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1”
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Abstract - We present a short proof of the fact, originally established
by Gagliardo, that every function f ∈ L1(Rn) is the trace of a function
u ∈ W 1,1(Rn × (0,∞)).
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1 A short proof

The aim of this note is to give the “proof from the book” of the fact that,
given a function f ∈ L1(Rn), there exists some u ∈ W 1,1(Rn×(0,∞)) whose
trace is f . This classical result goes back to Gagliardo [3]. The impatient
reader can go directly to the proof of (2), which is the heart of the note.

We start by recalling some definitions and basic facts. Let Ω = R
n ×

(0,∞). For 1 ≤ p < ∞, we consider the Sobolev space

W 1,p(Ω) =

{
u ∈ Lp(Ω);

∂u

∂xj
∈ Lp(Ω), j = 1, . . . , n+ 1

}
,

equipped with the standard norm

‖u‖W 1,p = ‖u‖Lp +

n+1∑

j=1

∥∥∥∥
∂u

∂xj

∥∥∥∥
Lp

.

Here, the partial derivatives are generalized derivatives or, equivalently,
derivatives in the distributions sense. Before Gagliardo’s work [3], the state
of the art concerning existence of traces was the following.

Fact 1 C∞(Ω) ∩W 1,p(Ω) is dense in W 1,p(Ω); see e.g. [2, Corollary 9.8].

Fact 2 For u ∈ C∞(Ω) ∩W 1,p(Ω), set f(x) = u(x, 0), x ∈ R
n. Then we have

the estimate

‖f‖Lp ≤ ‖u‖W 1,p ;

see e.g. [2, Lemma 9.9].
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Fact 3 By the first two facts, the mapping u 7→ f admits a unique linear
continuous extension, the trace operator tr, from W 1,p(Ω) into Lp(Rn).

Fact 4 When p = 2, Aronszajn [1] discovered that the trace operator is not
onto, and that its image is precisely the set

{
f ∈ L2(Rn);

∫

Rn

|ξ|
∣∣∣f̂(ξ)

∣∣∣
2
dξ < ∞

}
;

here, ̂ stands for the Fourier transform. The arguments in [1] rely
on Fourier transform methods, and are difficult to apply to the case
where p 6= 2.

Gagliardo achieved the more complicated task of characterizing trW 1,p(Ω)
for p 6= 2. He obtained two results with different flavors and proofs.

Theorem 1.1 (Gagliardo’s theorem #1) For 1 < p < ∞, we have

trW 1,p(Ω) = W 1−1/p,p(Rn). (1)

Here,

W 1−1/p,p(Rn) =




f ∈ Lp(Rn);

∫∫

Rn
×Rn

|f(x)− f(y)|p

|x− y|n+p−1
dxdy

︸ ︷︷ ︸
I(f)

< ∞





,

endowed with the natural norm

‖f‖W 1−1/p,p = ‖f‖Lp + [I(f)]1/p.

For a proof of this result using only elementary arguments, see e.g. [4,
Chapter 11]. We just mention here the three steps of the proof.

Step 1 For u ∈ C∞(Ω) ∩ W 1,p(Ω) and with f(x) = u(x, 0), one proves the
“direct” estimate

I(f) ≤ C‖u‖p
W 1,p .

Combined with Facts 1 and 2, this leads to the continuity of the trace
operator from W 1,p(Ω) into W 1−1/p,p(Rn).

Step 2 One proves that C∞(Rn) ∩W 1−1/p,p(Rn) is dense in W 1−1/p,p(Rn).
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Step 3 One proves the existence of a linear map

C∞(Rn) ∩W 1−1/p,p(Rn) ∋ f 7→ u ∈ C∞(Ω) ∩W 1,p(Ω)

such that u(x, 0) = f(x) and we have the “inverse” estimate

‖u‖W 1,p ≤ C‖f‖W 1−1/p,p .

By Steps 2 and 3 and by Fact 3, each function f ∈ W 1−1/p,p(Rn) is the
trace of some u ∈ W 1,p(Ω), and in addition we may choose u such that the
mapping f 7→ u is linear continuous.

With moderate work, one may prove that the function

f(x) =

{
1/(|x|n/p| ln x|), if |x| < 1/2

0, if |x| ≥ 1/2

is in Lp(Rn) but not in W 1−1/p,p(Rn). Thus, for 1 < p < ∞, the image of
the trace operator is a strict subspace of Lp(Rn).

This contrasts with the next theorem.

Theorem 1.2 (Gagliardo’s theorem #2) We have trW 1,1(Ω) = L1(Rn).

Here is our proof of this result.
Proof. In view of Fact 3, we have to prove that for each f ∈ L1(Rn)
there exists some u ∈ W 1,1(Ω) such that tru = f . We claim that for every
g ∈ C∞

c (Rn), there exists some v ∈ C∞

c (Ω) such that v(x, 0) = g(x) and

‖v‖W 1,1 ≤ C‖g‖L1 . (2)

Indeed, fix some ζ ∈ C∞

c ([0,∞)) such that ζ(0) = 1, and let

v(x, xn+1) = vδ(x, xn+1) = g(x)ζ(xn+1/δ), with δ > 0.

By straighforward calculations, we have

lim
δ→0

‖vδ‖L1 = 0, (3)

lim
δ→0

∥∥∥∥
∂vδ

∂xj

∥∥∥∥
L1

= 0, j = 1, . . . , n, (4)

and
∥∥∥∥

∂vδ

∂xn+1

∥∥∥∥
L1

= C‖g‖L1 . (5)

By (3)–(5), for sufficiently small δ, v satisfies (2).
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We complete the proof of the theorem as follows. Let f ∈ L1(Rn). Then
there exists a sequence (fj) ⊂ C∞

c (Rn) such that
∑

j fj = f in L1 and

∑

j

‖fj‖L1 ≤ 2‖f‖L1 .1 (6)

For each j, consider (in virtue of (2)) vj ∈ C∞

c (Ω) satisfy vj(x, 0) = fj(x)
and ‖vj‖W 1,1 ≤ C‖fj‖L1 . Set v =

∑
j vj , so that (by (2) and (6)) we have

v ∈ W 1,1(Ω) and ‖v‖W 1,1 ≤ C‖f‖L1 . By Fact 3, we have tr v = f . �

2 Other stories

If we examine the proofs of Theorems 1.1 and 1.2, we see that, in the proof
of Theorem 1.1, the map f 7→ u is linear, while in the case of Theorem 1.2
this is not the case.2 This is not an artefact of the proof. Peetre [6] proved
that there was no linear continuous map

L1(Rn) ∋ f 7→ u ∈ W 1,1(Ω)

such that tr u = f . For a relatively simple proof of this result, see [7, Section
5].

Another unexpected fact arises when we consider higher order spaces. If
we set

W 2,p(Ω) =

{
u ∈ Lp(Ω);

∂u

∂xj
∈ W 1,p(Ω), j = 1, . . . , n+ 1

}
,

then (as suggested by Theorem 1.1) for 1 < p < ∞ we have

trW 2,p(Ω) =

{
f ∈ Lp(Rn);

∂u

∂xj
∈ W 1−1/p,p(Rn), j = 1, . . . , n+ 1

}
;

see e.g. [4, Chapter 11].
On the other hand, Theorem 1.2 suggests that

trW 2,1(Ω) = W 1,1(Rn).

But this is not true! Uspenskĭı found the right answer.3 His discovery was
a significant achievement of another type of trace theory, the one of the
weighted Sobolev spaces. For a modern treatment of this theory, see [5].

1This is a special case of the following trivial fact: if (X, ‖ ‖) is a normed space and if
Y is a dense linear subspace of X, then for each x ∈ X there exists a sequence (yj) ⊂ Y

such that
∑

j yj = x in X and
∑

j ‖yj‖ ≤ 2‖x‖.
2Indeed, in (2) the map v depends not only on g, but also on δ, which need not be the

same for every g.
3The trace of W 2,1(Ω) is the Besov space B1

1,1(Rn). But this goes beyond the scope of
this note.
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