
HAL Id: hal-01131223
https://hal.science/hal-01131223v1

Submitted on 13 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collecting interaction traces in distributed semantic
wikis

Anh-Hoang Le, Marie Lefevre, Amélie Cordier, Hala Skaf-Molli

To cite this version:
Anh-Hoang Le, Marie Lefevre, Amélie Cordier, Hala Skaf-Molli. Collecting interaction traces in
distributed semantic wikis. WIMS ’13 Proceedings of the 3rd International Conference on Web Intel-
ligence, Mining and Semantics, Jun 2013, Madrid, Spain. �10.1145/2479787.2479793�. �hal-01131223�

https://hal.science/hal-01131223v1
https://hal.archives-ouvertes.fr


Collecting Interaction Traces in Distributed Semantic Wikis

Anh-Hoang Le, Marie Lefevre, and
Amélie Cordier

University of Lyon, CNRS
LIRIS, UMR5205, University Lyon 1, France

firstname.lastname@liris.cnrs.fr

Hala Skaf-Molli
LINA– Nantes University, France
hala.skaf@univ-nantes.fr

ABSTRACT
In the Kolflow project, our general objective is to develop
an assistance engine suitable for distributed applications. In
order to provide contextualized and relevant assistance, we
feed the assistance engine with interaction traces. Inter-
action traces record events occurring while users are inter-
acting with applications. These traces become containers
of valuable knowledge to providing assistance. Collecting
interaction traces is a challenging issue that has been thor-
oughly studied in the context of local applications. In con-
trast, few approaches focus on collecting interaction traces
in distributed applications. Yet, when applications are dis-
tributed, collecting interaction traces is even more challeng-
ing because new difficulties arise, such as data synchroniza-
tion and multi-synchronous collaboration. In this paper, we
propose a model and a tool for collecting traces in a dis-
tributed environment. The originality of the model is that
it is tailored to fit distributed applications. We implemented
the model in Collectra, a tool to collect interaction traces in
distributed web applications. Collectra collects interaction
traces and stores them in a dedicated trace-base manage-
ment system. We report on the experiments we have con-
ducted in order to evaluate performances of Collectra (both
response time and memory space). Results of the exper-
iments show that Collectra performs well and that it can
be used to support the assistance tasks carried out by the
assistance engine.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; H.5.3 [Information In-
terfaces and Presentation]: Group and Organization In-
terfaces—Collaborative computing, theory and models

General Terms
Design, Theory

Keywords

Distributed semantic wikis, interaction traces, model of trace,
trace collection process, trace-based reasoning, user assis-
tance.

1. INTRODUCTION
The success of Wikipedia is just one of many examples of
the fact that collaborative editing of Web resources has be-
come common practice. Wikis are one of the main tools
enabling collaborative editing of Web resources. Seman-
tic wikis [11, 4] introduce semantic annotations within wiki
pages thus enabling knowledge construction through social
interaction. Semantic wikis contribute to the development
of the so-called “social semantic spaces”, spaces enabling hu-
mans and machines to collaborate for producing knowledge
usable by humans and by machines. Distributed semantic
wikis [14, 18, 17] enable offline work and multi-synchronous
editing [9]. They bring an additional dimension to collabora-
tion tasks over the Web. Indeed, distributed semantic wikis
draw inspiration from popular distributed version control
systems (DVCS) [1] such as Git1 and Mercurial.2 Collabo-
ration mechanisms in distributed semantic wikis are similar
to mechanisms we can observe in DVCS though they involve
more complex tasks such as knowledge management tasks.

The goal of the Kolflow project3 is to design a social seman-
tic space enabling humans and machines to collaborate as
easily as possible in order to build knowledge understand-
able by humans and usable by reasoning engines. In this
project, Distributed Semantic MediaWiki4 (DSMW) is used
to provide a community of user with a distributed social
semantic space enabling them to build a shared knowledge
base. This environment is designed to provide users with nu-
merous features similar to those we can find in DVCS: local
copies, main repository, push and pull operations between
users, conflict management tools, versioning, etc.

The Kolflow environment is complex and has numerous fea-
tures. It is quite difficult for users to master all the features
at once. Therefore, the environment includes an assistance
engine responsible for providing a contextual help to users
(automating complex actions, creating communication chan-
nels in the network of users, help during conflict resolution,
etc.).

1http://git-scm.com
2http://mercurial.selenic.com
3http://kolflow.univ-nantes.fr
4http://www.mediawiki.org/wiki/Extension:DSMW



This assistance engine is based on the paradigm of Trace
Based Reasoning [7]. The main input of this assistance en-
gine are interaction traces. Interaction traces are records of
the events occurring when a user interacts with a system.
These traces enable the assistance engine to gather infor-
mation about the context in which the user is performing a
task, and therefore to provide him with contextualized help.
Indeed, as shown in previous work, interaction traces are a
rich source of knowledge for building personalized and con-
textualized assistance in distributed semantic wikis [5]. The
challenge of efficiently collecting relevant interaction traces
is therefore of major importance.

In this paper, we tackle the problem of collecting interaction
traces in a distributed environment such as DSMW. We in-
troduce a new approach to collecting interaction traces in
distributed wikis and we propose an original trace model
taking into account collective and collaborative dimensions
of traces. We present Collectra, a tool we have developed to
collect interaction traces according to this model. Through
experiments, we show how the performances of Collectra
comply with the requirements of the assistance engine devel-
oped in the Kolflow project. We also show that the designed
model allows us to fully collect elements needed for build-
ing assistance. Though the scope of this paper is to present
Collectra, more broadly, we are interested in studying how
the use of traces supports a dynamic and collaborative pro-
cess of knowledge construction. We discuss the applicability
of our approach to other areas at the end of this paper. It
must be noted that Collectra is available as an open source
plugin for DSMW.5

The paper is organized as follows. Section 2 describes the
context of the Kolflow project and the motivation for our ap-
proach. Section 3 introduces background knowledge about
traces and reviews related work. Section 4 describes the Col-
lectra approach and the distributed trace collection method-
ology. Section 5 presents the implementation of Collec-
tra. Section 6 reports on the experimentation performed
on Collectra. Experimentation show that Collectra is effi-
cient enough to support the assistance process. Results and
future work are discussed in section 7.

2. BACKGROUND AND MOTIVATIONS
In the Kolflow project, DSMW is used as a distributed tool
for collaboratively editing knowledge bases. DSMW is a tool
difficult to master. This is the reason why we have decided to
equip the Kolflow environment with an assistance engine. To
better understand the requirements of this assistance engine,
in this section, we present situations where assistance may
be required. We give examples of some difficult tasks users
have to address. We pinpoint difficulties arising from these
tasks and we show how an assistance engine could be helpful.

Semantic MediaWiki (SMW) is the most popular semantic
wiki developed by the semantic web community. It allows
mass collaboration for creating and maintaining ontologies.
In SMW, users add semantic annotations to wiki page texts
to represent relations and properties available on the page.
Users may choose their own vocabulary to type links. For
instance, a link between the wiki pages “France” and “Paris”

5http://sourceforge.net/projects/silexcollectra/

may be annotated by a user as “capital”.

Annotations express semantic relationships between wikis
pages. Semantic annotations are usually written in a formal
syntax so they are processed automatically by machines and
they are exploited by semantic queries.

Although successful, semantic wikis still have limitations
such as they do not support a multi-synchronous work mode [14,
18, 17]. Consequently, users cannot work in isolation or
disconnected. Distributed semantic wiki [14, 18, 17] has
been designed to overcome this limitation. DSMW [14] is
a distributed extension of Semantic MediaWiki that sup-
ports multi-synchronous collaborations. Multi-synchronous
systems are different from synchronous and asynchronous
ones by managing multiple streams of activities instead of
giving the illusion of one stream. In standard collabora-
tive applications, when a modification is made by a user,
the modification is immediately visible by others. However,
in multi-synchronous systems, modifications made by users
are not immediately visible by others. In that case, modifi-
cations become visible only when users validate them (e.g.
commit changes).

DSMW allows users to build their own cooperation network.
The construction of the collaborative community is declar-
ative, in the sense that users declare explicitly with whom
they would like to cooperate. Users may have a DSMW
server installed locally if they like. They may create and
edit their own semantic wiki pages as in a normal semantic
wiki system. Later, they may decide to share these semantic
wiki pages, and choose with whom to share.

The replication of data and the communication between
servers is made through channels (feeds). The channel usage
is restricted to few servers with simple security mechanisms
that require no login or complex access control. The key
point is that channels are read-only and can be hosted by
users themselves. When a semantic wiki page is updated
on a DSMW server, the server generates a corresponding
operation.

According to DSMW replication model, an operation is pro-
cessed in four steps: (1) It is executed immediately against
the current page, (2) it is published on the corresponding
channels, (3) it is pulled by the authorized servers, and (4) it
is integrated to their local replica of the page. If needed, the
integration process merges this modification with concur-
rent ones, either generated locally or received from remote
servers.

In practical, to exchange modifications, DSMW users have
to set up communication channels using push-pull opera-
tions. They start by creating pushFeeds to send modifi-
cations performed on a set of semantic wiki pages on one
server and pullFeeds to fetch these modifications on a re-
mote server. Once the communication channels are created,
Push and Pull operations are available to actually push
and pull each modification.

Figure 1 gives an example of a collaboration network built
upon a network of DSMW. User3 is working on site3 and
decides to share content with User4 who works on site4.



Figure 1: Collaboration network in DSMW.

Figure 2: Screenshot of DSMW administration interface.

User3 creates a pushFeed for User4 and selects exactly the
pages that must be shared (using a set of semantic queries).
User4 creates a pullFeed corresponding to the pushFeed
of User3. Now, User4 can fetch modifications published by
User3. In the same way, other users create their pushFeeds
and pullFeeds to exchange modifications.

Even for experimented users, setting up communication chan-
nels and manipulating the environment can be tedious. The
administration interface of DSMW is displayed on figure 2.
This administration interface is quite difficult to use, espe-
cially for novice users. As we can see on that interface,
administration tools for creating feeds are not user-friendly,
and are difficult to understand for novice users. This is the
first reason why we need to provide assistance to DSMW
users. We want to help them using the tool. For example,
we can automate complex actions, such as the creation of
communication channels.

The second motivation to develop user assistance is to sup-
port collaborative activities in a community of users. In-
deed, problems can arise very quickly in distributed collab-
orative activities. To illustrate this point, let us consider the
following scenario. A community of cooks is using DSMW to
share cooking knowledge. The DSMW consists of recipes,
food ontologies and general cooking knowledge. A master
version of DSMW, named DSMW-Cook, is available on the
web. A community member, Bob, owns a DSMW instance
on which he pulled all the resources available in DSMW-
Cook. He has added his Melon Pie recipe. He has also
enriched the ontology with new ingredients (melon, etc.).
Alice also has an instance of DSMW based on DSMW-
Cook. In her instance, Alice has added her own recipe of
Melon Pie, and modified an existing recipe of Chocolate
Pie. She also has modified the ontology, but, unfortunately,
her modifications differ slightly from Bob’s. Bob has put
Melon in the category Tropical Fruit, while Alice has put
them in the more general category Fruit. When Bob and
Alice try to share the content of their wikis, conflicts arise
(different recipes with identical names, different ontologies,
etc.). Therefore, they have to face a new task: resolving
conflicts. Conflict resolution is a complex task involving
several sub-steps such as analysis of the provenance of the
conflict, search for additional knowledge, negotiation with
other users, etc. It is usually difficult for end-users to deal
with these problems. An assistance system could help them
negotiate the knowledge contained in their wikis and present
them the steps to resolve conflicts, to show the change his-
tory of the resources involved in the conflict, etc.

The assistance engine developed in Kolflow makes use of in-
teraction traces to provide contextualized assistance. There-
fore we need to collect interaction traces. The collection pro-
cess has to match some specific requirements to make sure
that the assistance will be efficient. These requirements are
as follows. Firstly, collected traces have to match a model
depending on the task at hand. For the Kolflow project, this
model is described hereafter. Secondly, the collection pro-
cess has to be fast enough not to slow down users’ activities.
Thirdly, collected traces have to be stored using a decent
memory space, thus ensuring that tracing all the users’ ac-
tivities will not overload servers. Lastly, the retrieval time
of collected traces must be fast enough to ensure that as-
sistance can be provided real-time. Evaluations presented
at the end of this paper assess the efficiency of the collect-
ing process implemented in Collectra with regard to these
requirements.

3. RELATED WORK
In a previous work, we made a review of various assistance
strategies and we demonstrated why trace-based assistance
is relevant for the Kolflow project [5]. The goal of the work
described in this paper is to collect traces of interaction in
distributed environments in order to provide the assistance
engine with traces. In this section, we introduce briefly the
trace theory, in order to better explain requirements that the
trace collection process must fullfil. Then, we review related
work on trace collection. We compare these methods against
the criteria that the collection process must satisfy in order
to make the assistance possible.

3.1 Trace Theory



In this paragraph, we briefly recall the trace theory pre-
sented in [16]. We also provide some basic definitions about
traces.

A trace is defined as a set of observed elements, called ob-
sels. Obsels are timestamped within traces. A trace model
defines the structure and the types of obsels that are con-
tained in the trace, as well as the relationship between these
obsels. A modeled trace (M-Trace) is a trace together with
its trace model. A Trace-Base Management System (TBMS)
is a knowledge based system enabling storage and manage-
ment of traces. All the traces are stored in a Trace-Base
Management System.

There are two types of M-Traces in a TBMS: primary trace
and transformed trace. A primary trace is collected from
external sources and stored as an M-Trace. M-Traces cre-
ated after performing transformation operations on existing
traces are called transformed traces. A TBMS has three
main components:

• Collecting system: collects the observed data from
different input sources (i.e. log files, video records,
interface events, server messages, etc.) and stores them
into traces as obsels.

• Transformation system: performs several transfor-
mations such as filtering, rewriting, merging obsels in
one or more M-Traces. Transformations can be applied
on any existing M-Trace, called source trace. The re-
sult of a transformation is a new trace, called trans-
formed trace.

• Querying system: executes queries on traces. Queries
enable us to compute various results from existing traces
(number of obsels, frequency of an obsel type, fre-
quency of a pattern, etc.). Queries also enable us
to produce rich output resources such as documents,
other traces, episodes (sub-parts of existing traces),
etc.

Each resource in a TBMS is identified by a unique URI
(Uniform Resource Identifier6). Through these URIs, users
and other systems (e.g. trace-based application, collecting
system) can manipulate and process TBMS resources.

A complete formalization and semantics of trace models,
traces, queries, and transformations can be found in [16]. In
the following, we focus on the collection process.

3.2 Tracking interaction on web applications:
a review

In the context of the Kolflow project, we need to collect
traces of user interactions in a distributed environment (namely,
DSMW). As a consequence, we must not only collect traces
of multiple users, but also traces of exchanges between servers.
Based on the requirements of the assistance engine, we have
defined a set of criteria that the collection process has to
satisfy. These criteria are presented in columns on table 1.

6http://en.wikipedia.org/wiki/Uniform_resource_
identifier

The collection module must collect all the users actions (key
and mouse actions). It must also track requests on servers
and enable sharing of elements between servers. The module
also must enable collection of traces of multi-users. Lastly,
we seek for a module providing formalized traces so that
they can be easily reused in a pre-existing system. There-
after, we study various approaches to collecting traces from
user actions in web environments with regards to these cri-
teria. We summarize our observations in table 1 and we
provide a synthesis illustrating the main problems related
to our environment.

The collection of interactions between users and a website
can be performed manually by human observers, semi-auto-
matically by external equipments (i.e. video and audio cap-
tures) or automatically through tracing system implemented
within the application or the tool. We briefly review these
different approaches and we give several examples of tracing
systems.

Manual collection is performed by human observers who
observe users live or from a distance with the help of infor-
mation tools (i.e. text editor, text notes, etc.). The result
of the collection process usually takes the form of a set of
notes in natural language.

Collection with external equipments requires the use of
cameras or audio recording devices. This approach produces
audiovisual traces.

These two approaches give detailed information about end-
users, but are not well formalized. Consequently, the ex-
ploitation of collected information often requires complex
processing systems like human operations (i.e. text process-
ing, image processing). Therefore, these two approaches are
not suitable for building an online assistant based on inter-
active traces.

Tracing systems implemented within existing applications
allow obtaining formalized traces. These traces are then
processable by reasoning engines. In the context of web-
sites, tracing systems can be located on client side (i.e.
browser plugin) or scripts integrated in the traced applica-
tion on server side. Tracing on client side produces very fine-
grained observations but has important limitations (porta-
bility, speed, compatibility). Tracing on server side does
not produce such detailed observations, but is usually more
generic and simpler to implement. In the following, we give
several examples of these automatic tracing systems.

Web browser: a Web browser is in itself a tracing system.
Information about user activity can be recorded into the logs
of Web browsers. This information generally focuses on the
links that users have visited [13].

Web browser extension: may be implemented to obtain
more detailed information than in the logs of Web browsers.
These extensions are often known as key-loggers. They are
capable of capturing key events and mouse events as well
as retrieving information related to user actions. These ex-
tensions are used for several purposes such as facilitating
the repetitive tasks (i.e. input assistance in search engine).
However, these extensions have to be installed before being



Trace sources K M Rq Sh Mu F Example

Manual collection
√ √ √

∅ ∅ ∅ Heraud et al., 2005 [10]
External equipment

√ √ √
∅ ∅ ∅ Avouris et al., 2005 [2]

Web browser ∅ ∅
√

∅ ∅
√

Oh et al., 2011 [13]
Web browser extension

√ √ √
∅ ∅

√
Bell et al., 2012 [3]

Local Web proxy ∅ ∅
√

∅ ∅
√

Mathieu et al., 2010 [8]
Web server ∅ ∅

√
∅

√ √
Schechter et al., 1998 [15]

Web server extension
√ √ √

∅
√ √

May et al., 2007 [12]

Table 1: Type of collection process and observable information. (K) Key action, (M) Mouse action,
(Rq) Server request, (Sh) Sharing between servers, (Mu) Multi-users, (F) Formalized trace.

used. This may be considered as a disadvantage because the
sensitive data can be observed and recorded.

Local Web proxy: web activities of users can be recorded
through a specialized tracing system called local Web proxy [8],
running on the local computer of the user. This HTTP log-
ging mechanism allows observing all requests going out of
the user’s computer from local Web agents (not limited to a
particular browser). This approach has benefits in monitor-
ing and analysing various aspects of personal web activities.
However, its traces are not suitable for use by an assistance
system. Because, while technically on the client side, this
method collects the same kind of information as server side
techniques.

Web server: Like Web browsers, Web servers (e.g. Apache)
also have tracing systems, which are capable of generating
log files containing information about user actions. These
log files follow predefined formats(i.e. Common Log For-
mat7). They usually consist of the address of the client, date
and time of request, executed request, status code returned
to client, size of document returned to client. These traces
can be used as inputs of assistants for navigation of Web [19].
However, like browser log files and local Web proxy, the Web
server log files do not contain enough detailed information
about user actions (i.e. actions performed on client side).

Web server extension: collecting traces on both client
side and server side raises problems. However, these prob-
lems can be solved with the aid of server extensions. For
example, [12] proposed an extension which allows tracing
discussion forums. This extension consists of a collector in
JavaScript on client side associated with a collector on server
side. However, the proposed extension is limited to the ob-
servation of a single server and its users.

The analysis of table 1 shows that there are various types of
tracing systems implemented on Web applications. These
tracing systems allow obtaining traces which have various
contents and representations. This analysis also shows that
in order to have detailed information about actions of users
on a website, we should develop extensions on server side,
connected to tools on client side.

In the context of distributed servers (i.e. distributed seman-
tic wikis), the collaboration between servers must be traced
and shared. Existing tracing system seldom enable sharing
of traces between tracing components. Moreover, they are

7http://en.wikipedia.org/wiki/Common_Log_Format

not suited to multi-user traces collection. Thus, we propose
a new tracing system which enables trace collection in a dis-
tributed Web environment. This model, presented in section
4.2.2, is based on a trace theory that we have introduced be-
fore.

4. AN APPROACH FOR COLLECTING DIS-
TRIBUTED TRACES

In this section, we describe our approach for designing a
plug-in for collecting interaction traces in DSMW and for
storing collected traces in a Trace-Base Management Sys-
tem. The main characteristic of our approach is to imple-
ment a trace collecting module on each SMW server in or-
der to observe and record a maximum of users’ actions with
satisfactory performances. A Trace-Base Management Sys-
tem (TBMS) is associated to each SMW. Traces are shared
between the different servers through a specific sharing pro-
tocol. To implement this protocol, we had to enrich the
pre-existing features of the TBMS (see section 3.1). Thus,
in order to design our collection module, we had to work
at two levels: implementation of an independent collection
module and extension of the existing programming interface
of the TBMS.

4.1 Architecture
Figure 3 illustrates our architecture for collecting and shar-
ing traces in DSMW. In this architecture, each Semantic
MediaWiki (SMW) server is used by a group of users and
is connected with a TBMS which stores the collected traces
and shares them with other servers. The collecting module
acts as an interface between DSMW and the TBMS. The
collecting process implemented in DSMW sends messages
to this module. The module parses the messages in order
to build obsels that are stored in a trace managed by the
TBMS.

To get shared traces from other servers, we use an Inter-
TBMS communication (“Sharing traces” on the figure) that
can be established through a special method allowing the
collection of traces from external sources. These external
sources can be other TBMS. This special method is an ex-
tension of standard methods of the TBMS.

The collected traces stored in the TBMS can be reused by
any trace-based application. In our project, we will use these
traces as knowledge sources for our trace-based assistant for
DSMW. With this architecture, we can collect both indi-
vidual and collaborative traces. Collaborative traces are de-
scribed in details in the next section.



Figure 3: Collecting and sharing traces in DSMW.

Figure 4: Trace model of primary traces in DSMW.

In Kolflow, we use kTBS8 (Kernel for Trace-Based Sys-
tems) [6] to store traces. kTBS is a TBMS implementation
in Python. It provides all the required features of a TBMS
(primary trace, transformed trace, trace model, obsel types,
attribute types and relation types of obsel types). Section
5 give details about the implementation of our collection
plug-in and shows how we connect to the kTBS.

4.2 Model of Collaborative Trace
DSMW is a multi-synchronous collaborative editing system
allowing a group of users to perform editing activities on
semantic wiki pages and to synchronize their semantic wiki
pages. Therefore, we are interested in collecting traces of
collaborative activities. We call these traces collaborative
traces.

In order to manipulate collaborative traces, we start by di-
viding user’s activities in DSMW into two main activity
types: individual activity and collaborative activity. An in-
dividual activity defines an activity that is performed by the
user on his server and that does not require awareness of ac-
tivities performed on other servers. A collaborative activity
defines an activity performed by a user on the network and

8http://liris.cnrs.fr/sbt-dev/ktbs/

that requires awareness of other users and other servers.

This distinction allows us to define two types of traces: in-
dividual trace and collaborative trace. At the semantic level,
an “individual trace” is a term used to indicate traces that
reflect individual activities of a semantic wiki user. The term
“collaborative trace” is used for traces reflecting collabora-
tive activities. At the design level, an individual trace is
identified by one user, and is called a private trace. A trace
reflecting a part of the individual activity that is shared with
others is called a shared trace. A fusion of shared traces is
called a group-shared trace. The objective of this organi-
zation is to facilitate the process of building shared traces
from individual traces. Thereafter, we describe the elements
of our model of collaborative traces.

4.2.1 Obsel Classification
Considering the specific context of a collaborative work as it
is in Kolflow, we propose a simple categorization of obsels.
This categorization allows us to model users’ activities in
DSMW. In order to build this categorization, we have listed
the most frequent actions in DSMW. At this stage, we have
not focused on other interactions (such as log on/log off) but
obsels corresponding to these actions can easily be built by
combining basic obsels. A description of the collected obsels



Type of Obsel Description

KeyEvent Key and character code that a user pressed
MouseEvent Element on the interface that a user clicked (but-

ton, link, etc.)
ChangeText Text and changes that a user made
Search Search information collected when a user per-

formed a search
SavePage Inputs and revision numbers of the saved wiki

page and its type of action (“new”, “edit”, “undo”
or “rollback”)

UserPresence Root obsel created when the system creates a
new session for a user. Contains information
about the user and his session

CreatePushFeed Name and URL of PushFeed and its semantic
query designed when a user created a PushFeed

Push Push operations including the published changes
RemovePushFeed Removed PushFeed
CreatePullFeed URLs of the PullFeed and the PushFeed associ-

ated with it
Pull Pull operation including the downloaded changes

and pages related to those changes
RemovePullFeed Removed PullFeed

Table 2: Description of collected obsels.

is given in table 2. Note that each obsel has a timestamp
set by the collection module.

The categorization consists of three meaningful levels: low
level, medium level and high level. At the low level, obsels
reflect a single action (basic unit of interaction) performed
by a user on the system. Usually, obsels at this level reflect
events that occur on the user’s interface, i.e. key events and
mouse events. At the medium level, obsels characterize a set
of single actions which are associated with a subtask. For
example, a text modification (“ChangeText”) can be made
by mouse or/and keyboard and it is often a part of a search
or a page editing. At the high level, the obsels characterize
a set of subtasks which are necessary for the realization of a
general task (i.e. search, edit, access a page).

These three levels constitute a hierarchical model of obsels
(low: interaction, medium: subtask, high: task) in which
any obsel can be represented by obsels in the lower levels
(“a part of” semantic relation). Technically speaking, there
could be many more levels, depending on the complexity
of the obsels. In the context of Kolflow, these three levels
appeared to be the most suitable to describe the objects we
were interested in.

4.2.2 Trace Model
Figure 4 presents the organization of our trace model for
modelling activities in DSMW (obsels and relationships be-
tween obsels). This trace model describes the structure and
types of obsels which are contained in primary trace and
which are collected directly from the target application. In
this trace model, we use the obsels at the different levels in
order to provide different inputs for the TBMS and to eval-
uate the suitability of the model. Results of the experiment
(see section 6.2) show that using obsels at the intermediate
level (change text) instead of obsels at the low level (key
events) in some cases (page editing) can improve the perfor-
mance of collecting trace while still ensuring action replay
feature of obsels at high level (wrt. information loss).

There are two groups of obsels in the trace model: obsels

Figure 5: Transformation model for collaborative traces.

only used for private traces (save page, change text, search,
mouse event, key event) and obsels used for shared traces,
called shared obsels (user presence, create PushFeed, cre-
ate PullFeed, on push, on pull, remove PushFeed, remove
PullFeed). Our trace model is extensible, meaning that it
can be enriched to take into account unforeseen elements.
For example, it can be extended for integrating new obsels
for other entities (pages, patches, etc.) and other activi-
ties (create new account, view log history, etc.). Attribute
types and relation types of obsels also can be modified or
added, depending on the specific needs of trace-based ap-
plications. In the same way, it can be simplified in order
to be better adapted to specific needs and to provide better
performances.

4.2.3 Transformation Model
Transformations enable us to manipulate traces (filtering,
merging, etc.). Here, we use transformations to build col-
laborative traces from individual traces. In the following,
we distinguish three types of traces:

• Private trace: it is the trace of an individual user on a
single wiki.

• Shared trace: for each private trace, a shared trace
is built. Shared traces are shared with other wikis
through the Inter-TBMS sharing protocol.

• Group shared trace: when several shared traces are
merged in a single trace, this single trace is called a
group shared trace. It reflects the collaborative activ-
ity of users in the group.

A first transformation is applied on a private trace, and the
result of this transformation is a new trace that only contains
shared obsels. A second transformation is applied on all
shared traces, and the result of this transformation is a new
trace which contains all shared obsels. Both transformations
are performed automatically at run-time.



Figure 6: Features implemented in Collectra.

Figure 5 shows an example of our transformation model ap-
plied to a situation involving three users (user1, user2 and
user3). User1 works on wiki1. User2 and user3 work on dif-
ferent servers, but share their traces with user1. The figure
represents the TBMS of wiki1. We can see that the TBMS
stores the private trace of user1 (T1) and two shared traces
collected from user2 (T2) and user3 (T4). The model of the
trace T1 is M1. It contains a description of the obsel types
of the trace T1. It is the same for all the stored traces.

In order to create a shared trace for user1, we use a filter
method F1. This method is used to find shared obsels in the
trace T1 and to copy them into a new trace (trace T3) se-
quentially. The new trace links to the model M2 which con-
tains only shared obsels. In order to create a group shared
trace for the three users, we use a fusion method F2. This
method is used to copy all obsels in the shared traces of three
users into a new trace (trace T5) sequentially. The new trace
also links to the model M2 because it only contains shared
obsels.

5. COLLECTRA: A TRACE COLLECTION
MODULE FOR DSMW

We implemented the architecture described in the previous
section in a collection module named Collectra. It has a
server-side part (as a DSMW plug-in) and a client side part
(embedded in the pages by the plug-in). The role of Col-
lectra is to collect elements to characterize user interactions
with DSMW. Collected data (obsels) are stored into a spe-
cific TBMS (kTBS), which stores and transforms collected
traces.

In addition, Collectra has another important features that
enables the creation of traces in its kTBS and the update of
shared traces from other servers in DSMW. Collectra also
handles creation and management of new resources that are
not handled by default in the TBMS. For example, when a
new user is created, a new private trace must be created in
the TBMS.

Figure 6 shows the main features of Collectra. These fea-
tures are detailed bellow. First, users’ actions on client side
(browsers) and their consequences on server side are cap-
tured and collected by Collectra (1). The user’s actions (i.e.
key event, mouse event, change text) are recorded live on
client side. These actions are then serialized in XML and
sent to the server at regular time intervals by using AJAX9

9http://en.wikipedia.org/wiki/Ajax_(programming)

technique. Next, they are synchronized with elements col-
lected on server side. For example, a mouse event “click on
the search button” causes a search event on the server. In
Collectra, the collected objects (obsels) are serialized in a
format accepted by the TBMS. When new obsels are col-
lected, Collectra retrieves the trace of the current user from
TBMS. If no trace is found for the user, a new trace is cre-
ated automatically for him (2). Then, the formatted obsels
are added into their traces (3).

In addition, Collectra has features allowing it to synchronize
with the other servers on the network. When traces are
modified on the network, servers update their statuses to
reflect these changes. Collectra synchronizes itself at regular
time intervals in order to take into account these changes (4).

Lastly, we implemented a simple visualization tool to ob-
serve the effects of collaborative traces visualization on the
awareness of DSMW users (5).

6. EXPERIMENTS
To ensure that the collection module meets the requirements
of the assistance engine, we conducted several experiments.
These experiments focused on performances and stability of
the collection module. The objectives were twofold. First,
experiments demonstrate that it is possible to collect, in
real-time, traces matching the model we have defined. Next,
experiments show that it is possible to perform queries on
collected traces with a good response time. These experi-
ments and their evaluations are described in this section.

6.1 Experimental protocol
In order to establish a data set to evaluate our approach,
we set up an experiment involving two teachers. Teachers
were to collaborate through DSMW in order to create a web
programming course. Different stages of collaboration were
predefined. The experiment consists of two main parts.

Before the experiment, a web server was set up, and DSMW,
Collectra and kTBS were installed on this server. The server
ran on a personal computer (Processor: Intel Core 2 Duo
CPU E6550 2.33GHz x 2, RAM: 3.8GB, OS: Ubuntu 11.10
64 bits). Three instances of wikis were installed on the
server: wiki1 for user1, wiki2 for user2 and wiki3 to inte-
grate the productions of the previous two wikis.

The first part of the experiment was designed to evaluate the
trace collection process. This part consisted of two stages.
During the first stage, user1 and user2 worked on their own
wikis to create their own parts of course (single-user mode).
This stage lasted 45 minutes and involved all types of op-
erations (creation of pages, push, pull). During the second
stage, both users published their content on wiki3. Both
users pulled their wiki pages created from wiki1 and wiki2
(content of pages from wiki1 and wiki2 is different) and con-
tinued working simultaneously during 25 minutes (two-users
mode). In particular, they had to collaborate in order to
create the introduction page. During these 70 minutes, Col-
lectra collected all interactions, defined in our traces model,
between user1, user2 and server, on the three wikis.

The second part of the experiment was designed to eval-
uate the trace exploitation process. For that purpose, we



Obsel type
Number of obsels

Wiki1 Wiki2 Wiki3

Key event 799 927 680
Change text 409 518 404
Mouse event 49 98 130
Created page 4 3 10
Modified page 1 1 1
Search 7 3 1
Pushfeed 5 3 3
Pullfeed 3 2 8
Push 5 5 4
Pull 0 1 7
Others 1 1 1

Total 1283 1562 1249

Table 3: Number of obsels created on each wiki.

Size Number of Creation Retrieving
(kB) attributes time(s) time(s)

Min 6.2 9 0.02741 0.00394
Max 6.7 17 0.20917 0.01586
Average 6.3 12.6 0.04100 0.00672

Table 4: Characteristics of obsel.

performed various transformations on collected traces (i.e.
filter by date, by type, by property and fusion). Then, we
displayed transformed traces on the visualization interface
of Collectra. Transformations and visualization interfaces
are integrated in each wiki in DSMW, through the Collectra
plug-in. This enables us to evaluate response time from the
server (computation of the result and transfer).

6.2 Results
With regard to collection of traces, Table 3 shows the num-
ber of obsels associated with each wiki. The 45 minutes of
activity produce about 1200 obsels (approx. 3 seconds/obsel),
among which a majority are obsels used for editing (KeyEvent
and ChangeText, approx. 91%). The number of obsels is
relatively low, but the main problem lies in the number of
attributes obsels, as we discussed below.

Table 4 shows that the average number of attributes of obsels
is about 12 and the average size of an obsel is about 6 KB
(uncompressed). And after compression of trace files, the
average size of an obsel is reduced to 2 KB. We analysed
this problem and we found that the cost of building the
structure of obsels (i.e. properties with the long name or
the repetition of RDF tags) is bigger than the memory space
used for actual information. The average creation time is
approx. 0.04 s (capable of handling up to 25 obsels/s) and
the average retrieving time is approx. 0.0067 s, which is
sufficient for real-time retrieval of parts of traces.

On graphs 7(a) and 7(b), lines represent the time taken by
the creation of each one of the three types of obsels with
the highest occurrence: KeyEvent(K), ChangeText(C) and
MouseEvent(M). Obsels are ordered by identifier. We ob-
serve that the time of creation of obsels depends on the
number of attributes of that obsel (C=11, K=13 and M=17;
the number of attributes is defined in the trace model). and
the number of simultaneous users (the creation time in two-
users mode is slightly higher than in single-user mode). In

addition, graphs show that there is no strong correlation be-
tween time of creation and number of obsels in the trace. In
other words, the creation time of obsels does not increase
with the number of previously created obsels in the same
trace.

In the second part of the experiment, we focused on the
exploitation of traces. Retrieving a trace consists of two
basic phases: (1) Search and compute obsels of the trace,
and (2) Serialize the trace in a given format (i.e. RDF,
JSON, etc.).

In the last column of table 4, we observe that the average
retrieving time is approx. 0.0067 s. This retrieval time is
satisfactory. To give an idea, it allows to fetch approximately
150 obsels per second.

Graph 8(a) shows the comparison of serialization times of
traces in single-user mode and two-users mode. We can
see that the serialization times of traces in single-user mode
and two-users mode are similar. The serialization time (t)
is proportional to the number of obsels (n) in trace: t ≈
n× α, α = 0.0066 s.

Graph 8(b) shows the comparison of computation time of
transformed traces (fusion and filter) in single-user and two-
users mode. The computation time for filtering traces is
longer than the one for merging traces. Indeed, for filtering
traces, searching successive obsels in source traces is time
consuming, whereas there is no need to do it for fusion.
The search and computing is incremental. This means that
the search and computation time(t′) only depends on the
number of unprocessed obsels(n′): t′ ≈ n′ × β, β = 0.026
s.10

The previously processed (transformed) obsels are omitted
in this phase thanks to an incremental counter which ensures
that an obsel is processed only once. Thus, at run-time, the
retrieving time almost reaches the serialization time because
the number of unprocessed obsels is often small.

6.3 Discussion on the results
Thereafter, we analyse the results with regard to the four
requirements described in section 2.

The first requirement is to collect traces matching a model
depending on the task. In Collectra, we have defined a trace
model suitable for the tasks conducted in Kolflow. This first
requirement is then met.

The second requirement is about time performances. On
graph 7(b), we observe a peak during the creation of the six
hundredth obsel. This sharp increase in the time of creation
is explained by simultaneous actions of two users in the same
page of the wiki3. Indeed, wiki are not designed to support
simultaneous edition of pages. When user1 and user2 edit a
page at the same time, Collectra sends the same obsel twice
to the kTBS. Therefore, creation time is necessarily higher.

10Alpha (α) is the linear regression coefficient of serialization
time on the number of obsels in a trace. Beta (β) is the
linear regression coefficient of search and computation time
on the number of unprocessed obsels in source traces. These
two values depend on the process capability of the server.



(a) Time to create obsels in single-user mode (b) Time to create obsels in two-users mode

Figure 7: Time to create obsels.

(a) Serialization times of traces in single-user mode and
two-users mode.

(b) Computation times of transformed traces (fusion
and filter) in single-user mode and two-users mode.

Figure 8: Experimental results.

Apart from this peak, we observe that the creation time of
obsels remains stable over time and do not slow down users’
activities.

The third requirement is about memory space used to store
collected traces. Results presented in section 6.2 show that
our approach works satisfactorily on a local scale. Further-
more, due to the distributed nature of the approach, re-
sponse time is linear and therefore scales well. However, sim-
ple estimations show that memory space quickly becomes an
issue. For example, collecting traces of a single user during
4500 hours produces 500GB of data. The same amount of
data is collected when observing 2 users during 3000 hours.
For 12 users working during 21 days, we also collect 500GB
of data. Such performances are satisfactory in the context
of the Kolflow project, but for a bigger application (such as
Wikipedia), they could rapidly become an issue. These re-
sults also show that the required memory space depends on
the number of attributes of each obsel. To obtain satisfac-
tory performance on a large scale, it is therefore important
to carefully choose the attributes to be stored in each ob-
sel. In this project, we have decided to provide a complete
model. However, if one is interested in improving perfor-
mances, the best thing to do is to simplify the collect model
in order to reduce the number of attributes per obsel.

The last requirement is to ensure that retrieval time of col-
lected traces is fast enough to enable online assistance. Re-
sults on the second part of the experiment show that re-
trieval time is satisfactory. However, further experiments
in real conditions with the assistance engine are required to
better evaluate this point.

7. CONCLUSION
In this paper, we presented an architecture and a tool, Col-
lectra, to collect interaction traces of multi-user in distributed
environments. Collected interaction traces are intended to
be used by the assistance engine developed in the Kolflow
project. To guaranty the success of the assistance, we must
ensure that both the collection process and the retrieval of
collected traces are performed in satisfactory response times.

We conducted experiments to evaluate Collectra with re-
spect to these issues. Experiments show that our architec-
ture ensures satisfactory response times in real-world situa-
tions. However, memory space remains an issue. Memory
usage is not a problem for small scale problems, but it can
become an issue on the long run. This result raises new is-
sues regarding memory management, storage methods and
forgetting policy in trace-base management systems. We
consider this aspect as a major research question for this



work.

Now that we can rely on efficient collection module, we can
focus on the next step for providing assistance to Kolflow
users. This step is to continue developing the assistance en-
gine, and its interface. This interface will be built on top of
requests that we already have designed and experimented.
Based on user feedback, we will assess the quality and rel-
evance of the different modes of assistance provided by the
assistance engine.

More broadly, we want to study the relevance of our frame-
work in other contexts than the one of the Kolflow project.
At the moment, Collectra has been implemented as a plug-in
for DSMW and has been experimented in this context. The
trace model has been designed in order to collect interaction
traces of DSMW users. In order to apply our model to other
application domains, two important steps have to be accom-
plished. Firstly, a new trace model has to be defined, with
respect to the chosen application. Secondly, slight mod-
ifications have to be made to the Collectra API in order
to connect it to the observed application. In future work,
we will experiment our approach with other distributed and
collaborative activities, in order to identify strengths and
weaknesses of our approach.

Acknowledgment
We are grateful to Pierre-Antoine Champin, Emmanuel
Desmontils for their comments on this work. This work is
supported by the French National Research agency (ANR)
through the Kolflow project (code: ANR-10-CONTINT-
025), part of the CONTINT research program. More in-
formation about Kolflow is available on the project web-
site: http://kolflow.univ-nantes.fr/

8. REFERENCES
[1] L. Allen, G. Fernandez, K. Kane, D. Leblang,

D. Minard, and J. Posner. ClearCase MultiSite:
Supporting Geographically-Distributed Software
Development. Software Configuration Management:
Scm-4 and Scm-5 Workshops: Selected Papers, 1995.

[2] N. Avouris, V. Komis, G. Fiotakis, M. Margaritis, and
E. Voyiatzaki. Logging of fingertip actions is not
enough for analysis of learning activities. In AIED
2005, pages 1–8, 2005.

[3] O. Bell, M. Allman, and B. Kuperman. On
browser-level event logging. Technical Report
TR-12-001, International Computer Science Institute,
Berkeley, CA, Jan. 2012.

[4] M. Buffa, F. L. Gandon, G. Ereteo, P. Sander, and
C. Faron. Sweetwiki: A semantic wiki. Journal of Web
Semantics, 6(1):84–97, 2008.

[5] P.-A. Champin, A. Cordier, E. Lavoué, M. Lefevre,
and H. Skaf-Molli. User Assistance for Collaborative
Knowledge Construction. In A. DL, editor, WWW
2012 - SWCS’12 Workshop, pages 1065–1073, Apr.
2012.

[6] P.-A. Champin, Y. Prié, O. Aubert, F. coise Conil,
and D. Cram. kTBS: Kernel for Trace-Based Systems,
2011.

[7] A. Cordier, B. Mascret, and A. Mille. Extending
Case-Based Reasoning with Traces. In Grand

Challenges for reasoning from experiences, Workshop
at IJCAI’09, July 2009.

[8] M. d’Aquin, S. Elahi, and E. Motta. Personal
Monitoring of Web Information Exchange: Towards
Web Lifelogging. 2010.

[9] P. Dourish. The parting of the ways: Divergence, data
management and collaborative work. pages 215–230.
Kluwer Academic Publishers, 1995.

[10] J.-M. Heraud, J.-C. Marty, L. France, and T. Carron.
Helping the Interpretationof Web Logs: Application to
Learning Scenario Improvement. In AIED’05, 2005.

[11] M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and
R. Studer. Semantic wikipedia. Journal of Web
Semantic, 5(4):251–261, 2007.

[12] M. May, S. George, and P. Prévôt. Tracking,
analyzing, and visualizing learners’ activities on
discussion forums. In Proceedings of the sixth
conference on IASTED International Conference
Web-Based Education - Volume 2, WBED’07, pages
649–656, Anaheim, CA, USA, 2007. ACTA Press.

[13] J. Oh, S. Lee, and S. Lee. Advanced evidence
collection and analysis of web browser activity. Digital
Investigation, 8(0):S62–S70, 2011.

[14] C. Rahhal, H. Skaf-Molli, P. Molli, and S. Weiss.
Multi-synchronous Collaborative Semantic Wikis. In
10th International Conference on Web Information
Systems Engineering - WISE ’09, volume 5802 of
LNCS, pages 115–129. Springer, October 2009.

[15] S. Schechter, M. Krishnan, and M. D. Smith. Using
path profiles to predict HTTP requests. In Proceedings
of the seventh international conference on World Wide
Web 7, WWW7, pages 457–467, Amsterdam, The
Netherlands, The Netherlands, 1998. Elsevier Science
Publishers.

[16] L. S. Settouti, Y. Prié, P.-A. Champin, J.-C. Marty,
and A. Mille. A trace-based systems framework :
Models, languages and semantics. Framework, 5205:40,
2009.

[17] H. Skaf-Molli, G. Canals, and P. Molli. DSMW: a
distributed infrastructure for the cooperative edition
of semantic wiki documents. In Proceedings of the 10th
ACM symposium on Document engineering,
DocEng’10, pages 185–186, New York, NY, USA,
2010.

[18] H. Skaf-Molli, C. Rahhal, and P. Molli. Peer-to-peer
semantic wikis. In 20th International Conference on
Database and Expert Systems Applications- DEXA
2009, Lecture Notes in Computer Science 5690,
Springer, volume 5690 of Lecture Notes in Computer
Science, Linz, Austria, August 2009.

[19] Q. Yang, C. X. Ling, and J. Gao. Mining web logs for
actionable knowledge. In Intelligent Technologies for
Information Analysis, pages 169–192. Springer
Heidelberg, 1998.


