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Regularization, which consists in shrinkage of the sample covariance matrix to a target matrix, is a commonly used and effective technique in low sample support covariance matrix estimation. Usually, a target matrix is chosen and optimization of the shrinkage factor is carried out, based on some relevant metric. In this letter, we rather address the choice of the target matrix. More precisely, we aim at evaluating, from observation of the data matrix, whether a given target matrix is a good regularizer. Towards this end, the expected likelihood (EL) approach is investigated. At a Þrst step, we re-interpret the regularized covariance matrix estimate as the minimum mean-square error estimate in a Bayesian model where the target matrix serves as a prior. The likelihood function of the data is then derived, and the EL principle is subsequently applied. Over-sampled and under-sampled scenarios are considered.

I. PROBLEM STATEMENT AND MOTIVATION

E STIMATION of the covariance matrix of a random vector from a Þnite number of independent observations is a fundamental problem in many engineering applications. For instance, in adaptive radar detection where it is desired to detect a target buried in Gaussian noise, the optimal Þlter depends on the noise covariance matrix, and the latter is usually estimated from training samples which contains noise only noise only [START_REF] Kelly | An adaptive detection algorithm[END_REF], [START_REF] Robey | A CFAR adaptive matched Þlter detector[END_REF]. However, substituting the sample covariance matrix (SCM) for in the optimal Þlter results in a signiÞcant loss in terms of output signal to noise ratio (SNR) [START_REF] Reed | Rapid convergence rate in adaptive arrays[END_REF], [START_REF] Khatri | Effects of estimated noise covariance matrix in optimal signal detection[END_REF]. Indeed, the corresponding SNR loss is beta distributed and approximately samples are required to achieve an average SNR loss less than 3 dB. In cases where is large, this number can be prohibitive and it is more customary to have to operate in low sample support. To cope with such situations, a widely used technique consists in regularization, or shrinkage of the SCM ; Y. Abramovich is with WR Systems, Ltd., Fairfax, VA 22030 USA (e-mail: yabramovich@wrsystems.com).

O. Besson is with the University of Toulouse, ISAE-Supaero, Department Electronics Optronics Signal, Toulouse, France (e-mail: olivier.besson@isaesupaero.fr). towards a given matrix , i.e., estimate as, see e.g., [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF], [START_REF] Stoica | On using a priori knowledge in space-time adaptive processing[END_REF], [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF], [START_REF] Ollila | Regularized M-estimators of scatter matrix[END_REF] (1

)
where and is some matrix, which is deemed to be close to [START_REF] Stoica | On using a priori knowledge in space-time adaptive processing[END_REF] or is meant at regularizing the problem. The particular case of (often referred to as diagonal loading) has proven to be particularly effective, especially when the noise has a high-power low-rank component plus a white noise component [START_REF] Abramovich | Controlled method for adaptive optimization of Þlters using the criterion of maximum SNR[END_REF], [START_REF] Abramovich | An analysis of effectiveness of adaptive maximization of the signal to noise ratio which utilizes the inversion of the estimated covariance matrix[END_REF], [START_REF] Cheremisin | EfÞciency of adaptive algorithms with regularised sample covariance matrix[END_REF]. However, other possible choices are possible, including colored loading [START_REF] Hiemstra | Colored diagonal loading[END_REF], [START_REF] Wang | Knowledge-aided adaptive coherence estimator in stochastic partially homogeneous environments[END_REF]. Most often, is Þxed and its choice is not questioned: rather, the focus is on optimization of , so as, for instance, to achieve minimum meansquare error of the estimate in [START_REF] Kelly | An adaptive detection algorithm[END_REF]. Even if is adequately selected, the choice of may also be very inßuential. For instance, diagonal loading is known to perform better when the eigenspectrum of the covariance matrix consists of a few dominant eigenvalues plus a Þxed ßoor: it may not be as effective when the eigenspectrum has a smoothly decreasing proÞle.

In this paper, we address the selection of . More speciÞcally, we wish to examine whether is a good choice as a regularizer, from observation of . Towards this end, we propose to use the expected likelihood (EL) approach [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF], [START_REF] Abramovich | GLRT-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[END_REF], [START_REF]ModiÞed GLRT and AMF framework for adaptive detectors[END_REF] to assess the plausibility of . The EL was introduced as a tool to assess the quality of a covariance matrix estimate, say for example . It relies on some invariance properties of the likelihood ratio (LR) for testing if

. In [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF], [START_REF] Abramovich | GLRT-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[END_REF], [START_REF]ModiÞed GLRT and AMF framework for adaptive detectors[END_REF], it was proved that the LR, evaluated at the true covariance matrix of , has a distribution that only depends on and . This property led the authors of [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF], [START_REF] Abramovich | GLRT-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[END_REF], [START_REF]ModiÞed GLRT and AMF framework for adaptive detectors[END_REF] to select such that the value of is commensurate with that taken at the true covariance matrix. In this paper, we investigate using the EL approach not for selection of , rather for that of .

II. ASSESSMENT OF THROUGH EXPECTED LIKELIHOOD

In this section, we use the EL approach to evaluate the plausibility of the regularization covariance matrix . First, the estimate in ( 1) is re-interpreted as the minimum mean-square error (MMSE) estimate of in a Bayesian framework where serves as a prior covariance. Then, the likelihood corresponding to this model is derived and shown to be of a multivariate Student distribution type. Finally, the EL approach is applied to this Student distribution. Let us assume that the columns of are independent and identically distributed random vectors drawn from a zero-mean complex multivariate Gaussian distribution, which we denote as . Then, the probability density function (p.d.f.) of given by [START_REF] Robey | A CFAR adaptive matched Þlter detector[END_REF] where stands for the exponential of the trace. Suppose now that is drawn from an inverse Wishart distribution with degrees of freedom and mean , i.e., its p.d.f. is given by (3) where means proportional to. We denote this distribution as . Then, the posterior distribution of is [START_REF] Khatri | Effects of estimated noise covariance matrix in optimal signal detection[END_REF] with . Therefore, and the MMSE of is the mean of (4), i.e., [START_REF] Tague | Expectations of useful complex Wishart forms[END_REF] (5) which is exactly of the form [START_REF] Kelly | An adaptive detection algorithm[END_REF]. It follows that the regularizing matrix in ( 1) is equivalent to a prior covariance matrix in the Bayesian model ( 2)-( 3). Choosing thus amounts to choosing a prior covariance matrix.

Next, this interpretation paves the way to using the EL approach. At Þrst glance, it is not obvious why and how the EL approach could be used in the purpose of testing the plausibility of in the Bayesian hierarchical model described by ( 2)-(3), as the latter is quite different from the framework the EL approach was originally based upon. However, one should observe that , and hence is the "average" covariance matrix of . Additionally, the p.d.f. of can be written as [START_REF] Muirhead | Aspects of Multivariate Statistical Theory[END_REF] (6)

which is recognized as a multivariate Student distribution with degrees of freedom and parameter matrix [START_REF] Gupta | Matrix Variate Distributions[END_REF], [START_REF] Kotz | Multivariate t Distributions and their applications[END_REF]. Before pursuing our derivations, we would like to offer the following comments. Let denote a square-root of , i.e., . In the Bayesian model ( 2)-( 3), one has [START_REF] Muirhead | Aspects of Multivariate Statistical Theory[END_REF], [START_REF] Gupta | Matrix Variate Distributions[END_REF] where means "is distributed as". In the previous equation, follows a Wishart distribution with degrees of freedom and parameter matrix , i.e., . We denote the Wishart distribution as . It ensues that [START_REF] Chen | Robust shrinkage estimation of high-dimensional covariance matrices[END_REF] with independent of . In contrast, (6) yields the representation [START_REF] Gupta | Matrix Variate Distributions[END_REF], [START_REF] Kotz | Multivariate t Distributions and their applications[END_REF] (8)

where

. Albeit the two mechanisms for generating are different, from a likelihood point of view the two representations are equivalent, as far as only assessment of from is involved. Of course, in the Bayesian model ( 2)-( 3), serves as a prior, and interest is on estimating , while in [START_REF] Stoica | On using a priori knowledge in space-time adaptive processing[END_REF], is viewed as the covariance matrix in a Student distribution. Nevertheless, from our perspective of evaluating the plausibility of , we will be using [START_REF] Stoica | On using a priori knowledge in space-time adaptive processing[END_REF] and therefore the EL approach can be advocated. Observe that the difference compared to the original Gaussian frequentist framework of [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF], [START_REF] Abramovich | GLRT-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[END_REF], [START_REF]ModiÞed GLRT and AMF framework for adaptive detectors[END_REF], is that one needs to deal with a Bayesian hierarchical framework which results in a non Gaussian likelihood . This being so, the EL approach was recently extended to the class of elliptically contoured distributions (ECD) [START_REF] Fang | Generalized Multivariate Analysis[END_REF], [START_REF] Anderson | Theory and applications of elliptically contoured and related distributions U[END_REF], [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF] in [START_REF] Abramovich | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach-Part I: The oversampled case[END_REF], [START_REF] Besson | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach -Part 2: The under-sampled case[END_REF], [START_REF] Besson | Invariance properties of the likelihood ratio for covariance matrix estimation in some complex elliptically contoured distributions[END_REF]. Herein, we build upon the results of [START_REF] Besson | Invariance properties of the likelihood ratio for covariance matrix estimation in some complex elliptically contoured distributions[END_REF] with a few differences due to the fact that is the average covariance in a Bayesian framework. We Þrst investigate the over-sampled case (

), then the under-sampled case (

) which deserves a speciÞc treatment.

A. Over-Sampled Case

When , the (generalized) likelihood ratio for a candidate is given by [START_REF] Abramovich | Controlled method for adaptive optimization of Þlters using the criterion of maximum SNR[END_REF] where is the MLE of , given by [START_REF] Fang | Generalized Multivariate Analysis[END_REF] (10)

Therefore, the LR for the candidate can be rewritten as [START_REF] Cheremisin | EfÞciency of adaptive algorithms with regularised sample covariance matrix[END_REF] where . Let us now evaluate this LR at the true matrix . From ( 7)-( 8), it ensues that (12a) (12b) where . Hence, the likelihood ratio, when evaluated at the true matrix (i.e., when and has a distribution that only depends on , and . This p.d.f. can thus be computed in advance and the LR for a candidate regularization matrix , as given by [START_REF] Cheremisin | EfÞciency of adaptive algorithms with regularised sample covariance matrix[END_REF], can be compared to, say, the median value of , to decide if is a "good" regularization matrix.

B. Under-Sampled Case

When the number of observations is less than the size of the observation space, the above theory does no longer hold since, with probability one, the data matrix belongs to a subspace of dimension . More precisely, if we let be the thin singular value decomposition of , inference about the covariance matrix of can be made only in the subspace spanned by the columns of [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF]: in other words, only is identiÞable. As argued in [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF] for Gaussian settings, if one wants to assess as the covariance matrix of , at best one can test the "closest" matrix to in . The latter is given by with , and can be interpreted as a singular covariance matrix [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF]. Therefore, the under-sampled scenario is closely related to distributions with singular covariance matrices: this is indeed the starting point of the EL approach when , see e.g., [START_REF] Abramovich | GLRT-based detection-estimation for undersampled training conditions[END_REF], [START_REF] Besson | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach -Part 2: The under-sampled case[END_REF] for details.

Thus, let us start with the Student distribution (8) in the case where has rank , i.e., where and is an arbitrary full-rank positive deÞnite Hermitian matrix. We assume temporarily that is known (it will be replaced by when coming back to our original problem). Also, let be an orthonormal basis for the complement of , i.e., and . Then, one can deÞne a singular density on the set as [START_REF] Srivastava | An Introduction to Multivariate Statistics[END_REF], [START_REF] Siotani | Modern Multivariate Statistical Analysis[END_REF] (13)

The MLE of is given by, see [START_REF] Abramovich | An analysis of effectiveness of adaptive maximization of the signal to noise ratio which utilizes the inversion of the estimated covariance matrix[END_REF], .

It follows that the likelihood ratio, for the candidate is given by ( 14) with .

(See ( 14)-( 15), shown at the bottom of the page.) Let us now come back to assessing a candidate matrix : as argued before, one can only assess the closest matrix to in , namely with . The MLE of is now given by . From ( 14), the likelihood ratio is thus given by [START_REF] Abramovich | GLRT-based threshold detection-estimation performance improvement and application to uniform circular antenna arrays[END_REF] where we used the fact that . When evaluated at the true , the stochastic representations in ( 7)-( 8) yield (16a) (16b)

III. NUMERICAL ILLUSTRATIONS

We now illustrate how the above procedure can be helpful in assessing the validity of a given prior (or regularization) matrix . We consider a uniform linear array with elements spaced a half wavelength apart. The data are generated according to the Bayesian model ( 2)-(3). In Fig. 1 we display the distribution of the log likelihood ratio for different values of [START_REF] Abramovich | Bounds on maximum likelihood ratio-Part I: Application to antenna array detection-estimation with perfect wavefront coherence[END_REF] (15) . Similarly to what was observed in [START_REF]ModiÞed GLRT and AMF framework for adaptive detectors[END_REF], [START_REF] Besson | Regularized covariance matrix estimation in complex elliptically symmetric distributions using the expected likelihood approach -Part 2: The under-sampled case[END_REF], the log likelihood ratio, when evaluated at the true takes very small values, and hence a candidate should be retained if its corresponding LR matches that of the true . Let us now investigate if this procedure results in a "good" choice for . We consider three types of covariance matrix :

1) with and .

2)

with . 3) with , , , and dB For each type, we consider as a candidate with and we evaluate the mean value of . Note that, a priori, the best choice is . In order to assess , we consider the adaptive Þlter where is the signature of the signal of interest. The SNR loss, evaluated at the output of this adaptive Þlter, will serve as a Þgure of merit for assessment of . In Fig. 234, we display the mean value of (the solid line represents the target value, namely the median value of ), as well as the SNR loss. These Þgures conÞrm two facts. Firstly, there is a good consistency between and the fact that the Þlter based on is effective. In other words, selecting from the EL principle helps Þnding a good regularization matrix and, subsequently, a performant adaptive Þlter. Secondly, diagonal loading is seen to be more effective in the case of a low-rank plus white noise type of covariance matrix: indeed, the LR remains close to for a large range of values of , and so is for the SNR loss. In fact, choosing the identity matrix as a regularizer is as good as selecting the true . In contrast, diagonal loading is less effective for the two other types of covariance matrix: when . increases, the LR departs from its target value and SNR loss is worst.

IV. CONCLUSIONS

In this letter, we addressed the problem of selecting the regularization matrix in estimation schemes which consist of shrinkage of the sample covariance matrix to a given regularization matrix. We interpreted the latter as a prior covariance matrix in a Bayesian model. The likelihood function of the latter was derived as a function of , and the expected likelihood approach was advocated to assess the validity of . It was shown that this approach is instrumental in providing a reliable measure of the quality of . As a by-product, we showed that diagonal loading is effective only in special cases of covariance matrices, and the EL approach proposed was helpful in identifying these cases.
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