. For the training time, three problem transformation methods LP, CC and

BR obtain good performances. They are followed by the ensemble method RF-PCT. If the

observed training times are globally consistent with the theoretical computational complex-

ities (Table 12), the observed prediction times are more surprising. In particular, RF-PCT,

which requires hundred decision trees for the prediction, was expected to be less efficient

than LP, HOMER and RAkEL1 which require a smaller set of decision trees. Moreover,

the positive correlation between the prediction time increasing with the number of training

examples is only checked for the adaptation methods MLkNN and IBLR_ML.

These amazing experimental results may be partly explained by the coding quality het-

erogeneity of the algorithms which come from three different libraries (MULAN, MeKA,

CLUS). Here, we have followed the previous comparisons in the literature by using the well-

known libraries of the community. A coding standardization will be necessary in the future

for further analysis but this discussion opens questions that go far beyond the objective of

this paper. Nevertheless, combining the theoretical complexity and the experimental results,

we suggest to retain the problem transformation methods LP, BR and CC and the ensemble

method RF-PCT which is efficient with the code provided in CLUS.
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2 4 8 16 32 64

Baseline 0, 55± 0, 68 0, 56± 0, 69 0, 54± 0, 67 0, 53± 0, 67 0, 54± 0, 67 0, 53± 0, 66

LP 1, 23± 1, 54 1, 23± 1, 54 1, 24± 1, 55 1, 24± 1, 55 1, 23± 1, 54 1, 24± 1, 55

CC 8, 90± 11, 3 8, 92± 11, 4 8, 91± 11, 4 8, 81± 11, 2 8, 80± 11, 2 8, 83± 11, 3

RAkEL1 2, 85± 3, 56 2, 93± 3, 67 2, 94± 3, 68 2, 98± 3, 74 2, 99± 3, 74 3, 01± 3, 73

RAkEL2 5, 27± 6, 62 5, 96± 7, 55 6, 59± 8, 26 7, 26± 9, 10 7, 66± 9, 58 7, 91± 9, 90

MLkNN 2, 66± 3, 34 3, 01± 3, 83 3, 66± 4, 82 4, 67± 6, 67 6, 67± 10 10, 54± 17

HOMER 2, 39± 3 2, 48± 3, 12 2, 54± 3, 21 2, 57± 3, 24 2, 69± 3, 42 2, 65± 3, 36

IBLR-ML 2, 73± 3, 43 3, 10± 3, 94 3, 66± 4, 79 4, 79± 6, 70 6, 71± 10, 2 10, 80± 17, 4

CLR 21, 11± 30, 3 20, 88± 30, 2 20, 60± 29, 6 21, 11± 30, 2 21, 00± 30 20, 73± 29, 5

ECC 89, 58± 114 88, 72± 113 88, 96± 114 89, 05± 113 88, 27± 113 89, 12± 113

BR 17, 29± 22 17, 21± 22 17, 32± 22, 1 17, 08± 21, 8 17, 17± 21, 9 17, 26± 22, 1

EBR 166, 92± 213 167, 77± 214 167, 31± 213 166, 86± 213 167, 02± 213 167, 66± 214

RF-PCT 0,36± 0,39 0,34± 0,39 0,36± 0,42 0,41± 0,49 0,49± 0,62 0,66± 0,88

Table 10: The average prediction times of each classifier for each training set size (in seconds).

2 4 8 16 32 64

Baseline 0, 00± 0, 00 0, 00± 0, 00 0, 00± 0, 00 0, 00± 0, 00 0, 00± 0, 00 0, 00± 0, 00

LP 0,04± 0,05 0,05± 0,06 0,07± 0,09 0,13± 0,17 0,37± 0,46 1,25± 1,52

CC 3, 90± 4, 95 3, 99± 5, 11 4, 16± 5, 34 4, 40± 5, 59 5, 29± 6, 61 8, 34± 10, 38

RAkEL1 37, 49± 73, 2 37, 72± 73 37, 76± 74, 5 38, 24± 72, 7 40, 25± 72, 1 48, 39± 81

RAkEL2 40, 63± 70 39, 65± 68, 4 41, 34± 72 42, 21± 72, 5 46, 65± 75, 6 61, 47± 89, 2

MLkNN 32, 42± 57, 4 31, 69± 56, 5 31, 87± 57 32, 43± 56, 9 32, 28± 57, 5 34, 54± 61, 3

HOMER 35, 34± 61, 7 35, 50± 62, 4 35, 12± 62, 8 36, 07± 62 36, 08± 62, 1 39, 16± 65, 3

IBLR-ML 31, 33± 55, 8 32, 17± 56, 5 33, 03± 57, 9 33, 73± 62, 6 34, 11± 61, 9 35, 82± 64, 6

CLR 61, 24± 108 61, 18± 109 60, 88± 110 61, 88± 110 62, 74± 111 68, 04± 115

ECC 39, 84± 50, 8 39, 78± 50, 6 40, 28± 51, 4 42, 41± 53, 9 47, 46± 60, 0 63, 00± 78, 4

BR 8, 64± 11 8, 88± 11, 4 9, 00± 11, 4 9, 42± 12 10, 64± 13, 5 14, 26± 17, 8

EBR 92, 47± 117 92, 20± 117 94, 48± 121 96, 77± 12 103, 21± 131 121, 53± 153

RF-PCT 3, 35± 4, 55 3, 61± 4, 88 4, 31± 5, 72 5, 84± 7, 47 9, 67± 11, 8 20, 25± 24, 3

Table 11: The average training times of each classifier for each training set size (in seconds).
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Classifier Training complexity Prediction complexity Reference

RF-PCT O(N . q . n . m′ . log(n)) O(N . log(n)) (Kocev, 2012)

Baseline O(n) O(1) /

LP O(hM (n,m, 2q)) O(h′
M (m, 2q)) (Zhang and Zhou, 2013)

BR O(q . hB(n,m)) O(q . h′
B(m)) (Zhang and Zhou, 2013)

CC O(q . hB(n,m+ q)) O(q . h′
B(m+ q)) (Zhang and Zhou, 2013)

MLkNN O(n2 . m + q . n . k) O(n . m + q . k) (Zhang and Zhou, 2013)

IBLR_ML O(n2 . m + q . n . k) O(n . m + q . k) /

RAkEL O(N . hM (n,m, 2k)) O(N . h′
M (m, 2k)) (Zhang and Zhou, 2013)

HOMER O(C(q) + q) O(logk(q)) (Tsoumakas et al., 2008)

EBR O(N . q . hB(n,m)) O(N . q . h′
B(m)) (Zhang and Zhou, 2013)

ECC O(N . q . hB(n,m+ q)) O(N . q . h′
B(m+ q)) (Zhang and Zhou, 2013)

CLR O(q2 . hB(n,m)) O(q2 . h′
B(m)) (Zhang and Zhou, 2013)

Table 12: The computational complexities of each classifier for both training and predicting in terms of
number of training examples (n), number of features (m) and number of labels (q). N is the number of
base learners for the ensemble methods. C(.) is the computational complexity of the balanced clustering
algorithm. k could be the number of label subsets, the size of label subsets or the number of neighbours
respectively for HOMER, RAkEL and instance-based methods. m′ is the number of features selected at
each node in RF-PCT. And, hB(.) (resp. hM (.)) and h′B(.) (resp. h′M (.)) denote the training and per-
instance testing computational complexities of the binary (resp. multi-class) base learner B (resp. M) used
in problem transformation approaches.

7. Conclusion and Future work

Integrating multi-label classification in an interactive framework is a promising research

area which has recently been stimulated by real-life applications from various domains. In

the last decade, numerous multi-label classification approaches have been developed. But a

major question is the selection of an algorithm which resists the interactivity constraints.

To the best of our knowledge, this paper presents the first extensive comparative study

of multi-label learning algorithms in an interactive setting. We have compared twelve

well-established multi-label learning algorithms from three families (problem transforma-

tion methods, adaptation methods, ensemble methods) for twelve datasets of different sizes

from various domains. The quality of their predictions was evaluated for five complemen-

tary multi-label criteria: ranking-based criteria for the labels and the examples (RL and
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macro-RL), Accuracy, F1-score and Balanced Error Rate (BER)). For strengthening our

conclusions, we have considered five additional measures from the literature: Coverage, One

Error, Average Precision, Hamming Loss and Exact match. Their computation efficiency is

basically evaluated by some observed running times and by their theoretical computational

complexities for both training and predicting. Our analysis is focused on the first phase of

the classification task where only few training examples are available. In practice, this phase

is essential to gain user confidence in the interactive system.

Our comparison shows that four classifiers can be distinguished for the prediction quality:

RF-PCT (Random Forest of Predictive Clustering Trees), EBR (Ensemble of Binary Rele-

vance), CLR (Calibrated Label Ranking) and MLkNN (Multi-label kNN) with an advantage

for the first two ensemble classifiers. Moreover, RF-PCT also competes with the fastest clas-

sifiers that obtain poor predictive performances. Consequently, we conclude that RF-PCT,

which was already distinguished for the classical multi-label classification (Madjarov et al.,

2012), still remains efficient for an interactive multi-label classification.

In the next future, we plan to follow two complementary research directions: (i) im-

proving the best approaches, in particular RF-PCT and CLR, by exploiting the structure of

the unclassified data, and (ii) complexifying our experimental protocol. When the training

data size is limited, it is commonly argued that the information induced from unclassified

data enables learners to significantly improve their predictive performance (Chapelle et al.,

2006). We first want to extend our classifier comparison by confronting the best learners

of this actual study to existing semi-supervised multi-label learning approaches (e.g. Liu

et al. (2006) and Kong et al. (2013)). Our ambition is to better understand the contribution

of this added information to develop a more efficient interactive multi-label classification

algorithm.

In this study we have identified the classifiers which satisfy the main constraints of

any interactive environment. The next step is to analyse their behaviours in a more realistic
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framework by simulating user selection/correction and user addition of new labels of interest.

We are currently developing a prototype of an interactive learning system for the Video On

Demand and we will soon conduct a subjective user evaluation of the system with each of

the top classifiers.
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Appendix 1

The detailed results obtained for three representative training data sizes (4, 16 and 64

examples) for the main quality criteria (Ranking Loss and macro-averaged Ranking Loss)

are presented below.
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Appendix 2

Definitions of the additional quality criteria and the obtained results are given below.

1. Additional quality criteria

The Hamming Loss evaluates the number of misclassified labels for an example xi:

Hamming − Loss = 1
|S|

|S|∑
i=1
|yi4 ŷi|

where 4 is the symmetric difference between its ground truth and predicted label sets

(yi and ŷi).

The Exact match is a very strict criterion as it harshly punishes the model predictions.

It requires an exact match between the ground truth label set yi and the predicted label set

ŷi for an example xi:

Exact match = 1
|S|

|S|∑
i=1

I[yi = ŷi]

where I(true)=1 and I(false)=0.

The Coverage evaluates how many steps are required, on average, to go down the

ranked label list so as to cover all the relevant labels of an example xi:

Coverage = 1
|S|

|S|∑
i=1

max
λj∈y+

i

ri(λj)− 1

The One error evaluates how many times the top-ranked label is not relevant for an

example xi;

One− Error = 1
|S|

|S|∑
i=1

∣∣∣∣∣∣argmax
λj∈y+

i

ŷji /∈ yi

∣∣∣∣∣∣
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The Average precision evaluates the average fraction of labels λk ∈ y+
i ranked above

a label λj ∈ y+
i for an example xi:

AveragePrecision = 1
|S|

|S|∑
i=1

1
|y+
i |

∑
λj∈y+

i

|wi|
ri(λj)

where wi = {λk|rki ≤ rji , λk ∈ y+
i }

2. Experimental results

2 4 8 16 32 64

MLkNN 0, 73± 0, 20 0, 68± 0, 23 0,60± 0,22 0,54± 0,23 0,50± 0,25 0, 48± 0, 26

CLR 0,69± 0,22 0, 66± 0, 23 0, 62± 0, 23 0, 58± 0, 22 0, 52± 0, 22 0, 48± 0, 23

EBR 0, 72± 0, 19 0, 67± 0, 21 0,60± 0,22 0, 55± 0, 23 0, 51± 0, 24 0, 47± 0, 24

RF-PCT 0, 72± 0, 19 0,65± 0,22 0, 61± 0, 23 0, 56± 0, 22 0,50± 0,21 0,45± 0,23

Table .19: The average performances of the top(4) classifiers for each training set size for the One-error
criterion.

2 4 8 16 32 64

MLkNN 0,19± 0,12 0, 20± 0, 12 0, 17± 0, 11 0, 15± 0, 10 0, 14± 0, 09 0, 13± 0, 08

CLR 0,19± 0,12 0, 18± 0, 12 0, 16± 0, 11 0, 16± 0, 10 0, 14± 0, 09 0, 13± 0, 08

EBR 0,19± 0,12 0, 20± 0, 11 0, 16± 0, 10 0, 14± 0, 09 0, 13± 0, 08 0, 12± 0, 08

RF-PCT 0,19± 0,12 0,16± 0,11 0,14± 0,10 0,13± 0,08 0,11± 0,07 0,10± 0,07

Table .20: The average performances of the top(4) classifiers for each training set size for the Hamming loss
criterion.

2 4 8 16 32 64

MLkNN 0, 42± 0, 16 0, 45± 0, 16 0,52± 0,15 0,57± 0,16 0, 60± 0, 17 0, 63± 0, 18

CLR 0,44± 0,16 0,47± 0,17 0, 50± 0, 16 0, 54± 0, 15 0, 59± 0, 15 0, 63± 0, 16

EBR 0, 42± 0, 16 0, 46± 0, 16 0,52± 0,16 0, 56± 0, 16 0, 60± 0, 17 0, 63± 0, 17

RF-PCT 0, 43± 0, 16 0,47± 0,16 0,52± 0,16 0, 56± 0, 15 0,62± 0,15 0,66± 0,16

Table .21: The average performances of the top(4) classifiers for each training set size for the Average
precision criterion.
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2 4 8 16 32 64

MLkNN 0, 04± 0, 03 0, 04± 0, 03 0, 06± 0, 05 0, 06± 0, 05 0, 07± 0, 05 0, 09± 0, 09

CLR 0,05± 0,03 0, 04± 0, 03 0, 05± 0, 04 0, 04± 0, 04 0, 06± 0, 04 0, 08± 0, 05

EBR 0, 04± 0, 03 0, 04± 0, 04 0, 10± 0, 07 0, 13± 0, 11 0, 16± 0, 12 0, 20± 0, 13

RF-PCT 0,05± 0,03 0,10± 0,08 0,13± 0,09 0,17± 0,11 0,21± 0,14 0,26± 0,18

Table .22: The average performances of the top(4) classifiers for each training set size for the Exact match
criterion.

2 4 8 16 32 64

MLkNN 8, 32± 3, 92 7, 74± 3, 35 6, 89± 2, 81 6, 04± 2, 48 5, 33± 2, 36 4, 79± 2, 32

CLR 8,26± 3,93 7,61± 3,34 6, 89± 2, 76 6, 13± 2, 42 5, 41± 2, 29 4, 80± 2, 31

EBR 8, 30± 3, 92 7, 66± 3, 31 6, 91± 2, 85 6, 17± 2, 65 5, 46± 2, 57 4, 91± 2, 54

RF-PCT 8, 31± 3, 92 7, 62± 3, 32 6,81± 2,78 5,94± 2,47 5,12± 2,36 4,48± 2,38

Table .23: The average performances of the top(4) classifiers for each training set size for the Coverage
criterion.

Appendix 3: Critical diagrams

The critical diagram represents a projection of the classifier average ranks on an enumer-

ated axis. The classifiers are placed from left (best) to right (worst) and a bold line connects

those whose average ranks do not differ significantly (for the significance level 0.05).
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