Mohammed Amin Tahraoui

Karen Pinel-Sauvagnat
email: karen.sauvagnat@irit.fr

Cyril Laitang

Mohand Boughanem

Hamamache Kheddouci

Lei Ning

A survey on tree matching and XML retrieval ✩

With the increasing number of available XML documents, numerous approaches for retrieval have been proposed in the literature. They usually use the tree representation of documents and queries to process them, whether in an implicit or explicit way. Although retrieving XML documents can be considered as a tree matching problem between the query tree and the document trees, only a few approaches take advantage of the algorithms and methods proposed by the graph theory. In this paper, we aim at studying the theoretical approaches proposed in the literature for tree matching and at seeing how these approaches have been adapted to XML querying and retrieval, from both an exact and an approximate matching perspective. This study will allow us to highlight theoretical aspects of graph theory that have not been yet explored in XML retrieval.

Introduction

Among all available formats used to represent information (from text to video or audio), the XML (eXtensible Markup Language) [START_REF]World Wide Web Consortium (W3C), Recommendation[END_REF] format is now extensively used. XML was designed by the W3C (World Wide Web Consortium) to "meet the challenges of large scale electronic publishing" and "playing an important role in the exchange of a wide variety of data on the Web and elsewhere" [START_REF]W3C XML Web page[END_REF]. XML is simple and selfdescriptive, and is thus used in a broad suite of Internet or digital libraries applications. The growing number of XML documents leads to the need for appropriate retrieval methods, able to exploit the specific features of this type of documents. Indeed, in XML documents, textual content (data) is hierarchically structured with tags. As opposed to other markup languages (like HTML for example), tags are used to specify semantic information about the content, and not for presentation purposes. Although structure allows to organize content in XML documents, it is not always used with the same intent. XML documents can be either data-oriented, where structure is intensively used to organize data, and where XML components can be seen as database records, or text-oriented, where structure is irregular and documents are designed to be used by humans.

Using structure for retrieval

The hierarchical document structure can be used in the three main steps of the retrieval process [START_REF] Lalmas | Modern Information Retrieval[END_REF]:

• in the querying step, to precisely define the user need (one talks about structure-oriented queries, in contrast to content-oriented ones that are only composed of keyword terms),

• in the indexing step, to index separate elements and their relations,

• in the retrieval step, to focus on the user need, i.e., to return specific required document components (i.e., documents parts) instead of entire documents to users.

Many approaches have been proposed in the literature for XML retrieval. However, most of them propose ab nihilo solutions, although using some concepts of graph theory could be of interest. Indeed, the underlying data model of XML documents allows to consider them as a particular kind of graphs, i.e., trees [START_REF] W3c | World Wide Web Consortium (W3C)[END_REF]. More precisely, they can be considered as labeled trees where nodes are XML elements or atomic data (i.e., text). Edges represent relations between elements. The same representation can be used for structured queries. Considering this data model for retrieval, the retrieval process can thus be seen as a matching problem between query and document trees. answer set may be composed of many results. Efficient methods for storing, indexing and querying XML data are therefore required. Ranking answers may also be of interest to solve the many-answers problem.

Another challenge is how to interpret structural constraints [START_REF] Lalmas | Modern Information Retrieval[END_REF]. The collection of XML documents may not contain documents that fit exactly the structural hints of the query. Therefore, one of the main issue to address is how to select elements that match even approximately the query constraints.

For instance, a user asking for component A child of component B may be satisfied with A as descendant of B. He may also be satisfied with elements having similar tag names than the ones expressed in queries (e.g. a user looking for an element labeled section may be satisfied with a sec element). At last, content condition of queries, if they exist, should be combined with structural ones. In the same way than for structural constraints, content constraints can either be strictly or loosely interpreted. In the latter case, relevance of content should be evaluated and combined with structural relevance to select the final answer set (which may or not be a ranked list).

Aim of the paper and outline

As aforementioned, retrieving XML documents can be considered as a tree matching problem. Although the graph theory proposes numerous algorithms for tree matching, to our knowledge, there are no surveys in the literature that examine this question with this perspective. Some surveys on XML retrieval can however be mentioned, [START_REF] Lalmas | XML Retrieval, Synthesis Lectures on Information Concepts[END_REF][START_REF] Tekli | An overview on XML similarity: background, current trends and future directions[END_REF] or some entries in the Encyclopedia of Database Systems [START_REF]Encyclopedia of Database Systems[END_REF]. These surveys either consider the problem of XML retrieval in a "pure" Information Retrieval point of view [START_REF] Lalmas | XML Retrieval, Synthesis Lectures on Information Concepts[END_REF] (i.e., the focus of the survey is on ranking strategies based on information retrieval methods), or do not focus on XML retrieval but on XML similarity in general [START_REF] Tekli | An overview on XML similarity: background, current trends and future directions[END_REF].

Our aim in this survey is to provide a literature review related to tree matching algorithms in a general perspective and to discuss how these algorithms have been adapted to XML retrieval purpose. We will study the matching from an exact and approximate point of view. Exact matching approaches have been mainly exploited for data-oriented documents, whilst approximate ones are mainly used for text-oriented documents. This survey will also allow us to highlight theoretical aspects that have not been yet explored and that can be of interest for XML retrieval.

The rest of the paper is structured as follows. Section 2 presents some important concepts and background concerning the querying of XML data, including query languages. Section 3 lists the most known algorithms for approximate and exact tree matching. Approaches for XML retrieval using tree matching are then presented in Section 4. Evaluation methods of these approaches are exposed in Section 5. Finally, a discussion about the interest and the impact of the presented approaches is done in Section 6, and some tracks to be explored conclude the paper.

2.

Querying XML data: key points

Before presenting the algorithms proposed by graph theory for tree matching, we recall some backgrounds on XML documents and query languages, and detail issues behind the retrieval of XML information.

Tree representation of XML documents

In XML documents, tags are used to hierarchically and semantically organize information. In the XML document presented in Fig. 1 for example, content is organized within a header and a body tag. The body tag contains section elements, which are in turn composed of title and paragraph elements, etc.

Fig. 2 -XML tree associated with the document of Fig. 1.

An element starts with an opening tag <tag> and ends with a closing tag </tag>. It may contain atomic data (as for example the author element in Fig. 1), other elements (for instance section elements in Fig. 1 contain title and paragraph elements) or a mixture of both (one talk about mixed content). Elements are also called components.

Thanks to this data model, XML documents can be represented as labeled trees [START_REF] W3c | World Wide Web Consortium (W3C)[END_REF]. In an XML tree, the whole document is represented by the root node, elements are represented by internal nodes (i.e., non terminal nodes) and the content itself is in leaf nodes (i.e., terminal nodes). These nodes are linked with edges showing their hierarchical relations. The tree representation of the document in Fig. 1 is given in Fig. 2.

According to the type of their content, XML documents can be categorized into two groups: data-oriented documents or text-oriented documents.

Documents of the first category have a fine granularity, are highly structured and do not contain mixed contents. The order of children in a given element is often without any importance. Elements can be considered as database records (i.e. like couples of key-value), and information content is often small. The document in Fig. 3 is an example of a dataoriented document.

On the other hand, text-oriented documents are often loosely structured: they have an irregular structure and may contain many mixed contents. They are designed to be used and read by humans. Books or scientific articles are good examples of this type of documents. Moreover, the order of elements is very important to understand the document content. For example, in the text-oriented document of Fig. 1, section elements should be read in the good order to make the whole article understandable.

XML retrieval: structured text retrieval vs querying semi-structured data

In the literature, XML document access has been studied according to two different points of view:

• the database one, which considers exact matching of documents and queries and which focuses on efficiency problems. Approaches are more concerned with searching than ranking.

• the information retrieval one, which considers approximate matching of documents and queries and which aims at ranking document components according to their relevance to the query.

Historically, highly structured documents were considered by the database community (which talks about querying semistructured data), whereas the Information Retrieval (IR) community proposed approaches for searching in text-oriented documents (this is what the community calls structured text retrieval).

Boundaries between the two types of approaches are however nowadays not so strict. As stated by Lalmas and Baeza-Yates in [START_REF] Lalmas | Structured document retrieval[END_REF]: "From a terminology point of view, structured text retrieval and querying semi-structured data, in terms of end goals, are the same, i.e., finding elements answering a given query. The difference comes from the fact that in information retrieval, the structure is added, and in databases, the structure is loosened".

In the following, we will thus describe some approaches from the database community (exact matching, Section 4.1) and from the information retrieval community (approximate matching, Section 4.2). In this last case, the set-up of INEX (Initiative for the Evaluation of XML Retrieval) in 2002 [START_REF] Kazai | The INEX evaluation initiative[END_REF] Fig. 3 -Example of data-oriented document.

promoted the development of many proposals. Most of the approaches presented here were thus experimented in this framework.

Whatever the considered approach, the problem is to match a document tree with a query tree. The following paragraph presents the different query languages proposed in the literature for XML retrieval.

2.3.

Query languages

Queries for XML retrieval can be classified into content-only and content-and-structure queries.

Content-only queries are composed of simple keywords terms, and have historically been used in traditional information retrieval. They are also suitable for XML retrieval, in retrieval scenarios where the user do not know the structure of documents he/she is querying. In this paper, we are not interested in such queries, because they do not have structural hints. The main problem for such queries is to find the good granularity of information to be returned to users, and not to match documents and queries trees.

In content and structure queries, users provide content conditions linked with structure hints. They are two reasons that lead a user to add structural constraints to a query [START_REF] Trotman | Processing structural constraints[END_REF]:

• the first one is to reduce the size of the result,

• the second one is to restrict the search to document parts that are supposed to be relevant.

According to Amer-Yahia and Lalmas [START_REF] Amer-Yahia | XML search: languages, INEX and scoring[END_REF], there are three main categories of content and structure query languages:

• tag-based queries allow users to express very simple conditions concerning the tag of the element in which the required content should be. They are of the form: "tag: content condition". For example the query "section: search engines" means that the user is looking for a section element about "search engines".

• path-based queries are based on the XPath [START_REF]W3C, XML Path Language (XPath) 2.0[END_REF] syntax. They include content conditions in a XPath-based syntax. Examples of languages allowing path-based queries are the NEXI language [START_REF] Trotman | Narrowed EXtended XPath I (NEXI)[END_REF] or FuzzyXPath [START_REF] Campi | A fuzzy extension of the XPath query language[END_REF].

Fig. 4 -A twig query.

• clause-based queries have a structure similar to the one of SQL. They contain nested clauses that allow to express the used need. In XML retrieval, XQuery [START_REF]XQuery 1.0 : An XML query language[END_REF] or XQuery fulltext [START_REF]W3C, XQuery 1.0 and XPath 2.0 Full-Text 1.0[END_REF] are examples of clause-based queries.

If we purely consider the structure conditions of queries, XQuery and XPath [START_REF]XQuery 1.0 : An XML query language[END_REF][START_REF]W3C, XML Path Language (XPath) 2.0[END_REF] queries can be basically divided into two main groups: path queries and twig queries. Path queries are simple queries which contain path expressions, i.e., child axis "/" and descendant axis "//". Twig queries are represented as node-labeled twig patterns, i.e., small trees. They are also named tree pattern queries. Fig. 4 illustrates an example of twig query.

Since 2000, a lot of algorithms [START_REF] Zhang | On supporting containment queries in relational database management systems[END_REF][START_REF] Al-Khalifa | Structural joins: a primitive for efficient XML query pattern matching[END_REF][START_REF] Bruno | Holistic twig joins: optimal XML pattern matching[END_REF][START_REF] Lu | Efficient processing of XML twig patterns with parent child edges: a look-ahead approach[END_REF][START_REF] Lu | From region encoding to extended Dewey: on efficient processing of XML twig pattern matching[END_REF][START_REF] Chen | Twig2Stack: bottom-up processing of generalizedtree-pattern queries over XML documents[END_REF][START_REF] Qin | Twiglist: make twig pattern matching fast[END_REF][START_REF] Haw | TwigX-Guide: an efficient twig pattern matching system extending dataguide indexing and region encoding labeling[END_REF][START_REF] Shasha | Atreegrep: approximate searching in unordered trees[END_REF][START_REF] Zezula | Tree signatures and unordered XML pattern matching[END_REF][START_REF] Wu | XML twig pattern matching using version tree[END_REF][START_REF] Yao | A fast tree pattern matching algorithm for XML query[END_REF] have been proposed to process twig queries in an exact matching point of view. A short survey of these algorithms is presented in Section 4.1.

We describe in the following section three representative languages for the families they belong to: NEXI, XQuery and XQuery full-text.

NEXI

The NEXI query language was introduced in the context of the INEX evaluation campaign in 2004 [START_REF] Trotman | Narrowed EXtended XPath I (NEXI)[END_REF]. NEXI is a subset of XPath, where an about function is added to express content conditions. Authors argue that this is the simplest query language that could possibly work.

Two types of queries can be expressed in NEXI: CO (Content Only) and CAS (Content and Structure) Queries. As CO queries are composed of simple keywords terms, they will not be considered here. An example of CAS query can be: This twig query means that the user is looking for a section (which is called target element) about "search engines" contained in an article (called support element) which should contain references about "information retrieval". The about function contains a content condition, expressed as a CO query ("information retrieval" or "search engines" in our example).

The NEXI query language has been extended for question answering [START_REF] Ogilvie | Retrieval using structure for question answering[END_REF], searching in heterogeneous collections (i.e., collections containing documents having a different DTD) and multimedia retrieval [START_REF] Trotman | NEXI, now and next[END_REF].

XQuery

Historically, before the W3C recommendation for XQuery [START_REF]XQuery 1.0 : An XML query language[END_REF], many query languages have been proposed in the literature for searching in XML documents. We can cite Un-QL [START_REF] Buneman | A query language and optimization techniques for unstructured data[END_REF], XML-QL [START_REF] Levy | XMLQL: a query language for XML[END_REF], XQL [START_REF] Robie | XML query language (XQL)[END_REF] or Quilt [START_REF] Chamberlin | Quilt: an XML query language for heterogeneous data sources[END_REF]. XQuery is inspired from all of them.

XQuery queries are FLWOR (For Let Where Order by Return) expressions. The for clause defines one or more variables and iterates over elements resulting of an expression. The let clause also defines one or more variables, but does not iterate on them. The optional where clause expresses a selection condition. At last, before constructing the result in the return clause, the optional order by clause can be used to specify a list of sorting criteria. An example of XQuery query can be found in [START_REF] Chamberlin | XML Query Use Cases[END_REF]:

<bib> {
for $b in doc("http://bstore1.example.com/bib.xml")/bib/book where $b/publisher = "Addison-Wesley" and $b/@year > 1991 return <book year="{ $b/@year}"> { $b/title } </book> } </bib> This query finds books published after 1991 by Addison-Wesley. Results are <book> elements containing <title> elements of the corresponding resulting books and having the publication date as attribute.

XQuery Full-text

XQuery Full-text [START_REF]W3C, XQuery 1.0 and XPath 2.0 Full-Text 1.0[END_REF] is a proposition of the W3C to extend the XQuery language to full-text search. Full-Text-oriented functionalities of XQuery Full-text are for example token and phrase search, token ordering or token proximity.

One of the most important feature of the language is that it allows to rank results by relevance, and that the user can define its own relevance. This is also possible to use tools such as stemming, thesauri, stop-words or regular expressions [START_REF] Botev | Encyclopedia of Database Systems[END_REF].

As example, let us consider the following Xquery full-text query, taken from [START_REF]W3C, XQuery 1.0 and XPath 2.0 Full-Text 1.0 Use Cases[END_REF]:

for $book in doc("http://bstore1.example.com/full-text.xml") /books/book let $booktext := $book/content [. contains text ("conduct" ftand "usability" ftand "tests" distance at most 10 words) using stemming] let score $s := $booktext contains text (("measuring" ftand "success" distance at most 4 words) weight 1.8) using stemming where $booktext order by $s descending return ($book/metadata/title, $booktext) This query finds books which discuss "conducting usability tests". Those mentioning "measuring success" are returned first. The following features are used: stemming, unordered distance (no more than 10 words between "conduct" and "usability" and between "usability" and "tests" are for example required), and weight declaration on optional words to impact the scoring and sorting.

As seen in this section, there are a lot of possible languages to search in XML documents collection. As stated in [START_REF] Lalmas | XML Retrieval, Synthesis Lectures on Information Concepts[END_REF], the complexity and expressiveness of these languages increase from tag-based to clause-based queries. All languages have their own properties and potential uses. They all need a learning phase to be able to use them, but with different degree of ease. For example, the information retrieval-oriented NEXI language is introduced as "the simplest query language that could possibly work" [START_REF] Trotman | Narrowed EXtended XPath I (NEXI)[END_REF], whereas the database-oriented XQuery Full-text query language propose a very complete but hard to learn syntax for end-user.

To overcome this problem of complexity for end users, graphical query languages were proposed [START_REF] Van Zwol | Bricks: the building blocks to tackle query formulation in structured document retrieval[END_REF][START_REF] Ceri | XML-GL: a graphical language for querying and restructuring XML documents[END_REF], but they are far from being extensively used.

Whatever the query language used, content and structure queries, in the same manner than XML documents, can be represented as labeled trees. The retrieval process can thus be summarized to a tree matching process. The following section describes state-of-the-art algorithms for exact and approximate tree matching.

Algorithms for tree matching

In order to state the problem of tree matching, we first define some concepts related to labeled tree and their components. A labeled tree is denoted as T = (V, E, r, µ), where

V = {v 1 , v 2 , . . . , v n } is a finite set of nodes, E = {(u, v)|u, v ∈ V} is a set of edges. r ∈ V is a distinguished node called the root,
and µ is a labeling function which maps each node of T to one of labels in a finite set L = {l 1 , l 2 , . . . , l k }. For simplicity, in the remaining of this paper, we call a rooted labeled tree simply as a tree. We define the level l(u) of node u as the number of edges along the unique path between itself and the root.

The depth of a rooted tree is the maximum level of any vertex in the tree. Given two adjacent nodes u and v in a rooted tree, with l(v) > l(u), v is called the child of u, conversely, u is a parent of v. A node of T without children is called a leaf, and the other nodes are called internal nodes. Nodes having the same parent are called siblings. Finally, an ordered tree is a rooted tree for which an ordering is specified for the children of every node, and it is unordered otherwise. Throughout this section, we use the following notations:

• T 1 and T 2 are two rooted trees to be matched, • d i , l i and △ i respectively denote the depth, the number of leaves and the maximum degree of T i (i.e., the maximum degree of its vertices, where the degree of a vertex is the number of edges incident to the vertex), where i = 1, 2.

This section reviews the exact and approximate tree matching algorithms. In the first part, we give a brief overview of algorithmic results in exact tree matching. Most attention in the literature has been devoted to approximate tree matching which is described in Section 3.2.

Exact tree matching

We can define the exact tree matching problem as follows. Let target

T 1 = (V 1 , E 1 , r 1 , µ 1) and pattern P = T 2 = (V 2 , E 2 , r 2 , µ 2)
be two ordered labeled trees. T 2 matches T 1 at node r 1 if there exists a mapping from nodes of T 2 into the nodes of T 1 such that:

1. the root of T 2 maps to r 1 ,

2. if v 2 ∈ V 2 maps to v 1 ∈ V 1 , then µ 1 (v 1) = µ 2 (v 2), 3. if v 2 ∈ V 2 maps to v 1 ∈ V 1 and v 1 is not a leaf, then each child of v 2 maps to some child of v 1 .
Fig. 5 shows an example of tree pattern matching between pattern tree P and target tree T, where the one-to-one mappings are represented by dotted lines. The tree pattern matching problem has been extensively studied and has many important applications including term rewriting systems, transformational programming systems, code generator-generators and a variety of functional languages with equational function definitions (see [START_REF] Hoffmann | Pattern matching in trees[END_REF]). The following is a brief overview of general exact tree pattern matching algorithms.

Given tree pattern P and target T of size m and n respectively where m ≤ n, a native tree pattern matching algorithm takes O(mn) in the worst case. The basic idea of this algorithm consists in visiting all vertices of T in pre-order walk. For each visited vertex v, the algorithm calls a special recursive procedure to test for possible occurrence of P at the vertex v. The recursive procedure is terminated when a mismatch is detected.

Several attempts were made to improve the naive O(mn) step algorithm. These attempts can be classified into two general categories: namely traversal approaches and decomposition approaches.

Traversal approaches

In [START_REF] Hoffmann | Pattern matching in trees[END_REF], Hoffmann and O'Donnell proposed two traversing methods, called bottom-up and top-down matching algorithms with the same worst case bound, where bottom-up algorithm traces the tree from the leaves to the root and top-down algorithm works by traversing the tree from the root to leaves. Top-down algorithm is efficient in space, but in nonlinear time. The main idea of this algorithm is to encode the root-to-leaf paths as strings. It then finds all occurrences of each string in the target tree according to the string pattern matching algorithm of Aho and Corasick [START_REF] Aho | Efficient string matching: an aid to bibliographic search[END_REF]. On the other hand, the key idea of the bottom-up technique is to find, for each node in the target tree, all patterns and all parts of patterns that match this node. Bottom-up algorithm performs in linear time. However, extra storage space is needed during matching to store and establish the table encoding of all nodes in the target tree. Hoffmann and O'Donnell stimulated a number of additional studies offering heuristic for space improvements. Chase method [START_REF] Chase | An improvement to bottom-up tree pattern matching[END_REF] have received considerable attention in the literature. This method was thought to improve bottomup solutions presented by Hoffmann and O'Donnell using the deeper structure of the pattern set P to reduce the computational cost of bottom-up algorithm. Chase proved that this transition map better utilizes space than Hoffmann and O'Donnells. Cai et al. [START_REF] Cai | More efficient bottom-up tree pattern matching[END_REF] improved the preprocessing time and space complexities of Chase bottom-up algorithm. The main modification introduced in Chase method is that the preprocessing can be done incrementally with respect to additions and deletions of pattern tree.

Decomposition approaches

The basic idea of these approaches is to decompose the tree into small pieces in order to facilitate the matching process. In [START_REF] Burghardt | A tree pattern matching algorithm with reasonable space requirements[END_REF], Burghardt proposed a tree pattern algorithm, which consists of two phases. In the first phase a matching automaton is constructed from a given pattern set. For this, it generalizes the string matching algorithm of Aho and Corasick [START_REF] Aho | Efficient string matching: an aid to bibliographic search[END_REF] such that each pattern is decomposed depending on the position ordering relation. Then, these patterns are merged into an automaton. In the second phase, one or more target trees are fed into the automaton, by traversing through the automaton according to the target trees.

Kosaraju [START_REF] Kosaraju | Efficient tree pattern matching[END_REF] proposed a new algorithm with improved complexity bound from O(nm) to (nm 4). This algorithm is based on three new techniques: suffix tree of a tree, the convolution of a tree and a string, and partitioning of trees into chains and anti-chains. Dubiner et al. [START_REF] Dubiner | Faster tree pattern matching[END_REF] improved Kosaraju's algorithm by discovering and exploiting periodical strings appearing in the pattern. They obtained a bound of (nm 1 2). Cole and Hariharan [START_REF] Cole | Tree pattern matching and subset matching in randomized o(n log 3 m) time[END_REF] introduced and proposed an efficient algorithm for the subset Matching problem. The goal of this problem is to report all occurrences of a pattern string P of length m in a string T of length n. Then the tree pattern matching has been reduced to a number of smaller subset matching problem. Combining this reduction with the subset matching algorithm take an o(n log 3 m) time randomized algorithm for the tree pattern matching problem. Later the same authors improved the reduction time complexity [START_REF] Cole | Tree pattern matching to subset matching in linear time[END_REF].

Approximate tree matching algorithms

Approximate tree matching is the process of determining the best possible match of one tree against another one. There are two types of approximate tree matching: the unordered tree matching problem and the ordered tree matching problem. The tree matching in these two types refers to the task of measuring the dissimilarity between trees. One of the most known methods for evaluating the dissimilarity is the edit distance metric. In a nutshell, the tree-edit distance metric is the natural generalization of the well-known string edit distance problem. The similarity of edit-distance between two trees T 1 and T 2 is defined as the minimum cost sequence of basic edit operations required to transform T 1 into T 2 . There are three basic edit operations: node insertion, node deletion and node relabeling. We describe each of these operations in detail below. Based on the concept of tree edit operations, Bille [START_REF] Bille | A survey on tree edit distance and related problems[END_REF] derived three main groups of algorithms for tree matching: tree edit distance approaches, tree inclusion and the tree alignment distance. The ordered tree inclusion problem has been recognized as an important query primitive in XML databases [START_REF] Schlieder | Querying and ranking XML documents[END_REF][START_REF] Yang | Finding hot query patterns over an XQuery stream[END_REF][START_REF] Schlieder | Approximate tree embedding for querying XML data[END_REF], since an XML document can be viewed as a rooted, ordered and labeled tree. In the rest of this section, we extend the survey of Bille [START_REF] Bille | A survey on tree edit distance and related problems[END_REF] by adding the current trends in approximate ordered tree matching algorithms.

Tree edit distance

The tree edit distance between two trees T 1 and T 2 is defined as the minimum cost sequence of edit operations that turns T 1 into T 2 . In the literature, Tai [START_REF] Tai | The tree-to-tree correction problem[END_REF] was the first to propose a recursive algorithm for evaluating the edit distance between two given ordered labeled trees T 1 and T 2 . The resulting algorithm has a complexity of

O(|T 1 | • d 2 1 • |T 2 | • d 2 2
) time and space. This algorithm was improved by Zhang and Shasha [START_REF] Zhang | Simple fast algorithms for the editing distance between trees and related problems[END_REF]

. It runs in O(|T 1 |•|T 2 |•min{l 1 , d 1 }•min{l 2 , d 2 }) time and O(|T 1 |•|T 2 |) space.
In [START_REF] Klein | Computing the edit-distance between unrooted ordered trees[END_REF], Klein developed a faster algorithm which has better time complexity in the worst case. In this algorithm, the tree edit distance problem can be solved in

O(|T 1 | 2 • |T 2 | • log |T 2 |) time and O(|T 1 |•|T 2 |) space. Chen [56] presented a new bottom-up recurrent approach which runs in O(|T 1 | • |T 2 | + l 2 1 • |T 2 | + l 5 2 1 • l 2) time and O((|T 1 | + l 2 1) • min(l 2 , d 2) + |T 2 |) space.
Dulucq and Touzet [START_REF] Dulucq | Decomposition algorithms for the tree edit distance problem[END_REF] studied the behavior of dynamic programming methods given in [START_REF] Klein | Computing the edit-distance between unrooted ordered trees[END_REF][START_REF] Zhang | Simple fast algorithms for the editing distance between trees and related problems[END_REF]. They showed that those two algorithms can be described as decomposition strategies. They then introduced the definition of cover strategies, that are natural and easy to handle extensions of Klein and Zhang-Shasha algorithms. In this framework, a novel algorithm has been provided to minimize the number of distinct recursive calls. By construction, this algorithm involves less relevant forests than Zhang-Shasha and Klein strategies. [START_REF] Demaine | An optimal decomposition algorithm for tree edit distance[END_REF] proposed a new algorithm for computing the tree edit distance that falls into the same decomposition strategy framework of [START_REF] Dulucq | Decomposition algorithms for the tree edit distance problem[END_REF][START_REF] Klein | Computing the edit-distance between unrooted ordered trees[END_REF][START_REF] Zhang | Simple fast algorithms for the editing distance between trees and related problems[END_REF]. In the worst-case, this algorithm requires

So, it is at most in O(|T 1 | • |T 2 | • log |T 1 | • log |T 2 |) time complex- ity in the worst case, and in O(|T 1 | • |T 2 |) in average. Demaine et al.
O(|T 1 | • |T 2 | • (1 + log |T 1 | |T 2 |)) time and O(|T 1 | • |T 2 |) space.
Many other solutions have been developed, see [START_REF] Bille | A survey on tree edit distance and related problems[END_REF] for survey. Among all these algorithms, Klein algorithm and the decomposition strategy are the fastest in terms of worst case time and space complexity.

Tree inclusion

Given two labeled rooted trees P and T, the tree inclusion problem is to locate the subtrees of T that are instances of P. We can see that the tree inclusion is a particular case of the tree edit distance problem. In fact, the tree pattern P is included in T if we can obtain P from T by a sequence of delete operations. Fig. 7 shows an example of tree inclusion such that the tree P is included in the tree T by deleting the nodes labeled d, e, f and g.

The tree inclusion problem was originally posed by Knuth [START_REF] Knuth | The Art of Computer Programming, Volume i: Fundamental Algorithms[END_REF]. There are two types of inclusion problems: the Fig. 7 -An example of tree inclusion matching.

unordered tree inclusion problem, where the order among siblings of the pattern nodes is not important, and the ordered tree inclusion problem, where the left-to-right order among siblings is important. Kilpelainen and Mannila [START_REF] Kilpelainen | Ordered and unordered tree inclusion[END_REF] studied the two versions of this problem. They showed that this kind of problem is NP-complete for unordered tree.

An injective function f from the nodes of P to the nodes of T is an embedding of P into T, if it preserves labels and ancestorship. For every pair of nodes u, v in P, we require that:

1. f (u) = f (v) if and only if u = v. 2. the two vertices u and f (u) have the same label. 3. u is an ancestor of v in P if and only if f (u) is an ancestor of f (v) in T.
We say that pattern P is an included tree of T, and T is an including tree of P, if there is an embedding of P into T.

The ordered tree inclusion problem results from the unordered tree inclusion by fixing the left-to-right order of nodes. Indeed, an embedding of a tree P into a tree T is an ordered embedding of P into T if and only if the sibling conditions are hold i.e., the vertex v is the left of

u in P iff f (v) is the left of f (u) in T.
With dynamic programming method, Kilpelainen and Mannila [START_REF] Kilpelainen | Ordered and unordered tree inclusion[END_REF] proposed the first polynomial tree inclusion algorithm using O(|P| • |T|) time and space. Most of the later improvements are essentially based on a dynamic programming technique from the original algorithm of [START_REF] Kilpelainen | Ordered and unordered tree inclusion[END_REF]. The basic idea behind this algorithm is the following: for all pairs (v, u) ∈ V(P) × V(T), let v 1 , v 2 , . . . , v p be the children of v and u 1 , u 2 , . . . , u q be the children of u. To decide if the subtree rooted at a node v can be included in the subtree rooted at a node u, we try to find a sequence of numbers 1

≤ x 1 ≤ x 2 ≤ • • • ≤ x q ≤ q
such that the subtree rooted at a node v k can be included in the subtree rooted at a node u xk for all k, 1 ≤ k ≤ p.

Richter [START_REF] Richter | A new algorithm for the ordered tree inclusion problem[END_REF] proposed a new algorithm using O(

| P | • |T| + m(P, T) • d T)
time, where P is the set of the labels of the tree pattern and m(P, T) is the number of pairs (v, u) ∈ V(P) ×

V(T) with Label(v) = Label(u). The space complexity of this algorithm is O(| P | • |T| + m(P, T)). Hence, if the number of matches is small, the time complexity of this algorithm is better than O(|T| • |P|).

In [START_REF] Chen | More efficient algorithm for ordered tree inclusion[END_REF], a more complex algorithm was presented using O(|T| • l P) time and O(l P • min{d T , l T }) space. In [START_REF] Bille | The tree inclusion problem: in optimal space and faster[END_REF], a bottomup algorithm is proposed. The main idea of this algorithm is to construct a data structure on T supporting a small number of procedures. Then three algorithms are proposed for each data structure, the combining of these three algorithms give a time complexity bounded by the minimum of the following three values:

1. |P|•|T| log(|T|) . 2. l P • |T| • log log(|T|). 3. l P • |T| • log log(|T|).
Moreover, the space of this algorithm is improved by a linear factor O(|T| + |P|). This will make the algorithm more efficient and faster to query a large XML document. Chen and Chen [START_REF] Chen | A new tree inclusion algorithm[END_REF] proposed a new tree inclusion algorithm, which requires O(|T|•min{d P , l P }) time and O(|T|+|P|) space. However, there are flaws in the time complexity analysis of this algorithm. These flaws are shown by two counterexamples presented in [START_REF] Cheng | On Chen and Chen's new tree inclusion algorithm[END_REF]. Hence the time complexity of Chen and Chen algorithm is not polynomial. More recently, Chen and Chen [START_REF] Chen | A new top-down algorithm for tree inclusion[END_REF] revisited their work and present a new top-down algorithm to remove any redundancy of [START_REF] Cheng | On Chen and Chen's new tree inclusion algorithm[END_REF]. The time complexity of the new one is bounded by O(|T| • min{d P , l P }). The space requirement remains with O(|T| + |P|).

Tree alignment distance

The tree alignment problem was introduced as natural generalizations of string edit distance [START_REF] Wagner | The string-to-string correction problem[END_REF]. It is a special case of the tree editing problem, where all insertion operations must be done before any deletions. An alignment AL between two labeled trees T 1 and T 2 is obtained by first performing insert operations of nodes labeled with the null symbol λ (called space) on the two trees so they become isomorphic, and then overlaying the first augmented tree on the second. A cost is defined for each pair of opposing labels in AL. The cost of AL is the sum of costs of all opposing labels in AL. The matching problem here is to find an alignment with the minimum cost. Fig. 8 shows an example (from [START_REF] Jiang | Alignment of trees-an alternative to tree edit[END_REF]) of an ordered alignment.

Jiang et al. [START_REF] Jiang | Alignment of trees-an alternative to tree edit[END_REF] were the first to propose an ordered tree alignment algorithm, that studies algorithms for both ordered and unordered version of this problem. Kuboyama et al. [START_REF] Kuboyama | A theoretical analysis of alignment and edit problems for trees[END_REF] showed that the alignment problem for two unordered trees has no polynomial time absolute approximation algorithm, unless P = NP. We survey here the main algorithms of ordered tree alignment problem. The algorithm of Jiang et al. [START_REF] Jiang | Alignment of trees-an alternative to tree edit[END_REF] uses

O(|T 1 | • |T 2 | • (△ T 1 + △ T 2)
2) time and space. Hence, for small degree trees, this algorithm is in general less expressive than the best known algorithm for the edit distance. Jansson and Lingas [START_REF] Jansson | A fast algorithm for optimal alignment between similar ordered trees[END_REF] presented a fast algorithm for ordered alignment between two similar trees. This algorithm can construct an optimal alignment of T 1 and

T 2 using at most k spaces in O((|T 1 | + |T 2 |) • log (|T 1 | + |T 2 |) • (△ T 1 + △ T 2) 4 • k 2) time.
Wang and Zhao [START_REF] Wang | Parametric alignment of ordered trees[END_REF] proposed a new ordered tree alignment algorithm which is based on the constrained edit distance. This algorithm trees runs in

O(|T 1 | • |T 2 |(△ T 1 + △ T 2) 2) time and requires O(log(|T 1 |) • |T 2 | • (△ T 1 + △ T 2) • △ T 1) space.

Summary

Table 1 recalls the time and space complexities of the algorithms covered in this section.

To summarize, the problem of tree matching has been well studied in the literature. We provided in this section an overview of important algorithms. Due to the structure of XML documents, it seems obvious and natural to use those tree matching algorithms for XML retrieval. However, most Table 1 -The most important approximate ordered tree matching algorithms and their complexities.

Algorithm Time Space

Tree edit distance

Tai [53] O(|T 1 | • |T 2 | • d 2 1 • d 2 2) O(|T 1 | • |T 2 | • d 2 1 • d 2 2) Zhang and Shasha [54] O(|T 1 | • |T 2 | • min{d 1 , l 1 } • min{d 2 , l 2 }) O(|T 1 | • |T 2 |) Klein [55] O(|T 1 | 2 • |T 2 | • log |T 2 |) O(|T 1 | • |T 2 |) Dulucq and Touzet [57] O(|T 1 | • |T 2 | • log |T 1 | • log |T 2 |) O(|T 1 | • |T 2 |) Demaine et al. [58] O |T 1 | • |T 2 | • 1 + log |T 1 | |T 2 | O(|T 1 | • |T 2 |) Chen [56] O(|T 1 | • |T 2 | + l 2 1 • |T 2 | + l 5 2 1 • l 2) O((|T 1 | + l 2 1) • min(l 2 , d 2) + |T 2 |)

Tree inclusion problem

For unordered trees [START_REF] Kilpelainen | Ordered and unordered tree inclusion[END_REF] NP-Complete

Kilpelainen and Mannila

[60] O(|P| • |T|) O(|P| • |T|) Richter [61] O(P •|T| + m(P, T) • d T) O(P •|T| + m(P, T)) Chen [62] O(|T| • l P) O(l P • min{d T , l T })
O(|T 1 | • |T 2 | • (△ T 1 + △ T 2) 2) O(|T 1 | • |T 2 | • (△ T 1 + △ T 2
) 2) Jansson and Lingas [START_REF] Jansson | A fast algorithm for optimal alignment between similar ordered trees[END_REF] O((|T

1 | + |T 2 |) • log(|T 1 | + |T 2 |) • (△ T 1 + △ T 2) 4 • k 2) O((|T 1 | + |T 2 |) • log(|T 1 | + |T 2 |) • (△ T 1 + △ T 2) 4 • k 2) Wang and Zhao [71] O(|T 1 | • |T 2 |(△ T 1 + △ T 2) 2) O(log(|T 1 |) • |T 2 | • (△ T 1 + △ T 2) • △ T 1)
of the state-of-art algorithms are given for general trees.

They cannot be directly used on specific trees as for instance XML documents. In order to obtain an effective and efficient algorithm for XML query processing, we need to take into account the properties and the specificity of the XML trees.

In fact, there are different requirements that lead to various XML tree matching algorithms different than the traditional tree matching problem presented in this section:

• most of the existing tree matching algorithms rely on the assumption that the target tree can be held entirely in main memory, which is not valid for XML tree algorithms. The latter mainly operate on minimizing access to the input data tree when performing matching operations.

• most exact matching algorithms attempt to find one matching between the pattern tree and target tree, while exact XML tree matching require the output of all possible matching which is a core operation in XML query processing.

• the XML tree pattern matching becomes more complex than the traditional tree matching due to the existence of ancestor-descendant edges in the pattern tree.

Tree matching and XML retrieval

We provide in this section a survey of current development of tree matching algorithms related to XML retrieval. Its content is divided into two main parts. The first covers the exact algorithms for finding all twig patterns in an XML database. The second part describes and illustrates in detail the approximate algorithms. Note that a significant number of exact tree matching improvements have been proposed since the proposition of Zhang et al. [START_REF] Zhang | On supporting containment queries in relational database management systems[END_REF]. This explains that Section 4.1 is much larger than Section 4.2. Table 2 summarizes the XML tree matching approaches presented in this section regarding the type of collection on which they are applied and the tree matching algorithm they use.

Exact tree-matching algorithms for XML retrieval

As we mentioned in Section 2, XML uses a tree-structured model for representing data and twig patterns for expressing queries. Finding all occurrences of such a twig pattern [START_REF] Hoffmann | Pattern matching in trees[END_REF][START_REF] Chase | An improvement to bottom-up tree pattern matching[END_REF][START_REF] Cai | More efficient bottom-up tree pattern matching[END_REF] One-phase holistic twig matching approaches: [START_REF] Chen | Twig2Stack: bottom-up processing of generalizedtree-pattern queries over XML documents[END_REF][START_REF] Jiang | Efficient processing of XML twig pattern: a novel one-phase holistic solution[END_REF][START_REF] Li | Fast matching of twig patterns[END_REF][START_REF] Qin | Twiglist: make twig pattern matching fast[END_REF].

Approximate Content and structure query

Text-oriented Tree edit distance [START_REF] Tai | The tree-to-tree correction problem[END_REF][START_REF] Dulucq | Decomposition algorithms for the tree edit distance problem[END_REF][START_REF] Demaine | An optimal decomposition algorithm for tree edit distance[END_REF] Edit distance [START_REF] Popovici | SIRIUS: a lightweight XML indexing and approximate search system at INEX 2005[END_REF], Strict use of the algorithm [START_REF] Le | Utilisation de la distance d'édition pour l'appariement sémantique de documents XML[END_REF], Tree summaries [START_REF] Laitang | XML information retrieval through tree edit distance and structural summaries[END_REF], Relaxation [START_REF] Damiani | Fuzzy techniques for XML data smushing[END_REF], Optimal cover strategy [START_REF] Laitang | Utilisation de la théorie des graphes et de la distance d'édition pour la recherche d'information sur documents XML[END_REF]. Tree inclusion [START_REF] Knuth | The Art of Computer Programming, Volume i: Fundamental Algorithms[END_REF][START_REF] Kilpelainen | Ordered and unordered tree inclusion[END_REF][START_REF] Richter | A new algorithm for the ordered tree inclusion problem[END_REF][START_REF] Chen | A new top-down algorithm for tree inclusion[END_REF] [52,50] Data-oriented Tree edit distance [START_REF] Tai | The tree-to-tree correction problem[END_REF][START_REF] Dulucq | Decomposition algorithms for the tree edit distance problem[END_REF][START_REF] Demaine | An optimal decomposition algorithm for tree edit distance[END_REF] Relaxation [START_REF] Alilaouar | Interrogation flexible de documents semistructurés[END_REF] in an XML collection is clearly a core operation in XML query processing. There has been a great deal of interest in recent years to overcome efficiently this problem. Existing XML twig pattern algorithms can be classified into twophase algorithms (decomposition approaches) and one-phase algorithms (traversal approaches). However, most of the proposed approaches in the literature are interested in structural properties of queries and can be classified into four groups as follows:

• structural join approaches,

• holistic twig join approaches,

• sequence matching approaches,

• other important exact XML tree algorithms.

In the following, we present an overview of the main algorithms and results of each group.

Structural join approaches

In this section, we review the join based approach, a very important native idea, which usually includes three parts:

(1) decomposition, (2) matching and (3) merging. Firstly, a twig pattern is decomposed into a set of basic parent-child and ancestor-descendant relationships between pairs of nodes. In the second phase, each binary relationship is separately executed using structural join techniques and its intermediate results are stored for further processing. The final result is formed by merging these intermediate results.

Indexing and node encoding is critical for the structural join approaches. The most common is the containment labeling scheme [START_REF] Zhang | On supporting containment queries in relational database management systems[END_REF]. This labeling scheme (called region encoding) uses a region code (start, end, level) to represent the position of an XML element in the data tree where start and end are generated by performing a pre-order traversal procedure of the data tree; level is the nesting depth of the element in the data tree. The positional information which follows nodes must allow decision of ancestor-descendant and parent-child relationships. Based on this labeling scheme, Zhang et al. [START_REF] Zhang | On supporting containment queries in relational database management systems[END_REF] proposed the multi-predicate merge join (MPMGJN) algorithm, which is the first structural join to find all occurrences of the basic structural relationships. This mechanism is an extension of the classical mergejoin algorithm developed in relational query optimizers for equi-joins. The results in Zhang showed that for many XML queries, MPMGJN is more than an order-of-magnitude faster than the standard Relational Database Management System (RDBMS) join implementations. Al-Khalifa et al. [START_REF] Al-Khalifa | Structural joins: a primitive for efficient XML query pattern matching[END_REF] took advantage of the same labeling scheme of XML elements to devise I/O and CPU optimal join algorithms for matching binary structural relations against an XML document.

The main problem of the approaches mentioned above is that they may generate large and possibly unnecessary intermediate results, since the join results of individual binary relationships may not appear in the final results.

Holistic twig join approaches

Until now, the holistic twig join approach was regarded as the most efficient family in the literature. Bruno et al. [START_REF] Bruno | Holistic twig joins: optimal XML pattern matching[END_REF] proposed the first holistic XML twig pattern matching algorithm to avoid producing large intermediate results. This approach constituted the major attempt for several subsequent works in order to make the twig pattern matching very efficient. In the following, we present an overview of the basic ideas and results of the main holistic twig join algorithms available in the literature.

TwigStack algorithm

The main disadvantage of decomposing twig queries into multiple binary relationships is that this approach generates a large amount of intermediate query results even when the input and output size are more manageable. Frequently, such intermediate results cannot be held in main memory and must be stored on disk. This will result in high disk I/O cost. In order to overcome this weakness, Bruno et al. [START_REF] Bruno | Holistic twig joins: optimal XML pattern matching[END_REF] proposed a novel holistic twig join algorithm TwigStack, wherein, no large intermediate results are created.

The central idea behind this approach is to use a chain of linked stacks to compactly represent intermediate results of individual query root-to-leaf paths, which are then composed to produce the final solutions. TwigStack avoids storing intermediate results unless they contribute to the final results when the query twig has only ancestor-descendant edges. The analytical results of this approach demonstrate that TwigStack is I/O and CPU optimal among all sequential algorithms that read the entire input. These analysis are confirmed by experimental results on a range of real synthetic data and query twig patterns.

Improvements on TwigStack

The idea of holistic twig join has been adopted in several works in order to make the structural join algorithm very efficient. This section is devoted to a structured review of these advances.

Improvement 1: efficient processing of parent-child edge query. As mentioned before, when all edges in query patterns are ancestor-descendant ones, TwigStack ensures that each rootto-leaf intermediate solution contribute to the final results. However, this algorithm still cannot control a large number of intermediate results for parent-child edge query. A first improvement that can be found in the literature concerns the efficient handling of twig queries with parent-child relationships. Among the proposed approaches, Lu et al. [START_REF] Lu | Efficient processing of XML twig patterns with parent child edges: a look-ahead approach[END_REF] extended TwigStack by proposing TwigStackList algorithm. This algorithm has the same performance than TwigStack for query patterns with only ancestor-descendant edges, but also produces much less useless intermediate solutions than

TwigStack for queries with parent-child relationships. The main technique of TwigStackList algorithm is to read more elements in the input streams and cache some of them (only those that might contribute to final answers) into lists in the main memory, so that we can make a more accurate decision to determine whether an element can contribute to the final solution or not. Chen et al. [START_REF] Chen | On boosting holism in XML twig pattern matching using structural indexing techniques[END_REF] suggested another algorithm, called iTwigJoin, which can be used on various data streaming strategies (e.g. Tag+Level streaming and Prefix Path Streaming). Tag+Level streaming can be optimal for both ancestor-descendant and parent-child only twig patterns whereas Prefix Path streaming could be optimal for ancestor-descendant only, parent-child only and one branch node only twig patterns assuming there was no repetitive tag in the twig patterns.

Improvement 2: eliminating redundant computations. TwigStack works by recursively calling a method called getNext to efficiently filter useless elements in order to return the next node for processing. The existing holistic twig join algorithms may perform many redundant checks in the call of getNext. Thus, an improvement strategy consists in avoiding these unnecessary computations. TSGeneric+ [START_REF] Jiang | Holistic twig joins on indexed XML documents[END_REF] makes improvements on TwigStack by using XR-Tree to effectively skip some useless elements that do not contribute to the final results. The motivation to use XR-tree is that, the ancestors (or descendants) of any XML element indexed by an XR-tree can be derived with optimal worst case I/O cost. However, TSGeneric+ may still output many useless intermediate path solutions like TwigStack for queries with parent-child relationship. Guoliang et al. [START_REF] Li | Efficient holistic twig joins in leafto-root combining with root-to-leaf way[END_REF] proposed the TJEssential algorithm based on three optimization rules to avoid some unnecessary computations. They presented two algorithms incorporated with these optimization rules to effectively answer twig patterns in leaf-to-root combining with rootto-leaf way. A novel holistic twig join algorithm, called TwigStack+ is proposed in [START_REF] Zhou | Twigstack+: holistic twig join pruning using extended solution extension[END_REF]. It is based on holistic twig join guided by extended solution extension to avoid many redundant computations in the call of getNext. It significantly improves the query processing cost, simply because it can check whether other elements can be processed together with current one. Improvement 3: eliminating the merging phase. Another improvement consists in reducing the cost of queries execution. Indeed there exists very interesting approaches that eliminate the second phase of merging of individual solutions [START_REF] Chen | Twig2Stack: bottom-up processing of generalizedtree-pattern queries over XML documents[END_REF][START_REF] Qin | Twiglist: make twig pattern matching fast[END_REF][START_REF] Jiang | Efficient processing of XML twig pattern: a novel one-phase holistic solution[END_REF][START_REF] Li | Fast matching of twig patterns[END_REF]. These algorithms yield no intermediate results. Chen et al. [START_REF] Chen | Twig2Stack: bottom-up processing of generalizedtree-pattern queries over XML documents[END_REF] proposed the first tree pattern solution, called Twig2Stack that avoids any post path join. Twig2Stack is based on a hierarchical stack encoding scheme to compactly represent the twig results. The main idea is to organize the elements matching the same query node in a hierarchical structure in order to capture their A-D relationships. However, maintaining the hierarchical structure among stacks in Twig2Stack algorithm has a critical impact on the performance processing of a twig query. Aiming to avoid this complex hierarchical-stacks, Qin et al. [START_REF] Qin | Twiglist: make twig pattern matching fast[END_REF] proposed TwigList algorithm. This is a simplification of Twig2Stack using simple lists and intervals given by pointers, which improves performance in practice. In the same context a novel algorithm, called HolisticTwigStack was developed in [START_REF] Jiang | Efficient processing of XML twig pattern: a novel one-phase holistic solution[END_REF]. The authors proposed a complex stack structure like Twig2Stack to preserve the holisticity of the twig matches, without generating intermediate solutions. However, a considerable amount of time is taken to maintain the stack structure. Dao and Gao [START_REF] Dao | A glance on current XML twig pattern matching algorithms[END_REF] reviewed and analyzed both of the HolisticTwigStack and TwigList algorithm on processing for XML twig pattern matching. The statistics from this analysis clearly indicate that the TwigList algorithm seems to be significantly more efficient in the most tested cases. Recently, Li and Wang [START_REF] Li | Fast matching of twig patterns[END_REF] proposed two novel one-phase holistic twig matching algorithms, TwigMix and TwigFast, which combine the efficient selection of useful elements introduced in TwigStack with the simple data lists of TwigList for storing final solutions. Finally, it is clear that these approaches reduce considerably the processing time. However, Twig2Stack reduced the intermediate results at the expense of a huge memory requirement, and it was restricted by the fan-out of the XML document.

Improvement 4: taking advantage of the properties of some labeling schemes. Most of the existing holistic twig join algorithms are based on region encoding scheme to capture the structural relationship between XML elements. However, there exist other approaches which exploit others labeling scheme. Among them, Dewey labeling scheme has been widely used in XML query processing. A Dewey label of a node v represents the path from the document root to the node v. Based on the Dewey labeling, Lu et al. [START_REF] Lu | From region encoding to extended Dewey: on efficient processing of XML twig pattern matching[END_REF] proposed TJFast algorithm which uses a different encoding scheme, called the extended Dewey code to combine effectively the types and identifiers of elements in a label. TJFast typically access much less elements than algorithms based on region encoding and can efficiently process queries with wildcards in internal nodes. More recently, based on the preliminary idea of extended Dewey labeling scheme and the TJFast algorithm, Lu et al. [START_REF] Lu | Indexing and querying XML using extended dewey labeling scheme[END_REF] proposed three novel holistic twig join algorithms TJFastTL, GTJFast and GTJFastTL. The first algorithm GTJFast allows to compactly represent the intermediate matching solutions and avoid the output of non-return nodes to reduce the I/O cost. Both TJFastTL and GTJFastTL algorithms are proposed by extending TJFast and GTJFast algorithm based on tag +level streaming scheme. The authors are proved that TJFastTL (and GTJFastTL) guarantees the I/O optimality for queries with only parent-child relationships. The experimental results reported in [START_REF] Lu | Indexing and querying XML using extended dewey labeling scheme[END_REF] show that these algorithms are superior to existing approaches in terms of the number of scanned elements, the size of intermediate solutions and query performance.

Sequence matching approaches

As opposed to the holistic twig join algorithms, the sequence matching approaches use an indexing method to transform both XML documents and queries into sequences and evaluate queries based on sequence matching. Querying XML data is equivalent to find subsequence matches. Zezula et al. [START_REF] Zezula | Tree signatures and unordered XML pattern matching[END_REF][START_REF] Zezula | Tree signatures for XML querying and navigation[END_REF] use the pre-order and post-order ranks to linearize the tree structures and apply the sequence inclusion algorithms for strings. They proposed a novel strategy that includes three parts. Firstly, a query decomposition process is applied to transform the query twig into a set of root-to-leaf paths so that the ordered tree inclusion can be safely applied. It has to be evaluated against the data signature in the second phase. Finally, the set of answers is determined by joining compatible intermediate solutions. The experiments in [START_REF] Zezula | Tree signatures for XML querying and navigation[END_REF] demonstrate the efficiency of the decomposition approach, which is especially beneficial for the large query trees, and for trees with highly selective predicates.

Two other sequence matching algorithms, ViST [START_REF] Wang | Vist: a dynamic index method for querying XML data by tree structures[END_REF] and PRIX,RM04 were proposed to avoid expensive join operations.

The ViST method represents a major departure from previous XML indexing approaches. In fact, unlike classical index methods that decompose the query into multiple subqueries, and then join the solutions of these sub-queries to provide the final answers, ViST uses tree structures as the basic unit of query to avoid expensive join operations. However, the query processing in ViST may result in false alarms and false dismissals. These problems are explained in [START_REF] Wang | On the sequencing of tree structures for XML indexing[END_REF]. In this work, the authors proposed a similar subsequence matching algorithm to that of ViST that transforms XML documents and queries into equivalent sequences without false alarms and false dismissals. In [START_REF] Rao | Prix: indexing and querying XML using prufer sequences[END_REF], Rao and Moon proposed a new indexing XML documents and processing twig patterns in an XML database. This indexing approach transforms XML documents and twig query into sequences by prüfer method that constructs an one-to-one correspondence between trees and sequences. Based on this transformation, a query execution system, called PRIX (Prüfer sequences for indexing XML) is developed for indexing XML documents and processing twig queries. The matching phase is achieved by applying subsequence matching on the set of sequences in the database and performing a series of refinement phases.

Other important exact XML tree algorithms

In this section, we take a quick look over some other wellknown query tree pattern processing algorithms which have been developed in recent years. Among them, some approaches have benefited from fundamental progress in node labeling schemes of XML documents (for a survey, see [START_REF] Haw | Node labeling schemes in XML query optimization: a survey and trends[END_REF]).

In [START_REF] Wu | XML twig pattern matching using version tree[END_REF] for example, a twig pattern matching algorithm, called TwigVersion is proposed. The key idea of this approach is to compress both structural index and numbering schemes technique. TwigVersion is based on new version-labeling scheme that encodes all repetitive structures in XML documents. The identification of these repetitive structures matching allows to avoid a large amount of unnecessary computations. The experimental results reported in [START_REF] Wu | XML twig pattern matching using version tree[END_REF] show that TwigVersion significantly outperforms TwigStack, TJFast and Twig2Stack algorithms.

Recently, Izadi et al. [START_REF] Izadi | S 3 : evaluation of treepattern XML queries supported by structural summaries[END_REF] proposed a novel method, called S 3 , which can selectively process the document nodes. In S 3 , unlike all previous methods, path expressions are not directly executed on the XML document, but first they are evaluated against a guidance structure, called QueryGuide. The information extracted from the QueryGuide is an abstraction of the XML document. It describes the structure of XML document by its paths, such as the nodes of XML data are labeled by Dewey labeling scheme. The experimental results of [START_REF] Izadi | S 3 : evaluation of treepattern XML queries supported by structural summaries[END_REF] confirm that S 3 substantially outperforms TwigStack, TJFast, and TwigList in terms of response time, I/O overhead, and memory consumption-critical parameters.

Discussion

Much research efforts have been devoted on efficient XML query processing. As a core operation in XML data, finding all occurrences of a query pattern in XML documents attracted more and more attentions. In this section, we proposed a structured overview of the numerous recent advances in the exact tree matching for querying XML data. As mentioned before, a very large volume of algorithms were proposed in the literature, and it seems nearly impossible to consider all related works. Table 3 depicts the various approaches presented in this section. These approaches are categorized into four classes by considering three basic features: the decomposition approach, the labeling technique, and a boolean parameter which indicates if the merging phase is used in the query processing.

The structural join is the oldest method, which provides an efficient native implementation of the classical mergejoin algorithm used in the relational approach. As discussed in Section 4.1.1, the main problem with the structural join based approach is that it may generate a large amount of intermediate query results because many results of individual binary relationships may not appear in the final results. Based on the containment labeling scheme, the holistic twig join algorithm partially solved the problem of larger amount intermediate solutions with decompositionmatching-merging methods. TwigStack is the first holistic XML twig pattern matching algorithm proposed in the literature. Specifically, the performance of TwigStack is better than that of MPMGJN and StackTree. The main drawback of TwigStack is its expensive merging phase. However, it constituted the starting point of a long series of holistic twig join approaches in order to make the twig pattern matching very efficient. From the performance study of holistic twig join family, the one-phase holistic twig matching and TJFast variant (and its improvements) seem to be the most competitive holistic techniques. It is however difficult to decide what is the best algorithm that performs the query processing efficiently. For example, the one-phase holistic twig join algorithm Tree signature [START_REF] Zezula | Tree signatures and unordered XML pattern matching[END_REF][START_REF] Zezula | Tree signatures for XML querying and navigation[END_REF] root-to-leaf paths Yes Pre-order, Post-order

ViST [START_REF] Wang | Vist: a dynamic index method for querying XML data by tree structures[END_REF] without decomposition Yes structure-encoded sequences Work of [START_REF] Wang | On the sequencing of tree structures for XML indexing[END_REF] without decomposition No path labeling

Other exact XML tree algorithms

Decomposition

Merging phase Labeling technique

TwigVersion [START_REF] Wu | XML twig pattern matching using version tree[END_REF] root-to-leaf paths Yes Dewey ID labeling S 3 [START_REF] Izadi | S 3 : evaluation of treepattern XML queries supported by structural summaries[END_REF] set of match patterns Yes Dewey ID labeling eliminates completely the second phase of merging at the expense of huge memory requirement and it was restricted by fan-out of XML elements. Exploiting sequencing matching to speed up query evaluation is an another native idea in XML query processing. It provides significant performance enhancement over some traditional methods. However, this technique is not widely used, probably due to the limitation of XML indexing methods required to transform the tree of an XML document into a sequence.

Approximate tree matching algorithms for XML retrieval

There are numerous approaches for approximate tree matching in the literature of XML retrieval. Contrary to approaches presented in the previous section, the aim for these approaches is not to make a strict interpretation of structural constraints, but to select and rank elements according to their likelihood to match the queries. In case of data-centric documents, relevance is defined in terms of structural relevance while in case of text-oriented documents, it is also defined in terms of content relevance to the query. In this last case, one of the key problem of approaches doing approximate tree matching is to effectively combine results on content and on structure.

Some retrieval approaches make an implicit use of graph properties (one can cite diverse approaches such as [START_REF] Mass | Using the INEX environment as a test bed for various user models for XML retrieval[END_REF][START_REF] Mihajlovic | TIJAH scratches INEX 2005: vague element selection, image search, overlap, and relevance feedback[END_REF][START_REF] Van Zwol | B3-sdr and effective use of structural hints[END_REF][START_REF] Theobald | Topx and XXL at INEX 2005[END_REF][START_REF] Hubert | XML retrieval based on direct contribution of query components[END_REF][START_REF] Pinel-Sauvagnat | Answering content-and-structure-based queries on XML documents using relevance propagation[END_REF]) and others explicitly exploit graph matching algorithms [START_REF] Schlieder | Approximate tree embedding for querying XML data[END_REF][START_REF] Aouicha | XML information retrieval based on tree matching[END_REF][START_REF] Aouicha | Une approche algébrique pour la recherche d'information structurée[END_REF][START_REF] Alilaouar | Interrogation flexible de documents semistructurés[END_REF][START_REF] Alilaouar | Fuzzy querying of XML documents[END_REF][START_REF] Saito | Amoeba join: overcoming structural fluctuations in XML data[END_REF][START_REF] Damiani | Fuzzy XML queries via context-based choice of aggregations[END_REF][START_REF] Damiani | Fuzzy techniques for XML data smushing[END_REF][START_REF] Le | Utilisation de la distance d'édition pour l'appariement sémantique de documents XML[END_REF][START_REF] Popovici | SIRIUS: a lightweight XML indexing and approximate search system at INEX 2005[END_REF][START_REF] Laitang | Utilisation de la théorie des graphes et de la distance d'édition pour la recherche d'information sur documents XML[END_REF].

Approaches of the first group are more concerned with text-oriented documents, and most of them adapted traditional information retrieval approaches to structured retrieval. In this group of approaches, one can once again distinguish between three different kinds of approaches [START_REF] Trotman | Processing structural constraints[END_REF]:

• structural constraints can be processed by pre-generating a set of tag equivalences [START_REF] Mass | Using the INEX environment as a test bed for various user models for XML retrieval[END_REF][START_REF] Mihajlovic | TIJAH scratches INEX 2005: vague element selection, image search, overlap, and relevance feedback[END_REF],

• the score of elements that match the target element1 can be boosted [START_REF] Van Zwol | B3-sdr and effective use of structural hints[END_REF],

• content scores can be propagated up to the document tree [START_REF] Theobald | Topx and XXL at INEX 2005[END_REF][START_REF] Hubert | XML retrieval based on direct contribution of query components[END_REF][START_REF] Pinel-Sauvagnat | Answering content-and-structure-based queries on XML documents using relevance propagation[END_REF].

All these approaches use the tree representation of documents and queries, but do not use state-of-the art algorithms for tree matching. For example, in the XFIRM approach [START_REF] Pinel-Sauvagnat | Answering content-and-structure-based queries on XML documents using relevance propagation[END_REF], content and structure queries are decomposed into subqueries, composed of both a content and a structure condition, one of them indicating which type of elements should be returned (target elements). For each constraint, a score propagation is carried out, starting from leaf nodes answering the content condition and going until an element that matches the structure constraint is found. The score of result elements of each constraint is then propagated again to elements belonging to the set of targeted structures. One can find a lot of other approaches that implicitly use the tree representation of documents in the INEX proceedings [START_REF]Advances in XML Information Retrieval and Evaluation, 4th International Workshop of the Initiative for the Evaluation of XML Retrieval[END_REF][START_REF]Comparative evaluation of XML information retrieval systems[END_REF][START_REF]Focused access to XML documents[END_REF][START_REF]Advances in focused retrieval[END_REF][START_REF]Focused retrieval and evaluation[END_REF][START_REF]Comparative evaluation of focused retrieval[END_REF].

In the following, we will focus on approaches that make an explicit use of graph matching algorithms. We classify them into two types of approaches:

• approaches based on tree inclusion, • approaches based on the tree edit distance.

Most of these approaches do not directly use the corresponding matching algorithm: they often make some preprocessing that we detail in the following paragraph.

Pre-processing of trees before the matching process

Pre-processing of query and document trees can be done for two main reasons:

• enlarging the search space by relaxing constraints in order to return more results,

• reducing the time and space complexity of existing algorithms.

Relaxation. Enlarging the space of search is mainly done by relaxation, that can be defined as relaxing constraints.

Relaxation is mainly done on queries, but can also be used on documents. When relaxing on queries, one attempts to increase the number of results by decreasing the constraints degrees [START_REF] Amer-Yahia | Tree pattern relaxation[END_REF]. Relaxation can concern both the content and structure constraints [START_REF] Alilaouar | Interrogation flexible de documents semistructurés[END_REF]. When considering structure, the graph structure can be modified by acting on edges, labels or nodes. There exist three types of structure relaxation:

1. order relaxation, which consists in reducing or deleting constraints between brother nodes, i.e., to transform ordered trees into non-ordered trees. 2. nodes relaxation, which is equivalent to rename or delete nodes in trees (in this latter case, content of deleted nodes will be attached to the father node) [START_REF] Amer-Yahia | Tree pattern relaxation[END_REF]. 3. edges relaxation, which extends or adds edges between nodes. For example, a parent-child relation can be transformed into an ancestor-descendant relation.

Order relaxation is implicitly used in approximate XML retrieval, since the reading order of document is not considered as a relevance factor. Node relaxation, when deleting nodes in the tree, is often used to reduce the complexity of an approach, and we will present some approaches in the next paragraph. We detail below some approaches using edges relaxation.

Authors in [START_REF] Saito | Amoeba join: overcoming structural fluctuations in XML data[END_REF] propose to find structural fluctuation in XML documents, i.e., different potential structures in semantically identical documents. Instead of writing verbose path expression queries that should take into account all the structural possibilities, they developed a query processing primitive called amoeba join. The aim is to match hierarchy of identical nodes but being differently nested. Fig. 9 shows examples of such hierarchies.

For 3 nodes a, b, c, the number of fluctuation is 3 2 = 9, i.e., n n-1 if the number of nodes is n. This approach uses a query relaxation-like method for all n n-1 fluctuations. It can be very useful to evaluate the tree edit distance in case of structural heterogeneities.

In [START_REF] Aouicha | XML information retrieval based on tree matching[END_REF][START_REF] Aouicha | Une approche algébrique pour la recherche d'information structurée[END_REF], authors propose to use edges relaxation to index XML documents. In their XIVIR (XML Information retrieval based on VIRtual links) model, they propose to represent the structure of XML documents as a bag of weighted links composed of direct and virtual links. Direct links, i.e., parent-child relations, are weighted with the maximal score of 1. New links (i.e., new edges or new paths) are weighted according to the distance d between them with the following formula:

w = e (1-d(N1,N2))
, where d(N1, N2) is the distance between node N1 and node N2.

Fig. 10 shows how a path N1 → N2 → N3 → N4 is extended with new virtual links.

Another way to obtain a represent all links in a tree is to make a transitive closure. In [START_REF] Damiani | Fuzzy XML queries via context-based choice of aggregations[END_REF][START_REF] Damiani | Fuzzy techniques for XML data smushing[END_REF] for example, a fuzzy labeled graph associated with each document is constructed and weights are assigned to edges and nodes according to two approaches:

1. The first one is tag-related and attaches importance to the containment relationships that specify spatial structure of the documents, 2. The second one is structure-related and expresses the importance of XML elements and attributes.

The fuzzy labeled graph is then extended by a fuzzy transitive closure. Weights of new edges are evaluated using weights of initial edges and a t_norm operator.

Reducing the time and space complexity of existing algorithms. Reducing the time and space complexity of existing algorithms is mainly done by reducing the tree sizes of documents, using tree summaries. The main intuition behind tree summaries is that the structure of a document can be represented in a relevant way with a smaller tree size [START_REF] Dalamagas | Clustering XML documents using structural summaries[END_REF][START_REF] Dalamagas | A methodology for clustering XML documents by structure[END_REF]. Redundancy is deleted with tree summaries, but hierarchical relations can be altered. Dalamagas [START_REF] Dalamagas | Clustering XML documents using structural summaries[END_REF] for example proposes two rules for summarizing trees. These rules are remove nesting which is equivalent to move the subtree of a node having the same label than one of its ancestor; and remove duplicates from father-child relationship which removes the siblings having the same labels.

Tree summaries has been successfully used before applying tree edit distance in [START_REF] Laitang | XML information retrieval through tree edit distance and structural summaries[END_REF].

Some of the aforementioned approaches for trees preprocessing use then their own algorithm for tree matching [START_REF] Damiani | Fuzzy XML queries via context-based choice of aggregations[END_REF][START_REF] Aouicha | XML information retrieval based on tree matching[END_REF], while others directly use state-of-the-art algorithms (tree inclusion of tree edit distance). We will present in the two next sections how those state-of-the-art algorithms have been adapted to XML retrieval. We will discuss for each of these approaches how content conditions of queries are taken into account.

Approaches based on tree inclusion

In [START_REF] Schlieder | Approximate tree embedding for querying XML data[END_REF] Schlieder and Naumann introduced the design and implementation of the pattern matching language ApproXQL, a query language that returns approximate answers to formal user queries. Answering queries against XML document collections is seen as an unordered tree inclusion problem. A cost model is applied to the embeddings, which helps ranking approximate matches according to their similarity to the query. Authors however did not pay attention to content conditions of queries.

The unordered tree inclusion problem is also used as referential by another approach proposed by Schlieder and Meuss [START_REF] Schlieder | Querying and ranking XML documents[END_REF]. Authors extend the concept of term with structural terms. Term frequency and inverse document frequency are then adapted to logical documents and structural terms. Authors argue that their "model generalizes the two main concepts on which it was based: tree matching for structured queries and the vector space model for ranking documents".

Approaches based on tree edit distance

Tree edit distance is to our knowledge the most adapted algorithm for approximate XML retrieval.

Tree edit distance is an extension of the string edit distance. The approach proposed in [START_REF] Popovici | SIRIUS: a lightweight XML indexing and approximate search system at INEX 2005[END_REF] in the SIRIUS system reduces the matching problem to a string edit distance scoring process. A modified weighted editing distance based on Levenshtein editing distance [START_REF] Levenshtein | Binary codes capable of correcting deletions, insertions, and reversals[END_REF] on XML paths is used to approximately match the documents structure with the query structure. At the same time, for content matching, strict and fuzzy searching based on the IDF of the researched terms are used. Content and structure matching scores are then combined using a weighted linear aggregation. Experiments on the INEX 2005 test set showed the effectiveness of the proposed weighted editing distance on XML paths.

The Tai algorithm [START_REF] Tai | The tree-to-tree correction problem[END_REF] for tree edit distance is used without any adaptation in [START_REF] Le | Utilisation de la distance d'édition pour l'appariement sémantique de documents XML[END_REF]. Authors propose to combine a structural score and a content score to evaluate the similarity between queries and documents. The structural score is evaluated using tree edit distance. The cost of deletion of a node is considered as equal to one, where the cost of substitution is linked the semantic proximity of nodes tag names. The content score is obtained thanks to the propagation of the scores of leaf nodes elements to their ancestors. Both structural and content scores are then combined in a linear way.

As in [START_REF] Le | Utilisation de la distance d'édition pour l'appariement sémantique de documents XML[END_REF], Laitang et al. [START_REF] Laitang | Utilisation de la théorie des graphes et de la distance d'édition pour la recherche d'information sur documents XML[END_REF] used a linear combination of a structural and a content score to evaluate subtrees relevance. The approach combines a classical content similarity measure with the tree edit distance. The chosen algorithm uses an optimal cover strategy to reduce the number of subgraph in memory. More precisely, the structure part is processed through a tree edit distance optimal cover strategy inspired by [START_REF] Dulucq | Analysis of tree edit distance algorithms[END_REF][START_REF] Klein | Computing the edit-distance between unrooted ordered trees[END_REF] works. Results on the INEX 2005 SSCAS task showed the interest of the approach.

The same authors also experimented tree summaries before applying tree edit distance in [START_REF] Laitang | XML information retrieval through tree edit distance and structural summaries[END_REF]. Results are comparable with those obtained with no summary, and efficiency is improved.

Tree edit distance has also been applied conjointly with relaxation. In [START_REF] Alilaouar | Fuzzy querying of XML documents[END_REF][START_REF] Alilaouar | Interrogation flexible de documents semistructurés[END_REF] for example, authors propose approaches for querying a set of heterogeneous data-oriented semistructured documents. The main problem concerns incomplete or missing data and to non-exact matching of types and structure.

To match document and query trees, they use Minimum Spanning Trees. The minimum Spanning tree [START_REF] Levenshtein | Binary codes capable of correcting deletions, insertions, and reversals[END_REF] of a graph is the tree of minimum length connecting all its nodes, where length is the sum of the weights of the connecting edges in the tree. In the XML retrieval context, the minimal spanning tree is defined as the tree which contains query elements and a minimum number of nodes/arcs. The adaptation of the concept of Minimum Spanning Trees to structured information retrieval is composed of two steps: nodes scoring and tree matching. Nodes scoring is done in two different ways, depending on the node type. In case of inner nodes, that only have their labels as textual information, authors use the Levenshtein distance [START_REF] Levenshtein | Binary codes capable of correcting deletions, insertions, and reversals[END_REF] between document and queries node names. In case of leaf nodes, authors use the fuzzy set theory to evaluate the membership degrees of nodes to the content conditions of queries. A structural validation of results is then done by keeping nodes that build a Minimum Spanning Tree.

The Minimum Spanning Tree approach comes from the rapprochement of relaxation and tree-edit distance (through inclusion). Even if results in terms of effectiveness are creditable, the proposed algorithm is memory consuming, especially in the second step.

Discussion

Table 4 summarizes the approaches presented in this section, regarding how they adapt formal algorithms for tree matching and how they process content conditions of queries.

Regarding the pros and cons of each approach, one can say that most of them have shown their interest in term of effectiveness ([99,80,84,82] have been evaluated in the INEX framework, see Section 5 for more details). They however do not perform well regarding efficiency (time and space complexity). A pre-processing of trees before the matching process (using tree summaries for example) can however help to reduce the matching complexity.

Approach

Based on Adaptation Integration of content constraints XIVIR [START_REF] Aouicha | XML information retrieval based on tree matching[END_REF] Own matching algorithm Query relaxation Linear combination of content and structure scores [START_REF] Damiani | Fuzzy techniques for XML data smushing[END_REF] Own matching algorithm Fuzzy graphs / [START_REF] Alilaouar | Fuzzy querying of XML documents[END_REF] Tree edit distance Relaxation / ApproXQL [START_REF] Schlieder | Approximate tree embedding for querying XML data[END_REF] Unordered tree inclusion / / [START_REF] Schlieder | Querying and ranking XML documents[END_REF] Unordered tree inclusion / Together with structure. Notion of structural term SIRIUS [START_REF] Popovici | SIRIUS: a lightweight XML indexing and approximate search system at INEX 2005[END_REF] Tree edit distance (path matching) Relaxation Weighted linear aggregation for content and structure matching scores [START_REF] Le | Utilisation de la distance d'édition pour l'appariement sémantique de documents XML[END_REF] Tree edit distance Text-oriented Linear combination of content and structure scores [START_REF] Laitang | Utilisation de la théorie des graphes et de la distance d'édition pour la recherche d'information sur documents XML[END_REF] Tree edit distance Optimal cover strategy Linear combination of content and structure scores [START_REF] Laitang | XML information retrieval through tree edit distance and structural summaries[END_REF] Tree edit distance Trees summaries Linear combination of content and structure scores

Evaluation

Evaluation is crucial and essential to validate methods and algorithms proposed for retrieval, whether we speak of exact or approximate matching, and whether we work on text or data oriented collections. Indeed, as seen in Section 4, most of the proposed approaches for XML retrieval are adaptation of tree matching algorithms that should be carefully evaluated to see if they can be used in practice.

Efficiency and effectiveness

Evaluation of algorithms and approaches for tree matching can be done on two ways: one can evaluate efficiency and/or effectiveness.

Approaches for exact tree matching are directly concerned with efficiency, while those for approximate tree matching are more concerned with effectiveness.

Efficiency for exact tree matching is evaluated in terms of algorithms complexity, as well as in terms of execution time [START_REF] Al-Khalifa | XML query evaluation[END_REF]. Some indications about algorithms complexity are given in Section 4. To compare systems and algorithms, some benchmarks were also created, among which we can cite [START_REF] Schmidt | XMark: a benchmark for XML data management[END_REF][START_REF] Yao | XBench benchmark and performance testing of XML DBMSs[END_REF] or [START_REF] Runapongsa | The Michigan benchmark: towards XML query performance diagnostics[END_REF]. Those benchmarks aim at evaluating XML databases on some representative tasks. In [START_REF] Runapongsa | The Michigan benchmark: towards XML query performance diagnostics[END_REF] more precisely, the aim is to evaluate the basic query evaluation operations, such as selections, joins and aggregations.

In this section, we will focus on the evaluation of approximate tree matching and effectiveness (i.e., the ability of systems to correctly rank relevant elements). Research on the domain has been considerably developed during the past years thanks to the INitiative for the Evaluation of XML retrieval (INEX) evaluation campaign.

The INEX evaluation campaign

The first INitiative for the Evaluation of XML retrieval (INEX) workshop took place in 2002. It was in 2012 the eleventh year of this now established evaluation forum for XML Information Retrieval. During these 11 editions, about 100 different worldwide organizations participated to the proposed tracks [START_REF] Shlomo Geva | Inex'12 workshop preproceedings[END_REF].

The INEX campaign provides to participants an infrastructure to evaluate XML IR approaches:

• search tasks, • large structured test collections (documents and queries),

• and scoring methods.

Participants, besides running queries on their systems, also provide test queries and relevance judgments to the evaluation infrastructure: this is why INEX is often seen as a collaborative effort.

Among the proposed search tracks over the 11 campaigns, one can cite the Ad Hoc, Multimedia, Book, XML-Mining, Relevance Feedback, Efficiency or Tweet Contextualization tracks.

Among those tracks, the ad hoc, data-centric and efficiency ones can be used to evaluate approximate tree matching algorithms. They are detailed in the following paragraphs.

The ad hoc track Search tasks and queries

The ad hoc track aims at evaluating how a digital library is typically used: information is in a fixed collection of XML documents and is retrieved using a set of topics.

Two main collections composed of text-oriented documents were used for the ad hoc track:

• the IEEE collection, composed of about 180,000 scientific articles with extensive XML-markup from 21 IEEE Computer Society journals published in 1995-2002,

• the Wikipedia collection, composed of Wikipedia articles. The original collection contained about 660,000 articles [START_REF] Denoyer | The wikipedia XML corpus[END_REF], and was dumped again in 2009 with annotation from YAGO [START_REF] Schenkel | YAWN: a semantically annotated Wikipedia XML corpus[END_REF]. It now contains about 2660,000 articles.

In previous years, a distinction was made between Content Only (CO) and Content And Structure (CAS) topics. This led to two main search sub-tasks: the CO one and the CAS one.

Since approximate tree matching considers queries as trees, only the CAS one can be used to evaluate such approaches. Over the years, many search tasks were associated to CAS queries. In 2005 for example, 4 sub-tasks were run:

• VVCAS: The target element and support element constraints are considered as vague.

• SVCAS: The target element constraint is considered as strict, but the support element constraints are considered as vague.

• VSCAS: The target element constraint is considered as vague, but the support element constraints should be followed strictly.

• SSCAS: Both the target element constraint and the support element constraint are considered as strict.

From 2006, CAS queries disappeared and were merged with CO ones in what is called in the INEX terminology CO+S queries. The aim was to have only one topic type for all search tasks.

Structure-oriented approaches can still be evaluated with the ad hoc track, but since 2006, structure interest is no more a research priority for the ad hoc track organizers. To overcome this limitation, the data-centric track appears in 2010.

Evaluation metrics

Metrics used over the years to evaluate the ad hoc track evolved with the definition of the task. Our aim here is not to list all the metrics used during the 9 years of the task (the ad hoc track last ran in 2010), but to give some pointers on metrics used to evaluate XML retrieval approaches.

Metrics evaluating XML retrieval should mainly deal with the following two problems:

• the retrieval unit is not a whole document, but a document part (i.e., an element of the XML tree);

• systems can return multiple nested elements that contain the same information (this is also know as the overlap problem [START_REF] Kazai | The overlap problem in content-oriented XML retrieval evaluation[END_REF]).

As returned elements can be of different granularities, relevance in XML retrieval is defined according to two dimensions:

• Exhaustivity (e): an element is very exhaustive if it contains all the information required by the query,

• Specificity (s): an element is very specific if all its content concerns the query.

These two dimensions of relevance must then be quantized (via quantization functions) into a single relevance value that represents the level of relevance of an element. We give below two examples of quantization functions:

• the strict quantization evaluates if a given retrieval approach is able of retrieving highly exhaustive and highly specific document components,

f strict (e, s) = 1 if e = 2 and s = 1 0 otherwise (1)
• the generalized quantization evaluates document components according to their degree of relevance.

f generalised (e, s) = e * s. (2)
In 2005 for example, e = 2 and s = 1 were respectively the highest degrees of specificity and exhaustivity (e ∈ {0, 1, 2} and s ∈ [0, 1]). Since 2006, all relevant elements were considered as highly exhaustive, and specificity was computed as the ratio of the number of relevant characters contained within the XML element to the total number of characters contained by the element.

The main metrics used in INEX are based on the extended cumulated gain (XCG) [START_REF] Kazai | eXtended cumulated gain measures for the evaluation of content-oriented XML retrieval[END_REF]. The aim of these metrics is to take into account the dependency of XML elements, that is to take into account overlap (nested elements) and near misses (returned elements that are near relevant ones). Two metrics are included in the XCG metrics: the useroriented measures of normalized extended accumulated gain (nXCG) which accumulates the relevance score of retrieved elements along the ranked list, and the system-oriented effort-precision/gain-recall measures (ep/gr).

Other metrics used in the context of INEX can be found in [START_REF] Kamps | INEX 2007 evaluation measures[END_REF] (iP metrics), [START_REF] De Vries | Tolerance to irrelevance: a user-effort evaluation of retrieval systems without predefined retrieval unit[END_REF] (T2I metric), [START_REF] Piwowarski | Precision recall with user modeling (prum): application to structured information retrieval[END_REF] (EPRUm metric) or HiXEval [START_REF] Pehcevski | Hixeval: highlighting XML retrieval evaluation[END_REF] (HiXEval). A study on these metrics is also available in [START_REF] Pehcevski | Evaluation metrics for structured text retrieval[END_REF].

The data-centric track

The data centric track was introduced at INEX in 2010 (and last ran in 2011). This task aims at studying if whole document retrieval is effective in case of highly structured document collections. 2 The used collection is a snapshot of the IMDB taken early in 2010. 3 Each XML file contains information about one movie or person. In total, more than 4400,000 XML files were generated, representing among others movies and actors [START_REF] Trotman | Overview of the INEX 2010 data centric track[END_REF].

In its first year, the track focused on ad hoc retrieval from XML data. The task, as defined in [START_REF] Trotman | Overview of the INEX 2010 data centric track[END_REF] "was to return a ranked list of results estimated relevant to the user's information need. The content of the collections of nodes was not permitted to overlap. This is similar to the focused task in the ad hoc track, but using a data-centric XML collection and allowing the construction of a result (i.e., a collection of nodes) from different parts of a single document or even multiple documents".

28 highly structured queries were proposed by participants. Evaluation were done using the MAiP [START_REF] Kamps | INEX 2007 evaluation measures[END_REF] and MAgP T2I [START_REF] De Vries | Tolerance to irrelevance: a user-effort evaluation of retrieval systems without predefined retrieval unit[END_REF] metrics (thus without measuring aggregation since this is still not clear how to measure it).

Concerning 2010 results, one can say the following about the proposed approaches:

• structure was directly considered by one participant [START_REF] Ayala | BUAP: a first approach to the data-centric track of INEX[END_REF] (i.e., they directly used structured queries), but results were disappointing.

• some other approaches experimented to directly generate structured queries from keyword-based queries without trying to use the proposed CAS queries and in order to query an XML DBMS [START_REF] Hummel | Automatically generating structured queries in XML keyword search[END_REF][START_REF] Li | Inferring query pattern for XML keyword retrieval[END_REF].

In 2011, the task evolved and proposed two sub-tasks [START_REF] Wang | Overview of the inex 2011 data-centric track[END_REF]. The ad hoc subtask was more concerned with the retrieval of documents (instead of elements), even if structure was strongly taken into account. A new subtask, called faceted search, proposed to participants to help the user navigating through results by giving him/her a list of facet values representing the result documents.

The efficiency track

The aim of the efficiency track (launched in 2008 and 2009) was to evaluate the effectiveness and efficiency of XML ranked retrieval approaches on real data and real queries [START_REF] Schenkel | Overview of the INEX 2009 Efficiency Track[END_REF].

Participants had to run their system with among others queries with a deeply nested structure on the Wikipedia 2 It was indeed shown during the past editions of INEX that document retrieval helps element retrieval. This conclusion is maybe due to the collection used for test (scientific articles or Wikipedia pages).

3 www.imdb.com.

collection [START_REF] Schenkel | YAWN: a semantically annotated Wikipedia XML corpus[END_REF]. Efficiency was evaluated with runtime, CPU time and I/O statistics to secondary memory, taking into account general system statistics (#CPUs, memory, disk configuration, caching options, distribution). Effectiveness was evaluated with more traditional metrics (iP, MAiP, etc. . . .). The best systems achieved interactive retrieval times for ad hoc search, with a result quality comparable to the best runs in the ad hoc track [START_REF] Schenkel | Overview of the INEX 2009 Efficiency Track[END_REF].

Discussions and future research directions

We proposed in this paper a comprehensive survey about tree matching for XML information retrieval. The matching problem was addressed from both an exact and an approximate point of view.

In the exact matching part of the paper, we reviewed structural join methods, string matching methods and other diverse methods. The structural join approach is mainly used for processing XML twig queries. Structural Join as the oldest method decomposes a query twig pattern into its binary relationships (Parent-Child relationship, Ancestor-Descendant relationship) and executes them separately. A major drawback of this approach is that many intermediate results may not be part of any final answer. Of course, holistic twig join algorithms are good candidates for physical operators supporting query evaluation in XDBMSs. However, they only provide for a small fraction of the functionality required by complete XPath and XQuery processors (e.g., no processing of axes other than child and descendant; no processing of orderbased queries). Therefore, the development of new structural join algorithms is still valuable, because they can act as complementary operators in case the restricted functionality of twig joins is too small, or as alternatives if they promise faster query evaluation. It would also be interesting to study the parallelism of holistic algorithms on a multi-core system in order to maximize the computing performance of query processing in a large XML database.

Concerning the approximate matching part of the paper, approaches for XML retrieval presented here are mainly based on the tree edit distance. They obtain relatively good results in terms of effectiveness, but issues concerning memory and efficiency need still to be solve. The relatively small number of approaches presented can be explained by two reasons. In an information retrieval point of view:

• it is more simple to adapt effective and efficient IR algorithms to structure than the alternative, i.e., it is easier to start with content conditions and filter results on structural ones than starting from structural constraints,

• Many discussions were conducted between IR researchers to state the usefulness of structural queries on textoriented documents (whether structured queries are real user needs and whether structural constraints help retrieval). No strong conclusion can be drawn on this usefulness [START_REF] Trotman | Why structural hints in queries do not help XML-retrieval[END_REF][START_REF] Sauvagnat | Why using structural hints in XML retrieval?[END_REF][START_REF] Laitang | DTD based costs for TreeEdit distance in Structured Information Retrieval[END_REF]. This may explain the actual lack of interest of the IR community on the subject: a very small number of papers on XML retrieval have been published during the last two years in the main Information Retrieval conferences (SIGR, CIKM and ECIR).

XML tree matching algorithms described in this paper were presented in an XML retrieval perspective. Applications that also use XML tree-matching are however numerous:

• version control, change management and date warehousing,

• semi-structured data integration,

• classification/clustering of XML documents gathered from the web against a set of XML grammars declared in an XML database.

One will find in [START_REF] Tekli | An overview on XML similarity: background, current trends and future directions[END_REF] a complete survey on those applications. At last, to conclude this paper we highlight two important research directions in the graph theory community that may lead to new XML tree matching algorithms:

• Graph embedding/packing are a well known field in graph theory. Many conjectures and results have been obtained to solve the graph embedding/packing problem for unlabeled graphs [START_REF] Stahl | The embeddings of a graph-a survey[END_REF]. The graph matching problem can be naturally stated as packing of labeled graph. If we consider the example of XML documents that are modeled as ordered labeled tree, we can see that the querying of an XML document is equivalent to the search of an embedding of the query in the data tree. Therefore, it would be interesting to exploit existing tree embedding techniques in order to define a coherent similarity measure between two labeled trees.

• Another line of research that might be investigated is quantum techniques for tree matching. In the literature, quantum algorithms have attracted considerable attention in the theoretical computer science community because of the considerable speed up over classical algorithms they achieve [START_REF] Dürr | Quantum query complexity of some graph problems[END_REF]. For a practical perspective of tree matching problem, several aspects remain to be investigated. Indeed, quantum versions of matching approaches based on decomposition, combinatorial of words can be developed. Nevertheless, the formalization of such solutions may be very hard choice, but very promising.

R E F E R E N C E S

Fig. 1 -

 1 Fig. 1 -An example of XML document.

Fig. 5 -

 5 Fig.5-An example of tree pattern matching.

Fig. 6 -

 6 Fig. 6 -Tree edit distance operations: (a) node insertion (b) node deletion (c) node relabeling.

1 . 3 .

 13 Node insertion: insert node d as a child of parent a in T, making d the parent of some of the children of a, as shown in Fig. 6(a). 2. Node deletion: inverse of insert. Delete a non-root node c of T with parent a, making the children of c become the children of a. The children are inserted in the place of c into the set of children of a (Fig. 6(b)). Node relabeling: replace a label of a node by another label, as shown in Fig. 6(c).

Fig. 8 -

 8 Fig. 8 -Tree Alignment Distance: (a) tree T 1 , (b) tree T 2 , (c) an alignment of T 1 and T 2 .

Fig. 9 -

 9 Fig. 9 -Structural fluctuation for three nodes a, b and c.

Fig. 10 -

 10 Fig. 10 -Original and final paths. Original paths are weighted with 1.

Table 2 -

 2 Summary of XML approaches presented in Section 4.

	Type of	Input: Query	Input:	Name of the tree matching	Adaptation-similar approaches
	matching		collection	algorithm used	
	Exact	Pure structure query	Data-oriented	Decomposition approaches [44-47]	Binary decomposition (structural join
					approaches): [17,18]. Root-to-leaf paths
					decomposition (holistic twig join
					approaches): [19,20,72-75]. String
					decomposition (sequence matching
					approaches): [26,76,77].
				Traversal approaches:	

Table 3 -

 3 Summary of XML retrieval approaches using XML exact tree matching.

	Approach	Structural joins algorithms		
		Decomposition	Merging phase	Labeling technique
	MPMGJN [17]	binary relationship	Yes	Region encoding
	Tree-Merge [18]	binary relationship	Yes	Region encoding
	Stack-Tree [18]	binary relationship	Yes	Region encoding
		Holistic twig join approach		
		Decomposition	Merging phase	Labeling technique
	TwigStack [19]	root-to-leaf paths	Yes	Region encoding
	TwigStackList [20]	root-to-leaf paths	Yes	Region encoding
	iTwigJoin [72]	root-to-leaf paths	Yes	Region encoding
	TwigBuffer [75]	root-to-leaf paths	Yes	Region encoding
	TSGeneric+ [73]	root-to-leaf paths	Yes	Region encoding
	TJEssential [74]	root-to-leaf paths	Yes	Region encoding
	TwigStack+ [86]	root-to-leaf paths	Yes	Region encoding
	Twig2Stack [22]	without decomposition	No	Region encoding
	TwigList [23]	without decomposition	No	Region encoding
	Holistictwigstack [78]	without decomposition	No	Region encoding
	TwigMix [79]	without decomposition	No	Region encoding
	TwigFast [79]	without decomposition	No	Region encoding
	TJFast [21]	root-to-leaf paths	Yes	Extended Dewey labeling
	TJFastTL [88]	root-to-leaf paths	Yes	Extended Dewey labeling
	GTJFast [88]	root-to-leaf paths	Yes	Extended Dewey labeling
	GTJFastTL [88]	root-to-leaf paths	Yes	Extended Dewey labeling
		Sequence matching approach		
		Decomposition	Merging phase	Indexing technique
	PRIX [89]	Without decomposition	No	prüfer sequences

Table 4 -

 4 Summary of approaches using approximate tree matching.

We recall that the target element in structured queries is the element to be returned.

✩ This work has received support from the French National Agency for Research (ANR) on the reference ANR-08-CORD-009.