
HAL Id: hal-01131180
https://hal.science/hal-01131180

Submitted on 13 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two levels autonomic resource management in
virtualized IaaS

Alain Tchana, Giang Son Tran, Laurent Broto, Noël de Palma, Daniel
Hagimont

To cite this version:
Alain Tchana, Giang Son Tran, Laurent Broto, Noël de Palma, Daniel Hagimont. Two levels autonomic
resource management in virtualized IaaS. Future Generation Computer Systems, 2013, vol. 29 (n° 6),
pp. 1319-1332. �10.1016/j.future.2013.02.002�. �hal-01131180�

https://hal.science/hal-01131180
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12507

To link to this article : DOI :10.1016/j.future.2013.02.002
URL : http://dx.doi.org/10.1016/j.future.2013.02.002

To cite this version : Tchana, Alain-Bouzaïde and Tran, Giang Son
and Broto, Laurent and Depalma, Noel and Hagimont, Daniel Two
levels autonomic resource management in virtualized IaaS. (2013)
Future Generation Computer Systems, vol. 29 (n° 6). pp. 1319-1332.
ISSN 0167-739X

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12507/
http://oatao.univ-toulouse.fr/12507/
http://dx.doi.org/10.1016/j.future.2013.02.002
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Two levels autonomic resource management in virtualized IaaS

Alain Tchana a,∗, Giang Son Tran b, Laurent Broto b, Noel DePalma a, Daniel Hagimont b

a University of Joseph Fourier, (UJF/LIG) - 621, avenue Centrale SAINT-MARTIN-D’HERES, BP 53, 38041 Grenoble cedex 9, France
b University of Toulouse, (IRIT/ENSEEIHT) - 2, rue Charles CAMICHEL B.P. 7122 31071 TOULOUSE Cedex 7, France

a b s t r a c t

Virtualized cloud infrastructures are very popular as they allow resource mutualization and therefore
cost reduction. For cloud providers, minimizing the number of used resources is one of the main services
that such environments must ensure. Cloud customers are also concerned with the minimization of used
resources in the cloud since they want to reduce their invoice. Thus, resource management in the cloud
should be considered by the cloud provider at the virtualization level and by the cloud customers at
the application level. Many research works investigate resource management strategies in these two
levels. Most of them study virtual machine consolidation (according to the virtualized infrastructure
utilization rate) at the virtualized level and dynamic application sizing (according to its workload) at the
application level. However, these strategies are studied separately. In this article, we show that virtual
machine consolidation and dynamic application sizing are complementary. We show the efficiency of the
combination of these two strategies, in reducing resource usage and keeping an application’s Quality of
Service. Our demonstration is done by comparing the evaluation of three resourcemanagement strategies
(implemented at the virtualization level only, at the application level only, or complementary at both
levels) in a private cloud infrastructure, hosting typical JEE web applications (evaluated with the RUBiS
benchmark).

1. Introduction

In order to reduce the maintenance cost of computing envi-
ronments, companies are increasingly externalizing their comput-
ing infrastructures to specific companies called providers. These
later are expected to ensure quality of service (QoS) for their cus-
tomerswhileminimizing hosting costs. Cloud computing is a recent
paradigm which follows this direction.

In this context, on demand resource management is one of the
main services that such an environmentmust ensure. Itmust allow
the allocation of resource as needed and resource deallocation
when unused, while reducing the number of used machines and
therefore energy consumption. Resource usage reduction also
concerns cloud customers since they want an efficient service
while using theminimumnumber of resources in the cloud (which
impacts their invoice).

Many research and industry works ([1,2], or [3]) have in-
vestigated resource management strategies in the cloud. These
strategies can be grouped into two categories: those which are

∗ Corresponding author. Tel.: +33 620740733.

E-mail addresses: alain.tchana@inria.fr (A. Tchana), giang.tran@enseeiht.fr

(G. Son Tran), laurent.broto@enseeiht.fr (L. Broto), noel.de_palma@inria.fr

(N. DePalma), daniel.hagimont@enseeiht.fr (D. Hagimont).

implemented at the customer applications level through dynamic
application sizing (according to its workload) and others that are
implemented at the virtualized level through virtual machine con-
solidation (according to the cloud infrastructure utilization rate).
However, (1) these strategies have been studied and experimented
separately, and (2) they do not consider each level particularity re-
garding resource management.

In this article, we investigate the implementation of resource
management strategies at both levels simultaneously in the case
of an IaaS (Infrastructure-as-a-Service) cloud model hosting mas-
ter–slave applications. We show that virtual machine consolida-
tion and dynamic application sizing can be beneficently combined
in order to reduce resource usage and to keep application’s Qual-
ity of Service (QoS). Our study is done by comparing the evalua-
tion of three resourcemanagement strategies (implemented at the
virtualization level only, at the application level only, and comple-
mentary at both levels) in a private IaaS, hosting typical JEEweb ap-
plications (evaluated with the RUBiS [4] benchmark). Our private
IaaS cloud infrastructure automates the execution of these strate-
gies with an autonomic management system called TUNe [5].

The rest of this paper is organized as follows. Section 2 presents
the context of this work. Section 3 presents our motivations for
two-level resource management in a cloud infrastructure. Sec-
tion 4 presents the environment inwhichwe conducted our exper-
iments. Sections 5–8 detail, evaluate and synthesize the resource

Fig. 1. Cloud computing layers and participants.

management strategies we study in this article. Section 9 presents
the various related works. Finally we conclude and present future
works in Section 10.

2. Context

In this section, we introduce the context of cloud environments
in which our experiments take place and the type of applications
we are considering.

2.1. Cloud computing

Using a cloud computing environment, an organization (cus-
tomer) can greatly reduce maintenance costs by relying on
an external institution, called provider. Resources in a cloud
computing environment are dynamically provisioned and must
satisfy service-level agreements between the provider and its
customers [6].

In the literature, cloud infrastructures are generally classified
into three models:

• Infrastructure-as-a-Service (IaaS): a virtualized infrastructure
managed by a provider, inwhich external customers deploy and
execute their applications;
• and Platform-as-a-Service (PaaS): a virtualized infrastructure

managedby aprovider, inwhich customers develop, deploy and
execute their applications using the application development
environment provided by the provider;
• Software-as-a-Service (SaaS): the provider gives to customers

the application they want.

In this paper, we consider the cloud as an IaaS. The actors in-
volved in such a cloud platform are grouped into three categories:
cloud providers, cloud customers and end users. A cloud provider
is responsible for the administration of the cloud resources (e.g.
hardware, network, virtual machine) and services. Cloud customers
use the provided cloud resources to deploy and execute their appli-
cations (e.g. JEE applications in our example). Cloud customers are

provided with VMs, without having a global view or direct access
to the cloud physical infrastructure. These VMs host the customer’s
applications and represent a confined portion of physical resource.
End users use customer applications deployed in the cloud.

Fig. 1 summarizes these cloud layers and the scope of each cloud
participant: the cloudprovider has access to physical resources and
VMs; cloud customers have access to VMs and their applications;
and end users have access to the customer applications.

2.2. Master–slave applications: example of JEE applications

Typical web applications in Java 2 Platform Enterprise Edition
(JEE) are designed as master–slave architectures. This type of
application represents the commonly hosted applications in cloud
platforms. Its design consists of a web server tier (e.g. Apache),
an application server tier (e.g. Tomcat) and a database server tier
(e.g. MySQL). When an HTTP request is received, it refers either
to a static web document (e.g. HTML, CSS), in which case the
web server directly returns the requested document to the client;
or to a dynamically generated document, in which case the web
server forwards the request to the application server. In turn,
the application server executes requested application components
(e.g. Servlets, EJBs), creating queries to a database through a
JDBC driver (Java DataBase Connection driver). Finally, queried
data from the database is processed by the application server to
generate a web document which is returned to the client. Fig. 2
summarizes this architecture of an JEE application.

In this context, the increasing number of Internet users has
led to the need for highly available services. To face high loads
of Internet services, a commonly used approach is the replication
of servers. This kind of approach usually defines a particular
software component in front of each set of replicated servers,
which dynamically balances the load among the replicas using
different algorithms (e.g. Random choice, Round Robin). Server
replication is a way to implement elastic configuration through
dynamic sizing of the number of replicas.

Here, an important remark is that these JEE applications are
mostly CPU bound, i.e. the goal of dynamic sizing is the balance
the CPU load between a variable number of replicas.

3. Motivations

As any business activity, the main objective of a cloud provider
is to make a profit while meeting customers requirements (which
essentially means to guarantee that all their VMs will receive the
contracted resources). This objective can be achieved in two ways.

Firstly, the provider can strictly keep allocated all resources
the customer has contracted (for the entire VM lifetime). Conse-
quently, each VM will keep its resources even if it does nothing.

Fig. 2. A JEE application architecture.

Fig. 3. Static application configuration—VM consolidation.

Since this way reduces the cloud mutualization capacity (it is not
possible to group idle VMs on fewer machines because their re-
sources are booked), VM allocation in the cloud will be expensive.

In the second way, the provider ensures to customers that
their VMs will received all resources they need (in the limit
of the contract) only when the need is effective. Thus, the
provider can increase his hosting capacity by collocating VMs
(using VM migration) when they are underused, and relocating
(spreading) them when they are effectively used. Consequently,
VM allocation can be cheaper since the provider makes profit
by increasing his hosting capacity (which implies hosting more
customer applications). VM collocation and relocation are known
as VM consolidation strategies.

In short, cloud providers can provide two VM reservation
modes:

• Hard VM reservation. Resources are kept allocated.
• Soft VM reservation. Resources are only allocated when

effectively used.

At the application level, customers can either implement a static
or a dynamic configuration strategy.

With a static configuration strategy, a customer will start the
number of server replicas needed to face expected peak loads in
order to ensure application QoS. Each server replica is created in
a separate VM. Then, the allocated VMs are not always intensively
active and the customer can therefore rely on Soft VMs. The IaaS
consolidation system will dynamically allocate resource to these
VMs according to their load.

With a dynamic configuration strategy, a customer monitors
VMs load and adapts the degree of replication according to this

load, adding a new replica (on a new VM) when the application

workload exceeds a threshold; and removing a replica when the

load decreases. In this case, this dynamic policy ensures that VMs

are effectively used and the customer can therefore rely on Hard

VMs.

In summary, two resources management strategies can be

implemented in a cloud running master–slave applications:

• Static application configuration with Soft VMs.

• Dynamic application configuration with Hard VMs.

These two strategies are analyzed below.

3.1. Static application configuration with Soft VMs

Let us consider a situation where the cloud runs two multi-

tier applications (an Apache web server linked to one or many

Tomcat application servers), owned by different customers. Each

tier is run on a separate VM which corresponds to a fraction of

a physical machine. Applications are statically dimensioned with

the maximum number of replicas needed to maintain their QoS

under peak loads: three Tomcat instances for each application are

initially allocated to serve peak loads. Fig. 3(a) shows anoverloaded

state of the applications. As applications become underloaded, VM

consolidation progressively gathers VMs on a minimal number

of physical machines (Fig. 3(b)). However, as argued in [7], an

important limitation of VM consolidation is memory capacity:

any VM, even idle, consumes physical memory, which limits the

number of VMs that can be hosted on a machine. Therefore, VM

Fig. 4. Dynamic application configuration.

consolidation can reduce, but cannot minimize the number of
active machines in the hosting center.

Dynamic application configuration (sizing) would allow to sig-
nificantly reduce thenumber of physicalmachines in use (Fig. 3(c)).

3.2. Dynamic application configuration with Hard VMs

We consider an initial situation where each application is
configured with one Tomcat server (Fig. 4(a)). The customers
execute two sizing operations: size upof the twoapplications (each
has three Tomcats) facing a peak load (Fig. 4(b)), followed by a
size down of the second application when it becomes underloaded
(Fig. 4(c)). This last operation leaves two unused spaces in the last
two physical machines. These holes can be easily optimized if VM
consolidation is implemented (Fig. 4(d)), resulting in a physical
machine being freed for energy saving.

Dynamic application sizing ensures that VM resources are effec-
tively used (elseVMwould bedeallocated), so that this solution can

rely on Hard VM allocation. Since VMs are effectively used, the VM
consolidation algorithm does not have to monitor CPU. It simply
packs VMs on the minimal number of physical machines accord-
ing to the resource allocated to these Hard VMs. We observe here
that this solution combines both application sizing and VM consol-
idation, but the consolidation system is in this case much simpler.

This analysis shows the theoretical advantage of two-level re-
source management. In the following, we describe an implemen-
tation of the above strategies and an evaluation in a private cloud
infrastructure.

4. Evaluation context

This section describes the IaaS environment used to evaluate
the resource management strategies presented above. Our exper-
imental context is a private virtualized infrastructure, equipped
with an autonomic administration system (called TUNe) which
provides self-* capabilities.

4.1. TUNe: an adaptable autonomic administration system

The TUNe [5] system aims at bringing a solution to the
increasing complexity in distributed software management. It is
based on the concept of autonomic computing. An autonomic
management system automates the management of applications
without human intervention. It covers applications’ life cycle:
deployment, configuration, launching, and dynamic management.
TUNe allows the definition of managers which monitor the
execution conditions and react to events such as failures or peak
loads, in order to adapt the managed application accordingly and
autonomously.

TUNe has been experimented in various application domains:
web andmiddleware architectures [8], grid computing systems [9]
and energy saving in replicated systems [10].

This adaptability to different domains was made possible
thanks to the component-based approach used to design TUNe.
Each legacy software is wrapped inside a software component,
and is managed by its component’s management interface.
TUNe supports the introduction of new description languages to
define software and hardware architectures as well as system
management policies. For example, TUNe’s deployment policies
are highly adaptable, from binary file transfer to NFS remote
directory mounting. The definition of reconfiguration policies
is also flexible, allowing to implement autonomic management
behaviors for application software as well as operating systems
(virtual machines). In summary, TUNe is designed and developed
with pluggable components, even administrative services are
implemented as components. Thus, in the context of this article,
wewere able to adapt TUNe tomanage both customer applications
(with dynamic sizing) and the virtualized cloud environments
(with consolidation).

4.2. Experimental JEE application

The RUBiS [4] benchmark (version 1.4.2) is used as our customer
application throughout this article. RUBiS is an implementation
of an eBay-like auction system, including a workload generator
to simulate web clients. RUBiS is an implementation of a JEE
benchmark. In our experiments, our RUBiS application is composed
of an Apache web server, a Tomcat servlet container, a MySQL-
Proxy to load balance SQL requests among a set of MySQL database
servers. We limit our evaluation to the MySQL tier due to paper
length restriction.Moreover, as identified by [11], the database tier
is the primary bottleneck tier in such applications. The workload
submitted to the RUBiS applications is database bound and our
sizing policies are applied only on the MySQL tier. However, we
treated in a previous work [12] the dynamic sizing of each JEE tier.
For these experiments, we consider that our IaaS infrastructure
hosts two RUBiS applications which belong to different customers.

4.3. Experimental environment

Our experiments were carried out using the Grid’5000 [13]1

experimental testbed (the French national grid), using Xen [14]
3.2 as the virtualization platform. All nodes use Linux CentOS
distribution, running on a Dell PowerEdge R410 Intel Xeon E5620
2.4 GHz, and are connected through a gigabyte Ethernet LAN
connection from a cluster. VM disk images shared by all the nodes
are located on aNFS server. To summarize, the use of TUNe running
over a Grid’5000’s cluster is considered as our IaaS. The number of

1 Grid’5000 is an initiative from the French Ministry of Research through the ACI

GRID incentive action, INRIA, CNRS and RENATER and other contributing partners.

nodes during these experiments varies according to the dynamic
changes of the workload submitted to the RUBiS application. For
the two experimented applications, we use 3 nodes to run VMs
(a total of 6 VMs) which host frontend servers (Apache, Tomcat
and MySQL-Proxy), and up to 3 nodes (when the two applications
receive their maximum load) to run VMs which host backend
servers (MySQL, up to 6 VMs).

4.4. Experimental procedure

The goal of our experiments is to demonstrate the benefit of
combining an application level policy (dynamic sizing) and an IaaS
level policy (consolidation). These experiments are done in three
phases.

• In a first step, we execute a scenario (two RUBiS applications
with a given workload) with static application configurations
and Soft VMs. Thismeans that here, resources are onlymanaged
by the consolidation system in the IaaS.
• In a second step, we execute the same scenario with dynamic

application configurations and Hard VMs. This means that
here, the degree of replication of application tiers is adapted
according to the received load. In this step, we observe that
holes may appear in the IaaS (as depicted in Section 3.2) and
that a form of consolidation is required at the IaaS level.
• In a last step, we add the required consolidation system to

the previous experiment, thus combining the two resource
management policies (dynamic sizing at the application level
and consolidation at the IaaS level).

5. Resource management at virtualized level only

5.1. Resource management policy

In this case, applications are deployed in a static configuration
(without runtime reconfiguration) with the maximum number of
replicas to prevent peak loads. All the replicas are deployed on Soft
VMs which are created on a minimal number of physical nodes. A
resourcemanagement policy is only implemented at the IaaS level.
The IaaS administrator specifies the consolidation policy based on
sensors (for VMs and physical nodes) as follows:

• If a physical machine saturates, a VM is migrated to another
physical machine with enough resources to accept it. If neces-
sary, a new physical machine is switched on. We call this VM

relocation.
• If a physical machine is underloaded and its hosted VMs can be

accepted by other physical machines, these VMs are migrated.
This physical machine can be freed and switched off. We call
this VM collocation.

Therefore, VM consolidation implies the implementation of two
algorithms: VM relocation (when overloaded) and VM collocation
(when underloaded). Designing an efficient VM consolidation
policy has to take into account live migration cost. Even if several
research efforts are made to minimize migration cost [14], the
multiplication of this operation in a short time significantly affects
the execution of applications.

Algorithm 1 presents the VM relocation algorithm (when the
CPU load of a machine is over a predefined maximum CPU
threshold). This algorithm is summarized as follows. Firstly, it
identifies the most loaded node. Then it evaluates for each VM on
this node the slope of its CPU variation (VM CPU load are logged
over a period). These slopes allowus to identify the VM responsible
for the node overload. The principle of our VM relocation algorithm
consists in giving CPU power to the overloaded VM as much as
possible. This objective can be reached either by relocating this

Fig. 5. Management at IaaS level only: Load scenario and VM placement status.

Fig. 6. Management at IaaS level only: (a) VM allocation on nodes and (b) node loads.

VM or by relocating another VM (so that the overloaded VM
will stay on the initial node but with more CPU); we choose
the relocation which gives the maximum CPU to the overloaded
machine (without allocating a new physical machine). If no such
relocation is found, a new machine is allocated and the VM is
relocated to this machine.

Regarding VM collocation (presented in Algorithm 2), for each
VM on the most underloaded node, we look for the Best-Fit node
which can welcome this VM without reaching its maximum CPU
threshold. If this was the last VM on the left node, the machine can
be freed.

5.2. Evaluation

At the application level, two customers’ applications are stat-
ically dimensioned and deployed with the maximum number of
MySQL server (three per application). This management of the IaaS
is ensured by the TUNe autonomic system. At creation time, TUNe
maximizes the number of VMs per physical machine. This policy
explains the fact that all VMs are hosted on node N1 (six VMs,
Fig. 5) at the beginning of our experiment. A Scheduler component
(implemented in TUNe) periodically receives and processes all VM
and physical machine loads from remote probes andmigrates VMs
when necessary. It implements our consolidation policy presented
in the previous subsection.

Fig. 5 shows the generated workload submitted to the two
RUBiS applications and the IaaS node allocation status during the
experiment. The representation ‘‘3A/40’’ at situation (o)means that

this node hosts three VMs belonging to application A and the

current CPU load of all three VMs is 40% of the capacity of the

processor. Fig. 6 presents the results we obtained regarding the

evolution of the number of VMs per node and the nodes’ CPU loads

(N1–N3). We discuss these results and compare them with those

predicted in Fig. 5:

• Time (o): all VMs are hosted on N1.

• Time (a): the load increase for application A caused a migration

of a VMA (VM of application A) on a new node (N2).

• Time (b): the load increase for application B caused a migration

of a VMB, since it givesmore capacity to the saturating VMB (on

N2) than if we had migrated another VM from N1.

• Time (c_i): the load increase for application A caused a

migration of a VMA from N1 to N2 (migrating a VMB from N1

would not do better).

• Time (c): the load increase for application A caused a migration

of a VMA fromN2 to N3 (migrating a VMB fromN2 to N1would

saturate N1).

• Time (d): the load increase for application B caused a migration

of a VMB from N1 to N3.

• Time (e): the load decrease for application B caused migrations

of VMBs to N2.

• Time (f): a VMA is migrated from N1 to N3 (the most loaded

node).

• Times (g and h): two VMAs are migrated to N2.

Algorithm 1 VMs Relocation (Virtualized Level Only)

Symbols:

- MaxThreshold: The maximum acceptable CPU load on a IaaS node

- CurrentCPULoadOn(Ni): The current CPU load on node Ni

- epsilon: VM live migration overhead (in term of CPU)#The migration process requires CPU on the
#destination node.

- NbOfVMsOn(Ni): A function which returns the number of VMs running on node Ni

Begin

1: No← The Most Loaded Node

2: VMo← The VM with the greatest CPU slope on No

The objective of this algorithm is to give move CPU to VMo.
How much CPU will remain on a node Ni if VMo is migrated from No to Ni?

3: for Each IaaS ′s node Ni with NbOfVMsOn(Ni) > 0 and Ni 6= No do

4: AvailableCPUOn(Ni)←MaxThreshold−CurrentCPULoadOn(Ni)#Available CPU on Ni.

5: RemainCPUOn(Ni, VMo)←−1# RemainCPUOn(Ni, Vi): CPU given to VMo if Vi is migrated to Ni.
6: if AvailableCPUOn(Ni) > CPU(VMo)+ epsilon then

7: RemainCPUOn(Ni, VMo)← AvailableCPUOn(Ni)− CPU(VMo)

8: end if

9: end for

How much CPU will remain on No if another VM is migrated to another node?
10: for Each VMi on No and VMi 6= VMo do

11: for Each IaaS ′s node Nj with NbOfVMsOn(Nj) > 0 and Nj 6= No do

12: RemainCPUOn(Nj, VMi)←−1
13: if AvailableCPUOn(Nj) > CPU(VMi)+ epsilon then

14: RemainCPUOn(Nj, VMi)← AvailableCPUOn(No)+ CPU(VMi)

15: end if

16: end for

17: end for

#We try to relocate either VMo or another VM.
The destination node can be a new IaaS node (which was not previously on).

18: (MigratedVM,DestinationNode)← VMi and Ni so that RemainCPUOn(Ni, VMi) is the highest

19: if RemainCPUOn(DestinationNode,MigratedVM) = −1 then

20: DestinationNode← A new machine

21: DestinationNode← VM0

22: end if

23: Migrate MigratedVM from No to DestinationNode

End

All CPU peaks on Fig. 6(b) correspond to VM migrations and
are due to live migration costs. Since our collocation algorithm
considers that all nodes are identical in terms of hardware
configuration, our experiment ends with all VMs on N2 instead of
N1 (as at startup).

Despite the benefits in terms of the number of used machines,
VM consolidation has important limitations when implemented
without dynamic sizing. First, the number of VMs collocated on
the same node is limited by node size (in terms of memory). In our
experiment, a node can support up to six VMs at the same time.
Secondly, VM overhead increases with the number of VMs on the
node. We evaluated this overhead in a previous work [8]. Finally,
there are many situations where several VMs hosting replicas
of the same application tier (e.g. MySQL for application A) were
hosted on the same node. For example, at time (a), node N1 hosts
2 MySQL instances of application A and 3 instances of application
B. Dynamic sizing would avoid such situations.

6. Resource management at the application-level

6.1. Resource management policy

Dynamic sizing at application level (also known as dynamic
server provisioning) consists of adding or removing replicas ac-

cording to the monitored load of each tier. In that way, new re-
sources are requested only when necessary, while ensuring the
application QoS. Each replica is deployed and launched on a
separate VM. The customer chooses an initial number of replicas
for each tier and defines a dynamic sizing policy which gener-
ally takes the form of a threshold that a monitored load should
not exceed. Sensors monitor each tier and generate an event
whenever a constraint is violated. The reaction to an overload
event is presented in Algorithm 3. On the other side, the reaction
of an underload event is presented in Algorithm 4. As we previ-
ously mentioned, this policy only makes sense when applications
allocate Hard VMs. Obviously, it may leave holes (unused resource
portions) on IaaS machines if no consolidation mechanism is im-
plemented at this level, as illustrated in the next section.

6.2. Evaluation

The objective of this evaluation is twofold: (1) to confirm
the results of many other research works that show the benefit
of dynamic sizing; and (2) to show the limits of this policy as
identified in Section 3.

We based our self sizing policy on the average CPU load of
MySQL servers. TUNe is used at the application level to implement
this policy. Therefore, eachMySQL VM is equippedwith amonitor-
ing agent, informing its TUNe manager about the variation of the

Algorithm 2 VMs Co-location (Virtualized Level Only)

Symbols:

- This algorithm uses the same symbols as Algorithm 1

Begin

1: Nu← The most underloaded node# The most underloaded node.
We try to free the most underloaded node Nu.
All its VMs will be relocated (if possible) on the other underloaded nodes.

2: AvailableCPUOn(Nu)←MaxThreshold− CurrentCPULoadOn(Nu)

3: for Each VMi on Nu, sorted in a decreasing order do

4: Restmin← 100
#What is the Best-Fit node for the relocation of VMi?

5: DestinationNode(VMi)← NULL

6: for Each IaaS ′s node Nj with Nj 6= Nu do

7: Rest← AvailableCPUOn(Ni)− CPU(VMi)− epsilon

8: if Restmin < Rest then

9: Restmin← Rest

10: DestinationNode(VMi)← Nj

11: end if

12: end for

13: if DestinationNode(VMi) 6= NULL then

14: AvailableCPUOn(DestinationNode(VMi))← AvailableCPUOn(DestinationNode(VMi))− CPU(VMi)

15: Migrate VMi from Nu to DestinationNode(VMi)

16: end if

17: end for

18: if NbOfVMsOn(Nu) = 0 then

19: Turn off Ni

20: end if

End

Algorithm 3 Size Up (Application Level)

Begin

1: for Each tier Ti of the application do

2: if Ti is saturated then

3: NewVM← Allocation a new VM from the IaaS

4: Deploy and launch a new instance of replica of Ti on NewVM

5: Reconfigure the loadbalancer in front of the Ti tier

6: end if

7: end for

End

Algorithm 4 Size Down (Application Level)

Symbols:

- NbOfReplicaOn(Ti): The number of server replica on tier Ti

Begin

1: for Each tier Ti of the application do

2: if Ti is underloaded and NbOfReplicaOn(Ti) > 1 then

3: (ReplicaToRemove, VMToRemove)← A server replica and its VM

4: Reconfigure the loadbalancer in front of the Ti tier

5: Stop ReplicaToRemove and terminate VMToRemove from the IaaS

6: end if

7: end for

End

CPU load. The TUNe manager computes the average CPU load and

when thismetric reaches 100%, it requests aVMallocation from the

IaaS, deploys and starts a new MySQL server instance on this VM.

Notice thatwe choose this threshold in order to show the impact of

overload of theMySQL tier on the application QoS (response time).

Indeed, the application will still be overloaded during the addition

time (startup of a newVM in the IaaS) of theMySQL server. To avoid

this impact, one could either reduce this threshold or always keep

a pool of unused VM in the running state. Likewise TUNe removes

one MySQL server when its CPU load can be distributed on other

replicas without provoking a MySQL tiers overload.

The overall management architecture for this scenario is as fol-

lows: two instances of TUNe are used for managing separately

the two RUBiS applications (A and B) and implementing dynamic

server provisioning. The IaaS does not implement any VM consol-

idation.

Fig. 7. Management at application level only: Load scenario and VM placement status.

Fig. 8. Management at application level only: MySQL loads and response time of (a) application A and (b) application B.

We submit the same workload as in the previous experiment.
Fig. 8 shows CPU loads on the nodes hosting MySQL servers and
the RUBiS response time. These results show the reactivity of
the autonomic system (TUNe) in order to ensure application QoS
through dynamic resource allocation. These figures are interpreted
as follows:

• In the first half of the workload (time (o)–time (d) in Fig. 7),
the CPU load increases for both applications. As a result of
TUNe’s reconfigurations, MySQL servers are gradually added
(times (a)–(d)) to keep the response time at its original level
(less than 0.5 s). At the end of this phase (time (d)), each RUBiS
application has 3 MySQL replicas. These size up operations are
observed in Fig. 8(a) at times T1 = 600 s and T2 = 2000 s: the
measured CPU load of the VMs reaches themaximum threshold
and the response time also increases (about 3 s). The addition
of a replica reduces the CPU load and also reduces the response
time (at its minimal value). Notice that there is only one VM
before T1, two VMs between T1 and T2, and three VMs after T2.
• After time (d) in Fig. 7, application B receives fewer requests,

therefore, the number of replicas is reduceddown to a single (on
machine N1 at time (e) and (f)). This situation produces holes in
the infrastructure (on nodes N2 and N3).
• A similar situation happens to application A: its load decreases.

Its TUNe instance undeploys its MySQL instances and deallo-
cates VMs on machines N2 and N3 (application A).
• At the end of this experiment (time (g) and (h) in Fig. 7), only

machine N1 is running with two VMs, one for each application,
similarly to the beginning of our scenario at time (o).

As can be seen in Fig. 8, the resource management policy at the
application level effectively maintains QoS (i.e. keeps the response
time low): MySQL instances are dynamically added and removed,
according to the CPU load of this tier. This behavior ensures not
only application response time but also a minimal number of VMs
(and therefore cost reduction for the customer).

However, we can observe that at time (e) and (f), two MySQL
instances (for application A) were running on two different VMs
located on two different machines (N2 and N3). We lack here
a consolidation mechanism to minimize the number of used
machines, which is considered in the next section.

7. Resource management at both levels

This section describes a combination of the two strategies
described in the previous sections to eliminate each solution’s
drawbacks.

7.1. Resource management policy

With amulti-level policy, wewill both have dynamic sizing (the
same algorithms as in the previous section) at the application level
and a new form of consolidation at the IaaS level.

Since we have dynamic sizing, VM usage is optimized: VMs are
effectively used or they will be removed by the TUNe instance at
the application level. Therefore, it is not necessary at the virtualized
level to reuse the consolidation policy based on CPU loads, and we
can allocate Hard VMs. But as observed in Fig. 7 at time (e) and (f),

Fig. 9. Management at both levels: Load scenario and VM placement status.

Fig. 10. Management at both level: VM allocation on nodes.

the application level policy can produce holes in the infrastructure.
Thus, we implement a consolidation policy which migrates VMs
to remove these holes. However, this consolidation policy is not

based on the CPU usage of VMs, but on a resource quota allocated to

these VMs.
Algorithm 5 describes this consolidation policy. In this algo-

rithm and in our experiments, we allocate only one type of VM,
i.e., all VMs have the same memory size and CPU quotas. It im-
plies that we can host the same number of (Hard) VM on any
machine in the IaaS. The Scheduler component of TUNe at the vir-
tualized level tries to migrate the VMs from the machine with the
minimum number of VMs. MaxVM is the number of VMs that a
physical node may host and NbOfVMsOn(Ni) the number of VM
on each node. Such a consolidation can be performed as soon as∑

NbOfVMsOn(Ni) ≤ MaxVM ∗ (MaxVM − 1). This condition is
checked each time a VM is deallocated.

7.2. Evaluation

We use in this scenario three TUNe instances for managing
the IaaS level and the two RUBiS applications. To distinguish
between these TUNe instances, let TUNeApp be the TUNe instances
running at the application level, and TUNeVM be the one assigned
to manage the IaaS. These TUNe instances work independently,
each handling the management operations at its level. TUNeApp’s
behavior (in terms of resource management) is the same as
presented in Section 6: based on the average CPU load of theMySQL
tiers, TUNeApp asks for the addition/removal of a MySQL server
(running on a VM). TUNeVM’s goal was described in the previous
section: server consolidation based on VM allocated resources.

This two-level management policy provides benefits for resource
saving and power reduction, as shown in the experiment below.

The workload submitted to the two applications is the same as
in the previous sections. Both RUBIS applications are started with
one MySQL server. Each TUNeApp instance can allocate MySQL
servers when necessary. Each MySQL VM requires half (in terms
of CPU and memory quota) of an IaaS node during the experiment.

Fig. 9 shows the generated workload and predicted VM
placements on physical nodes, according to our consolidation
algorithm. Response times andVM loads in this scenario are similar
to those of Section 6 (Fig. 8). The VM allocation status (per node)
over time is presented in Fig. 10.

• Until time (d) (T1 = 2800 s), our experiment is in the allocation
phase since the load increases for both applications. MySQL
servers are gradually added.

• At time (e) and (f) (T2 = 3300 s), we observe the removal of
two servers for application B on nodes N2 and N3, caused by
the load reduction for application B.

• At tile (g_i) (T3 = 3400 s), the TUNeVM Scheduler analyzes the
situation, migrates a VMA from N3 to N2 and frees N3.

• At time (d) (T4 = 4200–4400 s), the load reduction for
application A provokes the removal of two MySQL servers.

This experiment shows that both-levels management cumu-
lates the advantages of the two previous management strategies:
it reduces the number of VMs in the IaaS and it consolidates these
VMs on fewer machines (removing holes).

However, we can still have the problem identified in Section 5:
the possibility to have on the same node several VMs hosting
replicas from the same application tier. For example, at time (g_i),

Algorithm 5 VMs Consolidation (Both Level)

Symbols:

- MaxVM The number of VMs that a IaaS node may host

- NbNode The number of IaaS node which are running

- NbOfVMsOn(Ni): A function which returns the number of VMs running on node Ni

Begin

1: Nmin← Ni so that NbOfVMsOn(Ni) is the smallest.

#We try to free the node Nmin.
2: for Each VMi on Nmin do

3: for Each IaaS ′s node Ni with Ni 6= Nmin do

4: if NbOfVMsOn(Ni) < MaxVM then

5: Migrate VMi from Nmin to Ni

6: Break # Goto 2 (continue with another VM on Nmin).
7: end if

8: end for

9: end for

End

two VMs hosting a MySQL replica for application A are located on

N2. This problem comes from the assumption that the allocated

VMs have a fixed size (the same size in our experiment) and that

(i) the application level is not aware of VMs physical locations and

(ii) the IaaS level is not aware of the application level replicas. A

collaboration between both levels could allow the management of

variable size VMs, in order to merge these two VMs (Fig. 10 (g_i))

into a single larger one (this is a perspective to this work).

8. Synthesis of experiments

This section highlights themain points of our described policies

for resource management in virtualized infrastructure.

The management policy in our first scenario is implemented at

the IaaS level only. Each application is deployed with a statically

defined number of replicas (on Soft VMs) which is never changed

(it is supposed to prevent peak loads). At runtime, VM migration

is used to relocate or collocate VMs according to nodes’ loads.

This policy allows to free unused machines, but without dynamic

sizing at the application level, the statically defined number of VMs

implies that needless VMs are running in the IaaS upon underload

conditions.Moreover, these VMs requirememory,which limits the

benefits from consolidation.

Our second scenario experiments the dynamic sizing policy at

the application level (without any consolidation at the virtualized

level). In this scenario, each application is deployed with an

initial (minimal) number of replicas. Each replica is deployed

on a separate Hard VM with guaranteed resources. At runtime,

replicas are dynamically added and removed according to the

load. This policy ensures that VM resources are effectively used

(else they are removed). However, with several applications, when

replicas are removed, it may leave holes (underused nodes) in

the infrastructure. This application level management policy is

therefore (obviously) lacking server consolidation at the IaaS level.

The third scenario is the combination of the two above policies:

resource management is handled independently at the two levels.

In this scenario, the CPU usage for each application is optimized

at the application level thanks to dynamic sizing. Additionally,

a consolidation policy triggers VM migrations to remove holes

created by dynamic sizing. Moreover this consolidation policy

is much simpler than in the first experiment, as it consolidates

allocated VM quotas instead of VMs with varying CPU loads.

Finally, all consolidation algorithms we have described above

can be integrated in to existing cloud platforms. For example, it is

possible in the case of OpenNebula [15] throughout its Scheduler

component.

9. Related work

Following our classification, we present in this section an
overview of research works that have been conducted around
resource management in the cloud computing area.

9.1. IaaS level management

Regarding resource management at the IaaS level, consolida-
tion systems such as GreenCloud [16], Entropy [17,18] aim at sav-
ing energy in a hosting center using powering on/off nodes and
VM migration. In the same vein, the Aneka [19] platform imple-
ments dynamic resource allocation in the context of hybrid clouds:
it allocates new resources from a public cloud when those in a
private desktop grid are overbooked. A deep thinking about VM
consolidation problematic and solutions was done in [20]. This
later formalizes the problem by defining two classes of solutions:
deterministic algorithms and non deterministic algorithms. Re-
garding their formalism, our proposed algorithms are determin-
istic. In addition, [20] formalizes the cost of VM live migration in
the case of a consolidation algorithm. The main purpose of [20] is
not to propose a consolidation algorithm (as we have done), but
to formalize the problematic. [21] studies VMs interference (the
impact of co-locating several VMs which uses the same type of re-
sources, on the same node) when applying a VM consolidation al-
gorithm. It proposes a predictivemodel to avoid this impact.We do
not take this into consideration. [22] presents a work in the same
vein as [21], focusing on n-tier applications. [23] identifies and
evaluates fourteen provisioning and allocation policies in the IaaS.
It presents an overview of existing resource management policies
and also evaluates their efficiency.

All these works address IaaS level consolidation policies. These
VM consolidation algorithms could bring more benefits to cloud
provider (in term of resource utilization) when they are combined
with application sizing in the context ofmaster–slave applications.

9.2. Application level management

Many research works have investigated dynamic resource
allocation for application running in a virtualized hosting center
environment. The major part of these works targets n-tier
applications. [24] presents a dynamic allocation system for n-tier

applications, based on an autonomic computing system and a load
balancer. This latter has a pool of allocated nodes and distributes
the processes over this pool. The main drawback of [24] is that it
relies on a single load balancer for all application, which can be
a bottleneck. Also, its management policy is implemented within
the load balancer which is very intrusive and not generic (our
autonomic management system is not tied to a load balancing
pattern and is therefore more generic). [25] proposed many
strategies in a similar context as [24]: jobs distribution to a pool
of VMs in a cloud infrastructure. These strategies are based on
dynamic VM allocation/deallocation. New VMs are deployed when
others are overloaded and they can be released when idle (our
application level policy for J2EE applications is very similar). IBM’s
Oceano platform [26], as well as SmartScale [27], describes an
automatic framework to scale applications using algorithmswhich
meet those we have presented in this paper. [28] studies resource
management at application level and focuses on the question of
when to increase or decrease application replicas. To answer this
question, it relies on trace analysis to model the behavior of the
application in order to anticipate sizing actions. This method is
well known in the literature under the term ‘‘feedback control LRU
algorithm’’. Even ifwehave presented a proactive algorithm (based
on actual traces), it is possible to implement [28]’s algorithm in our
platform.

In summary, these researchworks about resourcemanagement
in the cloud area are done regardless of each cloud actor.
Moreover they work at the application level and manage only one
application, while we address two cloud levels and the hosting of
multiple customers applications.

9.3. Multi-level management

To the best of our knowledge, very few works have addressed
dynamic resource management at both levels (application and
IaaS) as presented in this paper. [29,30] have proposed a two-level
resource management policy, but their mechanism of resource
provisioning at the IaaS level is only based on the allocation of
additional resources to VMs (vertical scalability). [31] proposes
a solution to the coordination problem between VMs and the
hosted applications when the resource availability have changed
(more CPU or allocated memory for example). The [31]’s approach
uses an hybrid solution (a feedback learning solution combine
with a proactive solution) to prevent the reconfiguration of VMs
and the applications they run. The latter are configured in a
coordinated order: VMs before applications or vice versa. [32]
presents and analyzes different resource management level in the
cloud. The two levels we explore in this paper are mentioned
in few words without a detailed solution. [33] proposes a model
to coordinate different resource management policies involving
the cloud customers and the provider. It defines a set of API and
constraints allowing the customer to specialize resource allocation
and services placement policies within the cloud. The limits of
this work are: (1) the collaboration is done in one direction (from
the customer to the provider); (2) it focuses on the customer’s
application elasticity policy (nothing about VM consolidation for
instance). [34] describes a resource management framework for
virtualized cloud environments. It implements both vertical and
horizontal VM scalability in order to face workload evolution.
The described framework needs to monitor specific application
metrics (response time, throughput, etc.). Therefore, it is restricted
to cloud platforms in which the cloud provider has access to the
hosting applications. It has no interest in the complementarity of
running several resource management policies at different cloud
levels as we have presented in this paper. One of the first research
work which investigates multi-level resource management in a
virtualized cloud is [35]. As we claim in this paper, it proposes

an autonomic system which automates resource management at

two levels: application and IaaS. It also identifies two other levels:

a local-level (VM on the same node), and a global-level (all VM

running within the IaaS). Unlike our work, the different identified

levels are all managed by the single resource management policy.

This implies that the cloud customer and the provider are the same

entity.

10. Conclusions and perspectives

Cloud computing is a recent trend where companies are

externalizing their computing infrastructures in hosting centers,

in order to reduce the cost of their IT. One of the main services that

must be ensured in such a hosting center is resource allocation. For

economic reasons, resources should be allocated (and deallocated)

dynamically to the hosted applications according to their runtime

load.

In this paper, we have investigated resource management

strategies in the cloud computing context, with master–slave

applications. We showed that consolidation of virtual machines at

the IaaS level only with static application configuration incurs the

overhead of needless collocated virtualmachines.We then showed

that dynamic application sizing only requires an IaaS consolidation

in order to avoid holes (unused resources) on the IaaS physical

machines, thus leading to a two-level resource management

strategy.

Relying on a common application scenario, we justified such

a two-level resource management policy that we prototyped and

experienced in a private cloud infrastructure.

A perspective to this work is to improve this two-level resource

management to further reduce collocated application replicas

when the IaaS performs VMs consolidation. As described in this

article, our algorithm relies on fixed size VM allocation and several

VMs for the same tier may be required (according to the load)

and collocated on a node. They could advantageously be replaced

by a single bigger VM on that node. It becomes possible if the

cloud provider has the knowledge of the architecture of customers’

applications. In otherwords, it implies a collaboration between the

two cloud actors (provider and customers), which also implies the

upgrade of APIs commonly used in IaaS platforms.

We also plan to investigate the impact of VMs interferences in

our resource management algorithms. Interferences occur when

collocating on the same node several VMswhich highly use shared

resources whose reservation is not possible. These resources are

disk and network IO.

Acknowledgments

This work is supported by two projects: (1) the French Fonds

National pour la Societe Numerique (FSN) and Poles Minalogic,

Systematic and SCS, through the FSN Open Cloudware project; and

(2) the ANR INFRA (ANR-11-INFR 012 11) under a grant for the

project ctrl-Green.

References

[1] A. Gulati, G. Shanmuganathan, A. Holler, I. Ahmad, Cloud-scale resource
management: challenges and techniques, in: Proceedings of the USENIX
Conference on Hot Topics in Cloud Computing, Portland, Oregon, USA, 2011,
pp. 3–7.

[2] T.C. Chieu, A. Mohindra, A.A. Karve, A. Segal, Dynamic scaling of web
applications in a virtualized cloud computing environment, in: Proceedings of
the IEEE International Conference on e-Business Engineering, Macau, China,
2009, pp. 281–286.

[3] Righscale web site, visited on 2012, October in http://www.rightscale.com.

[4] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Rajamani, W. Zwaenepoel,
E. Cecchet, J. Marguerite, Specification and implementation of dynamic
web site benchmarks, in: IEEE International Workshop on Workload
Characterization, Austin, TX, USA, 2002, pp. 3–13.

[5] Laurent Broto, Daniel Hagimont, Patricia Stolf, Noel Depalma, Suzy Temate,
Autonomic management policy specification in Tune, in: Proceedings of the
2008 ACM Symposium on Applied Computing, Fortaleza, Ceara, Brazil, 2008,
pp. 1658–1663.

[6] R. Buyya, C.S. Yeo, S. Venugopal, Market-oriented cloud computing: vision,
hype, and reality for delivering it services as computing utilities, in: IEEE Inter-
national Conference on High Performance Computing and Communications,
Shanghai, China, 2009, pp. 5–13.

[7] C. Norris, H.M. Cohen, B. Cohen, Leveraging ibm ex5 systems for break-
through cost and density improvements, in: Virtualized x86 Environments.
White Paper, January 2011. ftp://public.dhe.ibm.com/common/ssi/ecm/en/
xsw03099usen/XSW03099USEN.PDF.

[8] Alain Tchana, Suzy Temate, Laurent Broto, Daniel Hagimont, Autonomic
resource allocation in a J2EE cluster, in: IEEE International Conference on
Utility and Cloud Computing, Chennai, India, 2010.

[9] Mohammed Toure, Girma Berhe, Patricia Stolf, Laurent Broto, Noel Depalma,
Daniel Hagimont, Autonomic management for grid applications, in: Proceed-
ings of the Euromicro Conference on Parallel, Distributed and Network-Based
Processing, Toulouse, France, 2008, pp. 79–86.

[10] Aeiman Gadafi, Alain Tchana, Daniel Hagimont, Laurent Broto, Remi Sharrock,
N. De Palma, Energy-QoS tradeoffs in J2EE hosting centers, Int. J. Auton.
Comput. September, (accepted in 2011) (in press).

[11] Qingyang Wang, Simon Malkowski, Deepal Jayasinghe, Pengcheng Xiong,
Calton Pu, Yasuhiko Kanemasa, Motoyuki Kawaba, Lilian Harada, The impact
of soft resource allocation on n-tier application scalability, in: Proceedings
of the 2011 IEEE International Parallel & Distributed Processing Symposium,
Washington, DC, USA, 2011, pp. 1034–1045.

[12] Daniel Hagimont, Sara Bouchenak, Noel De Palma, Christophe Taton,
Autonomic management of clustered applications, in: Proceedings of the IEEE
International Conference on Cluster Computing, Barcelona, September, 2006,
pp. 1–11.

[13] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou,
S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, B. Quetier,
O. Richard, E.-G. Talbi, I. Touche, Grid’5000: a large scale and highly
reconfigurable experimental grid testbed, Int. J. High Perform. Comput. Appl.
20 (2006) 481–494.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.L. Harris, A. Ho, R. Neugebauer,
I. Pratt, A. Warfield, Xen and the art of virtualization, in: Proceedings of the
ACM Symposium on Operating Systems Principles, Bolton Landing, NY, USA,
2003, pp. 164–177.

[15] OpenNebula.org: the open source toolkit for cloud computing, visited on 2012,
October. http://opennebula.org.

[16] L. Liu, H. Wang, X. Liu, X. Jin, W.B. He, Q.B. Wang, Y. Chen, Greencloud: a
new architecture for green data center, in: Proceedings of the International
Conference Industry Session on Autonomic Computing and Communications
Industry Session, Barcelona, Spain, 2009, pp. 29–38.

[17] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, J. Lawall, Entropy: a consoli-
dation manager for clusters, in: Proceedings of the ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments, Washington, DC,
USA, 2009, pp. 41–50.

[18] Pablo Graubner, Matthias Schmidt, Bernd Freisleben, Energy-efficient man-
agement of virtual machines in eucalyptus, in: Proceedings of the IEEE In-
ternational Conference on Cloud Computing, Washington, DC USA, 2011,
pp. 243–250.

[19] C. Vecchiola, R.N. Calheiros, D. Karunamoorthy, R. Buyya, Deadline-driven
provisioning of resources for scientific applications in hybrid clouds with
Aneka, Future Gener. Comput. Syst. 28 (2012) 58–65.

[20] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of
virtual machines in cloud data centers, Concurr. Comput.: Pract. Exper. (2012)
1397–1420.

[21] Qian Zhu, Teresa Tung, A performance interference model for managing
consolidated workloads in QoS-aware clouds, in: Proceedings of IEEE
International Conference on Cloud Computing, Honolulu, HI, USA, 2012,
pp. 170–179.

[22] Simon Malkowski, Yasuhiko Kanemasa, Hanwei Chen, Masao Yamamoto,
Qingyang Wang, Deepal Jayasinghe, Calton Pu, Motoyuki Kawaba, Challenges
and opportunities in consolidation at high resource utilization: non-
monotonic response time variations in n-tier applications, in: Proceedings of
IEEE International Conference on Cloud Computing, Honolulu, HI, USA, 2012,
pp. 162–169.

[23] David Villegas, Athanasios Antoniou, Seyed Masoud Sadjadi, Alexandru Iosup,
An analysis of provisioning and allocation policies for infrastructure-as-a-
service clouds, in: Proceedings of the IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, Ottawa, Canada, 2012, pp. 612–619.

[24] H. Abdelsalam, K. Maly, R. Mukkamala, M. Zubair, D. Kaminsky, Towards
energy efficient change management in a cloud computing environment, in:
Proceedings of the International Conference on Autonomous Infrastructure,

Management and Security: Scalability of Networks and Services, Enschede,
The Netherlands, 2009, pp. 161–166.

[25] S. Genaud, J. Gossa, Cost-wait trade-offs in client-side resource provisioning
with elastic clouds, in: Proceedings of the IEEE International Conference on
Cloud Computing, Washington DC, USA, 2011, pp. 1–8.

[26] L. Zhang, D. Ardagna, SLA based profit optimization in autonomic computing
systems, in: Proceedings of the international conference on Service oriented
computing, New York, NY, USA, 2004, pp. 173–182.

[27] Sourav Dutta, Sankalp Gera, Akshat Verma, Balaji Viswanathan, SmartScale:
automatic application scaling in enterprise clouds, in: Proceedings of IEEE
International Conference on Cloud Computing, Honolulu, HI, USA, 2012,
pp. 423–430.

[28] R. Hu, Y. Li, Y. Zhang, Adaptive resource management in PaaS platform using
feedback control LRU algorithm, in: International Conference on Cloud and
Service Computing, Las Vegas, Nevada, USA, 2011, pp. 11–18.

[29] J. Xu, M. Zhao, J. Fortes, R. Carpenter, M. Yousif, On the use of fuzzy modeling
in virtualized data center management, in: Proceedings of the International
Conference on Autonomic Computing, Jacksonville, Florida, USA, 2007,
p. 25.

[30] Y. Song, H. Wang, Y. Li, B. Feng, Y. Sun, Multi-tiered on-demand resource
scheduling for vm-based data center, in: Proceedings of the IEEE/ACM
International Symposiumon Cluster Computing and theGrid, Shanghai, China,
2009, pp. 148–155.

[31] Xiangping Bu, Jia Rao, Cheng-Zhong Xu, A model-free learning approach
for coordinated configuration of virtual machines and appliances, in:
Proceedings of the IEEE Annual International Symposium on Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems,
Singapore, Singapore, 2011, pp. 12–21.

[32] L.M. Vaquero, L. Rodero-Merino, R. Buyya, Dynamically scaling applications in
the cloud, SIGCOMM Comput. Commun. Rev. 41 (2011) 45–52.

[33] Kleopatra Konstanteli, TommasoCucinotta, Konstantinos Psychas, TheodoraA.
Varvarigou, Admission control for elastic cloud services, in: Proceedings of the
IEEE International Conference on Cloud Computing, Honolulu, HI, USA, 2012,
pp. 41–48.

[34] Nicolas Bonvin, Thanasis G. Papaioannou, Karl Aberer, Autonomic SLA-
driven provisioning for cloud applications, in: Proceedings of the IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, Newport
Beach, CA, USA, 2012, pp. 434–443.

[35] Ying Song, Hui Wang, Yaqiong Li, Binquan Feng, Yuzhong Sun, Multi-tiered
on-demand resource scheduling for VM-based data center, in: Proceedings of
the IEEE/ACM International SymposiumonCluster, Cloud andGrid Computing,
Shanghai, China, 2009, pp. 148–155.

Alain Tchana received his Ph.D. in Computer Science in
2011, at the IRIT laboratory, Institute National Polytech-
nique de Toulouse, France. Since November 2011 he has
been a Postdoctor at the University of Grenoble (UJF/LIG).
He is a member of the SARDES research group at LIG labo-
ratory (UJF/CNRS/Grenoble INP/INRIA). His main research
interests are in autonomic computing, Cloud Computing,
and Green Computing.

Giang Son Tran is a Ph.D. student at the IRIT Laboratory,
Institute National Polytechnique de Toulouse, France,
funded by a scholarship from the Vietnamese government.
He received his B.Sc. degree from the School of Information
and Communication Technology, Hanoi University of
Technology, Vietnam in 2003. His research interests are
grid computing, autonomic management systems, mobile
platforms and software engineering.

Laurent Broto is an Associate Professor at Polytechnic
National Institute of Toulouse, France and amember of the
IRIT laboratory,where he ismember of a groupworking on
operating systems, distributed systems and middleware.
He received a Ph.D. from the ToulouseUniversity, France in
2008. After a postdoctorate at the Oak Ridge National Lab,
Oak Ridge TN, 2009, he took his position as an Associate
Professor at Toulouse in 2009.

Noel DePalma received his Ph.D. in computer science in
2001. Since 2002 he was Associate Professor in computer
science at University of Grenoble (ENSIMAG/INP). Since
2010 he has been a professor at Joseph Fourier University.
He is a member of the SARDES research group at
LIG laboratory (UJF/CNRS/Grenoble INP/INRIA), where
he leads researches on Autonomic Computing, Cloud
Computing and Green Computing.

DanielHagimont is a Professor at the PolytechnicNational
Institute of Toulouse, France and a member of the IRIT
laboratory, where he leads a group working on operating
systems, distributed systems andmiddleware. He received
a Ph.D. from the PolytechnicNational Institute of Grenoble,
France in 1993. After a postdoctorate at the University of
British Columbia, Vancouver, Canada in 1994, he joined
INRIA Grenoble in 1995. He took his position as a Professor
at Toulouse in 2005.

