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IMPROPER POISSON LINE PROCESS AS SIRSN

IN ANY DIMENSION

By Jonas Kahn

Université de Lille 1, CNRS

Aldous has introduced a notion of scale-invariant random spatial
network (SIRSN) as a mathematical formalization of road networks.
Intuitively, those are random processes that assign a route between
each pair of points in Euclidean space, while being invariant under
rotation, translation, and change of scale, and such that the routes
are not too long and mainly lie on “main roads”.

The only known example was somewhat artificial since invariance
had to be added using randomization at the end of the construction.
We prove that the network of geodesics in the random metric space
generated by a Poisson line process marked by speeds according to a
power law is a SIRSN, in any dimension.

Along the way, we establish bounds comparing Euclidean balls and
balls for the random metric space. We also prove that in dimension
more than two, the geodesics have “many directions” near each point
where they are not straight.

1. Introduction. Scale-invariant random spatial networks (SIRSNs) are
a class of random networks defined as a route between each pair of points,
with three types of properties. First, invariance properties, second, guaran-
tees on mean lengths of routes—in the Euclidean metric—and third guar-
antees on the mean length of intersection of a suitably truncated version of
the network with a given compact set. It turns out that these conditions
are enough to deeply constrain the network. For example, all SIRSNs have
singly-infinite paths for which any subset is included in a route, but no such
paths are doubly-infinite.

The only known example is the binary hierarchy model, in two dimensions.
It consists of minimum-time paths on a dyadic grid where speed depends on
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the two-valuation. Invariance is obtained by a randomization construction.
The latter feature is somewhat unsatisfying: the model itself is invariant,
but realisations exhibit long-range dependence: observation of a small region
gives much information on the network everywhere.

A more “natural” candidate for a SIRSN is therefore the Poisson line
process model. Intuitively, lines are thrown uniformly at random in R

d, and
marked with random speed limits. Slower lines are dense in R

d. Then the
route between two points is the minimum-time path made of segments of
these lines. Remarkably, even in dimension d≥ 3, when random lines almost
surely do not intersect, such paths exist. The whole construction is invariant.
The aim of this paper is to show that the Poisson line process is indeed a
SIRSN for all d≥ 2.

Historically, Aldous (2014) introduced the notion of a SIRSN, and proved
a number of their properties, including those mentioned in the first para-
graphs of this Introduction. Aldous and Ganesan (2013) give a verbal de-
scription. The motivation was twofold.

First, Aldous and Kendall (2008) had proved that it was possible to build
a road network connecting a prescribed set of points that both had routes
almost as short as the segments between each pair of points, that is, the
corresponding Euclidean geodesics, and total road length almost as short as
the Steiner tree, that is, the shortest possible connecting network. However,
the network was less efficient at small scales. Thanks to their invariance
properties, SIRSNs have the same efficiency at all scales. It turns out that
there is a trade-off: for a SIRSN, there is a lower bound on the expected
total length of the network, which is decreasing in the expected route length
between two points.

The second motivation was to give a mathematical abstraction of road net-
works and maps, in particular online maps as they are used today. Namely,
we may change viewpoint, zoom in or out, and the appearance changes little,
as smaller roads are shown and hidden. SIRSNs are then defined as statisti-
cally invariant under translation, rotation and change of scale. Moreover, we
are less interested in the roads than in the routes: how do we drive from A
to B? SIRSNs are thus defined by giving routes only, namely unique routes
connecting pairs of points. It turns out that a notion of “main roads” at
any scale can be built from the network of routes itself. To wit, the network
of main roads at scale r would be the network of routes deprived of balls
of radius r around their endpoints. It is finite in every compact. Similarly,
Kalapala et al. (2006) have shown that a number of statistics of real road
networks do not depend on scale.

Aldous (2014)proved that the binary hierarchy model was a SIRSN, and
suggested two other possible models for SIRSN, one of which is the Poisson
line process model. Kendall (2015) has then proved important properties
of the Poisson line process with appropriate speeds: it does yield a random
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metric space and this space is a geodesic space. Moreover, in dimension two,
the geodesics are almost everywhere unique, the geodesics are locally of finite
mean-length, and the subnetwork obtained from the routes connecting points
of an independent Poisson point process has finite length in a compact set.
The latter properties establish a “pre-SIRSN” result, but fall short of the
full definition.

As a candidate for a SIRSN, Poisson line process model then fall in a large
category: networks derived from geodesic spaces. Indeed, from any geodesic
space, we may build a spatial network by associating to any two points the
geodesic(s) connecting them. It is not obvious how one might determine
when such a network is a SIRSN.

In Section 2, we give a precise definition of a SIRSN and of Poisson line
processes. We also present other notation and definitions, and recall some
known results, in particular that the Poisson line process with speed limits
yields a random metric on R

d. We then give a few basic properties of Π-
paths, that is paths in this metric space. In Section 3, we give sharp bounds
on the random diameter for this metric of a Euclidean ball, with a few gen-
eralizations. These estimates will be an important tool in several subsequent
proofs. In Section 4, we prove that geodesics between a given pair of points
are almost surely unique, in any dimension. Lemma 4.6 will play a central
role: we introduce the notion of “many directions”, and the lemma states
that geodesics have many directions at relevant points. A consequence is
that any path using the same lines as a geodesic will contain these points.
We will then conclude by noticing that geodesics between the same pair of
points almost surely use the same lines (Lemma 4.7). In Section 5, we prove
that geodesics have finite mean Euclidean length. Alternatively, we may see
the result as supplying a stochastic control of the Euclidean diameter of balls
for the metric generated by the Poisson line process. Section 6 contains the
last and most important component of the proof that the Poisson line pro-
cess generates a SIRSN. Intuitively, we establish a sharp control of the total
length of the intersection of all infinitely many geodesics minus a ball around
each endpoint, with a given ball. This corresponds to the fact that all these
geodesics coalesce before hitting the ball and split after leaving it. Bounds
are given using the pigeon-hole principle and the fact that relevant geodesics
must use the few fast lines that hit the ball. Finally, Section 7 suggests a
few potential directions of future inquiry.

2. Notation, definitions, basic properties. We follow Kendall’s (2015)
notation whenever possible.

We write B(x, r) for the ball with center x and radius r.
We first give the precise definition of a SIRSN. Suppose that Λ is an

atom-free measure on a measurable space (X ,B). Recall that a Poisson point
process of intensity measure Λ is a random set of points such that for any
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B ∈ B, the number of points N(B) in B is a Poisson variable with intensity
Λ(B), and the number of points N(Bi) in disjoint Bi are independent. Then
a SIRSN is defined as follows.

Definition 2.1. A SIRSN is a process that associates to any two points
x1 and x2 in R

d random routes such that:

1. Between two specified points x1 and x2, there is almost surely a unique
route R(x1, x2) =R(x2, x1). It is a finite-length path connecting x1 and x2.

2. For a finite number of points x1, . . . , xk in R
d, consider the subnetwork

N (x1, . . . , xk) formed by the random routes connecting all xi and xj . Then
N (x1, . . . , xk) is statistically invariant under translation, rotation and change
of scale: if R is a Euclidean similarity of Rd, then N (R(x1), . . . ,R(xk)) has
the same distribution as RN (x1, . . . , xk).

3. Let D1 be the length of a route between two points at unit distance.
Then E[D1]<∞.

4. Let {Ξn, n ∈N
∗} be a collection of Poisson processes on R

d with inten-
sity n times Lebesgue, all independent from the SIRSN. Suppose they are
coupled so that Ξn ⊂ Ξn+1. Write Ξ =

⋃

n∈N∗ Ξn. Then the intensity (mean
length per unit area) p(1) of the following long-distance network is finite:

⋃

x1,x2∈Ξ

(R(x1, x2)) \ (B(x1,1)∪B(x2,1)).

Note that Kendall (2015) uses more conditions in his definition, but the
missing properties are implied by property 4. They were useful to define
weaker variants of a SIRSN.

The use of Poisson processes in property 4 makes it look slightly complex,
but this is a technical shortcut: it allows us to study the network through
only countably many routes. Morally, we would like property 4 to hold true
if the long-distance network was defined as the union of all routes between
all pairs of points of Rd, minus the balls around the endpoints. But there
would be uncountably many routes, and it would be harder to work with.

We now turn to the definition of the improper Poisson line process. We
first need a measure on lines. More details on this kind of process may be
found in the book by Stoyan, Kendall and Mecke (1996).

Let Ld be the space of all lines of Rd. A line is “un-sensed”, that is, it is
seen as a subset of Rd, without a preferred direction. For K, a compact of
R
d, the hitting set of K is the set of lines that intersect K, denoted as

[K] = {l ∈ Ld : l hits K}.
We also denote by md the Hausdorff measure of dimension d. With this

notation, we have the following.
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Definition 2.2. The invariant line measure µd(l) is the unique measure
on the space of lines of R

d that is invariant under Euclidean isometries,
and normalized by the following requirement: for a compact set K in R

d

of nonempty interior, the µd-measure of the hitting set of K is half the
Hausdorff (d− 1)-dimensional measure of the boundary of K:

µd([K]) = 1
2md−1(∂K).

The reason for the normalizing constant 1
2 is to ensure that the measure

of the hitting set of a flat hypersurface A is its hyperarea md−1(A).
We will often need the hitting set of a ball, so write ωd−1 for the hyperarea

of the unit sphere S
d−1. Thus µd([B(x, r)]) =

ωd−1

2 rd−1.

Consider the following parameterization of a line l: it is given by a direc-
tion and a localization. The direction is an element of the projective space
PR

d−1. It then defines a hyperplane normal to this direction, through a spe-
cial point—the origin—of Rd. The localization is a point on this hyperplane.
The line l is then the line through this point normal to this hyperplane.

Hence, writing H = R
d−1 for an hyperplane of Rd, we may parameterize

the set of lines by PR
d−1 ⊗H. Notice that if we want to keep track of the

topology of the set of lines, the product should be twisted, but we only need
measure-theoretical properties, so we stick to the simpler direct product.

Recall that the projective space PR
d−1 may be seen as the sphere S

d−1

with opposite—antipodal—points identified. The projective space then in-
herits the natural metric on the sphere, namely the distance between two
pairs of antipodal points is the angle between the pair of segments joining
them, in radians. Up to a null-measure set, the projective space may be more
simply viewed as a hemisphere.

With this parameterization, and writing B
d for the unit ball in R

d, we
may write µd as a product measure on PR

d−1 ⊗H:

µd =
1

md−1(Bd−1)
md−1 ⊗md−1.

To make a clearer reference to it, we write µ
(o)
d−1 = 2md−1/md−1(S

d−1) for

the probability measure on PR
d−1. For a set of lines L, we write µ

(o)
d−1(L)

for the measure of the set of directions of lines in L that go through the

origin. In particular, for A a subset of Rd and x a point of Rd, the value

µ
(o)
d−1([A− x]) will be the proportion of directions that appear in the set of

directions of lines through A and x. We call it the solid angle of A from
x. Notice that it is not quite the usual definition since pairs of antipodal
points contribute only once, and since we have normalized to a probability
measure. This is because we are concerned with orientations of undirected
lines, rather than angles of directed lines.
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A special case we shall need is the measure of a cone, that is, all the
lines with angle less than θ0 from a given line through the origin. This
measure is proportional to the area on the hemisphere hit by the lines,

hence proportional to
∫ θ0
0 sind−2 θ cos θ dθ= sind−1(θ0)/(d− 1). The integral

up to θ0 = π/2 has value 1, so that

µ
(o)
d−1(cone of aperture θ0) = sind−1(θ0).(1)

The uniform Poisson line process is the image of the Poisson point process
on Ld with intensity measure µd.

We define our improper Poisson line process by adding a mark on each
line, a speed limit. Namely, the improper Poisson line process is the image
of a Poisson point process on PR

d−1 ⊗H⊗R
+
∗ with intensity measure µd,γ ,

given by the density

dµd,γ(l, v) = dµd(l)(γ − 1)v−γ dv

for γ > d. Kendall (2015) does define this process for all γ > 1, but the
relevant case for SIRSNs is that of γ > d.

In words, we have more and more slower lines, following a power law.
Since

∫

v−γ dv diverges at zero, the lines are dense in R
d. However, lines

faster than any given speed are not dense. In particular, the number of lines
faster than v0 hitting a convex set K is a Poisson variable with parameter

µd,γ((l, v) : l ∈ [K] and v ≥ v0) = µd([K])

∫ ∞

v0

(γ − 1)v−γ dv

=
1

2
md−1(∂K)v

−(γ−1)
0 .

We call Π = Π(d, γ) the corresponding random process of marked lines
(l, v). Since the dimension d and parameter γ will always be clear from
context, we drop them in the notation. Notice that the total number of lines
is almost surely countable. If (l, v) ∈Π, we say that the speed of line l is v
and denote it v(l).

For a subset L of lines, we write ΠL for the restriction of Π to these lines,
that is, ΠL = {(l, v) : l ∈ L}. In particular, the line process restricted to lines
hitting A but not B is Π[A]\[B].

We denote S the silhouette of Π, that is the random set in R
d made of

all the lines of Π, that is S = {x ∈R
d : ∃(l, v) ∈Π : x ∈ l}. We also write Sv0

for the random closed set in R
d made of all the lines (l, v) in Π such that

v ≥ v0.
We may then define Π-paths.

Definition 2.3. A finite-time Π-path is a locally Lipschitz path in Rd

respecting the speed limits imposed by Π. More precisely, it is a continuous
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R
d-valued function

ξ : [0, T ]→ R
d,

with T finite, such that for almost all t ∈ [0, T ], either:

• the speed is zero: ξ′(t) = 0;
• or the path follows a line in Π: there is a v ≥ |ξ′(t)| such that (ξ(t) +

ξ′(t)R, v) ∈Π.

We call T = T (ξ) the time length of the path ξ, or just its time for short.
An infinite-time Π-path ξ is the same, with T (ξ) = ∞, except that its

domain is [0,∞).
A Π-path is a finite or infinite-time Π-path.
In an abuse of notation, we write ξ ∈Π.

Notice that the image of a Π-path is not necessarily contained in the
silhouette S . It only needs to have speed zero outside S . The remark is
especially relevant in dimension at least three, where the lines never cross.
However, since the lines are dense in R

d, it turns out that there are paths
joining any pair of points, without any segment in R

d \ S . We give a clearer
intuition of their tree-like structure in the proof of Theorem 3.1 and Figure 1.

We write Πab = {ξ ∈ Π : ξ(0) = a and ξ(T (ξ)) = b} for any two points a
and b.

The following theorem is a union of results from Kendall’s (2015) paper.

Theorem 2.4. Almost surely, all finite-time Π-paths have finite Eu-
clidean length.

Almost surely, there are finite-time Π-paths between each pair of points of
R
d. Moreover, for any two points a and b, the infimum Tab of time lengths

T (ξ) of Π-paths ξ ∈Πab is attained.
Hence, Rd with the metric d(a, b) = Tab is a random metric geodesic space.

We call this metric time length or Π-length. Time diameters and similar
notions are defined in the same way.

We denote byN the random network made by all the geodesics connecting
all pairs of points in R

d. Our aim is to show that N is a SIRSN.
It is often possible to define similar metrics on other sets Γ of marked

lines, though they might not be geodesic. We then speak of Γ-length. The
typical case is when we restrict Π to a subset of lines L, yielding Γ = ΠL

and ΠL-length.
We now introduce some notation and remarks to make easier manipulat-

ing paths and geodesics:

• If ξ ∈Πab, we often write ξab instead.
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Fig. 1. We cover each ball Bi with a r1-net, and connect each pair of balls of the net
with a segment, be it a point (a). We then do the same at each scale, for rn+1-nets of
the balls of the rn-nets (b). Each point belongs to a ball of the r1-net, so we build a path
between two points starting from the segment connecting their balls (c). We then (d) and
(e) connect the points to the segment endpoints with the segment connecting their balls in
their respective r2-nets. At stage n, the path (f) is made of 2n segments at each scale n.
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• Concatenation of Π-paths is denoted ξac = ξabξbc, that is, ξac(t) = ξab(t) if
t < T (ξab), and ξac(t) = ξbc(t− T (ξab)) if t≥ T (ξab).

• We use the letter g for geodesics, and usually gab for a geodesic from a to
b. We say that gab is unique if there is a unique geodesic from a to b.

• In an abuse of notation, we identify a Π-path ξ with its image in R
d

whenever it is clear. Hence, we may write x ∈ ξ if there is a time t such
that ξ(t) = x. Similarly, if gab is unique and c, d ∈ gab, we say that gcd is
included in gab.

• If gab is unique and c ∈ gab, then gab = gacgcb.
• T (gab) = Tab.
• For a line l ∈ Π and a Π-path ξ : [0, T ]→ R

d, we define the intersection
length of ξ and l as Lξ(l) =̂m1(l ∩ ξ([0, T ])).

• If the intersection length of ξ and l is not zero, we say that l is in the
support of ξ, or that it is supporting ξ. We write l ⊏ ξ. Moreover, we
denote the support of ξ by Lξ =̂{l ∈Π : Lξ(l)> 0}.

• We define the intersection time of l and ξ as Tξ(l) =̂m1([0, T ] ∩ ξ−1(l)).
• In particular, almost surely, for all geodesics g, we have the following

equality and decompositions:

Lg(l) = v(l)Tg(l) for all l ∈Π,

T (g) =
∑

l∈Lg

Tg(l)(2)

=
∑

l∈Lg

v(l)Lg(l).

• If the support of ξ is included in L, that is Lξ ⊂ L, we say that ξ is
ΠL-path. We abuse notation by writing ξ ∈ΠL.

• Similarly, we write ξ ∈Πab
L if ξ ∈ΠL and ξ ∈Πab.

Finally, a few more generic notation. We call internal ε-net of a subset A
of Rd any maximal subset x1, . . . , xk of A such that |xi−xj| ≥ ε for all i 6= j.
For a set A ⊂ R

d, we write Ar for its r-widening, that is the Minkowski
sum Ar = A ⊕ B(0, r). We denote the maximal speed of a set of lines L
by vmax(L). That is, vmax(L) = supl∈L v(l). Notice that if those lines all
hit a compact set K, this supremum is a maximum. We abuse notation
by writing vmax(A) = vmax([A]) for A ∈ R

d. We use C, c, c1, . . . , ci for any
positive constant.

3. Π-diameters of sets. We start with giving a more quantitative version
of Theorem 3.6 in Kendall’s (2015) article. Namely, we show that in a given
precompact set A, any two points can be joined in finite time, and that the
largest time between two such points—the Π-diameter of A—is not too big
with high probability: this random variable has more than an exponential
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moment. We include a generalization that we will need later on, by allowing
the possibility of ignoring lines hitting forbidden areas F .

Theorem 3.1. Recall that d≥ 2 and γ > d. Let αmin = 2(γ−1)/(γ−d) . Let
Ω<Ωmax = (4αmin)

1−d and define αmax =Ω−1/(d−1)/4. Choose α such that
αmin < α< αmax, and note in particular that α> 1.

Let A and F be two subsets of Rd, such that, for some r > 0:

• A is connected.
• From any x ∈Ar/(α−1), the solid angle µ

(o)
d−1([F − x]) of F is less than Ω.

• A may be covered by
◦

N balls Bi of radius r.

Then there is a T1 depending only on α, Ω, γ and d such that, for any

εmax = 1/(2
◦

N(2α+1)d)> ε> 0, with probability 1− ε/εmax, the diameter of
A on Π[Ar/(α−1)]\[F ] satisfies the bound

TA,F =̂ sup
x,y∈A

inf
ξ∈Πxy

[Ar/(α−1)]\[F ]

T (ξ)

≤ T
r,

◦
N

(

ln
1

ε

)1/(γ−1)

with(3)

T
r,

◦
N

=
◦

NT1r
(γ−d)/(γ−1).

In particular, this maximal time has all exponential moments, and more: for

any δ < T
−1/(γ−1)

r,
◦
N

, we have

E[exp(δT γ−1
A,F )]<∞.(4)

The proof is a slight variation on that of Theorem 3.6 in Kendall’s (2015)
article.

Proof of Theorem 3.1. Since A is connected and covered by
◦

N open
balls Bi of radius r, we may build a path between any two points of A by

concatenating at most
◦

N paths between two points of A belonging to the
same ball Bi of the cover.

We now recursively build a path between each pair of points x0 and y0 of
Bi, in a binary tree-like fashion. First, we specify

rn = rα−n.

We will choose corresponding speed limits vn later. Given such vn:

• We call A0 the set of balls {Bi}1≤i≤
◦
N
.
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• To any ball B(n) ∈ An, we associate an internal rn+1-net of that ball. It
may be viewed as a collection of balls B(n+1) of radius rn+1. We then
define An+1 as the set of all these balls B(n+1) for all B(n) together.

• We have thus built nested internal rn-nets.

• For any two balls B
(n+1)
i and B

(n+1)
j belonging to the internal rn+1-net

of the same ball B(n) in An, we find a line of speed at least vn that hits

both B
(n+1)
i and B

(n+1)
j , but not F . We will have to prove this is possible

with high enough probability.
• For xn and yn, both belonging to B(n) ∈An, we may then find two points

xn+1 and yn+1 such that: xn and xn+1 (resp., yn and yn+1) belong to the

same ball B
(n+1)
i ∈An (resp., B

(n+1)
j ), and xn+1 and yn+1 both belong to

the same line of speed at least vn.
• We may then build a path between xn and yn as a concatenation of three

paths: ξxnyn = ξxnxn+1ξxn+1yn+1ξyn+1yn . The middle one is a segment. The
other two are paths between points of the same ball in An+1.

As illustrated in Figure 1, we thus obtain a path between x0 and y0 that
is made of exactly 2n segments for each n, each at speed at least vn between
two balls of the same internal rn+1-net of a ball of radius rn. Moreover, since
the points x0 and y0 are in A, all of the segments are between points of the
Minkowski sum A

⊕∞
n=1B(0, rn) =Ar/(α−1).

This construction has built a path for each pair of points x0 and y0 in
Bi. Since segments between balls of the same internal rn+1-net of a ball of
radius rn are at most (2rn + 2rn+1) long, and are at speed at least vn, the
Π[Ar/(α−1)]\[F ]-diameter TA,F of A is bounded from above by

TA,F ≤
◦

N

∞
∑

n=1

2n
2rn +2rn+1

vn
,(5)

on the event that this construction is possible.
Now to control the probability of this event, we need:

• a bound on the number of pairs of balls in the same rn-net;
• a bound on the probability that the fastest line hitting two such balls but

not F is slower than vn.

We obtain the first bound by using the formula rn = α−1rn−1. Indeed,
each rn-net of a rn−1-ball is then the same as a α−1-net of a radius 1 ball.
Since the balls B(si,1/(2α)) centered on the points of such a α−1-net are
disjoint, and all included in a ball of radius 1 + 1/(2α), a volume argument
shows that there at most (2α+1)d balls in each rn-net. So that there are at

most
◦

N(2α+1)dn balls in An, and at most
◦

N(2α+1)d(n+1) pairs of balls in
the same rn-net.
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Fig. 2. Lines that hit both balls B(x, rn+1) and B(y, rn+1) but not F (not necessarily
connected) contain lines through z ∈ D(x, rn+1/2) and B(z + x − y, rn+1/2). These are
included in the cone of angle θ0 through z.

We now consider these lines that hit both of two rn+1-balls B(x, rn+1)
and B(y, rn+1) in an internal rn+1-net of a rn-ball, but that do not hit F .
We have seen that they were in [Ar/(α−1)]. We may then use the hypothesis
of the theorem on the solid angle of F .

We want a bound on

µd([B(x, rn+1)]∩ [B(y, rn+1)]∩ [F ]c).

Now, as illustrated in Figure 2, let D(x, rn+1/2) be the hyperdisk centered
on x with radius rn+1/2 and included in the hyperplane perpendicular to the
vector x−y. It is included in B(x, rn+1). Moreover, for any z ∈D(x, rn+1/2),
the ball B(z + y− x, rn+1/2) is included in B(y, rn+1).

Now we may write

µd([B(x, rn+1)]∩ [B(y, rn+1)]∩ [F ]c)

≥md−1(D(x, rn+1/2))

× inf
z∈D(x,rn+1/2)

µ
(o)
d−1([B(y− x, rn+1/2)] ∩ [F − z]c)

≥md−1(D(x, rn+1/2))× (µ
(o)
d−1([B(y − x, rn+1/2)])−Ω).

Now, y − x≤ 2rn = 2αrn+1. So that the lines in [B(y− x, rn+1/2)] are in
a cone of angle θ0 such that sin(θ0)≤ (4α)−1. So that by formula (1):

µ
(o)
d−1([B(y − x, rn+1/2)])≤ (4α)1−d.(6)

Since α <αmax, we have (4α)1−d −Ω> 0.
Moreover, with νd−1 the (d− 1)-volume of a unit (d− 1)-ball, we have

md−1(D(x, rn+1/2)) = νd−1

(

rn+1

2

)d−1

,

µd([B(x, rn+1)]∩ [B(y, rn+1)]∩ [F ]c) ≤ νd−1((4α)
1−d −Ω)

(

rn+1

2

)d−1

=̂ cα,Ωr
d−1
n+1,
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using the notation cα,Ω to summarize and emphasize that this bound de-
pends on α and Ω, but not on n, r, or any other feature of A and F .

We thus get

P[vmax([B(x, rn+1)]∩ [B(y, rn+1)]∩ [F ]c)≤ vn]≤ exp

(

−cα,Ω
rd−1
n+1

vγ−1
n

)

.

Multiplying by the number of relevant pairs of ball, we then obtain that
the construction is possible except on an event of probability at most

∞
∑

n=0

◦

N(2α+ 1)d(n+1) exp

(

−cα,Ω
rd−1
n+1

vγ−1
n

)

.(7)

Taking

vn =
r
(d−1)/(γ−1)
n+1

((n+1)cα,Ω ln(1/ε))1/(γ−1)

and replacing in bound (7), we see that this becomes less than

∞
∑

n=0

◦

N(2α+ 1)d(n+1)εn+1 ≤ ε

εmax
,

for ε < 1/(2
◦

N(2α+ 1)d(n+1)) = εmax, so that εmax does not depend on A or

F except through α and
◦

N .
Replacing vn and rn with their value in the bound (5), we get

TA,F ≤
◦

N

∞
∑

n=1

2n+1(1 +α)
rn+1

vn

=
◦

N

(

(1 +α)c
1/(γ−1)
α,Ω

∞
∑

n=2

(2α−(γ−d)/(γ−1))nn1/(γ−1)

)

× r(γ−d)/(γ−1)

(

ln

(

1

ε

))1/(γ−1)

,

where the first parentheses correspond to T1 and T1 is finite since α> αmin.
We have thus proved formula (3) of the theorem.

The moment (4) is simple integration:

E[exp(δT γ−1
A,F )]≤ C +

1

εmax

∫ εmax

0
exp

(

δ

(

T
r,

◦
N

(

ln
1

ε

)1/(γ−1))γ−1)

dε

≤ C +
1

εmax

∫ εmax

0
ε
−δT

1/(γ−1)

r,
◦
N dε

<∞.
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Here, we use δ < T
−1/(γ−1)

r,
◦
N

and C corresponds to the integral between εmax

and 1, bounded by the value of TA,F for ε= εmax. �

Remark 3.1. If no lines are forbidden, that is if F =∅, then α can be
taken as big as we wish, so that the lines used all hit as small a widening of
A as we want.

We may slightly generalize the theorem: instead of using a forbidden area
F , we could use different conditions for which lines to accept. The important
property is that we must have enough relevant lines hitting pairs of balls in
a rn+1-net.

There are a few optimisations that could be used to gain slightly in the
constants. For example, we have written the proof with one subnet inside
each ball. If we had used a single rn-net of a correctly widened A, we would

have only about
◦

N2dαd(n+1) pairs of ball, allowing a bigger εmax. The result
stays essentially the same, however, as proven by the following proposition.

Proposition 3.2. For any two points x and y, their Π-distance Txy

does not have a moment with higher exponent on the time Txy than in for-
mula (4). That is, for any δ > 0, for any η > γ − 1, we have

E[exp(δT η
xy)] =∞.

Proof. Say that |x− y| = r. A path from x to y has to go from x to
the border of B(x, r). Hence, it must use lines hitting B(x, r) for a length
at least r. So that Txy is controlled by the fastest line hitting B(x, r). Now,

P[vmax(B(x, r))≤ vε] = exp(−c(r)v1−γ
ε ) = ε

with

vε =

(

1

c(r)
ln

1

ε

)1/(1−γ)

,

where c(r) depends only on r.
So that on an event of probability at least ε, we have the bound Txy ≥

r/vε = c2(r)(ln(1/ε))
1/(γ−1) . Hence, for some positive constant c3 depending

on δ, η and r:

E[exp(δT η
xy)]≥

∫ 1

0
exp

(

−c3

(

ln
1

ε

)η/(γ−1))

dε

=∞,

since η/(γ − 1)> 1. �
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4. Almost sure uniqueness of Π-geodesics. In this section, we prove that
the network N satisfies the property 1 of a SIRSN, that is that between two
specified points x and y in R

d, there is almost surely only a unique route.
Since routes are the Π-geodesics, this is equivalent to almost sure uniqueness
of the geodesic gxy.

The case in dimension 2 has already been established in Kendall’s (2015)
paper. The following proof, on the other hand works in all dimensions more
than 2, as stated in Theorem 4.8. Note that it does not work in dimension
2.

The strategy is the following:

• We introduce a concept of many directions, with the following property. If
a Π-path has many directions near a point x, any finite Π-path supported
by the same lines contains x.

• We show that almost surely all geodesics have many directions near all
the ends of their component segments, except for the two extremal points.
This is the step where d≥ 3 is needed.

• We show that for specified x and y in R
d, almost surely all geodesics from

x to y are supported exactly on the same lines.
• So that almost surely all such geodesics contain the same segment ends,

and this will prove they are the same.

The author thinks the proof is very technical for something that looks
clear enough, but could not find an easier way. Maybe the need to work
with tree-like paths in dimension at least three is the reason why there is no
obvious argument. Hopefully, the concept of many directions can be useful
elsewhere.

We first state two technical lemmas we need for the proofs in Section 4.1.
We introduce the notion of “many directions” and give some cases where
paths have many directions in Section 4.2, culminating in Lemma 4.6. We
prove that geodesics must use the same lines in Section 4.3, and end the
proof of uniqueness in Section 4.4.

4.1. Technical lemmas. The first lemma yields a control on the propor-
tion of balls in a nested set that are hit by lines faster than a threshold
appropriately scaling with their size.

Lemma 4.1. Let d≥ 2. Let α> 1 be a scale factor. We write p= α1−d <
1. Let Bi =B(xi, ri) for 1≤ i≤ n be a set of nested balls with ri = r0/α

i for
some r0. For some v0, define

vi = v0p
i/(γ−1),

V0 = {(l, v) ∈Π : v ≥ v0},
Vi = {(l, v) ∈Π : vi−1 ≥ v ≥ vi}.
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Define now Hi as the number of balls Bi+k smaller than Bi that are hit by
lines faster than vi, and In as the number of balls Bi that are hit by lines
faster than vi−1, that is,

Hi =#{k > 0 : Vi ∩ [Bi+k] 6=∅},

In =#{i≤ n : ∃k > 0 : [Bi]∩ Vi−k 6=∅} ≤
n−1
∑

i=0

Hi.

Then λ =̂E[#{Vi ∩ [Bi]}] = (1− p)ωd−1r
d−1
0 /(2vγ−1

0 ) independently of i≥ 1.
Then, for any δ > 0:

P[In > δn]≤
(

(1 + λδ)

(

1 + δ

δ

)δ

pδ
)n

.(8)

Precise but more cumbersome bounds are given in equations (11) and (12).

Proof. We have

E[#{Vi ∩ [Bi+k]}] = E[#{Vi ∩ [Bi]}]pk

= λpk for all i≥ 1 and k ≥ 0,

E[#{V0 ∩ [Bk]}] = λpk
∞
∑

m=0

pm

=
1

1− p
λpk for all k ≥ 0.

Thus,

P[Hi = 0]≤ 1 for all i≥ 0,

P[Hi = k > 0] = P[Vi ∩ [Bi+k] 6=∅ and Vi ∩ [Bi+k+1] =∅]

= exp(−λpk+1)− exp(−λpk) using [Bi+1]⊂ [Bi]

≤ 1− exp(−λ(pk − pk+1))

≤ λpk(1− p) for i≥ 1.

Similarly,

P[H0 = k > 0] = exp

(

−λpk+1

1− p

)

− exp

(

− λpk

1− p

)

≤ λpk.

Hence, for all 0< a< 1/p:

E[aHi ]≤ 1 +

∞
∑

k=1

λpk(1− p)ak
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= 1+ λ(1− p)
ap

1− ap
for all i≥ 1,

E[aH0 ]≤ 1 +

∞
∑

k=1

λpkak

(9)

= 1 + λ
ap

1− ap
,

E[aIn ]≤ E[a
∑n−1

i=0 Hi ]∨ 1

≤
(

1 + λ(1− p)
ap

1− ap

)n 1 + ap(λ− 1)

1 + ap(λ(1− p)− 1)
(10)

≤
(

1 + λ
ap

1− ap

)n

.

We now use the Markov inequality:

P[In > δn]≤ E[aIn ]

aδn
,(11)

and optimize upon a. Exact optimization requires solving a degree-two equa-
tion and yields a cumbersome solution, so we shall only use here the solution
for the second approximation when λ= 1, that is a= δ/((1 + δ)p), so that
ap/(1− ap) = δ. Using (10), we get

P[In > δn]≤ 1 + λap/(1− ap)

1 + λ(1− p)ap/(1− ap)

(

1 + λ(1− p)
ap

1− ap

)n

a−δn

=
1+ λδ

1 + λ(1− p)δ

(

(1 + λ(1− p)δ)

(

1 + δ

δ

)δ

pδ
)n

(12)

≤
(

(1 + λδ)

(

1 + δ

δ

)δ

pδ
)n

.
�

The second lemma gives a guarantee that except on exceedingly rare
events; no significant fraction of uniformly randomly oriented lines are clumped
together in a small number of directions.

Lemma 4.2. Let (X , d, µ) be a metric space with a probability measure
µ, and such that for all positive and small enough ε, for any point x in X ,
the volume of the ball is bounded in this way:

c1ε
d−1 ≤ µ[B(x, ε)]≤ c2ε

d−1,(13)

for c1 and c2 constants depending only on the space (X , d, µ).
Let α > β > δ > 0. Consider {si}i∈I a n−η-net of X . Consider {xj}j≤αn

αn random µ-i.i.d. points in X .



18 J. KAHN

Then there is no subset of βn points in {xj} that are all contained in at
most δn balls of the net B(si, n

−η), except on an event of sub-exponential
probability, at most (Cn(β−δ)(η(d−1)−1))−n with C depending only on α,β
and δ, c1 and c2.

Moreover, the projective space (PR
d−1, θ, µ

(o)
d−1) satisfies the hypotheses

for (X , d, µ). Here θ(l1, l2) is the angle between two lines, and µ
(o)
d−1 is the

natural probability measure on PR
d−1, defined in Section 2.

Proof. Since all the points in the n−η-net are in disjoint balls of radius
n−η/2, there are at most c3n

η(d−1) points in the net, for n big enough. Now,
with c4, c5, c6 depending on α,β and δ:

P[There are βn points xj all contained in δn balls B(si, n
−η) of the net]

≤#{subsets of βn points}#{subsets of δn balls}
× P[βn specific points are all contained in δn specific balls]

≤
(

αn
βn

)(

c3n
η(d−1)

δn

)

(δnc2n
−η(d−1))βn

≤ 2αn(c4n
η(d−1)−1)δn(c5n

1−η(d−1))βn

= (c6n
(β−δ)(η(d−1)−1))−n.

In the projective space, where points are seen as lines through the origin
in R

d, a ball of radius θ0 is exactly a cone of aperture θ0. We recall formula (1)
and θ/2≤ sin(θ)≤ θ for positive small θ, and we conclude that property (13)
is indeed satisfied. �

4.2. Many directions. Having many directions near a point x intuitively
means that the lines used near the point have so many different unit vectors
that the only way to touch all those lines (a tour) with a finite curve is by
touching most of them near x.

Definition 4.3. For a set of lines L= {lj}j∈J and a subset of the Eu-
clidean space X ⊂ R

d, a L-tour in X is a curve f in X such that for all
j ∈ J , there is a tj such that f(tj) ∈ lj . If f is rectifiable, the tour is said to
be finite; else it is infinite.

Recalling the notation Lξ for the support of ξ:

Definition 4.4. A finite Π-path ξ has many directions near a point x
if, for all ε > 0, all Lξ-tours in R

d \B(x, ε) are infinite.
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As a remark, this concept is only interesting in dimension at least three:
in dimension two, a circle is usually a tour, and it is finite.

Proposition 4.5. Let two finite Π-paths ξ and η. If ξ has many direc-
tions near a point x ∈ R

d, and its support is included in that of η, that is,
Lξ ⊂Lη, then x ∈ η.

Proof. By Theorem 2.4, the finite Π-path η has finite Euclidean length.
Moreover, Lξ ⊂Lη, so that η is a Lξ-tour in R

d. Since ξ has many directions
near x, there is no finite Lξ-tour in R

d \ B(x, ε), for any ε > 0. So that
B(x, ε)∩ η 6=∅. Any finite Π-path is closed in R

d, hence x ∈ η. �

Lemma 4.6. Let d≥ 3.
Let l be a prescribed line independent of Π. Almost surely, for all x ∈ l,

for any y /∈ l, all geodesics gxy have many directions near x.

Proof. It is sufficient to show that the claim holds for all x ∈ l∩B(0,R),
for all R> 0. It is also sufficient to work with a fixed ε, and prove that for any
y /∈ lε the ε-widening of l, for any geodesic gxy , all Lgxy -tours on R

d \B(x, ε)
have infinite length.

Let rn = r0/α
n for r0 = ε and an α > 1 big enough to be determined later.

We consider one-dimensional internal rn
4 -nets Nn of B(0,R)∩ l.

In particular, there are at most 4R
rn

+1 points in Nn.
Now, for any point xn in Nn, we may build a set of nested balls {Bi}i≤n

depending on xn, with the following properties:

• The ball Bn is centred on xn.
• All balls Bi =B(xi, ri) are centred on a point xi in the net Ni.
• The centres lie deep inside the previous ball, that is xi ∈ B(xi−1,

ri−1

4 ).
This stems from the fact that Ni−1 is an ri−1

4 -net.

We also use the notation of Lemma 4.1 for vi and Vi. We have to choose a
good speed v0.

We then show that the nested balls have the following properties, with a
T to be determined later, except on an event of probability o(r−1

n ):

1. There are at least 2n
5 balls Bi that no line faster than vi−1 hits.

2. There are at least 5n
6 indices i such that the time diameter of B(xi,

7ri
8 )\

B(xi,
ri
2 ) on Π[Bi]\[Bi+1] is less than Tα−i(γ−d)/(γ−1) .

3. There are at least 5n
6 balls Bi that are hit by at most τ lines of speed

between vi and vi−1, for some fixed τ . Moreover, all those lines have inde-
pendent, uniformly random directions.
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The T will yield the v0 we need to continue the proof, that is,

v0 =
3r0
8T

.(14)

We deal with these properties in reverse order, and first consider prop-
erty 3.

Since the sets of lines Vi are disjoint, the events that more than τ lines in
Vi hit Bi are mutually independent (in i), as are their directions. Moreover,
since the Bi are balls, the direction of the lines of the isotropic Poisson line
process that hit it are uniformly random.

So that the number Xn of such events is a binomial random variable
B(n, q) where q is the probability of a single event. The Chernoff bound for
a binomial is, for δ > q,

P[Xn > δn]≤
((

q

δ

)δ(1− q

1− δ

)1−δ)n

.

Here, it suffices to take δ = 1
6 . For α big enough, if, for example, we take

q ≤ α−7, the above bound is negligible with respect to α−n.
Now the probability q of a single event is the probability that a Poisson

random variable with parameter not depending on i is bigger than τ . We
then just choose τ so that q ≤ α−7.

Now for property 2.
Since the sets of lines [Bi] \ [Bi+1] are disjoint, each of the events that the

time diameter of B(xi,
7ri
8 )\B(xi,

ri
2 ) on Π[Bi]\[Bi+1] is less than Tα−i(γ−d)/(γ−1)

are independent. Arguing as for property 3, we merely have to choose T such
that the probability q of a single event is less than α−7.

Now, by scaling, the sets Ai =B(xi,
7ri
8 ) \B(xi,

ri
2 ) may all be covered by

the same number
◦

N of balls with radius ri
8 , and centres in Ai. Moreover,

Ai is connected. Now the ri
8 -widening of Ai is included in Bi, and since

xi+1 ∈B(xi,
ri
4 ), we know that xi+1 is at distance at least

1
8 of this widening.

So that the maximum solid angle of Bi+1 viewed from any point of the
widening is a decreasing function of α, hitting zero when α goes to infinity.
Thus, for α big enough, we may apply Lemma 3.1 with Ω<Ωmax. Replacing
ε in bound (3) with 1/(εmaxα

−7) to ensure q ≤ α−7, we find that property 2
is ensured if we choose

T =
◦

NT1

(

r0
8

)(γ−d)/(γ−1)

(ln(α7/εmax))
1/(γ−1)

=O(ln1/(γ−1) α).

This choice of T ensures that v0 =O(ln−1/(γ−1) α).
As for property 1, we apply Lemma 4.1.
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We substitute δ = 3
5 in equation (8), and use p= α1−d ≤ α−2—since d≥

3—and λ=O(v1−γ
0 ) =O(lnα). We obtain

P

[

For less than
2n

5
indices i, no line faster than vi−1 hits the ball Bi

]

≤ (c ln(α)α−6/5)n

= o(α−n).

Let us now consider a geodesic gxy from a point y outside B0 to a point
x inside Bn. Since the balls are nested, they are all crossed by the geodesic.
Even the sets Ai =B(xi,

7ri
8 )\B(xi,

ri
2 ) introduced in the proof of property 2

are all crossed, that is we must pass from the spherical boundary S(xi,
7ri
8 )

to the smaller boundary S(xi,
ri
2 ).

If the three properties are satisfied, then there are at least n
15 indices

i for which the conditions are simultaneously satisfied. For such an i, by
property 2 the geodesic will go from S(xi,

7ri
8 ) to S(xi,

ri
2 ) in time at most

Tα−i(γ−d)/(γ−1) . Since the two boundaries are 3ri
8 apart, the geodesic must

use a line with speed more than 3ri
8Tα−i(γ−d)/(γ−1) = v0α

−i(d−1)/(γ−1) = vi within
Ai. Now, Ai ⊂Bi and, by property 1, there is no line faster than vi−1 in Bi.

So that the geodesic must use a line in Vi ∩ [Bi], whose cardinal is less than
τ by property 3. Since the vi are disjoint, we have proved that the geodesic
must use at least n

15 distinct lines among a set of size at most τn of lines
with uniformly random direction.

We may then apply Lemma 4.2.
We take 1> η > 1/(d − 1) and δ = 1/20. With probability 1−O(n−cn),

all geodesics from a point outside B0 to a point inside Bn must use at least
n/20 lines (depending on the geodesic), each with a direction in a different
ball of a n−η-net of the projective space. Since there are at most a constant
number c1 of points in a n−η-net at distance less than 3n−η from a given
point, we may choose n/(20c1) of those lines, so that each pair of them
makes an angle at least n−η.

Let us consider a fixed r0 = ε. Since d(xi, xi−1)≤ ri−1

4 and x ∈B(xn, rn),

and since ri = εα−i = o(εn−η) for i > c2 lnn, we know that Bi ⊂B(x, εn−η/3)
for i > c2 lnn. Among our n/(20c1) lines, at most τ hit each Bi. Hence,
up to removing c3 lnn of our n/(20c1) lines, all those lines hit the ball
B(x, εn−η/3). So that, by elementary geometry illustrated in Figure 3, for
any two lines l1 and l2 in our collection, no point of l1 \B(x, ε) is closer to
a point of l2 \B(x, ε) than εn−η/4.

We have thus proved that for any geodesic gxy with x ∈ Bn and y /∈B0,
any Lgxy -tour in R

d \B(x, ε) must contain c4n points that are c5n
−η apart

pairwise. Hence, it has length at least c6n
1−η , going to infinity with n.
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Fig. 3. We project on the vector space spanned by l1 and l2, with l1 parallel to the
first coordinate and x as the origin. All points of l1 then have second coordinate at most
n−ηε/3 in absolute value. On the other hand, let A be a point in l2 ∩B(x,n−ηε/3) and
B a point in l2 \ B(x, ε). Then the vector

−→
AB has absolute second coordinate at least

(ε− n−ηε/3) sin(n−η)> 11
12
εn−η for large n, so that B has absolute second coordinate at

least 7
12
εn−η.

All those properties were obtained except on a set of probability o(α−n).
Since the net Nn has cardinal of order αn, this is true simultaneously for all
sets of nested balls built on all the points xn in Nn, except on an event of
probability εn going to zero.

Letting n go to infinity yields the lemma. �

4.3. Geodesics use the same lines.

Theorem 4.7. For all x and y in R
d, almost surely all geodesics gxy

are supported on exactly the same lines.

Proof. A similar result is used during the proof of Theorem 4.4 in
Kendall’s (2015) article. The idea of the proof is to “slow down” the lines
not used by a specific geodesic. Then all geodesics that use one of those
lines become slower and are no longer geodesics. The set of slowed speeds
has infinite measure relative to the initial speeds.

Almost surely, there exists a finite R such that all geodesics from x to y
are included in B(0,R), by Theorem 2.6 of Kendall. Almost surely, for any
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R, there are countably many lines intersecting B(0,R), all with different
speeds v1 > v2 > · · · (the information here is that there is a measurable
order-preserving bijection from N to the inverse line speeds). We then write
li for the line with speed vi.

Let i ∈ N and let us fix all the other speeds vj for j 6= i. Let us suppose
there is a speed v=i between vi−1 and vi+1 such that if vi = v=i , then there
are at least two geodesics gixy and g¬ixy from x to y, one of which is supported

by li, and the other not. That is li ⊏ gixy and li 6⊏ g¬ixy .
Now, the time length of a path not supported by li does not depend on vi.

So that g¬ixy is the fastest of these paths for all vi, with constant time. On the

other hand, by decomposition (2), the time length of gixy is decreasing in vi.
Hence, if vi > v=i , all geodesics from x to y are supported by li. Conversely,
if vi < v=i , no path supported by li is a geodesic from x to y. Indeed, such a
path would be as fast as g¬ixy at speed vi, hence faster at speed v=i .

So that, when the other speeds are fixed, there is at most one value v=i
of vi such that li is in the support of some geodesic from x to y and not in
the support of another such geodesic.

Now, we may disintegrate the measures on the line speeds. For almost all
fixed line speeds for all lines except li, the measure µi for vi has a density
(namely, it is proportional to v−γ

i 1vi−1≤vi≤vi+1). Hence, µi({v=i }) = 0. So
that almost surely, either li ⊏ g for all geodesics g from x to y, or li 6⊏ g for
any such geodesic. This is true for all lines li, completing the proof. �

4.4. Almost sure uniqueness. We may now state this section’s main re-
sult.

Theorem 4.8. In dimension d≥ 2, for all x and y in R
d, almost surely

there is a unique geodesic gxy from x to y.

Proof. Kendall (2015) proved the dimension 2 case in Theorem 4.4.
We then assume from here on that d≥ 3.

Consider any line l ∈ Π. We apply a Palm distribution argument: since
Π is a Poisson process, Π \ {l} still has the same distribution as Π. So that
almost surely, by Lemma 4.6, all geodesics on Π \ {l} with an endpoint z ∈ l
have many directions near z. Since the lines are countable, this is true for
all lines simultaneously.

The rigorous way of writing the former paragraph is through Slivnyak–
Mecke formula [originally proved by Slivnyak (1962); see, e.g.,
Møller and Waagepetersen’s (2003) book, Theorem 3.2, for a modern treat-
ment]. A Poisson point process X with intensity µ takes value in the set
of locally finite point configurations Nlf . For any nonnegative measurable



24 J. KAHN

function h on R
d ×Nlf , we have

E

[

∑

x∈X

h(x,X \ {x})
]

=

∫

Rd

E[h(x,X)] dµ(x).

We apply the formula with the underlying point process for Π, so that
x= (l, v) are marked lines. The function h is the indicator function

h((l, v),Π) =

{

1, if ∃z ∈ l, y /∈ l, gzy Π-geodesic such that
gzy does not have many directions near z,

0, otherwise.

Lemma 4.6 then ensures that the expectation in the integrand in the
right-hand side is uniformly zero, so that, almost surely, for all l ∈ Π, all
geodesics on Π \ {l} with an endpoint z ∈ l have many directions near z.

Let gxy be a geodesic from x to y. Let {zi} be the set of endpoints of all
the segments of the geodesic gxy except x and y. For any zi, since it is a
segment endpoint (on line l), there is a u such that guzi or gziu is included
in gxy, and such that l is not in the support of this sub-geodesic. Hence, this
sub-geodesic is also a geodesic in Π \ {l}, and has many directions near zi.
A fortiori, gxy has many directions near zi. Moreover, by Lemma 4.7 almost
surely all other geodesics from x to y have the same support. Hence, all
these geodesics include all the segment endpoints of all the geodesics from
x to y.

Now two geodesics from x to y must pass through the same points in

the same order: indeed if g2xy = g2xag
2
abg

2
by and g2xy = g2xbg

2
bag

2
ay , then g1xag

2
ay or

g2xbg
1
by would be shorter than both.

So that all geodesics from x to y pass through their segment endpoints in
the same order, so they are the same. �

A byproduct of the proof is the following remark.

Corollary 4.9. Let d≥ 3. Almost surely, for any point x not on a line
of Π, that is x /∈ S, all geodesics containing x have many directions near x.

Proof. We use the step in the former proof, that almost surely, for all
l ∈Π, all geodesics on Π \ {l} with an endpoint z ∈ l have many directions
near z.

For any ε, since x /∈ S , the geodesic to x will leave a line of Π at a point
z ∈B(x, ε/2). Now the restriction of the geodesic to gzx has many directions
near z. Since B(z, ε/2)⊂B(x, ε), g has also many directions near x. �
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5. Geodesic length has finite expectation. This is property 3 of a SIRSN.

Theorem 5.1. Let x, y ∈R
d. Then the Euclidean length of the Π-geodesic

between x and y has finite expectation

E[Lxy]<∞.

Proof. For any r, any Π-path containing x whose Euclidean length is
more than r has to intersect B(x, r) on a length at least r. Hence, it must
spend time at least r/vmax(B(x, r)) in that ball. If the geodesic gxy has
Euclidean length Lxy and time length Txy, we thus obtain the constraint

vmax(B(x, r))≥ r/Txy for all r≤ Lxy.(15)

By equation (3) of Theorem 3.1, there is a T such that with probability
at least 1− 2−(n+1)

Txy ≤ (n+1)1/(γ−1)T =̂Tn.(16)

We now consider a collection of radii

rl = 2lr0

for l between 0 and m, with r0 and m to be chosen later, possibly depending
on n, but independent of Π.

If Lxy > rm, then Lxy > rl for all l ∈ [0,m], so that constraint (15) must be
satisfied for each rl. In particular, on the event (16), the following constraint
is satisfied for all l ∈ [0,m]:

vmax(B(x, rl))≥ rl/Tn =̂vl.(17)

We again drop the dependence on n in the notation of vl, and vl is indepen-
dent of Π.

These constraints are simultaneously satisfied if and only if there is a
strictly increasing sequence of (1 + k) integers 0 = l0, l1, . . . , lk between 0
and m such that

vli+1
> vmax(B(x, rli))≥ vli+1−1 if i < k,

vmax(B(x, rlk))≥ vm.

We define the following events for all i ∈ [0,m], with the conventions
lk+1 =m+ 1 and rl−1 = 0:

Ai = {vmax(B(x, rli))≥ vli+1−1},
Bi = {vli+1

> vmax(B(x, rli))≥ vli+1−1},
Di = {vmax([B(x, rli)] \ [B(x, rli−1

)])≥ vli+1−1}.
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Notice that the events do not depend only on i, but on the whole sequence
of li. Notation is easier this way. In particular, the former paragraph reads

P[Lxy > rm|Txy ≤ Tn]≤
m
∑

k=0

∑

0=l0<···<lk≤m

P[B0 ∩B1 ∩ · · · ∩Bk−1 ∩Ak].(18)

Let us consider the filtration generated by the lines intersecting B(x, r)
for increasing r, that is Fr = σ(Π[B(x,r)]). Then Ai, Bi and Di are all Frli

-
measurable, and Di is independent of Frli−1

.

Moreover, the difference between Ai and Di is only on the event that
there is a line faster than vli+1−1 hitting B(x, rli−1

). Since li+1 − 1≥ li, this
never happens under Bi−1. So that Ai ∩ Bi−1 =Di ∩ Bi−1. From this, we
deduce

P[Bi|B0, . . . ,Bi−1]≤ P[Ai|B0, . . . ,Bi−1] since Bi ⊂Ai

= P[Di|B0, . . . ,Bi−1] since Ai ∩Bi−1 =Di ∩Bi−1
(19)

= P[Di] since Di indep. of Bj for j < i

≤ P[Ai] since Di ⊂Ai.

Recall that the number of lines faster than v hitting a ball of radius r is
a Poisson variable with parameter crd−1v−(γ−1), with c= µd([B(0,1)]). We
may then compute

P[Ai] = 1− exp(−crd−1
li

v
−(γ−1)
li+1−1 )

≤ crd−1
li

v
−(γ−1)
li+1−1

= crd−1
li

2−(γ−1)(li+1−li−1)v
−(γ−1)
li

= 2−(γ−1)(li+1−li−1)crd−γ
li

T γ−1
n(20)

≤ 2−(γ−1)(li+1−li−1)crd−γ
0 T γ−1

n since r0 ≤ rli

= 2−(γ−1)(li+1−li)p(r0) with

p(r0) = 2γ−1crd−γ
0 T γ−1

n .

Recalling the convention lk+1 =m+ 1, we obtain

P[B0 ∩B1 ∩ · · · ∩Bk−1 ∩Ak]

≤ P[B0]P[B1|B0] · · ·P[Ak|B0,B1, . . . ,Bk−1]

≤
k
∏

i=0

P[Ai] by (19)

≤
k
∏

i=0

2−(γ−1)(li+1−li)p(r0) by (20)



RANDOM LINES YIELD A SIRSN 27

= 2−(γ−1)(m+1)p(r0)
k+1.

Substituting into bound (18), we obtain

P[Lxy > rm|Txy ≤ Tn]≤
m
∑

k=0

∑

0=l0<···<lk≤m

2−(γ−1)(m+1)p(r0)
k+1

=

m
∑

k=0

(

m
k

)

2−(m+1)(γ−1)p(r0)
k+1(21)

= 2−(m+1)(γ−1)p(r0)(1 + p(r0))
m

≤ (2−(γ−1)(1 + p(r0)))
m+1.(22)

Let κ < γ − 1. We now choose our free parameters:

r0 =

(

2γ−1cT γ−1

2γ−1−κ − 1

)1/(γ−d)

,

so that

1 + p(r0) = 2γ−1−κ,

m= ⌊(n+1)/κ⌋.
Substituting into bound (22), we get

P[Lxy > rm|Txy ≤ Tn]≤ 2−(m+1)κ

≤ 2−(n+1).

Since P[Txy > Tn] ≤ 2−(n+1), we have thus proved that with probability
at least 1− 2−n, the Euclidean length is bounded by

Lxy ≤ rm

= 2(n+1)/κ(n+1)1/(γ−d)C,

where C is a positive constant depending on T and κ, but not on n.
Thus, Lxy has a δ-moment for all δ < κ. Indeed,

E[Lδ
xy]≤

∞
∑

n=0

2−n(2(n+1)/κ(n+ 1)1/(γ−d)C)δ

≤
∞
∑

n=0

2(δ/κ−1)nO(nδ/(γ−d))

<∞ if δ < κ.

Since κ is only constrained by κ < γ−1, we have a δ-moment for all δ < γ−1.
Since γ > d≥ 2, this completes the proof. �
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Remark 5.1. The main part of the proof is really just saying that the
Euclidean diameter of a Π-ball has finite mean. Together with Theorem 3.1,
this implies that the random metric space generated by the Π-length is
almost surely homeomorphic to R

d.
Notice that for κ close to γ − 1, the main term in the sum (21) is the

one for k = 0. In other words, it is easier to have one single extremely fast
line close to x than to have many successively faster lines, if we want to be
abnormally fast at each distance of x.

A first way to improve on the moments of Lxy starts with noticing that if
we use a line to go far away very fast, we need to use another line to come
back, since a geodesic never crosses itself.

More precisely, the author conjectures that the structure yielding long
geodesics with highest probability is the following: a line with speed at least
2r/Txy hits B(x, ε), another hits B(y, ε) and they hit a common ε-ball at

distance r. Since the two first events have probability in r−(γ−1) and the

other in r−(d−1), we would conclude that E[L2γ+d−3
xy ] =∞, but E[Lδ

xy]<∞
for all δ < 2γ + d− 3.

6. Finite intensity of long-distance network. We now turn to property 4
of a SIRSN, that is their key property.

Intuitively, this means that the SIRSN contains “highways.” If we look at
all the geodesics simultaneously, truncating each geodesic by deleting balls
around its endpoints, their total length in each compact set is finite: the
geodesics largely re-use the same segments in each region. Contrast with the
Euclidean case where the whole space is used.

In our context, we have to prove that the intensity p(1) of the following
long-distance network F is finite: let {Ξn, n ∈N

∗} be a collection of Poisson
processes on R

d with intensity n times Lebesgue, all independent from Π,
and coupled so that Ξn ⊂ Ξn+1. Write Ξ =

⋃

n∈N∗ Ξn. Then

F =
⋃

x,y∈Ξ

(gxy \ (B(x,1)∪B(y,1))).

Notice that almost surely gxy is unique for all x and y, since the dense
point set Ξ is countable.

By translational invariance, it is enough to prove that the intersection
of F with a given ball has finite mean Hausdorff measure of dimension 1.

Indeed, if ℓ =m1(F ∩ B(x, r)), then E[ℓ] =
ωd−1r

d−1

2 p(1). Notice that scale
equivariance yields similar results if the long-distance network F is defined
by removing balls of any fixed radius instead of radius 1.

The main argument relies on the pigeon-hole principle: a geodesic getting
close to a prescribed point must use one of a very few fast lines close to
that point, and must use them again to draw away. And by uniqueness of
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geodesics, two geodesics with two common points must agree between those
points.

Theorem 6.1. Let γ > d≥ 2. With the above notation, let ℓ=m1(F ∩
B(0, 13 )) be the length of the long-distance network in B(0, 13 ). For ε < εmax,
with probability at least 1 − ε, this length is less than C(ln(C1/ε))

2, for
constants εmax, C and C1 depending only on γ and d. Consequently, there
is a finite moment of exponential form: for any δ <

√
C,

E[exp(δ
√
ℓ)]<∞.(23)

In particular, ℓ has finite mean.

Proof. Since Ξ is countable, by Theorem 4.8, almost surely all geodesics
between its points are unique. In the proof, we only consider such geodesics
and sub-geodesics, so that we assume uniqueness.

Consider the balls B(0, 13 ) and B(0, 23). We call their set differenceB(0, 23 )\
B(0, 13 ) the border.

Now if a point x ∈B(0, 23), then B(0, 13)⊂B(x,1). Hence, geodesics with

an endpoint in B(0, 23 ) make no contribution to ℓ. We have

ℓ≤m1

(

⋃

x,y∈Ξ\B(0,2/3)

(

gxy ∩B

(

0,
1

3

)))

.

Hence, geodesics gxy making contributions to ℓ are structured in the fol-
lowing way, illustrated in Figure 4.

• They hit B(0, 23 ) for the first time at point s on the corresponding sphere.

Fig. 4. The geodesic from x to y hits B(0, 2
3
) for the first time at s and the last time at

z. It hits B(0, 1
3
) for the first time at u and the last time at v.
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• Then they hit B(0, 13) for the first time at point u on the corresponding
sphere.

• Then they hit B(0, 13 ) for the last time at point v on the corresponding
sphere.

• Then they hit B(0, 23) for the last time at point z on the corresponding
sphere.

In particular, the contribution to ℓ is included in the sub-geodesic guv .
Now, uniformly on x and y, the time Tsz between s and z is bounded

by the time diameter of B(0, 23). So that, by Theorem 3.1, with probability
1− ε/2, we have

Tsz ≤ Tε
(24)

=̂ T2/3,1

(

ln
2

ε · εmax

)1/(γ−1)

.

We call fast lines the lines faster than vε = 1/(6Tε). Conversely, lines

slower than vε are slow lines. We write Vε = Svε ∩B(0, 23) for the intersection

of all those fast lines with the ball B(0, 23).

The number of fast lines hitting B(0, 23) is a Poisson variable with param-

eter λε =
ωd−1(2/3)

d−1

2vγ−1
ε

= C2 ln(C1/ε) for explicit constants C1 and C2, with

C1 = 2/εmax ≥ 2. We recall that the moment generating function of such a
Poisson variable X is E[etX ] = exp(λε(e

t − 1)), and use Chernoff bound to
get

P[X ≥C3λε]≤ eλε(et−1)e−tC3λε

= exp(λε(C3 − 1−C3 lnC3)) with et =C3

=

(

C1

ε

)C2(C3−1−C3 lnC3)

≤ ε

2
,

with C3 chosen big enough to have C2(C3 − 1−C3 lnC3)≤−1.
Hence, with probability at least 1− ε

2 , there are at most C3λε fast lines

hitting B(0, 23). With probability at least 1− ε both this event and Tsz ≤ Tε

are true. We assume both from now on.
Since Tsz ≤ Tε, the intersection of gsz with slow lines has length at most

vε/Tε =
1
6 .

So that, since s and u (resp., v and z) are at least 1
3 apart, the geodesic

must have fast segments for length at least 1
6 between s and u (resp., v and

z), that is,

m1(Vε ∩ gsu)≥ 1
6 ,

m1(Vε ∩ gvz)≥ 1
6 .
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Now

m1(Vε)≤#{fast lines} ·Diam

(

B

(

0,
2

3

))

≤ 4C3λε

3

= C4 ln

(

C1

ε

)

,

so that

m1 ⊗m1(Vε ⊗Vε)

m1 ⊗m1(gsu ∩ Vε ⊗ gvz ∩ Vε)
≤ C5

(

ln
C1

ε

)2

.

Hence, by the pigeon-hole property as illustrated in Figure 5, we may find
a maximal family {gi} of at most (C5(ln

C1
ε )2 +1) geodesics such that:

• gi is a geodesic between xi and yi in Ξ \B(0, 23 ), passing through si, ui,

vi and zi defined as for s,u, v and z above.
• Any geodesic gxy contributing to ℓ crosses one of the gi when first and

last crossing the border, that is, there are points t and w such that t ∈
gsiui ∩ gsu and w ∈ gvizi ∩ gvz .

Fig. 5. Close parallel curves in the figure agree. They are separated to make the figure
more readable. The three thin black lines are the fast lines. The light dashed lines and
black dotted curves are a family of geodesics {gi}. The solid curve connecting x and y is
the geodesic gxy. The geodesic gxy has a common point t with the black dotted geodesic
on a fast (black) line when first crossing the border, and another w when last crossing the
border. Hence, they agree between u and v. Any other geodesic contributing to ℓ would
meet one of the geodesics in the family {gi} in the same way.
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By uniqueness of geodesics, gi and gxy coincide on gtw . In particular, they
coincide on guv . Hence, the intersection F ∩B(0, 13) is included in the finite
number of geodesics guivi . We may then conclude by separating contributions
from fast and slow lines:

ℓ≤
∑

i

m1(guivi)

≤m1(Vε) +
∑

i

m1(guivi ∩ (Π \ Vε))

≤ C4 ln

(

C1

ε

)

+

(

C5

(

ln
C1

ε

)2

+1

)

· 1
6

≤ C

(

ln
C1

ε

)2

.
�

Theorem 6.2. The network N made of the time geodesics is a SIRSN.

Proof. Property 1 of a SIRSN is a consequence of almost sure unique-
ness of geodesics between two points, that is Theorem 4 in dimension at
least 3, and Theorem 4.4. in Kendall’s (2015) article in dimension 2.

Property 2 of a SIRSN is because the underlying Poisson line process is
invariant by translation and rotation. As for change of scale, the underlying
Poisson line process is invariant by a transformation where scale is multiplied
by α and speed by α(d−1)/(γ−1) . Hence, all paths have their time length
multiplied by the same α(γ−d)/(γ−1) , so that the geodesics are the same and
N is invariant.

Property 3 of a SIRSN is Theorem 5.1.
Property 4 of a SIRSN is Theorem 6.1. �

7. Conclusion. We have established that the improper Poisson line pro-
cess with adequate speed limits yield a SIRSN.

Along the way, a few questions have been raised. Is there an easier, more
natural way to prove uniqueness of geodesics? What are the tightest mo-
ments of the Euclidean length of a geodesic? When can we generalize this
construction using geodesics from a random geodesic metric space?

On a more general note, we may wonder which property of our network
N translate to general SIRSNs, or to SIRSNs made of geodesics of a metric
space. For example, it should be easy to show that not all SIRSNs have the
equivalent of Lemma 4.6 or Corollary 4.9: it is certainly not true for the
binary hierarchy model by Aldous.

We might also raise a few typical questions in stochastic geometry. Is there
only one geodesic connecting a prescribed point x to infinity, like in dimen-
sion two? In many models, infinite geodesics have an asymptotic direction.
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For SIRSNs, this property looks unlikely, and characterizing the random
walk of the angle as a function of the Π-distance to x looks worthwhile.
What is the law of a typical cell in the tessellation generated by the network
connecting the points of Ξ1, an intensity 1 Poisson point process?

Finally, another somewhat tangential direction of research would be to
study more closely the properties of the random metric space. For exam-
ple, being a SIRSN entails coalescence of geodesics, a very hyperbolic-like
property. We may also draw comparisons with a well-known random metric
space such as the Brownian map [see, e.g., Le Gall (2014)].

The Brownian map is a random metric space homeomorphic to the sphere
S
2. It has Hausdorff dimension 4. All its geodesics minus their endpoints is of

Hausdorff dimension 1. The cut-locus of its geodesics starting from a given
point has Hausdorff dimension 2, and the topology of an open continuous
tree.

On the other hand, we have shown that our metric space is homeomorphic
to R

d. It should be easy, by scaling arguments, to show that its Hausdorff
dimension is (dγ − d)/(γ − d), which is bigger than d. In particular, with
d= 2 and γ = 3, we have the same dimensions as the Brownian map. If any
geodesic can be appropriately approximated by geodesics between points of
Poisson point processes, it should also be easy to show that the geodesics
minus their endpoints is of dimension 1. However, the cut-locus might have
a very different behaviour.

Acknowledgements. I would like to thank Wilfrid Kendall for introduc-
ing us to the problem during a talk, and helpful discussions since then.
Remarks from a referee have greatly improved the presentation of the pa-
per.
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