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A multi well-balanced scheme for the shallow

water MHD system with topography

François Bouchut∗, Xavier Lhébrard∗

Abstract

The shallow water magnetohydrodynamic system involves several fam-

ilies of physically relevant steady states. In this paper we design a well-

balanced numerical scheme for the shallow water magnetohydrodynamic

system with topography, that resolves exactly a large range of steady

states. Two variants are proposed with slightly different families of pre-

served steady states. They are obtained by a generalized hydrostatic re-

construction algorithm involving the magnetic field and with a cutoff pa-

rameter to remove singularities. The solver is positive in height and semi-

discrete entropy satisfying, which ensures the robustness of the method.

Keywords: Shallow water magnetohydrodynamics, topography, well-balanced
scheme, hydrostatic reconstruction, semi-discrete entropy inequality.

Mathematics Subject Classification: 76W05, 76M12, 35L65

1 Introduction

The shallow water magnetohydrodynamic (SWMHD) system has been intro-
duced in [23] to describe the thin layer evolution of the solar tachocline. It is
written in 2d in the tangent plane approximation as

∂th + ∇ · (hu) = 0, (1.1)

∂t(hu) + ∇ · (hu ⊗ u− hb⊗ b) + ∇(gh2/2) + gh∇z + fhu⊥ = 0, (1.2)

∂t(hb) + ∇ · (hb ⊗ u− hu ⊗ b) + u∇ · (hb) = 0, (1.3)

where g > 0 is the gravity constant, h ≥ 0 is the thickness of the fluid, u = (u,v)
is the velocity, b = (a,b) is the magnetic field, z(x) is the topography, f(x) is the
Coriolis parameter, and u⊥ denotes the vector obtained from u by a rotation
of angle π/2. The notation ∇ · (b ⊗ u) is for the vector with index i given
by
∑

j ∂j(biuj). The system has to be completed with the entropy (energy)
inequality

∂t

(1

2
h|u|2 +

1

2
gh2 +

1

2
h|b|2 + ghz

)

+∇ ·
(

(1

2
h|u|2 + gh2 +

1

2
h|b|2 + ghz

)

u − hb(b · u)
)

≤ 0,
(1.4)
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that becomes an equality in the absence of shocks. We recall that the extra
term u∇ · (hb) in the induction equation (1.3), that has been proposed in [17],
is put for 2d numerical purposes only, while the physically relevant situation is
∇ · (hb) = 0.

In the one and a half dimensional setting, i.e. if dependency is only in one
spatial variable x, the system simplifies to

∂th + ∂x(hu) = 0, (1.5)

∂t(hu) + ∂x(hu2 + P ) + gh∂xz − fhv = 0, (1.6)

∂t(hv) + ∂x(huv + P⊥) + fhu = 0, (1.7)

∂t(ha) + u∂x(ha) = 0, (1.8)

∂t(hb) + ∂x(hbu − hav) + v∂x(ha) = 0, (1.9)

with

P = g
h2

2
− ha2, P⊥ = −hab, (1.10)

and the energy inequality (1.4) becomes

∂t

(1

2
h(u2 + v2) +

1

2
gh2 +

1

2
h(a2 + b2) + ghz

)

+∂x

(

(

1
2
h(u2 + v2) + gh2 + 1

2
h(a2 + b2) + ghz

)

u − ha(au + bv)
)

≤ 0.

(1.11)
According to [18], the eigenvalues of the system (1.5)-(1.9) are u, u ± |a|, u ±
√

a2 + gh. The associated waves are called respectively material (or divergence)
waves, Alfven waves and magnetogravity waves. It is classical in shallow water
systems to consider the topography z as an additional variable to the system,
satisfying ∂tz = 0. In this setting there is an additional eigenvalue which is
0, and we shall call the associated wave the topography wave. The presence
of the zero-order Coriolis terms proportional to f induces indeed more complex
nonlinear waves [30]. These are studied numerically in [31]. In the present work,
from now on we shall always assume that f ≡ 0.

The system (1.5)-(1.9) is nonconservative in the variables ha, hb. How-
ever, ha jumps only through the material contacts, where u and v are continu-
ous. Therefore, there is indeed no ambiguity in the non conservative products
u∂x(ha) and v∂x(ha), that are well-defined. Concerning the nonconservative
term h∂xz in (1.6), it is well-defined for continuous topography z. Piecewise
constant discontinuous z is considered however for discrete approximations.

A striking property of the system (1.5)-(1.9) is that four out of six of the
waves are contact discontinuities, corresponding to linearly degenerate eigenval-
ues: the material contacts associated to the eigenvalue u, the left Alfven contacts
associated to u − |a|, the right Alfven contacts associated to u + |a|, and the
topography contacts associated to the eigenvalue 0. Resonance can occur, which
means that these waves can collapse. It happens in particular when u = 0 or
u ± |a| = 0.

Multidimensional simulations of the SWMHD system have been performed
in [26, 27, 28]. As for the compressible MHD system, one-dimensional solvers
that are accurate on contact waves are needed in order to reduce significantly the
numerical diffusion in complex and multidimensional settings, that generically
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involve Alfven waves, see for example [21, 7]. At the same time, the robustness
of the scheme must be maintained.

Well-balanced finite volume schemes for solving shallow water type models
with topography have been extensively developed, see [8] and the references
therein. A main principle in such schemes is to resolve exactly some steady
states, in order to reduce significantly the numerical viscosity. The same ques-
tion arises for hydrodynamic systems without topography, when linearly degen-
erate eigenvalues are involved. Indeed, in the numerical simulation of conser-
vation laws, shocks are generally better resolved than contact discontinuities
because of their compressive nature. This is why it is important to resolve well
the contact discontinuities, that do not benefit of any compressive effect. In
the SWMHD system (1.5)-(1.9), we have at the same time “dynamic” linearly
degenerate eigenvalues (material and Alfven contact waves), and the “static”
linearly degenerate eigenvalue (steady topography contact waves). The aim of
this paper is to build a well-balanced scheme for the SWMHD system (1.5)-
(1.9) that is accurate on all these contact waves. Two variants are proposed.
Our work follows [10], where we built an entropy satisfying approximate Rie-
mann solver for the SWMHD system without topography that is accurate on
all contact waves.

A generic tool for building well-balanced schemes that we use is the hy-
drostatic reconstruction method, that has been introduced in [1]. One of its
strengths is that it enforces a semi-discrete entropy inequality, ensuring the ro-
bustness of the scheme and the computation of entropic shocks. Several variants
and extensions have been proposed in [8, 14, 11, 12, 9], and a fully discrete en-
tropy inequality is established in [2]. Other approaches are the Roe method
[3, 25, 24, 15, 13], the approximate Riemann solver method [22, 6, 4, 20]. A sys-
tem similar to ours with several families of steady states is treated in particular
in [19]. Central schemes are used also, and can handle multi steady states [16].
Higher-order extensions are reviewed in [29].

The paper is organized as follows. In Section 2 we describe the steady
states of the SWMHD system with topography. In Section 3 we write down
our two numerical schemes, with numerical fluxes that involve very particular
reconstruction procedures, and our main results Theorems 3.1 and 3.2. Section
4 is devoted to the proofs of these theorems. Finally in Section 5 we perform
numerical tests.

2 Steady states

As mentioned above, the system with topography (1.5)-(1.9) with f ≡ 0 has four
linearly degenerate eigenvalues u − |a|, u, u + |a| and 0, that can be resonant.
We would like to build a scheme that is well-balanced for some contact waves
for the eigenvalue 0, that are in particular steady states. Several cases can be
considered. For each of them, it is straightforward to check that the following
relations define steady states.

• Non-resonant case (u 6= 0 and u ± a 6= 0). The relations are

hu = cst (6= 0), ha = cst (6= ±hu), v = cst, b = cst,
u2

2
− a2

2
+ g(h + z) = cst.

(2.1)
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As in the classical shallow water system, we shall not consider these steady
states for the well-balanced property, because they are too complicate to
handle (see however [11, 5]).

• Material resonant case (u = 0 and a 6= 0). The differential relations are

u = 0, v = cst, hab = cst,

∂x

(

g
h2

2
− ha2

)

+ gh∂xz = 0.
(2.2)

Note that in contrast with the other cases, the second line in (2.2) is not
integrable. It implies that for discontinuous data, this differential rela-
tion can have different possible interpretations in terms of nonconservative
products. The situation is the same in [19].

We shall thus consider two particular subfamilies of steady states from
(2.2). The first is characterized by the relation

√
h a = cst, which yields

u = 0, v = cst, h + z = cst,
√

h a = cst (6= 0),
√

h b = cst. (2.3)

The second subfamily of steady states from (2.2) is characterized by the
relation ha = cst, that leads to the steady states

u = 0, v = cst, ha = cst (6= 0), b = cst, h − a2

2g
+ z = cst. (2.4)

These are indeed the limit of (2.1) when hu → 0.

• Alfven resonant case (u 6= 0 and u ± a = 0). The relations are

hu = cst (6= 0), ha = ∓hu, h + z = cst, v ± b = cst. (2.5)

• Material and Alfven resonant case (u = a = 0). The relations are

u = 0, a = 0, h + z = cst. (2.6)

3 Hydrostatic reconstruction scheme and main

results

In this section we define our two variants of hydrostatic reconstruction scheme
for the SWMHD system (1.5)-(1.9), and state their properties.

A finite volume scheme for the nonconservative system (1.5)-(1.9) with f ≡ 0
can be written

Un+1
i = Un

i − ∆t

∆xi

(

Fl(U
n
i ,Un

i+1, ∆zi+1/2) − Fr(U
n
i−1,U

n
i , ∆zi−1/2)

)

, (3.1)

where
U = (h, hu, hv, ha, hb), (3.2)

and as usual n stands for the time index, i for the space location, and ∆zi+1/2 =
zi+1−zi. Thus we need to define the left and right numerical fluxes Fl(Ul, Ur, ∆z),
Fr(Ul,Ur,∆z), for all left and right values Ul, Ur, zl, zr with ∆z = zr−zl. They
are constructed via the hydrostatic reconstruction method of [1].
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3.1 First scheme, associated to the steady states (2.3)

Our first scheme resolves the steady states (2.3). Denoting the left and right
states by Ul = (hl,hlul,hlvl,hlal,hlbl), Ur = (hr,hrur,hrvr,hrar,hrbr), we define
the reconstructed heights

h#

l =
(

hl − (∆z)+
)

+
, h#

r =
(

hr − (−∆z)+
)

+
, (3.3)

with the notation x+ ≡ max(0,x). We also define new reconstructed magnetic
states

a#

l = κlal, a#
r = κrar, (3.4)

b#

l = κlbl, b#
r = κrbr, (3.5)

with

κl = min

(
√

hl

h#

l

,γ

)

, κr = min

(
√

hr

h#
r

,γ

)

, (3.6)

and where γ ≥ 1 is a cutoff parameter used to prevent from getting infinite values
in (3.6) when h#

l/r vanish. In the special case hl = 0 (respectively hr = 0), we

have h#

l = 0 (respectively h#
r = 0) and we set by convention κl = 1 (respectively

κr = 1). We define then the left and right reconstructed states as

U#

l =
(

h#

l , h#

l ul, h
#

l vl, h
#

l a#

l , h#

l b#

l

)

, U#
r =

(

h#
r , h#

r ur, h
#
r vr, h

#
r a#

r , h#
r b#

r

)

.

(3.7)
Note that we use the notation # instead of * in order to avoid confusions with
intermediate states of Riemann solvers. Then the numerical fluxes are defined
by

Fl(Ul, Ur, ∆z) = Fl(U
#

l , U#
r )

+
(

0, g
h2

l

2
− g

h#2

l

2
, 0,

(

κl(ha)#l − (ha)l

)

ul,
(

κl(ha)#l − (ha)l

)

vl

)

+(κl − 1)
(

0, 0, 0, Fha
l (U#

l , U#
r ), Fhb

l (U#

l , U#
r )
)

+Fh(U#

l , U#
r )

(

0, 0, 0,
al

2
(1 − κ2

l ),
bl

2
(1 − κ2

l )

)

,

(3.8)

Fr(Ul, Ur, ∆z) = Fr(U
#

l , U#
r )

+
(

0, g
h2

r

2
− g

h#2
r

2
, 0,

(

κr(ha)#r − (ha)r

)

ur,
(

κr(ha)#r − (ha)r

)

vr

)

+(κr − 1)
(

0, 0, 0, Fha
r (U#

l , U#
r ), Fhb

r (U#
l , U#

r )
)

+Fh(U#

l , U#
r )

(

0, 0, 0,
ar

2
(1 − κ2

r),
br

2
(1 − κ2

r)

)

,

(3.9)

where Fl and Fr are the numerical fluxes of [10] associated to the problem
without topography, and Fh is its common left/right height flux. Note that

∆z = 0 implies

{

U#

l = Ul, U#
r = Ur,

Fl(Ul,Ur,0) = Fl(Ul,Ur), Fr(Ul,Ur,0) = Fr(Ul,Ur),
(3.10)

which means that the numerical fluxes extend the ones of the homogeneous
solver.
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Theorem 3.1. The scheme (3.1) with the numerical fluxes Fl, Fr defined by
(3.8), (3.9) with the reconstruction (3.3)-(3.7) satisfies the following properties.

(i) It is conservative in the variables h and hv,

(ii) It is consistent with (1.5)-(1.9) for smooth solutions,

(iii) It keeps the positivity of h under the CFL condition ∆tA(U#

l ,U#
r ) ≤

1
2

min(∆xl,∆xr) with A(.,.) the maximum speed of the homogeneous solver,
defined by [10, eq. (4.8)],

(iv) It satisfies a semi-discrete energy inequality associated to (1.11),

(v) It is well-balanced with respect to steady material and Alfven contact dis-
continuities without jump in topography,

(vi) It is well-balanced with respect to the steady states (2.6) corresponding to
material and Alfven resonance.

(vii) It is well-balanced with respect to the steady states (2.3) that satisfy

max

(

√

hl

hr
,

√

hr

hl

)

≤ γ. (3.11)

The proof of Theorem 3.1 is given in Subsection 4.1, and we give here some
comments on this result.

• The formulas (3.8), (3.9) for the numerical fluxes are defined exactly so
that the proof of the entropy inequality is an identity. Then it follows that
the scheme is consistent.

• The particular values (3.6) of κl, κr are involved only in the well-balanced
property (vii), and do not matter for the other properties. We only need
that their value is 1 when ∆z = 0. In particular, if γ = 1 we get κl ≡
κr ≡ 1, but then we loose the property (vii) since the condition (3.11)
then selects only the trivial constant states. In general one should choose
γ large enough to include relevant steady states in the condition (3.11),

but not too large to avoid large values of κl, κr when h#

l or h#
r is small

due to a large topography jump ∆z.

One can use also different formulas like

κl = min

(

hl

h#

l

,γ

)

, κr = min

(

hr

h#
r

,γ

)

, (3.12)

the idea being to have, if γ is large enough, κl = hl/h#

l , κr = hr/h#
r ,

h#

l a#

l = hlal, h#
r a#

r = hrar. However, with (3.12) or with (3.6), the
scheme does not preserve the relation ha = cst, because of the form (3.8),
(3.9) of the numerical fluxes. This is the reason why we propose another
reconstruction in the next subsection.
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3.2 Second scheme, associated to the steady states (2.4)

Our second scheme resolves the steady states (2.4). It aims at the same time to
keep the relation ha = cst if it is satisfied initially. The reconstructed states are
defined as follows for Ul = (hl,hlul,hlvl,hlal,hlbl), Ur = (hr,hrur,hrvr,hrar,hrbr).

We consider a cutoff parameter γ ≥ 1 and we set h#

l = 0 if hl = 0, otherwise
for hl > 0







h#

l − a2
l

2g
min

( hl

h#

l

,γ
)2

= hl −
a2

l

2g
+ zl − z# if hl + (γ2 − 1)

a2
l

2g
≥ z# − zl,

h#

l = 0 otherwise,
(3.13)

with
z# = max (zl, zr) . (3.14)

Indeed, the function h 7→ h − (a2
l /2g)min(hl/h,γ)2 is increasing on [0,∞), and

the condition on the data in (3.13) is for having a solution h#

l ≥ 0 to the
equation in the first line. In the case there is no nonnegative solution, we set
h#

l = 0. Similarly we set on the right for hr > 0







h#
r − a2

r

2g
min

( hr

h#
r

,γ
)2

= hr −
a2

r

2g
+ zr − z# if hr + (γ2 − 1)

a2
r

2g
≥ z# − zr,

h#
r = 0 otherwise.

(3.15)
Then we have in any case

0 ≤ h#

l ≤ hl, 0 ≤ h#
r ≤ hr. (3.16)

Isolating the case when h#

l ≥ hl/γ, definition (3.13) is found equivalent to set
for hl > 0











h#

l − (ha)2l

2g(h#

l )2
= hl −

a2
l

2g
+ zl − z#, if

(

1 − 1

γ

)

hl + (γ2 − 1)
a2

l

2g
≥ z# − zl,

h#

l =
(

hl + (γ2 − 1)
a2

l

2g + zl − z#
)

+
otherwise,

(3.17)
and (3.15) is equivalent for hr > 0 to











h#
r − (ha)2r

2g(h#
r )2

= hr −
a2

r

2g
+ zr − z#, if

(

1 − 1

γ

)

hr + (γ2 − 1)
a2

r

2g
≥ z# − zr,

h#
r =

(

hr + (γ2 − 1)
a2

r

2g + zr − z#
)

+
otherwise.

(3.18)

In practice we solve the equation on h#

l in the first line of (3.17) (respectively
h#

r in the first line of (3.18)) by Newton’s method starting with the initial guess
max(hl+zl−z#,hl/γ) (respectively max(hr +zr−z#,hr/γ)). Then the iterative

method converges increasingly to h#

l (respectively h#
r ).

We define then
a#

l = κlal, a#
r = κrar, (3.19)

with

κl = min
( hl

h#

l

,γ
)

, κr = min
( hr

h#
r

,γ
)

, (3.20)
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(we set κl = 1 if hl = 0, κr = 1 if hr = 0), and

U#

l =
(

h#

l , h#

l ul, h
#

l vl, h
#

l a#

l , h#

l bl

)

, U#
r =

(

h#
r ,h#

r ur,h
#
r vr ,h

#
r a#

r ,h#
r br

)

.
(3.21)

The left and right numerical fluxes are finally defined by

Fl(Ul, Ur,∆z) = Fl(U
#

l , U#
r )

+

(

0, g
h2

l

2
− hla

2
l − g

h#2

l

2
+ κlhla

2
l , 0,

κl

(

(ha)#l − (ha)l

)

ul,
(

(ha)#l − (ha)l

)

vl

)

+(κl − 1)
(

0, 0, 0,Fha
l (U#

l , U#
r ), 0

)

,

(3.22)

Fr(Ul, Ur,∆z) = Fr(U
#

l , U#
r )

+

(

0, g
h2

r

2
− hra

2
r − g

h#2
r

2
+ κrhra

2
r, 0,

κr

(

(ha)#r − (ha)r

)

ur,
(

(ha)#r − (ha)r

)

vr

)

+(κr − 1)
(

0, 0, 0,Fha
r (U#

l , U#
r ), 0

)

,

(3.23)

where Fl and Fr are the numerical fluxes of [10] associated to the problem
without topography, and Fh is its common left/right height flux. We have
again the extension property

zl = zr implies

{

U#

l = Ul, U#
r = Ur,

Fl(Ul,Ur,0) = Fl(Ul,Ur), Fr(Ul,Ur,0) = Fr(Ul,Ur).
(3.24)

Theorem 3.2. The scheme (3.1) with the numerical fluxes Fl, Fr defined by
(3.22), (3.23) with the reconstruction (3.13)-(3.15), (3.19)-(3.21) satisfies the
following properties.

(i) It is conservative in the variables h and hv,

(ii) It is consistent with (1.5)-(1.9) for smooth solutions,

(iii) It keeps the positivity of h under the CFL condition ∆tA(U#

l ,U#
r ) ≤

1
2

min(∆xl,∆xr) with A(.,.) the maximum speed of the homogeneous solver,
defined by [10, eq. (4.8)],

(iv) It satisfies a semi-discrete energy inequality associated to (1.11),

(v) It is well-balanced with respect to steady material and Alfven contact dis-
continuities without jump in topography,

(vi) It is well-balanced with respect to the steady states (2.6) corresponding to
material and Alfven resonance.

(vii) It is well-balanced with respect to the steady states (2.4) that satisfy

max

(

hl

hr
,
hr

hl

)

≤ γ. (3.25)
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(viii) The relation ha = cst is preserved by the scheme provided that at each
interface the data satisfy

max
( hl

h#

l

,
hr

h#
r

)

≤ γ whenever hl > 0 and hr > 0. (3.26)

As in the scheme of Theorem 3.1, the parameter γ ≥ 1 is present here to
remove the singularity of dividing by h#

l and h#
r in (3.20). In practice the choice

of γ is made by taking it large enough to include a large set of data that will
satisfy (3.25) and (3.26), but not too large otherwise it would lead to eventually
large values of κl, κr. The choice γ = 1 is nevertheless possible, it only removes
the properties (vii) and (viii) since they reduce to trivial states. Note that for
γ = 1, the schemes of Theorems 3.1 and 3.2 indeed coincide.

4 Proof of the main results

This section is devoted to the proof of the main results Theorems 3.1 and 3.2.

4.1 Proof of Theorem 3.1

The proof of (i), i.e. Fh
l = Fh

r , Fhv
l = Fhv

r , is obvious from formulas (3.8), (3.9)
since the homogeneous solver already satisfies this property. We omit the proof
of (iii), which follows the proof of Proposition 4.14 in [8].

The property (v) is inherited from the homogeneous solver that is described
in [10], according to (3.10). We recall more explicitly that, defining

F (U) = (hu,hu2 + P,huv + P⊥,0,hbu − hav) (4.1)

with P and P⊥ defined by (1.10), this property of well-balancing for the homo-
geneous solver means that Fl(Ul,Ur) = F (Ul) and Fr(Ul,Ur) = F (Ur) for all
data of the form:

ul = ur = 0, vl = vr, P (Ul) = P (Ur), P⊥(Ul) = P⊥(Ur), (4.2)

or

hl = hr, al = ar 6= 0, ul = ur = |al|, bl sgn(al) − vl = br sgn(ar) − vr, (4.3)

or

hl = hr, al = ar 6= 0, ul = ur = −|al|, bl sgn(al) + vl = br sgn(ar) + vr, (4.4)

or
hl = hr, ul = ur = 0, al = ar = 0. (4.5)

For the proof of (vi), consider data Ul, Ur, zl, zr satisfying (2.6), i.e. ul = ur = 0,

hl + zl = hr + zr, al = ar = 0. Then we get h#

l = h#
r , a#

l = a#
r = 0,

and the fluxes Fl, Fr are evaluated on states U#

l , U#
r of the type (4.5). Thus

Fl(U
#

l ,U#
r ) = F (U#

l ) and Fr(U
#

l ,U#
r ) = F (U#

r ). Using the form (4.1) of F with
u = a = 0 and plugging this in (3.8), (3.9) we obtain Fl = F (Ul), Fr = F (Ur),
which proves the claim.
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For the proof of (vii), consider data Ul, Ur, zl, zr satisfying (2.3), i.e. ul =
ur = 0, vl = vr, hl + zl = hr + zr,

√
hlal =

√
hrar 6= 0,

√
hlbl =

√
hrbr. Then

from (3.3) we get

h#

l = h#
r ≡ h#, (4.6)

the common value h# being hr if ∆z ≥ 0, or hl if ∆z ≤ 0. Using condition

(3.11), according to (3.4), (3.5), (3.6), we get κl =
√

hl/h#

l , κr =

√

hr/h#
r ,

√

h#

l a#

l =
√

hlal,
√

h#
r a#

r =
√

hrar,
√

h#

l b#

l =
√

hlbl,
√

h#
r b#

r =
√

hrbr. Thus

√

h#

l a#

l =

√

h#
r a#

r ,

√

h#

l b#

l =

√

h#
r b#

r . (4.7)

Using (4.6), (4.7), we get

U#

l = U#
r ≡ U# ≡ (h#, 0, h#v#, h#a#, h#b#). (4.8)

We observe that then Fl(U
#

l , U#
r ) = Fr(U

#

l , U#
r ) = F (U#), and that indeed

F (U#) =
(

0, g(h#)2/2 − h#(a#)2,−h#a#b#, 0, − h#a#v#
)

. (4.9)

The formulas (3.8), (3.9) yield

Fl =
(

0, gh2
l /2 − hla

2
l ,−hlalbl, 0, − hlalvl

)

= F (Ul), (4.10)

Fr =
(

0, gh2
r/2 − hra

2
r,−hrarbr, 0, − hrarvr

)

= F (Ur), (4.11)

which proves the claim.

4.1.1 Consistency in Theorem 3.1

In order to get (ii) in Theorem 3.1 in the sense of Definition 4.2 in [8], we need
to prove that

Fl(U,U,0) = Fr(U,U,0) = F (U), (4.12)

and that as Ul → U , Ur → U , ∆z → 0,

Fr(Ul, Ur,∆z) − Fl(Ul, Ur,∆z) = −B(u, v)
(

(ha)r − (ha)l

)

+
(

0, − gh∆z,0,0,0
)

+ o
(

|Ul − U | + |Ur − U | + |∆z|
)

,
(4.13)

with
B(u,v) = (0,0,0,u,v). (4.14)

The consistency with the exact flux (4.12) is obviously satisfied because of the
property (3.10). In order to prove the consistency with the source (4.13), we
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write

Fr(Ul,Ur,∆z) − Fl(Ul,Ur,∆z)

= Fr(U
#

l , U#
r ) − Fl(U

#

l , U#
r )

+ B(ur, vr)
(

κr(ha)#r − (ha)r

)

− B(ul, vl)
(

κl(ha)#l − (ha)l

)

+ (κr − 1)
(

0, 0, 0, Fha
r (U#

l , U#
r ), Fhb

r (U#

l , U#
r )
)

− (κl − 1)
(

0, 0, 0, Fha
l (U#

l , U#
r ), Fhb

l (U#

l , U#
r )
)

+ Fh(U#

l , U#
r )

(

0, 0, 0,
ar

2
(1 − κ2

r),
br

2
(1 − κ2

r)

)

− Fh(U#

l , U#
r )

(

0, 0, 0,
al

2
(1 − κ2

l ),
bl

2
(1 − κ2

l )

)

+
(

0, g
h#2

l

2
− g

h2
l

2
+ g

h2
r

2
− g

h#2
r

2
, 0, 0, 0

)

.

(4.15)

Let us denote ∆ = |Ul−U |+ |Ur−U |+ |∆z|. When Ul,Ur → U and ∆z → 0 one

has from (3.3)-(3.7) κl − 1 = O(∆), κr − 1 = O(∆), and thus U#

l − U = O(∆),
U#

r − U = O(∆) (we consider only the case h > 0 here). Then the consistency
of the numerical flux without source obtained in [10] gives

Fr(U
#

l , U#
r ) − Fl(U

#

l , U#
r ) = −B(u,v)

(

(ha)#r − (ha)#l

)

+ o(∆). (4.16)

Next, we have

B(ur, vr)
(

κr(ha)#r − (ha)r

)

= B(u, v)
(

κr(ha)#r − (ha)r

)

+ o(∆), (4.17)

and

B(ul, vl)
(

κl(ha)#l − (ha)l

)

= B(u, v)
(

κl(ha)#l − (ha)l

)

+ o(∆). (4.18)

Summing up (4.16), (4.17), (4.18), we obtain

Fr(U
#

l , U#
r ) − Fl(U

#

l , U#
r )

+ B(ur, vr)
(

κr(ha)#r − (ha)r

)

− B(ul, vl)
(

κl(ha)#l − (ha)l

)

= B(u, v)(κr − 1)(ha)#r − B(u, v)(κl − 1)(ha)#l

− B(u,v)
(

(ha)r − (ha)l

)

+ o(∆).

= B(u, v)(κr − 1)(ha) − B(u, v)(κl − 1)(ha)

− B(u,v)
(

(ha)r − (ha)l

)

+ o(∆).

(4.19)

Now we look at the terms in the right-hand side of (4.15) from the third to the
sixth line. Using that Fha

l (U, U) = Fha
r (U, U) = 0 and Fhb

l (U, U) = Fhb
r (U, U) =

hbu − hav, we deduce

(κr − 1)
(

0, 0, 0, Fha
r (U#

l , U#
r ), Fhb

r (U#

l , U#
r )
)

= (κr − 1)
(

0, 0, 0, 0, hbu− hav
)

+ o(∆),
(4.20)
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and

−(κl − 1)
(

0, 0, 0, Fha
l (U#

l , U#
r ), Fhb

l (U#

l , U#
r )
)

= −(κl − 1)
(

0, 0, 0, 0, hbu− hav
)

+ o(∆).
(4.21)

Writing 1 − κ2
r = (1 + κr)(1 − κr), we get asymptotically

ar

2
(1 − κ2

r) = a(1 − κr) + o(∆). (4.22)

Similarly, we have
al

2
(1 − κ2

l ) = a(1 − κl) + o(∆), (4.23)

br

2
(1 − κ2

r) = b(1 − κr) + o(∆), (4.24)

bl

2
(1 − κ2

l ) = b(1 − κl) + o(∆). (4.25)

Using (4.22), (4.23), (4.24), (4.25) and the property Fh(U, U) = hu, we obtain

Fh(U#

l , U#
r )

(

0, 0, 0,
ar

2
(1 − κ2

r),
br

2
(1 − κ2

r)

)

=
(

0, 0, 0, hua(1 − κr), hub(1 − κr)
)

+ o(∆),
(4.26)

− Fh(U#

l , U#
r )

(

0, 0, 0,
al

2
(1 − κ2

l ),
bl

2
(1 − κ2

l )

)

= −
(

0, 0, 0, hua(1 − κl), hub(1 − κl)
)

+ o(∆).
(4.27)

The sum of (4.20), (4.21), (4.26), (4.27) gives the asymptotic formula

(κr − 1)
(

0, 0, 0, Fha
r (U#

l , U#
r ), Fhb

r (U#

l , U#
r )
)

−(κl − 1)
(

0, 0, 0, Fha
l (U#

l , U#
r ), Fhb

l (U#

l , U#
r )
)

+Fh(U#

l , U#
r )

(

0, 0, 0,
ar

2
(1 − κ2

r),
br

2
(1 − κ2

r)

)

−Fh(U#

l , U#
r )

(

0, 0, 0,
al

2
(1 − κ2

l ),
bl

2
(1 − κ2

l )

)

= −B(u, v)(κr − 1)(ha) + B(u, v)(κl − 1)(ha) + o(∆).

(4.28)

Adding (4.19) and (4.28), we obtain the consistency of the nonconservative
magnetic terms

Fr(U
#

l , U#
r ) − Fl(U

#

l , U#
r )

+B(ur, vr)
(

κr(ha)#r − (ha)r

)

− B(ul, vl)
(

κl(ha)#l − (ha)l

)

+(κr − 1)
(

0, 0, 0, Fha
r (U#

l , U#
r ), Fhb

r (U#

l , U#
r )
)

−(κl − 1)
(

0, 0, 0, Fha
l (U#

l , U#
r ), Fhb

l (U#

l , U#
r )
)

+Fh(U#

l , U#
r )

(

0, 0, 0,
ar

2
(1 − κ2

r),
br

2
(1 − κ2

r)

)

−Fh(U#

l , U#
r )

(

0, 0, 0,
al

2
(1 − κ2

l ),
bl

2
(1 − κ2

l )

)

= −B(u,v)
(

(ha)r − (ha)l

)

+ o(∆).

(4.29)
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Finally, as in the unmodified hydrostatic reconstruction scheme, the last line in
(4.15) gives the nonconservative topography term

(

0, g
h#2

l

2
− g

h2
l

2
+ g

h2
r

2
− g

h#2
r

2
, 0, 0, 0

)

=
(

0,−gh∆z, 0, 0, 0
)

+ o(∆). (4.30)

With (4.29), all the terms in (4.15) have been expanded, and we get (4.13).

4.1.2 Entropy inequality in Theorem 3.1

Let us finally prove the property (iv) in Theorem 3.1. At the continuous level,
the energy inequality (1.11) can be written

∂tẼ + ∂xG̃ ≤ 0, (4.31)

with
Ẽ(U,z) = E(U) + ghz, G̃(U,z) = G(U) + ghzu, (4.32)

and

E(U) =
1

2
h(u2 + v2) +

1

2
gh2 +

1

2
h(a2 + b2),

G(U) = E(U)u + P (U)u + P⊥(U)v.
(4.33)

As before, U = (h,hu,hv,ha,hb) and P , P⊥ are defined by (1.10). As proved in
[10], the scheme without topography satisfies a fully discrete energy inequality.
According to [8, section 2.2.2], it implies that it satisfies also a semi-discrete
energy inequality, under the form

G(Ur) + E′(Ur) (Fr(Ul, Ur) − F (Ur)) ≤ G(Ul, Ur),
G(Ul, Ur) ≤ G(Ul) + E′(Ul) (Fl(Ul, Ur) − F (Ul)) ,

(4.34)

for all values of Ul, Ur, where E′ is the derivative of E with respect to U , F is
defined in (4.1), and G(Ul, Ur) is a consistent energy flux.

Then, for the scheme with topography, the characterization of the semi-
discrete energy inequality writes

G̃(Ur, zr) + Ẽ′(Ur, zr) (Fr − F (Ur)) ≤ G̃(Ul, Ur, zl, zr),

G̃(Ul, Ur, zl, zr) ≤ G̃(Ul, zl) + Ẽ′(Ul, zl) (Fl − F (Ul)) ,
(4.35)

where Ẽ and G̃ are defined by (4.32), Ẽ′ is the derivative of Ẽ with respect to
U , and G̃ is an unknown consistent numerical energy flux. Let us choose

G̃(Ul, Ur, zl, zr) = G(U#

l , U#
r ) + F

h(U#

l , U#
r )gz#, (4.36)

where Fh is the common h-component of Fl and Fr, and for some z# that is
defined below. Then, noticing that Ẽ′(U,z) = E′(U) + gz(1, 0, 0, 0, 0), we can
write the desired inequalities (4.35) as

G(Ur) + E′(Ur) (Fr − F (Ur)) + Fh(U#

l , U#
r )gzr

≤ G(U#

l , U#
r ) + Fh(U#

l , U#
r )gz#,

(4.37)

G(U#

l , U#
r ) + Fh(U#

l , U#
r )gz#

≤ G(Ul) + E′(Ul) (Fl − F (Ul)) + F
h(U#

l , U#
r )gzl.

(4.38)
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By using (4.34) evaluated at U#

l , U#
r and comparing the result with (4.37) and

(4.38), we get the sufficient conditions

G(Ur) + E′(Ur) (Fr − F (Ur)) + Fh(U#

l , U#
r )gzr

≤ G(U#
r ) + E′(U#

r )
(

Fr(U
#

l , U#
r ) − F (U#

r )
)

+ F
h(U#

l , U#
r )gz#,

(4.39)

G(U#
l ) + E′(U#

l )
(

Fl(U
#
l , U#

r ) − F (U#
l )
)

+ Fh(U#
l , U#

r )gz#

≤ G(Ul) + E′(Ul) (Fl − F (Ul)) + F
h(U#

l , U#
r )gzl.

(4.40)

Let us focus on (4.39), that can be rewritten as

[

G − E′F
]r

r#
+ E′(Ur)Fr − E′(U#

r )Fr(U
#

l , U#
r )

+g(zr − z#)Fh(U#

l , U#
r ) ≤ 0,

(4.41)

with
[

G−E′F
]r

r#
≡
(

G(Ur)−E′(Ur)F (Ur)
)

−
(

G(U#
r )−E′(U#

r )F (U#
r )
)

. (4.42)

We compute now

E′(U) =
(

−
(

u2 + v2
)

/2 + gh −
(

a2 + b2
)

/2, u, v, a, b
)

, (4.43)

and using (4.33), (4.1), we deduce the identity

G(U) − E′(U)F (U) = −g
h2

2
u + ha(au + bv) = −P (U)u − P⊥(U)v. (4.44)

Then, according to the definition (3.9) of Fr ,

E′(Ur)Fr = E′(Ur)Fr(U
#

l , U#
r )

+ E′(Ur)

(

0, g
h2

r

2
− g

h#2
r

2
, 0,

(

κr(ha)#r − (ha)r

)

ur,
(

κr(ha)#r − (ha)r

)

vr

)

+ Qr,

(4.45)

with

Qr = E′(Ur)(κr − 1)
(

0, 0, 0, Fha
r (U#

l , U#
r ), Fhb

r (U#

l , U#
r )
)

+ E′(Ur)F
h(U#

l , U#
r )

(

0, 0, 0,
ar

2
(1 − κ2

r),
br

2
(1 − κ2

r)

)

.
(4.46)

Using (4.43) and (4.44), we can rewrite (4.45) as

E′(Ur)Fr = E′(Ur)Fr(U
#

l , U#
r ) −

[

G − E′F
]r

r#
+ Qr. (4.47)

Thus the required inequality (4.41) simplifies to

(

E′(Ur) − E′(U#
r )
)

Fr(U
#

l , U#
r ) + Qr + g(zr − z#)Fh(U#

l , U#
r ) ≤ 0. (4.48)
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Now, one the one side, one can compute

Qr = (κr − 1)arF
ha
r (U#

l , U#
r ) + (κr − 1)brF

hb
r (U#

l , U#
r )

+ (1 − κ2
r)F

h(U#

l , U#
r )

a2
r + b2

r

2
.

(4.49)

On the other side, according to (4.43), we have

E′(Ur) − E′(U#
r )

=

(

g(hr − h#
r ) − a2

r + b2
r

2
+

(a#
r )2 + (b#

r )2

2
,0, 0, ar − a#

r , br − b#
r

)

=

(

g(hr − h#
r ) − (1 − κ2

r)
a2

r + b2
r

2
,0, 0, (1 − κr)ar, (1 − κr)br

)

.

(4.50)

Using both (4.49) and (4.50), we get

(

E′(Ur) − E′(U#
r )
)

Fr(U
#

l , U#
r ) + Qr = g(hr − h#

r )Fh(U#

l , U#
r ). (4.51)

Plugging this in (4.48), we obtain the sufficient right inequality

g(hr − h#
r + zr − z#)Fh(U#

l , U#
r ) ≤ 0. (4.52)

A symmetric analysis for the left inequality (4.40) gives similarly

g(hl − h#

l + zl − z#)Fh(U#

l , U#
r ) ≥ 0. (4.53)

We choose z# = max(zl, zr), so that (4.52), (4.53) can be finally put under the
form

g(hr − h#
r − (−∆z)+)Fh(U#

l , U#
r ) ≤ 0,

g(hl − h#

l − (∆z)+)Fh(U#

l , U#
r ) ≥ 0.

(4.54)

Taking into account (3.3), we observe that if hl − (∆z)+ ≥ 0 then the second

line of (4.54) is trivial. Otherwise h#

l = 0 and the second inequality of (4.54)
holds because Fh(0, U#

r ) ≤ 0 by the h-nonnegativity of the numerical flux. The
same argument is valid for the first inequality of (4.54), which concludes the
proof of Theorem 3.1.

4.2 Proof of Theorem 3.2

The proof of (i), i.e. Fh
l = Fh

r , Fhv
l = Fhv

r , is again obvious from formulas
(3.22), (3.23) since the homogeneous solver already satisfies this property. The
proof of (iii) follows the proof of Proposition 4.14 in [8], taking into account
(3.16). The property (v) is inherited from the homogeneous solver that is de-
scribed in [10], according to (3.24). The proof of (vi) concerning data of the
form (2.6) is identical to that of Theorem 3.1 in Subsection 4.1.

For the proof of the specific well-balanced property (vii), consider data Ul,

Ur, zl, zr satisfying (2.4), i.e. ul = ur = 0, vl = vr ≡ v, hl− a2
l

2g +zl = hr− a2
r

2g +zr,

hlal = hrar 6= 0, bl = br ≡ b. According to the assumption (3.25), from (3.13),
(3.15) we get

h#

l = h#
r ≡ h#, (4.55)
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the common value h# being hr if zr − zl ≥ 0, or hl if zr − zl ≤ 0. Then (3.19),

(3.20) yield κl = hl/h#

l , κr = hr/h#
r , h#

l a#

l = hlal, h#
r a#

r = hrar. Thus

h#

l a#

l = h#
r a#

r 6= 0, (4.56)

and using (4.55) we obtain a#

l = a#
r ≡ a#. Then (3.21) yields

U#

l = U#
r ≡ U# ≡ (h#, 0, h#v, h#a#, h#b). (4.57)

We observe that then Fl(U
#

l , U#
r ) = Fr(U

#

l , U#
r ) = F (U#), and that indeed

F (U#) =
(

0, g(h#)2/2 − h#(a#)2,−(ha)#b, 0, − (ha)#v
)

. (4.58)

The formulas (3.22), (3.23), finally give

Fl =
(

0, gh2
l /2 − hla

2
l ,−hlalbl, 0, − hlalvl

)

= F (Ul), (4.59)

Fr =
(

0, gh2
r/2 − hra

2
r,−hrarbr, 0, − hrarvr

)

= F (Ur), (4.60)

which proves the claim.
For proving (viii), consider data Ul, Ur, zl, zr such that hlal = hrar. We

have to prove that Fha
l (Ul,Ur,∆z) = Fha

r (Ul,Ur,∆z) = 0, where the superscript
ha means that we take the ha component of the numerical flux. We notice from
[10, eq. (4.3)] that hlal = hrar implies that Fha

l (Ul,Ur) = Fha
r (Ul,Ur) = 0.

If hl = hr = 0 then the result is trivial since Fl = Fr = 0. If hl = 0 and
hr > 0 then ar = 0, h#

l = 0, a#
r = 0, hence h#

l a#

l = h#
r a#

r = 0. It follows

that Fha
l (U#

l ,U#
r ) = Fha

r (U#
l ,U#

r ) = 0, and the numerical flux formulas (3.22),
(3.23) give Fha

l (Ul,Ur,∆z) = Fha
r (Ul,Ur,∆z) = 0. The case hr = 0 and hl > 0

is similar.
We finally consider the case hl > 0 and hr > 0. According to the assumption

(3.26), the formulas (3.20) give κl = hl/h#

l , κr = hr/h#
r . It follows with (3.19)

that h#

l a#

l = hlal, h#
r a#

r = hrar. But since hlal = hrar, all these values of

ha are the same. We deduce that Fha
l (U#

l ,U#
r ) = Fha

r (U#

l ,U#
r ) = 0, and the

formulas (3.22), (3.23) give Fha
l (Ul,Ur,∆z) = Fha

r (Ul,Ur,∆z) = 0.

4.2.1 Consistency in Theorem 3.2

In order to get the consistency (ii) in Theorem 3.2, in the sense of Definition
4.2 in [8], we need to prove that

Fl(U,U,0) = Fr(U,U,0) = F (U), (4.61)

and that as Ul → U , Ur → U , ∆z → 0,

Fhu
r (Ul, Ur,∆z) − Fhu

l (Ul, Ur,∆z) = −gh∆z + o
(

∆
)

, (4.62)

Fha
r (Ul, Ur,∆z) − Fha

l (Ul, Ur,∆z) = −u ((ha)r − (ha)l) + o
(

∆
)

, (4.63)

Fhb
r (Ul, Ur,∆z) − Fhb

l (Ul, Ur,∆z) = −v ((ha)r − (ha)l) + o
(

∆
)

, (4.64)

with ∆ = |Ul − U | + |Ur − U | + |∆z|.
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The consistency with the exact flux (4.61) is obviously satisfied because of
the property (3.24). In order to prove the consistency with the ha component
of the source (4.63), we write

Fha
r (Ul, Ur,∆z) − Fha

l (Ul, Ur,∆z)

= Fha
r (U#

l , U#
r ) − Fha

l (U#

l , U#
r )

+
(

κr(ha)#r − (ha)r

)

ur +
(

(ha)r − κrhrar

)

ur

−
(

κl(ha)#l − (ha)l

)

ul −
(

(ha)l − κlhlal

)

ul

+ (κr − 1)Fha
r (U#

l , U#
r ) − (κl − 1)Fha

l (U#
l , U#

r ).

(4.65)

When Ul,Ur → U and ∆z → 0 one has from (3.13)-(3.21) κl − 1 = O(∆),

κr − 1 = O(∆), and thus U#

l − U = O(∆), U#
r − U = O(∆) (we consider only

the case h > 0 here). Then the consistency of the numerical flux without source
obtained in [10] gives

Fha
r (U#

l , U#
r ) − Fha

l (U#

l , U#
r ) = −u

(

(ha)#r − (ha)#l

)

+ o(∆). (4.66)

Then
(

κr(ha)#r − (ha)r

)

ur +
(

(ha)r − κrhrar

)

ur

=
(

κr(ha)#r − (ha)r

)

u + hau(1 − κr) + o(∆),
(4.67)

(

κl(ha)#l − (ha)l

)

ul +
(

(ha)l − κlhlal

)

ul

=
(

κl(ha)#l − (ha)l

)

u + hau(1 − κl) + o(∆).
(4.68)

Using that Fha
r (U,U) = 0, Fha

l (U,U) = 0 we get

(κr − 1)Fha
r (U#

l , U#
r ) = o(∆), (κl − 1)Fha

l (U#

l , U#
r ) = o(∆). (4.69)

From (4.65) using (4.66)-(4.69), we get

Fha
r (Ul, Ur,∆z) − Fha

l (Ul, Ur,∆z)

= −u
(

(ha)#r − (ha)#l

)

+
(

κr(ha)#r − (ha)r

)

u + hau(1 − κr)

−
(

κl(ha)#l − (ha)l

)

u − hau(1 − κl) + o(∆).

(4.70)

Then we deal with the terms with subscript r and we compute

− u(ha)#r +
(

κr(ha)#r − (ha)r

)

u + hau(1 − κr)

= −u(ha)r + u(κr − 1)(ha)#r + (1 − κr)hau.
(4.71)

In addition since u(κr − 1)(ha)#r = hau(κr − 1) + o(∆) we get

−u(ha)#r +
(

κr(ha)#r − (ha)r

)

u + hau(1 − κr) = −u(ha)r + o(∆). (4.72)

We do a similar computation on the left side and we get

u(ha)#l −
(

κl(ha)#l − (ha)l

)

u − hau(1 − κl) = u(ha)l + o(∆). (4.73)
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Finally we use (4.72) and (4.73) in (4.70) and we get (4.63).
In order to prove the consistency with the hb component of the source (4.64),

we write
Fhb

r (Ul, Ur,∆z) − Fhb
l (Ul, Ur,∆z)

= Fhb
r (U#

l , U#
r ) − Fhb

l (U#

l , U#
r )

+
(

(ha)#r − (ha)r

)

vr −
(

(ha)#l − (ha)l

)

vl.

(4.74)

Then the consistency of the numerical flux without source obtained in [10] gives

F
hb
r (U#

l , U#
r ) − F

hb
l (U#

l , U#
r ) = −v

(

(ha)#r − (ha)#l

)

+ o(∆). (4.75)

Using this expansion in (4.74), we get (4.64).
In order to prove the consistency with the hu component of the source (4.62),

we write

Fhu
r (Ul, Ur,∆z)−Fhu

l (Ul, Ur,∆z) = Pr(hr)−Pr(h
#
r )−Pl(hl)+Pl(h

#

l ), (4.76)

with

Pr(h) = g
h2

2
− hra

2
r min

(hr

h
,γ
)

,

Pl(h) = g
h2

2
− hla

2
l min

(hl

h
,γ
)

.

(4.77)

We define

er(h) =
gh

2
+

hra
2
r

h
min

(hr

h
,γ
)

− a2
r

2
min

(hr

h
,γ
)2

,

el(h) =
gh

2
+

hla
2
l

h
min

(hl

h
,γ
)

− a2
l

2
min

(hl

h
,γ
)2

.

(4.78)

They satisfy the relations e′l/r = Pl/r/h2 which implies that (el/r + Pl/r/h)′ =

P ′

l/r/h. Using these identities we get

Pr(hr) − Pr(h
#
r ) =

(

(er + Pr/h)(hr) − (er + Pr/h)(h#
r )
)

h##
r (4.79)

for some h##
r between h#

r and hr, and

Pl(hl) − Pl(h
#

l ) =
(

(el + Pl/h)(hl) − (el + Pl/h)(h#

l )
)

h##

l (4.80)

for some h##

l between h#

l and hl. Moreover using (4.77), (4.78) we notice that
(3.13), (3.15) are equivalent to

(el + Pl/h)(h#

l ) = (el + Pl/h)(hl) + g(zl − z#),

(er + Pr/h)(h#
r ) = (er + Pr/h)(hr) + g(zr − z#).

(4.81)

This is true indeed as soon as h#

l > 0, h#
r > 0, which holds for sufficiently

small ∆ since we assumed that h > 0. Therefore we have Pl(hl) − Pl(h
#

l ) =

−gh##
l (zl − z#), Pr(hr) − Pr(h

#
r ) = −gh##

r (zr − z#), and with (4.76) it gives
(4.62).
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4.2.2 Entropy inequality in Theorem 3.2

We here prove the property (iv) in Theorem 3.2. We start with the same pre-
liminaries (4.31)-(4.44) of Subsubsection 4.1.2. Thus for the right side we have
the sufficient entropy condition

[

G − E′F
]r

r#
+ E′(Ur)Fr − E′(U#

r )Fr(U
#
l , U#

r )

+g(zr − z#)Fh(U#

l , U#
r ) ≤ 0.

(4.82)

Using the definition (3.23) of Fr this can be rewritten
[

G − E′F
]r

r#
+ E′(Ur)C1 + E′(Ur)C2 + E′(Ur)C3

+
(

E′(Ur) − E′(U#
r )
)

Fr(U
#

l , U#
r ) + g(zr − z#)Fh(U#

l , U#
r ) ≤ 0,

(4.83)

with

C1 =

(

0, g
h2

r

2
− g

h#2
r

2
, 0,
(

κr(ha)#r − (ha)r

)

ur,
(

(ha)#r − (ha)r

)

vr

)

, (4.84)

C2 =
(

0,−hra
2
r + κrhra

2
r, 0,

(

(ha)r − κrhrar

)

ur,0
)

, (4.85)

C3 = (κr − 1)
(

0,0,0,Fha
r (U#

l , U#
r ),0

)

. (4.86)

Using (4.43) and (4.44) we get with (4.84)
[

G − E′F
]r

r#
+ E′(Ur)C1 = 0. (4.87)

Moreover using (4.43) we have

E′(Ur)C2 = 0. (4.88)

Thus the sufficient condition (4.83) reduces to

E′(Ur)C3

+
(

E′(Ur) − E′(U#
r )
)

Fr(U
#

l , U#
r ) + g(zr − z#)Fh(U#

l , U#
r ) ≤ 0.

(4.89)

Now we compute

E′(Ur) − E′(U#
r )

=

(

g(hr − h#
r ) − a2

r

2
+

(a#
r )2

2
,0, 0, ar − a#

r , 0

)

=

(

g(hr − h#
r ) − (1 − κ2

r)
a2

r

2
,0, 0, (1 − κr)ar, 0

)

.

(4.90)

With (4.86) we obtain

E′(Ur)C3

+
(

E′(Ur) − E′(U#
r )
)

Fr(U
#

l , U#
r ) + g(zr − z#)Fh(U#

l , U#
r )

= g

(

hr −
a2

r

2g
− h#

r + κ2
r

a2
r

2g
+ zr − z#

)

Fh(U#

l , U#
r ).

(4.91)

According to (3.15) this will be zero if hr > 0 and hr + (γ2 − 1)
a2

r

2g ≥ z# − zr.

Otherwise we have h#
r = 0, Fh(U#

l , U#
r ) ≥ 0 with the term between brackets in

the right-hand side of (4.91) nonpositive, which gives the inequality (4.89) and
the result. The left inequality is very similar and is omitted here.
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5 Numerical results

In this section we perform numerical computations in order to evaluate the
properties and the accuracy of the two variants of our scheme, in relation with
Theorems 3.1 and 3.2. First and second-order methods in time and space are
evaluated, the latter using an ENO reconstruction, as described in [8, section
4.13]. The conservative variable is U as in (3.2), and the slope limitations are
performed on the variables h, h + z, u, v, ha, b. We also compare results
obtained with different values of the parameter γ ≥ 1, which is a key to obtain
the well-balanced property for steady states of material resonance.

The space variable x is taken in [0,1], g = 9.81, and Neumann boundary
conditions are applied. We take 200 points, and plot a reference solution ob-
tained by a second-order computation with 3300 points. The CFL-number is
taken 1/2 in all runs.

Test - Our unique test consists of two steady states:

• On [0,1/2), we take initial data corresponding to a steady state in the case
of material resonance of the type (2.3).

• On (1/2,1], we take initial data corresponding to a steady state in the case
of material and Alfven resonance.

The initial data is sketched on Figure 1 and the numerical values are given in
Tables 1 and 2. Figures 2 and 3 show the reference solution at time t = 0.02
and t = 0.08 respectively. It consists of, from left to right, a material contact,
a left rarefaction wave, a left Alfven contact, a resonant material - right Alfven
contact, and a right shock. The solution computed with the first scheme of
Theorem 3.1 at times t = 0.02 and t = 0.08 is shown on Figures 4 and 5
respectively. We do not plot the results given by the second scheme of Theorem
3.2 since they are so close to the results of the first scheme that they cannot
be distinguished with the eye. We observe that the second-order resolution
improves the sharpness of contact discontinuities. On Figure 6 we observe that
the solution computed with γ = 1 looses the well-balanced property for the
resonant material contact, whereas with γ = 2 it is well-balanced, which is
coherent with point (vii) of Theorem 3.1. Even when zooming, the results
obtained with our two schemes cannot be distinguished with the eye. Indeed
we did not find any data for which the two schemes from Theorems 3.1 and 3.2
give significantly different results.

Values of x z h u v a b

x≤0.2 0.5 1.5 0.0 2.0 1/
√

1.5 2/
√

1.5

0.2<x≤0.5 0.0 2.0 0.0 2.0 1/
√

2 2/
√

2

Table 1: Initial data for Material resonance
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Values of x z h u v a b

0.5<x ≤0.625 0.0 0.5 0.0 0.5 0.0 1.0

0.625<x≤1 d(x) (0.5 − d(x))+ 0.0 0.5+d(x) 0.0 1.0+d(x)

Table 2: Initial data for Material and Alfven resonance, d(x) = 4(x − 0.625)

x

Material resonance

u = 0,
v = cst,

h + z = cst,√
h a = cst,√
h b = cst,

z discontinuous.

Material and
Alfven resonance

h + z = cst,
u = 0, a = 0,

z continuous.

b, v continuous,

y

0

Figure 1: Initial data configuration
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