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This paper considers the representation theory of towers of algebras of J -trivial monoids. Using a very general lemma on induction, we derive a combinatorial description of the algebra and coalgebra structure on the Grothendieck rings G0 and K0.

We then apply our theory to some examples. We first retrieve the classical Krob-Thibon's categorification of the pair of Hopf algebras QSym/NCSF as representation theory of the tower of 0-Hecke algebras. Considering the towers of semilattices given by the permutohedron, associahedron, and Boolean lattices, we categorify the algebra and the coalgebra structure of the Hopf algebras FQSym, PBT, and NCSF respectively. Lastly we completely describe the representation theory of the tower of the monoids of Non Decreasing Parking Functions.

Résumé. Cet article traite de la théorie des représentations des tours d'algèbres de monoïdes J -triviaux. Nous introduisons un lemme général d'induction, duquel nous déduisons une description combinatoire des algèbres et cogèbres des groupes de Grothendieck G0 et K0.

Nous appliquons ensuite notre théorie pour retrouver le théorème de Krob-Thibon qui catégorifie la paire QSym/NCSF comme les algèbres de Hopfs duales K0 et G0 de la tour des algèbres 0-Hecke. En considérant les tours de semi-treillis du permutohedron, associahedron et booléen, nous catégorifions les structures d'algèbre et de cogèbre des algèbres de Hopf FQSym, PBT et NCSF. Enfin, nous décrivons complètement la théorie des représentations de la tour des monoïdes des fonctions de parking croissantes.

On the partial categorification of some Hopf algebras using the representation theory of towers of J -trivial monoids and semilattices 1 Introduction

Since Frobenius it has been known that the self-dual Hopf algebra of symmetric functions encodes the representation theory of the tower of symmetric groups Sym through the Frobenius character map. Namely, Sym is isomorphic to the Grothendieck group of the category of simple modules of the symmetric groups, and the product and the coproduct of Schur functions encode respectively the induction and the restriction rule for simple modules (see e.g. [START_REF] Geissinger | Hopf algebras of symmetric functions and class functions[END_REF]). In [START_REF] Krob | Noncommutative symmetric functions iv: Quantum linear groups and Hecke algebras at q= 0[END_REF], Krob and Thibon discovered that the same construction for the tower of Hecke algebras at q " 0 gives rise to the pair of dual Hopf algebras NCSF and QSym (since the algebras are not semisimple, one needs to consider both the categories of simple and projective modules, which gives two Grothendieck rings G 0 pAq and K 0 pAq). This sparked a keen interest in studying Grothendieck rings arising from towers of algebras ( [START_REF] Hivert | Yang-Baxter bases of 0-Hecke algebras and representation theory of 0-Ariki-Koike-Shoji algebras[END_REF], [START_REF] Khovanov | Nilcoxeter algebras categorify the Weyl algebra[END_REF], [START_REF] Savage | Categorification and Heisenberg doubles arising from towers of algebras[END_REF]...).

A natural but long running open question is that of categorification:

Problem 1.1 Which (pairs of dual) combinatorial Hopf algebras can be recovered as Grothendieck groups of some tower of algebras?

In particular, is it possible to categorify the combinatorial Hopf algebras of Free Quasi Symmetric Functions, or the Planar Binary Tree algebra of Loday Ronco.

In [START_REF] Bergeron | Algebraic structures on Grothendieck groups of a tower of algebras[END_REF], Bergeron and Li propose an axiomatic definition of towers of algebras which guarantees that the associated Grothendieck rings are Hopf algebras. In [START_REF] Bergeron | Combinatorial Hopf algebras and towers of algebras-dimension, quantization and functorality[END_REF] Bergeron, Lam, and Li proves further that those axioms are very strong: namely the tower of algebras is necessarily of graded dimension r n n!.

In order to explore a larger setting which includes our favorite examples, we drop axioms (4) and (5), and weaken axiom (3) not to be necessarily two sided. On the other hand we focus on towers of algebras of J -trivial monoids in order to take advantage of recent progress in the representation theory of those monoids which is very combinatorial (see e.g. [DHS `11]).

In Section 2, we specify the axiomatic definition of towers of algebras we will be working with, and recall some results on the representation theory of J -trivial monoids and semilattices, and in particular the description of simple and projective modules.

We proceed in Section 3 with a general formula for inducing a quotient of an idempotentgenerated module from an algebra to a super algebra, and specialize it in Section 4 to derive a combinatorial description of the induction rule of simple modules for a tower A of J -trivial monoids, that is the product in G 0 pAq. Similarly, we give a combinatorial description of the product in K 0 pAq and of the coproduct in G 0 pAq. As an example, we recover Krob-Thibon's theorem: for the tower A :" pH n p0qq n of 0-Hecke algebras, G 0 pAq/K 0 pAq forms the pair of dual Hopf algebras of Quasi Symmetric Functions and Non Commutative Symmetric Functions. Note however that, in most other cases, the coproduct is not compatible with the product, so that we do not get Hopf algebras.

In Section 4.3, we further specialize those results to towers of join-semilattices (that is commutative and idempotent J -trivial monoids). The theory is particularly simple in this case since semilattices are semisimple -so that G 0 pAq and K 0 pAq coincide -and the induction rule admits a purely order-theoretical description.

Despite the apparent simplicity of this setting, we show in Section 5 that the towers of semilattices given respectively by the permutohedrons, the Tamari, and the Boolean lattices can be used to partially categorify the Hopf algebras of Free Quasi Symmetric Functions (FQSym), Planar Binary Trees (PBT), and Non Commutative Symmetric Functions (NCSF). Namely, in each case the induction and restriction rules are described respectively by the product and the coproduct in one of the natural bases of those Hopf algebras. However the basis for the product does not coincide with the basis for the coproduct, and hence does not give a full categorification of the dual Hopf algebra structure. It is to be noted that adding some radical to the semilattices has the effect, on G 0 , of deforming the product without altering the coproduct; a work in progress is to try to use this trick to recover the full categorification.

Finally, in Section 6, we give a complete combinatorial description of the Grothendieck rings for the tower of the monoids of Non Decreasing Parking Functions. We obtain two copies of NCSF on different bases, including the well known ribbon basis R I .

Preliminaries

Towers of algebras

In [START_REF] Bergeron | Algebraic structures on Grothendieck groups of a tower of algebras[END_REF], Bergeron and Li propose an axiomatic definition of towers of algebras which guarantees that the Grothendieck rings of their categories of simple and projective modules give a pair of dual Hopf algebras. They further prove in [START_REF] Bergeron | Combinatorial Hopf algebras and towers of algebras-dimension, quantization and functorality[END_REF] that those axioms are very strong, implying that the tower of algebras is of graded dimension r n n!. We recall here the axioms of [BL09]: Definition 2.1 Let pA i q iě0 be a family of associative algebras endowed with a collection of algebra morphisms pρ m,n : A m b A n ãÑ A m`n q m,ně0 satisfying the following axioms:

(1) For i ě 0, A i is a finite dimensional algebra with unit 1 i , and A 0 « K.

(2) The multiplication homomorphisms ρ m,n are injective and associative (in the sense that the external multiplication morphism they implement on the direct sum

À iě0 A i is associative). (3) For m, n ě 0 the algebra A m`n is a two-sided projective A m b A n -

module. (4) A relation between the decomposition of A m`n as a left A m b A n -module and as a right

A m b A n -module holds.

(5) An analogue of Mackey's formula relating induction and restriction holds.

Bergeron and Li then define a tower of algebras as a family of algebras as stated above verifying the five previous axioms.

In order to explore a larger setting which includes our favorite examples, we drop axioms 4 and 5 and weaken axiom 3 into the following:

(3') for m, n ě 0, the algebra A m`n is a right (resp. left) projective A m b A n -module.
Definition 2.2 A right (resp. left) tower of algebra A is a family pA i q iě0 of algebras as above satisfying axioms (1), ( 2) and (3').

For any field K of characteristic 0, the K-algebra KM of a monoid pM, ¨q, is the K-algebra with basis t m u mPM , and multiplication obtained by linearization of the product of M :

m1 m2 " m1¨m2 .
A tower of monoids is a family of monoids pM i q iě0 together with a collection of morphisms such that pKM i q iě0 is a tower of algebras for the corresponding embedding.

We recall the definition of the Grothendieck groups G 0 and K 0 of an associative finite dimensional algebra F (see [START_REF] Curtis | Methods of Representation Theory[END_REF]). For a category F of finitely generated left F -modules, the Grothendieck group GpFq is the abelian group generated by symbols rM s, one for every isomorphism class of modules M in F and relations rM s " rLs `rN s for any short exact sequence 0 Ñ L Ñ M Ñ N Ñ 0 in F. We let G 0 pF q be the Grothendieck group of the category of finitely generated simple F -modules and K 0 pF q the Grothendieck group of the category of finitely generated projective F -modules. More combinatorially, it is easy to prove that G 0 pF q is the free Z-module with basis trS i su iPI , where pS i q iPI is a complete set of non pairwise isomorphic simple F -modules. For an F -module M , we can decompose rM s " ř iPI c i rS i s where c i is the multiplicity of S i in M . Continuing the same way, the set trP i su iPI of projective covers of the simple modules form a basis of the Z-module K 0 pF q.

Let A be a tower of algebras. Axiom (1) ensures that the Grothendieck groups

G 0 pAq " à ně0 G 0 pA n q and K 0 " à ně0 K 0 pA n q
are graded connected. Axioms (2) and (3) allows us to define induction and restriction functors on G 0 and K 0 , endowing them with a multiplication and a comultiplication. For M and A mmodule and N an A n -module, the product and coproduct of their classes rM s and rN s in G 0 (or in K 0 ) are given respectively by rM srN s " rInd

Am`n

AmbAn M b N s and ∆prM sq "

ÿ i`j"n
rRes An AibAj M s .

The two Grothendieck rings are closely related thanks to the natural pairing x , y defined on P P K 0 pA m q and M P G 0 pA n q by xrP s, rM sy "

" dim K phom Am pP, M qq if m " n , 0 if m ‰ n .
In particular, for tP 1 , . . . , P n u a complete set of indecomposable projective modules and tS 1 , . . . , S n u their associated simple irreducible module, we have xrP i s, rS j sy " δ i,j . With the three axioms given above, G 0 and K 0 are dual graded free Z-modules with product and coproduct. Induction on K 0 and restriction on G 0 are related thanks to Frobenius reciprocity.

Theorem 2.3 (Frobenius reciprocity)

Ind is left adjoint for Res.

The right adjoint of Res is called coinduction and is noted Coind. We have an equality between Res and Coind for groups and this equality also holds in the semilattice case. However, these functors are not equal in the general case, for example for the tower of NDPF that we introduce in Section 6.

Categorification

We will use the definition of naive categorification as defined in [START_REF] Savage | Introduction to categorification[END_REF].
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J -trivial monoids, semilattices, and their representation theory

We recall here some facts about J -trivial monoids and their representations. For details, see for example [START_REF] Pin | Mathematical foundations of automata theory[END_REF] and [DHS `11] respectively. Let M be a monoid, and write EpM q for the set of idempotents of M . In the sequel, we always assume M to be finite. Define the J preorder ď J on M by x ď J y if x P M yM . This preorder induces an equivalence relation, namely xJ y if and only if M xM " M yM . The equivalence classes are called J -classes.

Definition 2.4 A monoid M is J -trivial if all its J -classes are of cardinality 1.

Equivalently, M is J -trivial if ď J is a partial order. In this case, we write J ă pxq the set of all elements strictly smaller than x for the J -order. We define similarly the right preorder ď R by x ď R y if x P yM . This preorder gives R-classes and we call R-trivial a monoid for which ď R is a partial order. The symmetric definition on the left side leads to L-trivial monoids. A monoid is J -trivial if it is both L-trivial and R-trivial. For an element x P M , we denote by R ă pxq the set of all elements of M strictly smaller than x for the R-order. For a tower of monoids pA i q " pKM i q and x P M i , we will note R Ai ă p x q the subspace of A i generated by R ă pxq. The representation theory of J -trivial monoids is essentially independent of the ground field K. The simple modules admit an easy description. Namely, for x P M , define S x " K pxM {R ă pxqq. It's a right module of dimension 1 where, denoting the single basis element by x , the action is given by x ¨m " x if xm " x and x ¨m " 0 otherwise. Theorem 2.5 Let M be J -trivial monoid. The set pS e q ePEpM q is a complete set of pairwise non-isomorphic simple KM -modules.

We now turn to the description of the indecomposable projective modules. For x P M , set: rfixpxq " min J te P EpM q : xe " xu and lfixpxq " min J te P EpM q : ex " xu .

For e an idempotent, one can define the module P e " K peM {tm P M : lfixpmq ă J pequq. Its basis is indexed by the family tx : lfixpxq " eu.

Theorem 2.6 ([DHS `11], Corollary 3.22)

Let M be a J -trivial monoid. The set pP e q ePEpM q is a complete set of pairwise non-isomorphic indecomposable projective KM -modules.

The radical of the algebra of an J -trivial monoid viewed as a module on itself is given by its non idempotent elements. It is thus natural to consider the semisimple case, when all the elements of M are idempotent. It turns out that M is then necessarily commutative thanks to the following theorem.

Theorem 2.7 ([Pin11]) The class of idempotent (or equivalently semisimple) J -trivial monoids coincide with the class of finite semilattices pL, _q.

In particular, a good source of examples is to take one's favorite finite lattice, and consider the monoid given by its join (resp. its meet) operation, together with its smallest (resp. largest) element as identity.

Induction lemma

We now introduce our key lemma.

Lemma 3.1 Let B Ď A two K-algebras, f P B an idempotent and U Ď f B a right B-module.

We have the following A-mod isomorphism:

Ind A B pf Bq{U « pf Aq{pU Aq .
4 Representation theory of towers of J -trivial monoids

General case

In the following section, we fix a tower of monoids pM i q iě0 with A " pA i q iě0 the associated tower of algebras. Thanks to J -triviality, the representation theory of such a monoid is combinatorial.

In order to describe the general rules, we need to expand the previous definitions of rfix and lfix to tensorial algebras. For x P M m`n set rfix MmˆMn pxq " min J te P M m ˆMn : ρ m,n peq P EpM m`n q and xρ m,n peq " xu , and define similarly lfix MmˆMn pxq. We can therefore state the following proposition:

Proposition 4.1 Let pA i q iě0 " pKM i q iě0 be a tower of monoid algebras. Take x P M m`n , and let S x be the associated A m`n -simple module, then Res Am`n AmbAn S x " S e where e " rfix MmˆMn pxq. Thanks to Frobenius Reciprocity (Theorem 2.3) we directly get the product rule in K 0 . Proposition 4.2 Let e be an idempotent of M m b M n and P e be the projective module associated to e. Then, Ind Am`n AmbAn P e " ÿ f PC P f with C " tg P EpA m`n q : rfix MmˆMn pgq " eu .

We can now study how this lemma applies in the case of a tower of J -trivial monoids. Each simple module M can be interpreted as an element x of a graded component A n of the tower, and the action is characterized by the partial ordering. Indeed, A n acts by 1 on M for all elements tz ě R xu and by 0 otherwise. Given two simple modules S f and S g of A m and A n , the tensor product S f b S g is a simple two sided pA m b A n q-module. Thanks to lemma 3.1, the induced module on A m`n is the quotient Kpf ¨gqA m`n {pR ă pf q ¨Ră pgqA m`n q.

Let S e and S f be two simple modules of respectively A m and A n . Let Xpe, f q denote the subset of M m`n containing all elements in ρ m,n pe, 1q ρ m,n p1, f qM m`n which are not in ρ m,n pR ă peq, 1qρ m,n p1, R ă pf qq. Namely, by identifying M m and M n with their copies embedded in M m`n we have

Xpe, f q " ef M m`n z ď e 1 P eM m , f 1 P f M n pe 1 , f 1 q ‰ pe, f q e 1 f 1 M m`n .
The following theorem describes combinatorially the induction rule for simple modules:

Theorem 4.3 (Induction rule for J -trivial monoids) Let M " pM i q be a tower of J -trivial monoids and A " pA i q the related tower of algebras.With the above notations, the induction rule for two simple modules S e and S f is given by rInd

Mm`n

MmbMn S e b S f s " ÿ xPXpe,f q rS lfixpxq s .

Proof: Straightforward application of Lemma 3.1 on the construction of the simple modules given in Theorem 2.5. l

Categorification of the pair of Hopf Algebras QSym/NCSF

We recover Krob-Thibon's Theorem [KT97] using Theorem 4.3. It is well known that the 0-Hecke algebra H n at q " 0 is the algebra of the 0-Hecke monoid H n p0q which is J -trivial. The idempotents are naturally indexed by the subsets I of t1, . . . , n ´1u, with lfixpπ σ q and rfixpπ σ q given respectively by the left and right descent sets D L pσq and D R pσq of σ.

Let us first recover the product rule in G 0 . Each simple module S I can be constructed as π σ H n p0q{R ă pπ σ q, where σ is any permutation with left descent set I. Here we choose π I " π σ I , where σ I is the maximal element of the parabolic subgroup S I .

Consider a simple pH m b H n q-module S I b S J . It can be written as

S I b S J " pπ I b π J qpH m b H n q { R HnbHm ă pπ I b π J q " π µ pH m b H n q { Q , where µ P S m`n is such that π µ " π I b π J , and Q " R HnbHm ă pπ µ q. Using Lemma 3.1, the induced module on H m`n is Ind Hm`n HmbHn S I b S J " π µ H m`n { QH m`n . Note that Q " tπ µ π i π ν : i R Des R µ, i ‰ m, π ν P ρ m,n pH m p0q ˆHn p0qqu. Therefore, QH m`n " tπ µ π i π ν : i R Des R pµq, i ‰ m, π ν P H m`n u .
and it follows that

π µ H m`n zQH m`n " tπ µ π ν : Des R pνq Ď Des R pµq Y tmuu " tπ µ π ν : Des R pνq Ď tmuu .
It is well known that the permutations ν with Des R pνq Ď tmu are the permutations appearing in the shuffle product id m ¡id n . At the level of descents we recover the shuffle product of NCSF.

For the coproduct in G 0 , we need to study the restrictions of each simple module S I of H m`n on H m b H n . In terms of descent sets, lfix Hmp0qˆHnp0q pπ I q amounts to removing m from I and shifting the entries greater than m by ´m; this is exactly the shifted deconcatenation rule of the fundamental basis of NCSF.

Altogether we proved that G 0 is isomorphic to NCSF in the fundamental basis. By adjunction, we get the product in K 0 , then we use our knowledge of the pair QSym/NCSF and the Z-module duality to conclude.

Representation theory of towers of semilattices

For a tower of semilattices pL m q mě0 , each L i is semisimple. Then we have G 0 pKLq " K 0 pKLq.

Because we combinatorially described the induction and restriction in G 0 pAq for any algebra tower of J -trivial monoids, we have a complete combinatorial description of both Grothendieck rings of any tower of semilattices.

5 Partial categorification of FQSym, PBT, and NCSF

In the section, we assume that the reader is familiar with both Malvenuto-Reutenauer algebra FQSym ([MR95], [START_REF] Duchamp | Noncommutative symmetric functions vi: free quasi-symmetric functions and related algebras[END_REF]) and the Loday-Ronco Planar Binary Tree Hopf algebra ( [START_REF] Loday | Hopf algebra of the planar binary trees[END_REF]) and how it relates with FQSym ([HT09]).

The tower of permutohedron lattices

We first consider the tower of permutohedrons. Namely, for each n, take the left weak order ă L on the n-th symmetric group S n . A potential definition for the weak order on permutation is that σ ď µ if and only if invpσq Ď invpµq. It is well known that it endows S n with a lattice structure, and we consider the semilattice P n " pS n , _q, with the trivial representation as identity element. Remind that the J -order on P n is the reverse order of ă L ; the identity is the largest element.

Let ρ m,n : KP m b KP n Ñ KP m`n be the linear extension of the shifted concatenation on P m ˆPn . The morphism ρ is obviously injective. Thus we obtain a tower of semilattices KP " À ně0 KP n . It follows that invpρ m,n pσ, µqq " invpσq s Y invpµq where s Y is the shifted union. We start by describing the product rule in G 0 pPq, that is the induction rule of simple modules. Let us fix a simple KpP m b P n q-module S σbµ . This simple module is the quotient This quotient is a subalgebra of KR ă pσs ¨µq and is quite easy to describe. The submonoid R ă pσ b µqP m`n is exactly the set of all permutations w P P m`n such that invpwq Ă invpσq s Y invpµq. Since R ă pσs ¨µq consists of all permutations ν such that invpνq Ď invpσqs ¨invpµq, we can state the following proposition: The map rS σ s Þ Ñ F σ is a coalgebra isomorphism between G 0 pPq and FQSym.

Each F σ or G σ induced a FQSym-module morphism by left-multiplication. We obtain a categorification of the algebra pFQSym, G σ q and a categorification of the coalgebra pFQSym, F σ q.

Note that the product and the coproduct are not compatible as bialgebras, so in particular we did not categorify FQSym as an auto-dual Hopf algebra.

The tower of Tamari lattices

We now turn to the tower of the Tamari lattice. The Tamari lattice is the lattice of binary trees ordered by tree rotations. We note T n the Tamari lattice of binary trees with n edges; T n has cardinality C n the nth Catalan number. In this paper, we will note the elements of the Tamari lattice as 132-avoiding permutations.

We construct a tower of semilattices by the embedding ˚: T m ˆTn ãÑ T m`n which consist in taking the Sylvester class of the shifted concatenation.

Example 5.5 p312q ˚p21q " p53214q.

The product and the coproduct in the Grothendieck rings of KT can be computed from our previous construction on FQSym. Therefore, the maps rT σ s Þ Ñ P σ and rT σ s Þ Ñ Q σ are respectively algebra and coalgebra isomorphisms from G 0 pT q to PBT making both diagrams of the definition of naive categorification commute.

Once again, we constructed categorifications of pPBT, P T q and pPBT, Q T q. But we do not get a full Hopf categorification of the pair pPBT, PBT ˚q.

The tower of Boolean lattices

Finally, let B n be the Boolean lattice of subsets of 1, n . We write the elements of B n as binary words of size n. The concatenation embedding is an injective morphism making a tower B " À mě0 B n of semilattices. The product in G 0 pBq easily follows from the remark R ă puq Ră pvq " R ă pu b vq and Theorem 4.3 gives that Ind KB m`b KBmbKBn S u b S v " S u¨v . By duality, or using that B n is the semisimple quotient of H n p0q, the coalgebra structure on G 0 pBq is isomorphic to QSym on the fundamental basis: ∆pS w q " ÿ 0ďiďm`n rS w 1,i s b rS w i`1,m`n s.

  Kpσ b µqpP m b P n q{R ă pσ b µq " Kpσ b µqpP m b P n q{pR ă pσq b R ă pµqq by definition of the product order. By Lemma 3.1, we have: Ind KPm`n KpPmbPnq S σbµ " pσs ¨µqP m`n {pR ă pσ b µqP m`n q .

  rS µ s b rS ν s " ÿ us ¨v"σ rS stdpuq s b rS stdpvq s . Example 5.3 ∆prS p2413q sq " r1s b rS p2413q s `rS 1 s b rS p312q s `rS p12q s b rS p12q s `rS p312q s b rS 1 s rS p2413q s b r1s. Corollary 5.4 The map rS σ s Þ Ñ G σ is an algebra isomorphism between G 0 pPq and FQSym.

  In the permutohedron tower, the induction rule for the simple modules is Partial categorification of Hopf algebras and representation theory of towers of J -trivial monoids 9Example 5.2 rS p21q s ¨rS p231q s " rS p21453q s `rS p31452q s `rS p32451q s `rS p41352q s `rS p42351q s rS p52341q s `rS p43251q s `rS p51342q s `rS p53241q s `rS p54231q s.

	Using Frobenius formula, we directly obtain		
	ÿ		
	∆prS σ sq "		
	us ¨v"σ invpµq"invpuq		
	invpνq"invpvq		
	Proposition 5.1 Ind KPm`n KpPmbPnq S σbµ "	ÿ	S ν .
	νPPm`n	
	invpνq"invpσq s Y invpµq	
	This gives the following product rule in G 0 pPq:		
	ÿ		
	rS σ s ¨rS µ s "	rS ν ´1 s .	
	νPσ¢ν		
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Unsurprisingly, the product and coproduct are again not compatible.

6 Non Decreasing Parking Functions Definition 6.1 For n ě 1, let NDPF n be the monoid of the non decreasing and regressive functions from 1, n onto itself, endowed with the composition product. Denote a function f : i Þ Ñ a i P NDPF, by the sequence pa 1 , a 2 , . . . , a n q; it satisfies 1 " a 1 ď a 2 ď ¨¨¨ď a n and a i ď i.

This monoid and its representation theory, were studied in [START_REF] Hivert | The Hecke group algebra of a Coxeter group and its representation theory[END_REF]DHS `11]. It's cardinality is the n-th Catalan number, and it is minimally generated by the idempotents π i " p1, 2, . . . , i, i, i 2, . . . , n ´1q for i P 1, n ´1 . The exterior product ρ m,n : pa 1 , . . . , a m q ¨pb 1 , . . . , b n q Þ Ñ pa 1 , . . . , a m , b 1 `m, . . . , b m `nq defines an associative and injective embedding from NDPF m b NDPF n to NDPF m`n . Thus we note NDPF " À ně0 NDPF n , and the tower K NDPF satisfy Axioms (1) and (2). Verifying the third axiom is more tricky. Proposition 6.2 NDPF m`n is a left projective pNDPF m b NDPF n q-module.

Proof:

We construct an explicit decomposition of NDPF m`n as NDPF m b NDPF n -module, and prove bijectively that each piece is isomorphic to a projective NDPF m b NDPF n module. l

Proposition 6.3 ([DHS `11])

The monoid NDPF n is J -trivial for all n. In particular its simple modules are all one dimensional.

The irreducible left K NDPF n -modules are thus entirely characterized by the action of the idempotent generators of KNDPF n . The eigenvalues of S on π i is 0 or 1 so we have 2 n´1 simple K NDPF n -modules indexed by compositions. From now on, we will identify a simple K NDPF nmodule by the sequence pb 1 , . . . , b n q of his ordered eigenvalues on the generators pπ i q. We will note pq " p1 0 q the unique irreducible NDPF 1 -module. Note that an irreducible NDPF n -module is described by n ´1 eigenvalues. Proposition 6.4 The J -order on EpNDPF n q is the Boolean lattice of 2 n elements.

The product in K 0 pNDPFq is quite general thanks to [DHS `11]. We again use Lemma 3.1. Thanks to Theorem 2.6 we can explicit the product in K 0 pNDPFq. Let e I and e J be two idempotents in respectively NDPF m and NDPF n indexed with compositions I of m ´1 and J of n ´1. We note P I " NDPFe I the projective module associated with S e . By applying Lemma 3.1 we have:

By Theorem 2.6 the projective module we obtain is:
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We deduce that rP e I srP e J s "

, so that rP I srP J s " rP IYJ s rP IYtn`1uYJ s. We just proved: Proposition 6.5 The map K 0 pNDPFq Ñ NCSF defined by rP I s Þ Ñ R I is an algebra isomorphism.

The product in G 0 pNDPFq is quite tedious to write. To avoid a straightforward but technical proof, we use our knowledge of the algebra structure of K 0 pNDPFq, and take advantage of the fact that the Cartan operator C : K 0 pNDPFq Ñ G 0 pNDPFq is an isomorphism in our case. The Cartan operator is the Z-module morphism defined by the Cartan matrix. More precisely, for P a projective module, CprP sq " ř i c i rS i s where c i " dimphompP i , P qq; that is CprP sq gives the composition factors of P , with multiplicities. Thanks to Theorem 2.6, it admits an explicit description for J -trivial monoids: CprP e I sq " ř rfixpxq"e I rS x s. Lemma 6.6 For k ě 0 and l ě 0 we have:

Theorem 6.7 Let S a " pa 1 , a 2 , . . . , a i , 1 k q P G 0 pNDPF m q and S b " p0 l , b j , b j`1 , . . . , b n´1 q P G 0 pNDPF n q, then rS a srS b s " # rpa 1 , . . . , a i , c 1 , . . . , c k`l`1 , b j , . . . , b n´1 qs :

Theorem 6.8 The algebra G 0 pNDPFq is the free graded algebra with generators pq, p0q, p00q, . . . .