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Evolutionary robotics applies the selection, variation, and heredity principles of natural evo-
lution to the design of robots with embodied intelligence. It can be considered as a subfield
of robotics that aims to create more robust and adaptive robots. A pivotal feature of the evo-
lutionary approach is that it considers the whole robot at once, and enables the exploitation
of robot features in a holistic manner. Evolutionary robotics can also be seen as an innova-
tive approach to the study of evolution based on a new kind of experimentalism.The use of
robots as a substrate can help to address questions that are difficult, if not impossible, to
investigate through computer simulations or biological studies. In this paper, we consider
the main achievements of evolutionary robotics, focusing particularly on its contributions
to both engineering and biology. We briefly elaborate on methodological issues, review
some of the most interesting findings, and discuss important open issues and promising
avenues for future work.
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1. INTRODUCTION
In designing a robot, many different aspects must be considered
simultaneously: its morphology, sensory apparatus, motor system,
control architecture, etc. (Siciliano and Khatib, 2008). One of the
main challenges of robotics is that all of these aspects interact and
jointly determine the robot’s behavior. For instance, grasping an
object with the shadow hand – a dextrous hand with 20 degrees
of freedom (Shadow, 2013) – or the Cornell universal “jamming”
gripper – a one degree-of-freedom gripper based on a vacuum
pump and an elastic membrane that encases granular material
(Brown et al., 2010) – are two completely different problems from
the controller’s point of view. In the first case, control is a chal-
lenge, whereas in the second case it is straightforward. Likewise, a
dedicated sensory apparatus can drastically change the complexity
of a robotic system. 3D information, for instance, is typically use-
ful for obstacle avoidance, localization, and mapping. Getting this
information out of 2D images is possible (Saxena et al., 2009), but
requires more complex processing than getting this information
directly from 3D scanners. The sensory apparatus, morphology,
and control of the robot are thus closely interdependent, and any
change in a given part is likely to have a large influence on the
functioning of the others.

Considering all these aspects at the same time contrasts with
the straightforward approach in which they are all studied in iso-
lation. Engineering mostly follows such a reductionist approach
and does little to exploit these interdependencies; indeed, it often
“fights” them to keep the design process as modular as possible
(Suh, 1990). Most fields related to robotics are thus focused on
one specific robot feature or functionality while ignoring the rest.
Self localization and mapping (SLAM), for instance, deals with the
ability to localize the robot in an unknown environment (Thrun
et al., 2005), trajectory planning with how to make a robot move
from position A to position B (Siegwart et al., 2011), etc.

The concept of embodied intelligence (Pfeifer and Bongard,
2007) is an alternative point of view in which the robot, its environ-
ment, and all the interactions between its components are studied
as a whole. Such an approach makes it possible to design systems
with a balance of complexity between their different parts, and
it generally results in simpler and better systems. However, if the
whole design problem cannot be decomposed into smaller and
simpler sub-problems, the question of methodology is far from
trivial. Drawing inspiration from nature can be helpful here, since
living beings are good examples of systems endowed with embod-
ied intelligence. The mechanism that was responsible for their
appearance, evolution, is therefore an attractive option to form
the basis of an alternative design methodology.

The idea of using evolutionary principles in problem solv-
ing dates back to the dawn of computers (Fogel, 1998), and
the resulting field, evolutionary computing (EC), has proven
successful in solving hard problems in optimization, modeling,
and design (Eiben and Smith, 2003). Evolutionary robotics (ER)
is a holistic approach to robot design inspired by such ideas,
based on variation and selection principles (Nolfi and Floreano,
2000; Doncieux et al., 2011; Bongard, 2013), which tackles the
problems of designing the robot’s sensory apparatus, morphol-
ogy, and control simultaneously. The evolutionary part of an
ER system relies on an evolutionary algorithm (see Figure 1).
The first generation of candidate solutions, represented by their
codes, the so-called “genotypes,” are usually randomly generated.
Their fitness is then evaluated, which means (1) translating the
genotype – the code – into a phenotype – a robot part, or its
controller, or its overall morphology; (2) putting the robot in
its environment; (3) letting the robot interact with its environ-
ment for some time and observing the resulting behavior; and
(4) computing a fitness value on the basis of these observations.
The fitness value is then used to select individuals to seed the
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FIGURE 1 | Principal workflow of evolutionary robotics. The
diagram presents a classic evolutionary robotics system, which
consists of an evolutionary algorithm (left) and a robot, real or
simulated (right). The evolutionary component follows the generic
evolutionary algorithm template with one application-specific feature:
for fitness evaluations, the (real or simulated) robot is invoked. The

evaluation component takes a genotype from the evolutionary
component as input and returns the fitness value of the
corresponding robot as output. In this figure, the genotype encodes
the controller of an e-puck robot (a neural net) and the fitness of the
robot is defined by its behavior in a given maze, for instance, the
distance of the robot’s final position to the maze output.

next generation. The selected would-be parents undergo random-
ized reproduction through the application of stochastic varia-
tions (mutation and crossover), and the evaluation–selection–
variation cycle is repeated until some stopping criterion is met
(typically a given number of evaluations or a predefined quality
threshold).

Evolutionary robotics is distinct from other fields of engi-
neering in that it is inherently based on a biological mechanism.
This is quite unusual, as most engineering fields rely on classical
approaches based on mathematics and physics. Biological mecha-
nisms are less thoroughly understood, although much progress
has been made in recent years. Experimental research in the
area suffers from the fact that evolution usually requires many
generations of large numbers of individuals, whose lives may
last years or even decades. The only exceptions are organisms
whose lifecycle is short enough to allow laboratory experiments
(Wiser et al., 2013). In other cases, lacking the ability to per-
form direct experiments, biologists usually analyze the remains
of past creatures, the genetic code, or commit to the theoret-
ical approaches of population biology. ER offers an alternative
synthetic approach to the study of evolution in such contexts.
Using robots as evolving entities opens the way to a novel modus
operandi wherein hypotheses can be tested experimentally (Long,
2012). Thus, the contributions of ER are not limited to engineering
(Figure 2).

This article discusses the field of ER on the basis of more than
two decades of history. Section 2 looks at the groups of researchers
who stand most directly to benefit from ER, engineers, and biol-
ogists. Section 3 illuminates how the standard scientific method
applies in ER, and Section 4 summarizes the major findings since
the field began. They are followed by Section 5, which discusses the
main open issues within ER, and Section 6, which elaborates on

FIGURE 2 | Evolutionary robotics is at the crossroads between
engineering science and biology. ER not only draws inspiration from
biology but also contributes to it; likewise, ER at once imports tools and
scientific questions from and contributes to engineering.

the expected results of ER for a broad scientific and engineering
community.

2. EVOLUTIONARY ROBOTICS: FOR WHOM?
In this section, we look at the research communities, which stand
to benefit most immediately from ER. In particular, we focus on
engineers trying to design better robots, and biologists trying to
understand natural evolution as the main beneficiaries.

2.1. ENGINEERS
ER addresses one of the major challenges of robotics: how to build
robots, which are simple and yet efficient. ER proposes to design
robot behaviors by considering the robot as a whole from the very
beginning of the design process, instead of designing each of its
parts separately and putting them together at the end of the process
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(Lipson and Pollack, 2000). It is an intrinsically multi-disciplinary
approach to robot design, as it implies considering the mechanics,
control, perceptual system, and decision process of the robot all
at the same level. By allowing the process to transcend the classi-
cal boundaries between sub-fields of robotics, this integrated view
opens up new and original perspectives on robot design. Consid-
ering the robot’s morphology as a variable in behavior design, and
not something designed a priori, greatly extends the design space.

ER’s integrative view on robot design creates new opportunities
at the frontiers between different fields. Design processes including
both morphology and control have thus been proposed (Lipson
and Pollack, 2000), and studies have been performed on the influ-
ence of body complexity on the robustness of designed behaviors,
e.g., Bongard (2011). Bongard investigated the impact of changes
in morphology on the behavior design process and showed that
progressively increasing morphological complexity actually helps
design more robust behaviors. The influence of the sensory appa-
ratus can likewise be studied using ER methods, in particular, in
creating efficient controllers, which do not require sensory infor-
mation that had been thought to be necessary (Hauert et al.,
2008).

Applying design principles to real devices is critical in engineer-
ing generally and in robotics, in particular. ER is an automated
design process that can be directly applied to real robots, alleviat-
ing the need for accurate simulations. Hornby et al. (2005) thus
had real Aibo robots learn to walk on their own using ER methods.
Nevertheless, as tests on real robots are expensive in terms of both
time and mechanical fatigue, the design process often relies at least
partly on simulations. The reality gap (Jakobi et al., 1995; Miglino
et al., 1995; Mouret et al., 2012; Koos et al., 2013b), created by the
inevitable discrepancies between a model and the real system it is
intended to represent, is a critical issue for any design method. A
tedious trial and error process may be required to obtain, on the
real device, the result generated thanks to the model. ER opens
new perspectives with respect to this issue, as tests in simulation
and on a real robot can be automatically intermixed to get the
best of both worlds (Koos et al., 2013b). Interestingly, the ability
to cross a significant reality gap opens the way to resilience: any
motor or mechanical failure will increase the discrepancy between
a robot model and the real system. Resilient robots can be seen
as systems that are robust to the transfer between an inaccurate
simulation and reality (Koos et al., 2013a). Likewise, the learn-
ing and adaptation properties of ER can be used to update the
model of the robot after a failure, thus making it possible to
adapt a robot controller without human intervention (Bongard
et al., 2006). The originality of such approaches with respect to
more classical approaches to handling motor or mechanical fail-
ures is that they do not require a priori identification of potential
failures.

Recently, a range of new concepts have been proposed to go
beyond the traditional, articulated, hard robot with rigid arms
and wheels or legs. Such novel types of robots – be they a swarm
of simple robots (Sahin and Spears, 2005), robots built with soft
materials [so-called soft robots (Trivedi et al., 2008; Cheney et al.,
2013, 2014)], or robots built with small modules (modular robots)
(Zykov et al., 2007) – create new challenges for robotics. ER design
principles can be applied to these unconventional robotic devices

with few adaptations, thus making ER a method of choice in such
cases (Bongard, 2013).

2.2. BIOLOGISTS
Understanding the general principles of evolution is a complex and
challenging question. The field of evolutionary biology addresses
this question in many ways, either by looking at nature (paleonto-
logical data, the study of behavior, etc.) or by constructing models
that can be either solved analytically or simulated. Mathematical
modeling and simulation have provided (and are still providing)
many deep insights into evolution, but sometimes meet their lim-
its due to the simplifications, which are inherently required to
construct such models (e.g., well-mixed population, or ad hoc dis-
persal strategies). Bridging the gap between real data and models
is also a challenge, as observing evolution at work is very rarely
possible. Although a small number of studies, such as the 25-year
in vitro bacterial evolution experiment (Wiser et al., 2013) provide
counter-examples, their limits are clear: evolution cannot be exper-
imentally observed for long periods in species with a slow pace of
evolution (such as animals), let alone in their natural habitat.

The challenge of studying evolution at work under realistic
assumptions within a realistic time frame thus remains. John May-
nard Smith, one of the fathers of modern theoretical biology, gave
one possible, and rather convincing, answer: “so far, we have been
able to study only one evolving system and we cannot wait for
interstellar flight to provide us with a second. If we want to dis-
cover generalizations about evolving systems, we have to look at
artificial ones” (Maynard-Smith, 1992). Simulation software like
AVIDA (Lenski et al., 1999; Bryson and Ofria, 2013) and AEvol
(Batut et al., 2013) offers examples that are traveling this path,
providing simulation tools for studying various aspects of bacte-
rial evolution. As with other artificial evolution setups (including
evolutionary robotics), it is then possible to “study the biological
design process itself by manipulating it” (Dennett, 1995).

In a similar fashion, evolutionary robotics provides tools for
modeling and simulating evolution with unique properties: con-
sidering embodied agents that are located in a realistic environ-
ment makes it possible to study hypotheses on the mechanistic
constraints at play during evolution (Floreano and Keller, 2010;
Mitri et al., 2013; Trianni, 2014). This is particularly relevant for
modeling behaviors, where complex interactions within the group
(e.g., leading to the evolution of communication) and with the
environment (e.g., leading to the evolution of particular morpho-
logical traits) are at work. Evolutionary robotics can be used to test
hypotheses about particular features with respect to both their
origin (e.g., how does cooperation evolve?) and their functional
relevance (e.g., does explicit communication improve coordina-
tion?) in a realistic setup. Moreover, the degree of realism can be
tuned depending on the question to be addressed, from testing a
specific hypothesis to building a full-grown artificial evolutionary
ecology setup, i.e., implementing a distributed online evolutionary
adaptation process with (real or simulated) robots, with no other
objective than to study evolution per se.

Within the last 10 years, evolutionary robotics has been used to
study a number of key issues in evolutionary biology: the evolu-
tion of cooperation, whether altruistic (Montanier and Bredeche,
2011, 2013; Waibel et al., 2011) or not (Solomon et al., 2012), the
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evolution of communication (Floreano et al., 2007; Mitri et al.,
2009; Wischmann et al., 2012), morphological complexity (Bon-
gard, 2011; Auerbach and Bongard, 2014), and collective swarming
(Olson et al., 2013), to cite a few. Another way of classifying the
contributions of evolutionary robotics to biology is in terms of
whether they seek to extend abstract models through embodiment
(cf. most of the works cited in this paragraph), or to carefully sim-
ulate existing features observed from real data in order to better
understand how and why they evolved (Long, 2012).

Although the basic algorithms and methods remain similar, the
goal of these types of work is to understand biology rather than to
contribute to engineering. It is also important to note that most of
these studies have been published in top-ranked journals in biol-
ogy, proving that this branch of evolutionary robotics is recognized
as relevant by its target audience.

3. HOW TO USE ER METHODS AND CONTRIBUTE TO THIS
FIELD?

Evolutionary robotics is an experimental research field. Exper-
imentation amounts to executing an evolutionary process in a
population of (simulated) robots in a given environment, with
some targeted robot behavior. The targeted features are used to
specify a fitness measure that drives the evolutionary process. The
majority of the ER field follows the classic algorithmic scheme as
shown in Figure 1. However, experimentation can have different
objectives. For instance, one could aim to solve a particular engi-
neering problem, such as designing a suitable morphology and
controller for a robot that efficiently explores rough terrain. Or
one could be interested in studying the difference between wheeled
and legged morphologies. Alternatively, one could investigate how
various selection mechanisms affect the evolutionary algorithm in
an ER context. Although these options differ in several aspects, in
any case the methodology should follow the generic principles
of experimentation and hypothesis testing. The corresponding
template can be summarized by the following items.

1. What is the question to be answered or the goal to be achieved?
In other words, what is this work about, what is the main
context?

2. What is the hypothesis regarding the question, or what is the
appropriate success criterion, which will prove that the goal has
been achieved?

3. What kind of results can validate or refute the hypothesis? Or,
what data are needed to determine whether the success criterion
has been met?

4. What experiment(s) can generate the results and data identified
in the previous step? Control experiments – to reject alternative
hypotheses that may also explain the results – are mandatory.

5. What conclusion can be drawn from the analysis of the results?

Two different aspects of ER require particular attention. First,
the stochastic nature of evolutionary algorithms implies multiple
runs under the same conditions and performing a good statis-
tical analysis. Anything that happens only once can lead to no
other conclusion than “it is possible to obtain this result.” For
instance, when comparing two (or more) different settings, the
differences in outcomes may or may not be significant. Therefore,

the hypothesis of a difference between the processes that have
generated the results needs to be validated with appropriate statis-
tical tests (Bartz-Beielstein, 2006). Second, evolutionary robotics
experiments are, in general, performed on a simplified model of a
real robot or animal. Drawing any conclusion on the real robot or
animal requires discussing to what extent the model is appropri-
ate to study the research question (Hughes, 1997; Long, 2012). The
opportunistic nature of evolutionary algorithms makes this partic-
ularly mandatory, as the evolutionary process may have exploited
features that are specific to the simplified model, and which may
not hold on the targeted system, giving rise to a reality gap (Jakobi
et al., 1995; Koos et al., 2013b).

Although we have emphasized that all experimental research in
ER should follow the general template above, differences in objec-
tives can have implications for the methodology. For instance, a
study aiming at solving a particular engineering problem can be
successfully concluded by only inspecting the end result of the
evolutionary process, the evolved robot. Verifying success requires
the validation of the robot behavior as specified in the problem
description – analysis of the evolutionary runs is not relevant for
this purpose. On the other hand, comparing algorithmic imple-
mentations of ER principles requires thorough statistical analysis
of these variants. To this end, the existing practice of evolution-
ary computation can be very helpful. This practice is based on
using well-specified test problems, problem instance generators,
definitions of algorithm performance, enough repetitions with
different random seeds, and the correct use of statistics. This
methodology is known and proven, offering established choices
for the most important elements of the experimental workflow.
For instance, there are many repositories of test problems, several
problem instance generators, and there is broad agreement about
the important measures of algorithm performance, cf. Chapter 13
in Eiben and Smith (2003).

In the current evolutionary robotics literature, proof-of-
concept studies are common; these typically show that a robot
controller or morphology can be evolved that induces certain
desirable or otherwise interesting behaviors. The choice of tar-
geted behaviors (fitness functions) and robot environments is to a
large extent ad hoc, and the use of standard test suites and bench-
marking is not as common as in evolutionary computing. Whether
adopting such practices from EC is actually possible and desirable
is an issue that should be discussed in the community.

4. WHAT DO WE KNOW?
Evolutionary robotics is a relatively young field with a his-
tory of about two decades; it is still in development. However,
it is already possible to identify a few important “knowledge
nuggets” – interesting discoveries of the field so far.

4.1. NEURAL NETWORKS OFFER A GOOD CONTROLLER PARADIGM
FOR ER

Robots can be controlled by many different kinds of controllers,
from logic-based symbolic systems (Russell and Norvig, 2009) to
fuzzy logic (Saffiotti, 1997) and behavior-based systems (Mataric
and Michaud, 2008). The versatility of evolutionary algorithms
allows them to be used with almost all of these systems, be it
to find the best parameters or the best controller architecture.
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Nevertheless, the ideal substrate for ER should constrain evolu-
tion as little as possible, in order to make it possible to scale up to
designs of unbounded complexity. As ER aims to use as little prior
knowledge as possible, this substrate should also be able to use raw
inputs from sensors and send low-level commands to actuators.

Given these requirements, artificial neural networks are cur-
rently the preeminent controller paradigm in ER. Feed-forward
neural networks are known to be able to reproduce any function
with arbitrary precision (Cybenko, 1989), and are well recog-
nized tools in signal processing (images, sound, etc.) (Bishop,
1995; Haykin, 1998) and robot control (Miller et al., 1995). With
recurrent connections, neural networks can also approximate any
dynamical system (Funahashi and Nakamura, 1993). In addition,
since neural networks are also used in models of the brain, ER can
build on a vast body of research in neuroscience, for instance, on
synaptic plasticity (Abbott and Nelson, 2000) or network theory
(Bullmore and Sporns, 2009).

There are many different kinds of artificial neural networks to
choose from, and many ways to evolve them. First, a neuron can be
simulated at several levels of abstraction. Many ER studies use sim-
ple McCulloch and Pitts neurons (McCulloch and Pitts, 1943), like
in “classical” machine learning (Bishop, 1995; Haykin, 1998). Oth-
ers implement leaky integrators (Beer, 1995), which take time to
into account and may be better suited to dynamical systems (these
networks are sometimes called continuous-time recurrent neural
networks, CTRNN). More complex neuron models, e.g., spiking
neurons, are currently not common in ER, but they may be used
in the future. Second, once the neuron model is selected, evolution
can act on synaptic parameters, the architecture of the network, or
both at the same time. In cases where evolution is applied only to
synaptic parameters, common network topologies include feed-
forward neural networks, Elman–Jordan networks [e.g., Mouret
and Doncieux (2012)], which include some recurrent connections,
and fully connected neural networks (Beer, 1995; Nolfi and Flore-
ano, 2000; Bongard, 2011). Fixing the topology, however, bounds
the complexity of achievable behaviors. As a consequence, how to
encode the topology and parameters of neural networks is one of
the main open questions in ER. How to encode a neural network
so that it can generate a structure as complex, and also as orga-
nized, as a human brain? Many encodings have been proposed and
tested, from direct encoding, in which evolution acts directly on
the network itself (Stanley and Miikkulainen, 2002; Floreano and
Mattiussi, 2008), to indirect encodings (also called generative or
developmental encodings), in which a genotype develops into the
neural network (Stanley and Miikkulainen, 2003; Floreano et al.,
2008).

4.2. PERFORMANCE-ORIENTED FITNESS CAN BE MISLEADING
Most ER research, influenced by the vision of evolution as an
optimization algorithm, relies on fitness functions, i.e., on quan-
tifiable measures, to drive the search process. In this approach, the
chosen fitness measure must increase, on average, from the very
first solutions considered – which are in general randomly gener-
ated – toward the expected solution. Typical fitness functions rely
on performance criteria, and implicitly assume that increasing per-
formance will lead the search in the direction of desired behaviors.
Recent work has brought this assumption into question and shown

that performance criteria can be misleading. Lehman and Stanley
(2011) demonstrated in a set of experiments that using the nov-
elty of a solution instead of the resulting performance on a task
can actually lead to much better results. In these experiments, the
performance criterion was still used to recognize a good solution
when it was discovered, but not to drive the search process. The
main driver was the novelty of the solution with respect to pre-
vious exploration in a space of robot behavior features. Counter
intuitively, driving the search process with the novelty of explored
solutions in the space of behavioral features led to better results
than driving the search with a performance-oriented measure, a
finding that has emerged repeatedly in multiple contexts (Lehman
and Stanley, 2008, 2011; Risi et al., 2009; Krcah, 2010; Cuccu and
Gomez, 2011; Mouret, 2011; Gomes et al., 2012, 2013; Gomes and
Christensen, 2013; Lehman et al., 2013b; Liapis et al., 2013).

4.3. SELECTIVE PRESSURE IS AT LEAST AS IMPORTANT AS THE
ENCODING

Many complex encodings have been proposed to evolve robot
morphologies, control systems, or both [e.g., Sims (1994), Gruau
(1995), Bongard (2002), Hornby and Pollack (2002), Stanley and
Miikkulainen (2003), Doncieux and Meyer (2004), and Mouret
and Doncieux (2008)]. Unfortunately, these encodings did not
enable the unbounded complexity that had been hoped for.

There are two main reasons for this situation: (1) evolution
is often prevented from exploring new ideas because it converges
prematurely on a single family of designs, and (2) evolution selects
individuals on the short term, whereas increases in complexity and
organization are often only beneficial in the medium to long term.
In a recent series of experiments, Mouret and Doncieux (2012)
tested the relative importance of selective pressure and encoding
in evolutionary robotics. They compared a classic fitness function
to approaches that modify the selective pressure to try to avoid
premature convergence. They concluded that modifying the selec-
tive pressure made much more difference to the success of these
experiments than changing the encoding. In a related field – evo-
lution of networks – it has also been repeatedly demonstrated
that the evolution of modular networks can be explained by the
selective pressure alone, without the need for an encoding that
can manipulate modules [Kashtan and Alon (2005), Espinosa-
Soto and Wagner (2010), Bongard (2011), and Clune et al. (2013),
Section 5.2].

At the beginnings of ER, selective pressure was not a widely
studied research theme. Fitness was viewed as a purely user-
defined function for which, at best, the user could follow “best
practices.” However, many recent developments have shown that
most evolutionary robotics experiments share common features
and challenges, and can be tackled by generic techniques that
modify the selective pressure (Doncieux and Mouret, 2014), like
behavioral diversity (Mouret and Doncieux, 2012), novelty search
[Lehman and Stanley (2011), Section 4.2], or the transferability
approach [Koos et al. (2013b), Section 4.4). All of these selective
pressures take into account the robot’s behavior in their definition
and thus drive the field away from the classical black-box optimiza-
tion point of view (Figure 3). These encouraging results further
suggest that a better understanding of selective pressures could
help evolutionary robotics scale up to more complex tasks and
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FIGURE 3 | Recent work on selective pressures suggest that taking the
behavior into account in the selection process is beneficial. In particular, it
may be helpful, rather than only considering fitness as indicated by some

specific quantitative performance measure, to also take into account aspects
of robot behavior, which are less directly indexed to successful performance
of a task, e.g., novelty, diversity.

designs. At any rate, while the future is likely to see more work on
evolutionary pressures, selective pressures, and encodings need to
act in concert to have a chance at leading to animal-like complexity
(Huizinga et al., 2014).

4.4. TARGETING REAL ROBOTS IS CHALLENGING
Simulation is a valuable tool in evolutionary robotics because it
makes it possible for researchers to quickly evaluate their ideas,
easily replicate experiments, and share their experimental setup
online. A natural follow-up idea is to evolve solutions in simula-
tion, and then transfer the best ones to the final robot: evolution is
fast, because it occurs in simulation, and the result is applied to real
hardware, so it is useful. Unfortunately, it is now well established
that solutions evolved in simulation most often do not work on
the real robot. This issue is called “the reality gap” (Jakobi et al.,
1995; Miglino et al., 1995; Mouret et al., 2012; Koos et al., 2013b).
It has at least been documented with Khepera-like robots (obsta-
cle avoidance, maze navigation) (Jakobi et al., 1995; Miglino et al.,
1995; Koos et al., 2013b) and walking robots (Jakobi, 1998; Zagal
and Ruiz-del Solar, 2007; Glette et al., 2012; Mouret et al., 2012;
Koos et al., 2013a,b; Oliveira et al., 2013).

The reality gap can be reduced by improving simulators, for
instance, by using machine learning to model the sensors of the tar-
get robot (Miglino et al., 1995) or by exploiting experiments with
the physical robot (Bongard et al., 2006; Zagal and Ruiz-del Solar,
2007; Moeckel et al., 2013). Nevertheless, no simulator will ever
be perfect, and evolutionary algorithms, as “blind” optimization
algorithms, are likely to exploit every inaccuracy of the simula-
tion. Jakobi et al. (1995) proposed a more radical approach: to
prevent the algorithm from exploiting these inaccuracies, he pro-
posed to hide things that are difficult to simulate in an “envelope
of noise.” A more recent idea is to learn a function that predicts
the limits of the simulation, which is called “a transferability func-
tion” (Mouret et al., 2012; Koos et al., 2013a,b). This function is
learned by transferring a dozen controllers during the evolution-
ary process, and can be used to search for solutions that are both

high-performing and well simulated (e.g., with a multi-objective
evolutionary algorithm).

Another possible way to reduce the magnitude of the reality gap
is to encourage the development of robust controllers. In this case,
the differences between simulation and reality are seen as pertur-
bations that the evolved controller should reject. Adding noise to
the simulation, as in Jakobi’s “envelope of noise” approach (Jakobi
et al., 1995), is a straightforward way to increase the robustness of
evolved controllers. More generally, it is possible to reward some
properties of simulated behaviors so that evolved controllers are
less likely to over-fit in simulation. For instance, Lehman et al.
(2013a) proposed to encourage the reactivity of controllers by
maximizing the mutual information between sensors and motors,
in combination with the maximization of classical task-based fit-
ness. Last, controller robustness can be improved by adding online
adaptation abilities, typically by evolving plastic neural networks
(Urzelai and Floreano, 2001).

The reality gap can be completely circumvented by abandoning
simulators altogether. Some experiments in 1990s thus evalu-
ated the performance of each candidate solution using a robot
in an arena, which was tracked with an external device and con-
nected to an external computer (Nolfi and Floreano, 2000). These
experiments led to successful but basic behaviors, for instance,
wall-following or obstacle avoidance. Successful experiments have
also been reported for locomotion (Hornby et al., 2005; Yosinski
et al., 2011). However, only a few hundreds of evaluations can be
realistically performed with a robot: reality cannot be sped up,
contrary to simulators, and real hardware wears out until it ulti-
mately breaks. A promising approach to scale up to more complex
behaviors is to use a population of robots, instead of a single one
(Watson et al., 2002; Bredeche et al., 2012; Haasdijk et al., 2014);
in such a situation, several evaluations occur in parallel, therefore,
the evolution process can theoretically be sped up by a factor equal
to the number of robots.

These different approaches to bridging the reality gap primar-
ily aim at making ER possible on a short time scale. However,
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they also critically, and often covertly, influence the evolution-
ary process: they typically act as “goal refiners” (Doncieux and
Mouret, 2014) – that is, they change the optimum objective func-
tion to restrict possible solutions to a subset that works well
enough on the robots. For instance, the “envelope of noise” penal-
izes solutions that are not robust to noise – there may exist
higher-performing solutions in the search space that are slightly
less robust; the “transferability approach” can only find solutions
that are accurately simulated – it cannot go beyond the capabili-
ties of the simulator; and evaluating the fitness function directly
on the robot might be influenced by uncontrolled conditions,
for example, the light in the experimental room (Harvey et al.,
1994).

4.5. COMPLEXIFICATION IS GOOD
Where to start when designing the structure of a robot? Should it
be randomly generated up to a certain complexity? Should it start
from the simplest structures and grow in complexity, or should
it start from the most complex designs and be simplified over
the generations? These questions have not yet been theoretically
answered. One possibility is to start from a complex solution and
then reduce its complexity. A neural network can thus begin fully
connected and connections can be pruned afterwards through
a connection selection process (Changeux et al., 1973). But a
growing body of evidence suggests that starting simple and pro-
gressively growing in complexity is a good idea. This is one of
the main principles of NEAT (Stanley and Miikkulainen, 2002),
which is now a reference in terms of neural network encoding.
Associated with the principle of novelty search, it allows the evolu-
tionary process to explore behaviors of increasing complexity, and
has led to promising results (Lehman and Stanley, 2011). Progres-
sively increasing the complexity of the task, including the robot’s
morphology (Bongard, 2010, 2011) and the context in which it
is evaluated (Auerbach and Bongard, 2009, 2012; Bongard, 2011)
has also been found to have a strong and positive influence on
results. Furthermore, progressively increasing the complexity of
the robot controller, morphology, or evaluation conditions aligns
with the principles of ecological balance proposed by Pfeifer and
Bongard (2007): the complexity of the different parts of a system
should be balanced. If individuals from the very first generation
are expected to exhibit a simple behavior, it seems reasonable
to provide them with the simplest context and structure. This
is also consistent with different fields of biology, either from a
phylogenetic point of view (the first organisms were the simplest
unicellular organisms) or from an ontogenetic point of view [mat-
urational constraints reduce the complexity of perception and
action for infants (Turkewitz and Kenny, 1985; Bjorklund, 1997)].
In any case, there is a need for more theoretical studies on these
questions, as the observation of these principles in biology may
result from physical or biological constraints rather than from
optimality principles.

5. WHAT ARE THE OPEN ISSUES ?
In this section, we give a treatment of the state of the art, organized
around a number of open issues within evolutionary robotics.
These issues are receiving much attention, and serving to drive
further developments in the field.

5.1. APPLYING ER TO REAL-WORLD PROBLEMS
Real-world applications are not systematically followed by research
papers advertising the approach taken by the engineers. It is thus
hard to evaluate to what extent ER methods are currently used in
this context. In any case, several successful examples of the use of
ER methods in the context of real-world problems can be found
in the literature. For instance, ER methods have been used to gen-
erate the behavior of UAVs acting in a swarm (Hauert et al., 2008),
and the 2014 champion of the RoboCup simulation league relies
on CMA-ES (Macalpine et al., 2015), an evolutionary algorithm.
In these examples, ER methods were used either for one particular
step in the design process or as a component of a larger learning
architecture. Hauert et al. (2008) define a specific and preliminary
step in the design process that relies on ER methods to generate
original behaviors. Understanding how these behaviors work led
to new insights into how to solve the problem. ER methods were
used only in simulation, and more classical methods were used
to implement the solutions in real robots. Macalpine et al. (2015)
define an overlapping layered learning architecture for a Nao robot
to learn to play soccer, using CMA-ES (Hansen and Ostermeier,
2001) to optimize 500 parameters over the course of learning. Nei-
ther of these approaches implements ER as a full-blown holistic
design method, but they show that its principles and the corre-
sponding algorithms now work well enough to be included in
robot design processes.

Using ER as a holistic approach to a real-world robotic prob-
lem remains a challenge because of the large number of evaluations
that it implies. The perspective in this context is to rely either on
many robots in parallel (see Sections 5.5 and 5.6 for the questions
raised by this possibility) or at least partly on simulations. In the
latter case, because of the inevitable discrepancies between simula-
tion and reality and the opportunistic nature of ER, the challenge
of the reality gap has to be faced. Several approaches have been
proposed to cross this gap (Section 4.4). Relying on available sim-
ulations implies exploiting only the features that are modeled with
sufficient accuracy. There have been a number of studies on build-
ing the model during the evolutionary run (Bongard et al., 2006;
Zagal and Ruiz-del Solar, 2007; Moeckel et al., 2013), but the mod-
els generated in this way thus far are limited to simple experiments.
Discovering models of robot and environment for more realistic
setups remains an open issue.

ER applications have also emerged in a very different domain:
computer graphics. From the seminal work of Karl Sims on vir-
tual creatures (Sims, 1994) to more recent work on evolutionary
optimization of muscle-based control for realistic walking behav-
ior with simulated bipeds (Geijtenbeek et al., 2013), ER makes it
possible to provide realistic and/or original animated characters.

5.2. NATURE-LIKE EVOLVABILITY
A central open question in evolutionary biology is what makes
natural organisms so evolvable: that is, how species quickly evolve
responses to new evolutionary challenges (Kauffman, 1993; Wag-
ner and Altenberg, 1996; Kirschner and Gerhart, 2006; Gerhart and
Kirschner, 2007; Pigliucci, 2008). And as ER takes inspiration from
evolutionary biology, one of the main open questions in ER is how
to design artificial systems that are as evolvable as natural species
(Wagner and Altenberg, 1996; Tarapore and Mouret, 2014a,b).
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To make evolution possible, random mutations need to be
reasonably likely to produce viable (non-lethal) phenotypic varia-
tions (Wagner and Altenberg, 1996; Kirschner and Gerhart, 2006;
Gerhart and Kirschner, 2007; Pigliucci, 2008). Viable variations
are consistent with the whole organism. For instance, a varia-
tion of beak size in a finch requires consistent adaptation of
both mandibles (lower and upper) and an adaptation of the mus-
coskeletal structure of the head. In addition, viable variations do
not break down the vital functions of the organism: an adaptation
of the beak should not imply a change in the heart. Likewise,
a mutation that would add a leg to a robot would require a
new control structure to make it move, but the same mutation
should not break the vision system. This kind of consistency
and weak linkage is impossible to achieve in a simple artificial
evolutionary system in which each gene is associated to a single
phenotypic trait (Wagner and Altenberg, 1996; Hu and Banzhaf,
2010).

In biology, the development process that links genes to phe-
notypes, called the genotype–phenotype map, is thought to be
largely responsible for organisms’ ability to generate such viable
variations (Wagner and Altenberg, 1996; Kirschner and Gerhart,
2006; Gerhart and Kirschner, 2007). Inspired by the progress made
by the evo-devo community (Müller, 2007), many researchers
in ER have focused on the genotype–phenotype map for neural
networks (Kodjabachian and Meyer, 1997; Doncieux and Meyer,
2004; Mouret and Doncieux, 2008; Stanley et al., 2009; Verbancsics
and Stanley, 2011) or complete robots (Bongard, 2002; Hornby
and Pollack, 2002; Auerbach and Bongard, 2011; Cussat-Blanc
and Pollack, 2012; Cheney et al., 2013). Essentially, they propose
genotype–phenotype maps that aim to reproduce as many fea-
tures as possible from the natural genotype–phenotype map, and,
in particular, consistency, regularity (repetition, repetition with
variation, symmetry), modularity (functional, sparsely connected
subunits), and hierarchy (Lipson, 2007).

Intuitively, these properties should improve evolvability and
should therefore be selected by the evolutionary process: if the
“tools” to create, repeat, organize, and combine modules are avail-
able to evolution, then evolution should exploit them because they
are beneficial. However, evolvability only matters in the long term
and evolution mostly selects on the short term: long-term evolv-
ability is a weak, second-order selective pressure (Wagner et al.,
2007; Pigliucci, 2008; Woods et al., 2011). As pointed out by Pigli-
ucci (2008), “whether the evolution of evolvability is the result of
natural selection or the by-product of other evolutionary mech-
anisms is very much up for discussion, and has profound impli-
cations for our understanding of evolution in general.” Ongoing
discussions about the evolutionary origins of modularity illus-
trate some of the direct and indirect evolutionary mechanisms
at play: the current leading hypotheses suggest that modular-
ity might evolve as a by-product of the pressure to minimize
connection costs (Clune et al., 2013), to specialize gene activity
(Bongard, 2011), or, more directly, to adapt in rapidly varying
environments (Kashtan and Alon, 2005; Clune et al., 2010). These
questions about the importance of selective pressures in under-
standing evolvability echo the recent results that suggest that
classic objective-based fitness function may hinder evolvability:
nature-like artificial evolvability might require more open-ended

approaches to evolution than objective-based search (Lehman and
Stanley, 2013).

Overall, despite efforts to integrate ideas about selective pres-
sures and genotype–phenotype maps to improve evolvability,
much work remains to be done on the way to understanding how
the two interact (Mouret and Doncieux, 2009; Huizinga et al.,
2014) and how they should be exploited in evolutionary robotics.

5.3. COMBINING EVOLUTION AND LEARNING
Animals’ ability to adapt during their lifetime may be the feature
that most clearly separates them from current machines. Evolved
robots with learning abilities could be better able to cope with
environmental and morphological changes (e.g., damage) than
non-plastic robots (Urzelai and Floreano, 2001): evolution would
deal with the long-term changes, whereas learning would deal with
short-term changes. In addition, many evolved robots rely on arti-
ficial neural networks (Section 4.1), which were designed with
learning in mind from the outset. There is, therefore, a good fit
between evolving neural networks in ER and evolving robots with
online learning abilities. Most papers in this field have focused
on various forms of Hebbian learning (Abbott and Nelson, 2000;
Urzelai and Floreano, 2001), including neuro-modulated Hebbian
learning (Bailey et al., 2000; Soltoggio et al., 2007, 2008).

Unfortunately, mixing evolution and online learning has
proven difficult. First, many papers about learning in ER address
different challenges while using the same terminology (e.g.,“learn-
ing,” “robustness,” and “generalization”), making it difficult to
understand the literature. A recent review may help clarify each of
the relevant terms and scenarios (Mouret and Tonelli, 2014): it dis-
tinguishes “behavioral robustness” (the robot maintains the same
qualitative behavior in spite of environmental/morphological
changes; no explicit reward/punishment system is involved) from
“reward-based behavioral changes” (the behavior of the robot
depends on rewards, which are set by the experimenters). This
review also highlights the difference between evolving a neural
network that can use rewards to switch between behaviors that are
measured by the fitness function, on the one hand, and being able
to learn in a situation that was not used in the fitness function, on
the other hand. Surprisingly, only a handful of papers evaluate the
actual learning abilities of evolved neural networks in scenarios
that were not tested in the fitness function (Tonelli and Mouret,
2011, 2013; Coleman et al., 2014; Mouret and Tonelli, 2014).

Second, crafting a fitness function is especially challenging. To
evaluate the fitness of robots that can learn, the experimenter needs
to give them the time to learn and test them in many different situ-
ations, but this kind of evaluation is prohibitively expensive (many
scenarios, each of which has to last a long time), especially with
physical robots. Recent results suggest that a bias toward network
regularity might enable the evolution of general learning abilities
without requiring many tests in different environments (Tonelli
and Mouret, 2013), but these results have not yet been transferred
to ER. In addition, evolving neural networks with learning abili-
ties appears to be a deceptive problem (Risi et al., 2009, 2010) in
which simple, non-adaptive neural networks initially outperform
networks with learning abilities, since the latter are more com-
plex to discover and tune. Novelty search (Section 4.2) could help
mitigate this issue (Risi et al., 2009, 2010).
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Last, evolution and learning are two adaptive processes that
interact with each other. Overall, they form a complex system
that is hard to tame. The Baldwin effect (Hinton and Nowlan,
1987; Dennett, 2003) suggests that learning might facilitate evo-
lution by allowing organisms (or robots) to pretest the efficiency
of a behavior using their learning abilities, which will create a
selective pressure to make it easier to discover the best behaviors,
which in turn should result in the inclusion of these behaviors in
the genotype (so that there is no need to discover the behavior
again and again). The Baldwin effect can thus smooth a search
landscape and accelerate evolution (Hinton and Nowlan, 1987).
Nonetheless, from a purely computational perspective, the ideal
balance between spending time on the fitness function, to give
individuals the time to learn, and using more generations, which
gives evolution more time to find good solutions, is hard to find.
In many cases, it might be more computationally efficient to use
more generations than to use learning to benefit from the Baldwin
effect. More generally, evolution and learning are two processes
that optimize a similar quantity – the individual’s performance. In
nature, there is a clear difference in time scale (a lifetime vs. mil-
lions of years); therefore, the two processes do not really compete
with each other. However, ER experiments last only a few days
and often solve problems that could also be solved by learning:
given the time scale of current experiments, learning and evolu-
tion might not be as complementary as in nature, and they might
interact in a different way.

5.4. EVOLUTIONARY ROBOTICS AND REINFORCEMENT LEARNING
Although reinforcement learning (RL) and ER are inspired by dif-
ferent principles, they both tackle a similar challenge (Togelius
et al., 2009; Whiteson, 2012): agents (e.g., robots) obtain rewards
(resp. fitness values) while behaving in their environment, and
we want to find the policy (resp. the behavior) that corresponds
to the maximum reward (resp. fitness). Contrary to temporal
difference algorithms (Sutton and Barto, 1998), but like direct
policy search algorithms (Kober et al., 2013), ER only uses the
global value of the policy and does not construct value estimates
for particular state-action pairs. This holistic approach makes ER
potentially less powerful than classic RL because it discards all the
information in the state transitions observed during the “life” (the
evaluation) of the individual. However, this approach also allows
ER to cope better than RL with partial observability and continu-
ous domains like robot control, where actions and states are often
hard to define. A second advantage of ER over RL methods is that
methods like neuro-evolution (Section 4.1) evolve not only the
parameters of the policy but also its structure, hence avoiding the
difficulty (and the bias) of choosing a policy representation (e.g.,
dynamic movement primitives in robotics) or a state-action space.

A few papers compare the results of using evolution-inspired
algorithms and reinforcement learning methods to solve rein-
forcement learning problems in robotics. Evolutionary algorithms
like CMA-ES (Hansen and Ostermeier, 2001) are good optimizers
that can be used to optimize the parameters of a policy in lieu
of gradient-based optimizers. In a recent series of benchmarks,
Heidrich-Meisner (2008) compared many ER and RL algorithms
to CMA-ES in evolving the weights of a neural network (Heidrich-
Meisner, 2008; Heidrich-Meisner and Igel, 2009). They used classic

control problems from RL (cart-pole and mountain car) and con-
cluded that CMA-ES outperformed all the other tested methods.
Stulp and Sigaud (2012) compared CMA-ES to policy search algo-
rithms from the RL community and concluded that CMA-ES is
a competitive algorithm to optimize policies in RL (Stulp and
Sigaud, 2012, 2013). Taylor et al. (2006, 2007) compared NEAT
(Stanley and Miikkulainen, 2002) to SARSA in the keep-away task
from RoboCup. In this case, the topology of a neural network–
that is, the structure of the policy – was evolved. Their results sug-
gest that NEAT can learn better policies than SARSA, but requires
more evaluations. In addition, SARSA performed better when the
domain was fully observable, and NEAT performed better when
the domain had a deterministic fitness function.

Together, these preliminary results suggest a potential conver-
gence between RL for robotics and ER for behavior design. On
the one hand, RL in robotics started some years ago to explore
alternatives to classical discrete RL algorithms (Sutton and Barto,
1998) and, in particular, high-performance continuous optimiza-
tion algorithms (Kober et al., 2013). On the other hand, EAs have
long been viewed as optimization algorithms, and it is not sur-
prising that the most successful EAs, e.g., CMA-ES, make good
policy search algorithms for RL (Stulp and Sigaud, 2012), and
are very close to popular algorithms from the RL literature, like
cross-entropy search (Rubinstein and Kroese, 2004). Methods that
learn a model of the reward function, like Bayesian optimization
(Mockus et al., 1978), also offer a good example of convergence:
they have been increasingly used in RL (Lizotte et al., 2007; Calan-
dra et al., 2014), but they are also well studied as “surrogate-based
methods” in evolutionary computation (Jin, 2011). Overall, evo-
lution and policy search algorithms can be seen as two ends of
a continuum: EAs favor exploration and creativity, in particular,
when the structure of the policy is explored, but they require mil-
lions of evaluations; RL favors more local search, but requires
fewer evaluations. There are, however, situations in which an ER
approach cannot be substituted by a RL approach. For instance,
RL is typically not the appropriate framework to automatically
search for the morphology of a robot, contrary to evolution (Lip-
son and Pollack, 2000; Hornby and Pollack, 2002; Bongard et al.,
2006; Auerbach and Bongard, 2011; Cheney et al., 2014); the same
is true of modeling biological evolution (Floreano et al., 2007;
Waibel et al., 2011; Long, 2012; Montanier and Bredeche, 2013;
Auerbach and Bongard, 2014).

5.5. ONLINE LEARNING: SINGLE AND MULTIPLE ROBOTS
Evolutionary robotics is traditionally used to address design prob-
lems in an offline manner: there is a clear distinction between
the design phase, which involves optimization and evaluation, and
the operational phase, which involves no further optimization.
This two-step approach is rather common in engineering and is
appropriate for most problems, as long as the supervisor is able
to provide a test bed that is representative with regard to the ulti-
mate setup. However, it also assumes that the environment will
remain stable after deployment, or that changes can be dealt with,
for instance, thanks to robust behaviors or an ability to learn (cf.
Section 5.3). However, this assumption does not always hold, as
the environment may be unknown prior to deployment, or may
change drastically over time.
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Online versions of evolutionary robotics have been studied in
order to address this class of problem (Eiben et al., 2010), both
with single robots (Bongard et al., 2006; Bredeche et al., 2010)
and multiple robots (Watson et al., 2002). Online ER benefits
from the properties of its offline counterpart: black-box opti-
mization algorithms that can deal with noisy and multimodal
objective functions where only differential evaluations can be used
to improve solutions. However, some features are unique to online
optimization: each robot is situated in the environment, and evolu-
tionary optimization should be conducted without (or least with
a minimum of) external help. This has two major implications:
first, that there are no stable initial conditions with which to begin
the evaluation as the robot moves around (Bredeche et al., 2010);
and second, that safety cannot be guaranteed as the environment
is, by definition, unknown.

Going from single to multiple robots also raises particular chal-
lenges. Interestingly, distributed online evolutionary robotics [also
termed “embodied evolution,” a term originally coined by Ficici
et al. (1999)] has drawn more attention than the single-robot
flavor since the very beginning. On the one hand, the theoreti-
cal complexity of learning exact solutions with multiple robots
[i.e., solving a decentralized partially observable Markov deci-
sion process (DEC-POMDP) in an exact manner] is known to
be NEXP-complete (Papadimitriou, 1994) already in the offline
setup (Bernstein et al., 2002). On the other hand, the algorithms
at work in evolutionary robotics can easily be distributed over
a population of evolving robots. While the result is limited to an
approximate method for distributed online learning, which is sub-
ject to many limitations and open issues, it is possible to deploy
such algorithms in a large population of robots, from dozens of
real robots (Watson et al., 2002; Bredeche et al., 2012) to thousands
of virtual robots (Bredeche, 2014). Beyond the obvious limitations
in terms of reachable solutions (e.g., complex social organization,
ability to adapt quickly to new environments, learning to identify
no-go zones), one major open issue is bridging the gap between
practice and theory, which is nearly non-existent in the field as
it stands. This becomes particularly obvious in comparisons to
more formal approaches such as optimal or approximate algo-
rithms for solving DEC-POMDP problems, which have yet to scale
up beyond very few robots, even with approximate methods [e.g.,
Amato et al. (2015)], but which benefit from a well-established
theoretical toolbox [see Goldman and Zilberstein (2004) for a
review].

5.6. ENVIRONMENT-DRIVEN EVOLUTIONARY ROBOTICS
In nature, an individual’s success is defined a posteriori by its abil-
ity to generate offspring. From the evolutionary perspective, one
has to consider complex interactions with the environment and
other agents, which often imply the need to face a challenging
tradeoff between the pressure toward reproduction and the pres-
sure toward survival. Environment-driven evolutionary robotics
deals with similar concerns, and considers multiple robots in
open environments, where communication between agents gen-
erally happens in a peer-to-peer fashion, and where reproductive
success depends on encounters between individuals rather than
being artificially decided on the basis of a fitness value that is
computed prior to reproduction. A particular individual’s success

at survival and reproduction can thus only be assessed using
a population-level measure, the number of offspring that the
individual generates.

Focusing on the environment as a source of selection pres-
sures can enable the emergence of original behavioral strategies
that may have been out of the reach of goal-directed evolution.
First, it is unlikely to be possible to formulate a fitness function
in advance that adequately captures the description of behaviors
relevant for survival and reproduction. Second, objective-driven
selection pressure sometimes acts in a very different direction than
environmental selection pressure. For example, a possible solu-
tion for maximizing coverage in a patrolling task is to keep agents
away from one another, which is quite undesirable in reproduc-
tive terms, and may end up being counterproductive if behavioral
targets include both survival and task efficiency. To some extent,
environment-driven evolution can be considered as an extreme
case of avoiding the pitfalls of performance-oriented fitness as
discussed in Section 4.2.

While environment-driven evolution has been studied for
almost 25 years in the field of artificial life (Ray, 1991), its advent in
the field of evolutionary robotics is very recent (Bianco and Nolfi,
2004; Bredeche and Montanier, 2010), especially in real robots
(Bredeche et al., 2012). Major challenges lie ahead: (1) from the
perspective of basic research, including (of course) evolutionary
biology, the dynamics of environment-driven evolution in popu-
lations of individuals, let alone robots, is yet to be fully understood;
(2) from the perspective of applied research, addressing complex
tasks in challenging environment could benefit from combining
environment-driven and objective-driven selection, as hinted by
preliminary researches in this direction (Haasdijk et al., 2014).

5.7. OPEN-ENDED EVOLUTION
Natural evolution is an open-ended process, constantly capable of
morphological and/or behavioral innovation. But while this open-
endedness can be readily observed in nature, understanding what
general principles are involved (Wiser et al., 2013) and how to
endow an artificial system with such a property (Ray, 1991; Bedau
et al., 2000; Soros and Stanley, 2014) remain a major challenge.
Some aspects of open-ended evolution have been tackled from
the perspective of evolutionary robotics, from increasing diversity
(see Section 4.2) and complexity (see Section 4.5) to continuous
adaptation in an open environment (see Section 5.6), but a truly
open-ended evolutionary robotics is yet to be achieved.

Why, in fact, should we aim toward an open-ended evolutionary
robotics? This question can actually be addressed from several dif-
ferent viewpoints. From the biologist’s viewpoint, open-endedness
could allow for more accurate modeling of natural evolution,
where current algorithms oversimplify, and possibly miss, critical
features. From the engineer’s viewpoint, on the other hand, open-
endedness could ensure that the evolutionary optimization process
will never stop, allowing it to bypass local optima and continue
generating new – and hopefully more efficient – solutions.

6. WHAT IS TO BE EXPECTED?
In this section, we give an overview of the expected outcomes in the
future of evolutionary robotics for the scientific and engineering
community.
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6.1. NEW INSIGHTS INTO OPEN QUESTIONS
6.1.1. How do the body and the mind influence each other?
The body and the mind have a strong coupling. A deficient body
will require a stronger mind to compensate and vice versa. Liv-
ing creatures have a balanced complexity between the two and
such an equilibrium between the two could greatly simplify future
robots (Pfeifer and Bongard, 2007). Evolutionary Algorithms are
models of natural selection that are robust and can thus cope
with changes in the morphology (Bongard et al., 2006; Koos et al.,
2013a). The versatility of these algorithms and their ability to gen-
erate structures also allows them to generate both controllers and
morphologies (Sims, 1994; Lipson and Pollack, 2000; Komosin-
ski, 2003; de Margerie et al., 2007). Computational models relying
on Evolutionary Algorithms can thus be built to provide insights
into how the body and the mind influence each other. With
such models, it has been shown that progressively increasing the
complexity of the morphology has an impact on the robot con-
troller adaptation process and on the complexity of the tasks it is
able to fulfill (Bongard, 2010, 2011). Modifications of the envi-
ronment were also shown to significantly influence this process.
Likewise morphological and environmental adaptations revealed
to be dependent, and thus either to coalesce to make the process
even more efficient, or conflict and dampen efficiency (Bongard,
2011).

6.1.2. A path toward the emergence of intelligence
As stated by Fogel et al. (1966),“Intelligent behavior is a composite
ability to predict one’s environment coupled with a translation of
each prediction into a suitable response in light of some objective.”
Designing systems with this ability was the initial motivation of
genetic algorithms (Holland, 1962a) and evolutionary program-
ing (Fogel et al., 1966). A theory of adaptation through generation
procedures and selection was thus developed (Holland, 1962b),
and a “cognitive system” relying on classifier systems and a genetic
algorithm with the ability to adapt to its environment was pro-
posed (Holland and Reitman, 1977). Designing intelligence thus
has a long history within the evolutionary computation commu-
nity. It turns out that two different paths can actually be taken to
reach this goal.

Darwin (1859) proposed natural selection as the main process
shaping all living creatures. Within this theoretical framework, it
is thus also responsible for the development and enhancement of
the organ most involved in intelligence: the brain. Likewise, the
optimization and creative search abilities of evolutionary algo-
rithms can design robot “brains” to make them behave in a clever
way. Much work in evolutionary robotics has been motivated by
this analogy: the robot brain is generated after a long evolution-
ary search process, after which it is fixed and used to control the
robot. Evolutionary algorithms can also design robot brains that
include some plasticity so that, beyond its intrinsic robustness, the
system maintains some adaptive properties (Floreano et al., 2008;
Risi et al., 2010; Tonelli and Mouret, 2013).

But beyond this possibility of definitively setting the form of the
organ responsible for intelligence once and for the robot’s entire
“lifespan,”the evolutionary process could be used in an online fash-
ion and run during the robot’s lifespan to make it more efficient
with time and keep it adapted. In this context, evolution is at work

over the course of a single individual lifetime, rather than through
generational time. The population of solutions handled by the
algorithm is located within the brain of a single individual. Bellas
and Duro (2010) thus proposed a cognitive architecture relying
on evolutionary processes for life-long learning. This online use
of generation and selection algorithms to adapt the behavior of a
system to its environment has also inspired neuroscientists, who
have proposed models in which such mechanisms are involved to
explain some of the most salient adaptive properties of our brains
(Changeux et al., 1973; Edelman, 1987; Fernando et al., 2012).

6.1.3. Evolution of social behaviors
In nature, many species display different kinds of social behav-
iors, from simple coordination strategies to the many flavors of
cooperation. The evolution of social behaviors raises the question
of the necessary conditions as well as that of interaction with the
evolution of other traits, which may or may not be required for
cooperation, such as the ability to learn, to explicitly communi-
cate, or even to recognize one’s own kin. Evolutionary robotics
may contribute in two different ways: by helping understand the
why and how of social behaviors, and by producing new designs
for robots capable of complex collective patterns.

From the perspective of evolutionary biology, evolutionary
robotics can be used to study the particular mechanisms required
for cooperation to evolve, and some work has already begun to
explore in this direction [e.g., Waibel et al. (2011) on the evolution
of altruistic cooperation]. For example, it is well known that coop-
eration can evolve, at least theoretically, whenever mutual benefits
are expected, for example, when a large prey animal can only be
caught when several individuals cooperate (Skyrms, 2003). How-
ever, it is not clear how the necessary coordination behavior (i.e.,
synchronizing moves among individuals) may, or may not, evolve
depending on the particular environment (e.g., prey density, sen-
sorimotor capabilities, etc.). As stated in Section 2.2, evolutionary
robotics can help to model such mechanisms, further extending
the understanding of this problem, which has previously been
tackled with more abstract methods (e.g., evolutionary game the-
ory), by adding a unique feature: modeling and simulating the
evolved behaviors of individuals, emphasizing on the phenotypic
traits rather than just the genotypic traits.

From an engineering perspective, the evolution of social behav-
iors opens up the prospect of a whole new kind of design in
evolutionary swarm and collective robotics. Contributions so far
have been focused on proofs-of-concept, concentrating either on
the evolution of self-organized behaviors (Trianni et al., 2008) or
on cooperation for pushing boxes from one location to another
(Waibel et al., 2009). The evolution of teams capable of com-
plex interactions and division of labor remains a task for future
work in evolutionary robotics. By establishing a virtuous circle
between biology and engineering, it can be expected that a better
understanding of the underlying evolutionary dynamics can help
to design systems that target optimality rather than adaptability.
For example, it is well known in evolutionary biology that kin
selection naturally favors the evolution of altruistic cooperation
(Hamilton, 1964), and this can be used to tune how kin should
be favored, or not, during an artificial selection process, to bal-
ance between optimality at the level of the robot (best individual
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performance) and (part of) the population (highest global welfare
of related individuals) (Montanier and Bredeche, 2011).

6.1.4. Existence proofs
There is no simple relationship between the properties of an ani-
mal or a robot (morphology and brain or control system) and the
behavior it exhibits. A particular behavior may result from causes
that are difficult to identify and, symmetrically, there may be many
simple ways to achieve a particular behavior that are particularly
hard to find. A well-known example is in Braitenberg (1984),where
vehicles exhibit complex behaviors without a complex decision
process or any kind of cognitive architecture. Likewise, a memory-
less architecture has also been shown to exhibit a behavior requir-
ing a memory thanks to careful exploitation of the environment
(Ziemke and Thieme, 2002). The body–brain–environment loop
is complex and frequently misleads our human intuition, biased by
our anthropomorphic way of solving such problems. Evolutionary
robotics can thus be used as an unbiased search process, system-
atically exploring solutions that a human would neglect or never
think of. Counterintuitive solutions can emerge from this process
and offer new insights into the requirements for the corresponding
behavior.

6.2. NEW TOOLS AND METHODS FOR ROBOT DESIGN
As mentioned previously, evolutionary robotics can be perceived
as a testing ground or experimental toolbox for studying various
issues arising on the road to intelligent and autonomous machines.
In this role, the evolutionary approach offers a design methodology
that differs from conventional robotics. In general, evolutionary
algorithms (EA) are praised for their ability to solve hard prob-
lems that are not well understood, such as problems that do not
have neat analytical models, problems involving many parameters
with non-linear interactions, and problems that suffer from noise
and many local optima. Furthermore, EAs can be applied without
much adjustment to the problem at hand. This makes them a good
tool for investigating the design space of robotic applications. A
punchy way of positioning EAs is: “An evolutionary algorithm is
the second best solver for any problem”1. The underlying obser-
vation is that, for any given problem, a superior problem-specific
solver can be developed that would beat the evolutionary algo-
rithm. However, this comes at a high price in time and effort for
development, and the price for developing a superior solver for a
particular problem can be (and often is) too high. In practice, one
is often satisfied with a reasonably good solution. A perfect solu-
tion is not always required, or is an “expensive” problem solving
algorithm. In such cases, evolution is a very suitable approach in
general.

6.2.1. Design of morpho-functional machines
Traditional design methods rely on problem decomposition. Inde-
pendently building the morphology, the sensory apparatus, the
control, and the decision architecture allows researchers to focus
on one aspect at a time, which is much simpler as separate research
teams can work on each one in parallel. Such an approach has a

1Quoted from Sean Luke, personal oral communication.

strong drawback: it makes discovering and exploiting the synergies
between these parts more difficult. Morpho-functional machines
are machines that exploit such synergies (Hara and Pfeifer, 2003).
In these machines, there is no clear separation between the mor-
phology and the decision device. The morphology performs“com-
putation,” which influences the behavior of a robot, but without a
computer. Typical examples are passive walker robots, which use
the dynamics of their legs to walk bipedally with little effort and
computational power (Collins et al., 2005). Evolutionary robotics
relies on evaluations of the complete robot in interaction with its
environment. It implies that all of the robot’s parts are taken into
account simultaneously. These methods thus naturally take into
account the synergies between those parts and the robot’s envi-
ronment, and the generated solutions rely on them (Doncieux
and Meyer, 2005).

6.2.2. New representations for robot controllers and morphology
Evolutionary robotics requires defining a representation of the
solutions to be explored. This representation should be compati-
ble with random generation, mutation, and crossover, and should
include solutions of interest. Finding appropriate representations
is actually one of the most critical questions in evolutionary algo-
rithms in general (Rothlauf, 2006). A great deal of effort has been
dedicated in ER to the synthesis of neural networks, i.e., ori-
ented graphs (Yao, 1999; Floreano et al., 2008). Many different
encodings have been proposed to generate networks exhibiting
modularity (Gruau, 1995; Doncieux and Meyer, 2004), regularity
(Stanley et al., 2009), and even hierarchy (Mouret and Doncieux,
2008). For the evolution of robot morphologies, representations
including both the robot structure and the control part have been
proposed (Sims, 1994; Lipson and Pollack, 2000; Auerbach and
Bongard, 2011).

A number of different kinds of representations have been con-
sidered (Floreano et al., 2008). Direct representations – also called
direct encodings – manipulate the structure to be designed with
no intermediate representation. In the generation of a neural net-
work, mutations typically add or remove neurons and connections
or change their parameters; crossovers are seldom used because of
the permutation problem (Radcliffe, 1993), but when they are, they
rely on techniques to match neural network parts before exchang-
ing them (Stanley and Miikkulainen, 2002). Indirect representa-
tions – also called developmental representations or indirect or
generative encodings – rely on a mapping between the genotype
and the phenotype (Kowaliw et al., 2014). The main goal with such
approaches is to define compact representations of complex sys-
tems with search operators that can typically exploit modularity
(Gruau, 1995; Doncieux and Meyer, 2004; Mouret and Doncieux,
2008) and repetition with variation (Stanley et al., 2009).

How to define a compact representation that can cover each part
of a robot, from its morphology, including its sensors and motors
with their configuration, to its controller, is an open question in
ER. The field can thus be expected to contribute to answering this
question in the future. It should also be noticed that this question
may not be independent of the selective pressures at play (Mouret
and Doncieux, 2012; Clune et al., 2013; Doncieux and Mouret,
2014) and thus that representation and selective pressures should
be considered simultaneously.
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6.2.3. Drivers for innovative design
What use is a wing or a leg before it is efficient enough to make
the corresponding robot fly or walk? Can locomotion efficiency be
the main and only driver for the design of both robot morphology
and control? Biologists have looked deeply into these questions for
living creatures, and proposed the concept of “exaptation” (Gould
andVrba,1982). In exaptation, the purpose initially served by com-
plex organs is different than one that they are observed to fulfill
later. The initial functionality enables the changes that ultimately
culminate in the development of the different and potentially more
complex function. The wings of birds may thus have helped them
escape from predators by climbing steep inclines (Dial, 2003), and
tetrapods may have developed their legs to walk on the sea floor
before conquering the land (Shubin, 2008). This suggests that the
development of complex organisms is probably not driven by a
single and monolithic pressure relying solely on global perfor-
mance. Novelty search is an example of an approach, which shows
that interesting results can be generated even if the goal description
does not drive the search process at all (Lehman and Stanley, 2011).
Driving the search process and describing the expected solutions
are then two different roles, and selective pressures can be defined
for both of them, whether they are task-specific or task-agnostic
(Doncieux and Mouret, 2014). This trend is recent in ER, and it
can be expected to lead to new insights on the question of what
drivers to use for innovative design.

6.3. NEW EVOLUTIONARY MECHANISMS
As of today, the majority of ER applications employ a tradi-
tional black-box evolutionary algorithm, where the targeted robot
features are evolved offline, before the operational period, and
then implemented and not changed after deployment. In these
cases, only the fitness evaluations are application specific, while
the rest of the evolutionary algorithm is standard (see Figure 1).
However, the application may require online evolution in groups
of autonomous robots (Watson et al., 2002; Eiben et al., 2010)
(Figure 4). This is the case if optimizing and fixing robot fea-
tures prior to deployment is not possible, because the operational

circumstances are not fully known in advance and/or are changing
over time. In these cases, the traditional EA approach will not work,
and new types of selection–reproduction schemes are necessary.

Such applications have a number of noteworthy properties with
regard to the evolutionary algorithm. First, the targeted objective
of evolution is twofold: usefulness and viability (Haasdijk et al.,
2014). Usefulness means the optimization of some user-defined
properties or skills, which are typically quantifiable. Viability
requires adaptation to the given environment, where the criteria
are not crisp and evaluation is based not on a quantifiable assess-
ment but on the ability to survive and reproduce. The ideas of
viability and survivability have drawn recent attention in the field
of embodied evolution (Bredeche and Montanier, 2010), as well
as in the larger field of evolutionary optimization (Maesani et al.,
2014): considering more than just the best individuals enables the
exploration of a larger set of candidate solutions, some of which
may turn out to be more efficient in the end. Acting in this role,
artificial evolution is indeed quite similar to the natural variant
(Mayr, 2001).

Another special property is that the robots’ relationship to the
evolutionary algorithm can be active. That is, rather than hav-
ing its own controller being passively selected and chosen for
reproduction by a centralized evolution manager, robots can select
their mating partners, perform recombination on the two parent
controllers, evaluate the child controllers, and select the best one
for further usage. Obviously, different robots can apply different
reproduction operators and/or different selection preferences, thus
forming a new type of heterogeneous evolutionary system.

The third interesting property is that robots implicitly influ-
ence the evolutionary dynamics by structuring the population.
Spatially structured EAs are, of course, nothing new (Tomassini,
2005). However, in evolving robot swarms this structure inherently
changes over time and emerges from the bottom-up, without being
explicitly controllable by the EA designer. For instance, maximum
sensor and communication ranges imply (dynamically changing)
neighborhoods that affect evolutionarily relevant interactions, e.g.,
mate selection and recombination. Obviously, sensor ranges and

FIGURE 4 | Online (embodied) evolution in which there is no centralized evolution manager. Mating designates the interaction between nearby robots,
when genotypic information is exchanged. Evaluation, selection, and variation operations are then performed onboard each single robot, in a distributed manner.
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the like are robot attributes that can be controlled by the designer
or experimenter, but their evolutionary effects are complex, and to
date there is no codified know-how about tweaking evolutionary
algorithms through such parameters.

7. CONCLUSION
Evolutionary robotics as a research field has matured over the
years. It has contributed to both engineering and biology, offering
insights and opening new perspectives on holistic system design
and related questions.

From an engineering point of view, it is a unique design process
for systems endowed with embodied intelligence. It allows design-
ers to work on the morphology, sensory apparatus, and controller
at the same time, and takes into account each of these parts as
they are – i.e., with their real features, including noise and non-
linearities, and not as they should be. ER therefore provides ideal
tools to study the interdependencies between these different parts
in the design process, and can easily be applied to unconventional
robots (swarm, soft robots, modular robots, etc.). Likewise, it raises
the question of which drivers should be used in such a holistic
approach, and challenges the prevalence of goal-oriented fitness
functions.

From a biological point of view, ER provides distinctive and
powerful modeling tools for experimental work on evolution. Its
agent-centered nature, associated to its behavior-based selection
process, allows researchers to model phenomena that are diffi-
cult to study using a simplified and global statistics-based process.
It provides the tools of choice to study the evolution of social
behaviors, including cooperation and communication.

ER is an experimental field that relies on many evaluations
to produce any result. Furthermore, its stochasticity implies that
any experiment needs to be repeated several times before draw-
ing any conclusion. This feature has limited the questions that
have been considered in practice thus far – but this limitation
should be carefully reconsidered. Evolutionary algorithms are easy
to parallelize, so the length of an experiment can be drastically
reduced if it is run in parallel on several processing units. The
availability of powerful clusters of multi-core processors, together
with the development of software frameworks that can exploit
them (Mouret and Doncieux, 2010), opens new perspectives and
allows researchers to consider questions that were out of reach
for ER just a few years ago due to these practical limitations. This
technological trend is expected to have a strong impact on ER,
and lead to new results and insights into open questions in the
future.
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