
HAL Id: hal-01131285
https://hal.science/hal-01131285

Submitted on 13 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Expected Likelihood Approach for Assessment of
Regularization Covariance Matrix

Yuri Abramovich, Olivier Besson

To cite this version:
Yuri Abramovich, Olivier Besson. On the Expected Likelihood Approach for Assessment of Regu-
larization Covariance Matrix. IEEE Signal Processing Letters, 2015, vol. 22 (n° 6), pp. 777-781.
�10.1109/LSP.2014.2369232�. �hal-01131285�

https://hal.science/hal-01131285
https://hal.archives-ouvertes.fr


  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/  

Eprints ID: 13622  

To link to this article: DOI: 10.1109/LSP.2014.2369232 

URL: http://dx.doi.org/10.1109/LSP.2014.2369232 

 

 

 

To cite this version: Abramovich, Yuri and Besson, Olivier On the 

Expected Likelihood Approach for Assessment of Regularization 

Covariance Matrix. (2015) IEEE Signal Processing Letters, vol. 22 (n° 6). 

pp. 777-781. ISSN 1070-9908 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

 

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1109/LSP.2014.2369232
mailto:staff-oatao@inp-toulouse.fr


On the Expected Likelihood Approach for

Assessment of Regularization Covariance Matrix
Yuri I. Abramovich, Fellow, IEEE, and Olivier Besson, Senior Member, IEEE

Abstract—Regularization, which consists in shrinkage of the

sample covariance matrix to a target matrix, is a commonly used
and effective technique in low sample support covariance matrix

estimation. Usually, a target matrix is chosen and optimization of

the shrinkage factor is carried out, based on some relevant metric.
In this letter, we rather address the choice of the target matrix.

More precisely, we aim at evaluating, from observation of the

data matrix, whether a given target matrix is a good regularizer.
Towards this end, the expected likelihood (EL) approach is inves-

tigated. At a Þrst step, we re-interpret the regularized covariance

matrix estimate as the minimum mean-square error estimate in
a Bayesian model where the target matrix serves as a prior. The

likelihood function of the data is then derived, and the EL prin-

ciple is subsequently applied. Over-sampled and under-sampled
scenarios are considered.

Index Terms—Covariance matrix estimation, expected likeli-

hood, regularization.

I. PROBLEM STATEMENT AND MOTIVATION

E STIMATION of the covariance matrix

of a random vector from a Þnite number

of independent observations is a fun-

damental problem in many engineering applications. For in-

stance, in adaptive radar detection where it is desired to detect

a target buried in Gaussian noise, the optimal Þlter depends on

the noise covariance matrix, and the latter is usually estimated

from training samples which contains noise only noise only [1],

[2]. However, substituting the sample covariance matrix (SCM)

for in the optimal Þlter results in a signiÞcant loss

in terms of output signal to noise ratio (SNR) [3], [4]. Indeed, the

corresponding SNR loss is beta distributed and approximately

samples are required to achieve an average SNR loss

less than 3 dB. In cases where is large, this number can be

prohibitive and it is more customary to have to operate in low

sample support. To cope with such situations, a widely used

technique consists in regularization, or shrinkage of the SCM

;
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towards a given matrix , i.e., estimate as, see e.g., [5], [6],

[7], [8]

(1)

where and is some matrix, which is deemed to be

close to [6] or is meant at regularizing the problem. The par-

ticular case of (often referred to as diagonal loading) has

proven to be particularly effective, especially when the noise

has a high-power low-rank component plus a white noise com-

ponent [9], [10], [11]. However, other possible choices are pos-

sible, including colored loading [12], [13]. Most often, is

Þxed and its choice is not questioned: rather, the focus is on op-

timization of , so as, for instance, to achieve minimum mean-

square error of the estimate in (1). Even if is adequately se-

lected, the choice of may also be very inßuential. For instance,

diagonal loading is known to perform better when the eigen-

spectrum of the covariance matrix consists of a few dominant

eigenvalues plus a Þxed ßoor: it may not be as effective when

the eigenspectrum has a smoothly decreasing proÞle.

In this paper, we address the selection of .More speciÞcally,

we wish to examine whether is a good choice as a regularizer,

from observation of . Towards this end, we propose to use the

expected likelihood (EL) approach [14], [15], [16] to assess the

plausibility of . The EL was introduced as a tool to assess the

quality of a covariance matrix estimate, say for example .

It relies on some invariance properties of the likelihood ratio

(LR) for testing if . In [14], [15], [16], it

was proved that the LR, evaluated at the true covariance matrix

of , has a distribution that only depends on and . This

property led the authors of [14], [15], [16] to select such that

the value of is commensurate with that taken at

the true covariance matrix. In this paper, we investigate using

the EL approach not for selection of , rather for that of .

II. ASSESSMENT OF THROUGH EXPECTED LIKELIHOOD

In this section, we use the EL approach to evaluate the

plausibility of the regularization covariance matrix . First, the

estimate in (1) is re-interpreted as the minimum mean-square

error (MMSE) estimate of in a Bayesian framework where

serves as a prior covariance. Then, the likelihood

corresponding to this model is derived and shown to be of a

multivariate Student distribution type. Finally, the EL approach

is applied to this Student distribution. Let us assume that the

columns of are independent and identically distributed

random vectors drawn from a zero-mean complex multivariate



Gaussian distribution, which we denote as .

Then, the probability density function (p.d.f.) of is given by

(2)

where stands for the exponential of the trace. Suppose

now that is drawn from an inverse Wishart distribution with

degrees of freedom and mean , i.e., its p.d.f. is given by

(3)

where means proportional to. We denote this distribution as

. Then, the posterior distribution

of is

(4)

with . Therefore,

and the MMSE of

is the mean of (4), i.e., [17]

(5)

which is exactly of the form (1). It follows that the regularizing

matrix in (1) is equivalent to a prior covariance matrix in the

Bayesian model (2)-(3). Choosing thus amounts to choosing

a prior covariance matrix.

Next, this interpretation paves the way to using the EL ap-

proach. At Þrst glance, it is not obvious why and how the EL

approach could be used in the purpose of testing the plausibility

of in the Bayesian hierarchical model described by (2)-(3), as

the latter is quite different from the framework the EL approach

was originally based upon. However, one should observe that

, and hence is

the “average” covariance matrix of . Additionally, the p.d.f.

of can be written as [18]

(6)

which is recognized as a multivariate Student distribution with

degrees of freedom and parameter matrix

[19], [20]. Before pursuing our derivations, we would like to

offer the following comments. Let denote a square-root of ,

i.e., . In the Bayesian model (2)–(3), one has [18],

[19] where means “is distributed

as”. In the previous equation, follows a Wishart distri-

bution with degrees of freedom and parameter matrix ,

i.e., . We denote the

Wishart distribution as . It ensues that

(7)

with independent of . In con-

trast, (6) yields the representation [19], [20]

(8)

where . Albeit the two

mechanisms for generating are different, from a likelihood

point of view the two representations are equivalent, as far as

only assessment of from is involved. Of course, in

the Bayesian model (2)-(3), serves as a prior, and interest is on

estimating , while in (6), is viewed as the covariance matrix

in a Student distribution. Nevertheless, from our perspective of

evaluating the plausibility of , we will be using (6) and there-

fore the EL approach can be advocated. Observe that the differ-

ence compared to the original Gaussian frequentist framework

of [14], [15], [16], is that one needs to deal with a Bayesian hier-

archical framework which results in a non Gaussian likelihood

. This being so, the EL approach was recently extended

to the class of elliptically contoured distributions (ECD) [21],

[22], [23] in [24], [25], [26]. Herein, we build upon the results

of [26] with a few differences due to the fact that is the av-

erage covariance in a Bayesian framework. We Þrst investigate

the over-sampled case ( ), then the under-sampled case

( ) which deserves a speciÞc treatment.

A. Over-Sampled Case

When , the (generalized) likelihood ratio for a candi-

date is given by

(9)

where is the MLE of , given by [21]

(10)

Therefore, the LR for the candidate can be rewritten as

(11)

where . Let us now

evaluate this LR at the true matrix . From (7)-(8), it ensues

that

(12a)

(12b)



where . Hence, the likelihood

ratio, when evaluated at the true matrix (i.e., when

and has

a distribution that only depends on , and . This p.d.f.

can thus be computed in advance and the LR for a candidate

regularization matrix , as given by (11), can be compared to,

say, the median value of , to decide if is a “good”

regularization matrix.

B. Under-Sampled Case

When the number of observations is less than the size of

the observation space, the above theory does no longer hold

since, with probability one, the data matrix belongs to a sub-

space of dimension .More precisely, if we let

be the thin singular value decomposition of , inference about

the covariance matrix of can be made only in the subspace

spanned by the columns of [27]: in other words,

only is identiÞable. As argued in [27] for Gaussian

settings, if one wants to assess as the covariance matrix of

, at best one can test the “closest” matrix to in . The

latter is given by with ,

and can be interpreted as a singular covariance matrix [27].

Therefore, the under-sampled scenario is closely related to dis-

tributions with singular covariance matrices: this is indeed the

starting point of the EL approach when , see e.g., [27],

[25] for details.

Thus, let us start with the Student distribution (8) in the case

where has rank , i.e., where

and is an arbitrary full-rank positive deÞnite Hermitian ma-

trix. We assume temporarily that is known (it will be re-

placed by when coming back to our original problem). Also,

let be an orthonormal basis for the complement of , i.e.,

and . Then, one can deÞne

a singular density on the set

as [28], [29]

(13)

The MLE of is given by, see (10),

. It follows

that the likelihood ratio, for the candidate

is given by (14) with

. (See

(14)–(15), shown at the bottom of the page.)

Fig. 1. Probability density function of for various .

and .

Let us now come back to assessing a candidate matrix

: as argued before, one can only assess the closest ma-

trix to in , namely with

. The MLE of is now given

by .

From (14), the likelihood ratio is thus given by (15) where we

used the fact that . When evaluated at the true

, the stochastic representations in (7)-(8) yield

(16a)

(16b)

III. NUMERICAL ILLUSTRATIONS

We now illustrate how the above procedure can be helpful in

assessing the validity of a given prior (or regularization) ma-

trix . We consider a uniform linear array with el-

ements spaced a half wavelength apart. The data are generated

according to the Bayesian model (2)–(3). In Fig. 1 we display

the distribution of the log likelihood ratio for different values of

(14)

(15)



Fig. 2. Likelihood ratio of and SNR loss of asso-

ciated Þlter versus . , and

. .

. Similarly to what was observed in [16], [25], the log likeli-

hood ratio, when evaluated at the true takes very small values,

and hence a candidate should be retained if its corresponding

LR matches that of the true . Let us now investigate if this

procedure results in a “good” choice for . We consider three

types of covariance matrix :

1) with

and .

2) with .

3) with

, , ,

and dB

For each type, we consider as a candidate

with and we evaluate the mean value

of . Note that, a priori, the best choice

is . In order to assess , we consider the

adaptive Þlter where

is the signature of the signal of interest. The SNR loss, eval-

uated at the output of this adaptive Þlter, will serve as a

Þgure of merit for assessment of . In Fig. 2–4, we

display the mean value of (the solid

line represents the target value, namely the median value of

), as well as the SNR loss. These Þgures

conÞrm two facts. Firstly, there is a good consistency between

and the fact that the

Þlter based on is effective. In other words, selecting

from the EL principle helps Þnding a good regular-

ization matrix and, subsequently, a performant adaptive Þlter.

Secondly, diagonal loading is seen to be more effective in the

case of a low-rank plus white noise type of covariance ma-

trix: indeed, the LR remains close to for

a large range of values of , and so is for the SNR loss. In

fact, choosing the identity matrix as a regularizer is as good

as selecting the true . In contrast, diagonal loading is less ef-

fective for the two other types of covariance matrix: when

Fig. 3. Likelihood ratio of and SNR loss of asso-

ciated Þlter versus . , and

. exp .

Fig. 4. Likelihood ratio of and SNR loss of asso-

ciated Þlter versus . , and

. .

increases, the LR departs from its target value and SNR loss is

worst.

IV. CONCLUSIONS

In this letter, we addressed the problem of selecting the reg-

ularization matrix in estimation schemes which consist of

shrinkage of the sample covariance matrix to a given regular-

ization matrix. We interpreted the latter as a prior covariance

matrix in a Bayesian model. The likelihood function of

the latter was derived as a function of , and the expected likeli-

hood approach was advocated to assess the validity of . It was

shown that this approach is instrumental in providing a reliable

measure of the quality of . As a by-product, we showed that

diagonal loading is effective only in special cases of covariance

matrices, and the EL approach proposed was helpful in identi-

fying these cases.
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