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Abstract The purpose of this work is to automatically design vision algorithms for

a mobile robot, adapted to its current visual context. In this paper we address the

particular task of obstacle avoidance using monocular vision. Starting from a set of

primitives composed of the different techniques found in the literature, we propose a

generic structure to represent the algorithms, using standard resolution video sequences

as an input, and velocity commands to control a wheel robot as an output. Grammar

rules are then used to construct correct instances of algorithms, that are then evalu-

ated using different protocols: evaluation of trajectories performed in a goal reaching

task, or imitation of a hand-guided trajectory. A genetic program is applied to evolve

populations of algorithms in order to optimize the performances of the controllers. The

first results obtained in a simulated environment show that the evolution produces

algorithms that can be easily interpreted and which are clearly adapted to the visual

context. However the resulting trajectories are often erratic, and the generalization

capacities are poor. To improve the results, we propose to use a two-phase evolution

combining imitation and goal reaching evaluations, and to add some constraints in the

grammar rules to enforce a more generic behavior. The results obtained in simulation

show that the evolved algorithms are more efficient and more generic. Finally, we apply

the imitation based evolution on real sequences and test the evolved algorithms on a

real robot. Though simplified by dropping the goal reaching constraint, the resulting

algorithms behave well in a corridor centering task, and show certain generalization

capacities.

Keywords Genetic programming · Computer vision · Mobile robotics · Obstacle

avoidance

R. Barate and A. Manzanera
ENSTA - 32 Bd Victor
75739 PARIS CEDEX 15
Tel.: +33 1-45-52-44-42
Fax: +33 1-45-52-83-27
E-mail: Renaud.Barate@ensta.fr, Antoine.Manzanera@ensta.fr



2

1 Introduction

The autonomy of a mobile robot refers to its capacity of interacting with a - possibly

unknown - environment, with the lowest level of human supervision. This capacity

obviously requires perception abilities. Amongst these, vision is certainly one of the

cheapest, most informative, but most difficult to use.

Aside from perception, the other condition for acquiring autonomy is cognition:

the robot makes the most of experiences gathered through learning or adaptation. An

abundance of work can be found in the literature combining machine learning and

vision in mobile robotics.

But it is notable that, generally, the cognitive dimension of vision itself is ignored:

the visual processing is not the fruit of learning but some benchmarked, validated,

and often sophisticated algorithm which produces features, and only some descriptors

attached to these features take part in the learning process.

However, from a biological point of view, even the earliest stages of visual perception

are the result of an adaptation process. For a mobile robot, using some simple and ad

hoc visual procedure results in a loss of genericity, whereas using more sophisticated

and robust visual feature induces a high computational load, both solutions being at

the detriment of autonomy.

It is true that there are good combinatorial arguments for not integrating image

processing in the adaptation loop: the size and variability of data and algorithms lead

to very high computational costs. Nevertheless, the present development level of High

Performance Computing [17] allows us to envisage massive concurrent computation of

large number of visual primitives on the same machine.

Our objective is to automatically design vision algorithms that are well suited to a

given environment, and to a given task of a mobile robot. The task that we address in

this paper is the obstacle avoidance problem, as it is one of the basics for the robot to

acquire autonomy. Considering a large family of visual primitives, we propose a generic

structure of visual obstacle avoidance algorithm, used to construct any instance of valid

algorithms from those primitives. Evolutionary computation is then used, together with

an evaluation protocol to automatically select the algorithms that are best suited in

the current environment. Experiments are shown in a simulated environment, then on

a real robot.

Section 2 recalls the related works, i.e. learning visual obstacle avoidance tech-

niques, or evolutionary computer vision. Section 3 presents some state of the art visual

obstacle avoidance techniques (Sec. 3.1) used to define the set of algorithmic primitives

(vocabulary) chosen to construct the algorithms (Sec. 3.2). The rules (grammar) that

construct valid obstacle avoidance algorithms are presented in (Sec. 3.3). Section 4

presents the different evaluation methods used to select the algorithms, first in the

context of reaching a given target (Sec. 4.1), and then imitating an existing trajectory

(Sec. 4.2). We then present the evolution process, which is implemented through genetic

programming (Sec. 4.3). In Section 5, we discuss the experimental results obtained in

simulation. The global evolution, and the behavior of the best evolved algorithms are

analyzed (Sec. 5.1). We then perform a comparison of different strategies used to im-

prove the evolution (Sec. 5.2). Finally we evaluate the generalization abilities of the

evolved controllers (Sec. 5.3), i.e. their capacity to keep on avoiding obstacles when their

positions change (the environmental visual appearance remaining the same). Section 6

presents the results on a real Pioneer 3 DX Robot. We detail the evolution principles

in the real world and show the evolved controllers, first in their evolution environment
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(Sec. 6.1), and next in an unseen environment (Sec. 6.2). Finally, Section 7 draws the

conclusion and discusses the perspective of this research.

2 Related works

Different machine learning methods have been proposed in the literature for obstacle

avoidance using vision. Michels and Saxena used reinforcement learning to associate

depth to texture patches [24,30]. Low and Wyeth used three-layer neural network to

learn the robot heading command from the apparent motion (optical flow) vector field

input [20]. In these works, a depth map acquired by laser range sensor is used as ground

truth for supervision purposes. In all cases, one visual primitive is used exclusively,

neglecting any other source of information. Le Cun et al designed an obstacle avoidance

learning system using a neural network whose input is a pair of stereo images and

output is a steer angle [18]. This system uses video and command sequences recorded

by a hand guided robot as supervised learning input.

On the other hand, evolutionary techniques have already been used for robotic

navigation and the design of visual obstacle avoidance controllers [29,34] but in general

vision is overly simplified. For instance, Marocco used only a 5×5 pixels retina as visual

input [22]. Aside from obstacle avoidance, genetic programming has been proved to

achieve human-competitive results in image processing systems, e.g. for the detection

of interest points [10,32]. Cooperative coevolution methods (e.g. Parisian evolution)

have also produced good results for obstacle detection [28] and 3D reconstruction, the

latter used either for computing the 3D coordinates from a pair of images [27], or for

optimizing the placement of the different cameras [8]. A recent tutorial on evolutionary

computer vision was given by Cagnoni in [5].

Ebner and Zell have used genetic programming to automatically design interest

point detectors. From a set of basic image operations, they first tried to retrieve an

existing operator (the Moravec detector), by minimizing the sum of squared differ-

ences between the desired and actual output images [9]. As a second approach, they

used a task dependent fitness based on the quality of matches between two sets of

interest points in a training sequence [10]. Furthermore, they were also interested in

the obstacle avoidance problem and developed a monocular vision system to center a

robot in a hallway that performed quite well [11]. However this system did not used

an automatically evolved algorithm, instead it used the original Moravec detector.

To our knowledge, only Martin tried evolutionary techniques with monocular im-

ages for obstacle avoidance [23]. The structure of his algorithm is based on the floor

segmentation technique and the evaluation is done with a database of hand labeled

real world images. The advantage of such an approach is that the evolved algorithms

are more likely to work well with real images than those evolved with computer ren-

dered images. Nevertheless, it introduces an important bias since the algorithms are

only selected on their ability to label images in the database correctly and not on their

ability to avoid obstacles.
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3 Generic structure of visual controllers

3.1 Visual obstacle avoidance algorithms

In the literature, the obstacle avoidance algorithms using monocular vision can be

clearly divided in two categories: motion-based and appearance-based strategies.

The first category, sometimes referred to as “monocular stereovision” uses the paral-

lax principle, according to which, when the robot moves in purely translational motion,

the apparent velocity of closer objects is greater. This geometric property can be used

through the estimation - by image processing - of different types of measure:

– local flow divergence, which is based on the local apparent velocity, and which can

provide the depth or the time before impact of the projected point, depending on

the available odometry information [26,6].

– global flow balance, which is a measure of the symmetry between the left and

the right sides of the apparent motion field. This technique is inspired by the

strategy of flying insects, which use it to center themselves when flying in a narrow

environment. The insects naturally take advantage of their pair of lateral sensors,

however the technique has been used with success on an autonomous helicopter

using a wide field single camera [25].

Within this category, the necessary algorithmic primitives are: computation of the

apparent motion field (optical flow), spatio-temporal smoothing filters, and regional

integral computations.

In the second category of visual obstacle avoidance algorithms, a local visual feature

is associated with contextual information, which can be related to depth, orientation,

or even to a segmentation of the projected scene in principal surfaces (floor, walls

typically) [16,19,33]. The algorithmic primitives from this category are: multi-scale

and multi-orientation derivative measures, image threshold and binarization functions,

horizontal and vertical projection measures, and regional integral computations.

Our objective is now to construct a generic description model of a visual obstacle

avoidance controller which can be used to automatically design a formally valid algo-

rithm, in such a way that any of the approaches presented above could be derived as

an instance of a valid algorithm.

3.2 Choice of the primitives

Generally speaking, a vision algorithm can be divided in three main parts: First, the

algorithm will process the input image with a number of filters to highlight some fea-

tures. These features are then extracted, i.e. represented by a small set of scalar values.

Finally these values are used for a domain dependent task, in our case to generate motor

commands to avoid obstacles. We designed the structure of our algorithms according

to this general scheme. First, the filter chain consists of spatial and temporal filters,

optical flow calculation and projection that will produce an image highlighting the

desired features. We then compute the mean of the pixel values on several windows

of this transformed image (feature extraction step). Finally those means are used to

compute a single scalar value by a linear combination. We will use this scalar value to

determine the presence of an obstacle and to generate a motor command to avoid it.
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An algorithm is represented as a tree, the leaves being input data (video image

or scalar constant value), the root being output command (generating linear and yaw

speed), and the internal nodes being primitives (transformation steps). The program

can use different types of data internally, i.e. scalar values, images, optical flow vec-

tor fields or motor commands. For each primitive, the input and output data types

are fixed. Some primitives can internally store information from previous states, thus

allowing temporal computations like the calculation of the optical flow.

Most of those primitives also use parameters along with the input data (for exam-

ple, the standard deviation value for the Gaussian filter). The parameters are specific

to each algorithm; they are randomly generated when the corresponding primitive is

created by the genetic programming system described in Sec. 4.3. For each parame-

ter, we define the distribution used to generate it (uniform or normal) along with the

range of valid values. We also define the mean and standard deviation of the normal

distribution where applicable. The parameters with their distributions are detailed in

Table 1. Here is the list of all the primitives that can be used in the programs and the

data types they manipulate:

– Spatial filters (input: image, output: image):

– Gaussian filter: This low-pass filter has one parameter: the standard deviation

of the Gaussian function.

– Laplacian filter: This high-pass filter has no parameter, it is defined by the

following 3× 3 convolution kernel:

0 1 0
1 -4 1
0 1 0

Convolution kernel defining the Laplacian filter used in our system.

– Threshold filter: The parameter defining this filter is the threshold value.

– Gabor filter: This filter is used to detect patterns of given orientation and

frequency. The parameters are: orientation, wavelength and bandwidth.

– Difference of Gaussians: The parameters are the standard deviations of each

Gaussian function.

– Sobel filter: This filter is defined by its orientation. The 3×3 convolution kernels

used for each orientation are:

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

Convolution kernels defining the vertical (left) and horizontal (right) Sobel filters used in
our system.

– Subsampling filter: This filter is defined by the size coefficient.

– Temporal filters (input: image, output: image):

– Pixel-to-pixel min, max, sum and difference of the last two frames. These filters

have no parameters.
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– Recursive mean operator. This filter is computed with the following formula at

each pixel: Mt = αIt + (1 − α)Mt−1 where It is the current pixel value and

Mt−1 is the filtered value at time t − 1. The parameter for this filter is the

coefficient α.

– Optical flow (input: image, output: vector field):

– Horn and Schunck global regularization method [15].

– Lucas and Kanade local least squares calculation [21].

– Simple block matching method.

The rotation movement is first eliminated by a transformation of the two images

in order to facilitate further use of the optical flow.

– Projection (input: vector field, output: image):

– Projection on the horizontal or vertical axis.

– Euclidean norm computation.

– Manhattan norm computation.

– Time to contact calculation using the flow divergence.

– Windows integral computation (input: image, output: scalar): The method

used for this transformation is:

1. A global coefficient α0 is defined for the primitive.

2. Several windows are defined on the left half of the image with different positions

and sizes. With each window is paired a second window defined by symmetry

along the vertical axis. A coefficient αi and an operator (+ or −) are defined

for each pair.

3. The resulting scalar value R is a simple linear combination calculated with the

following formula:

R = α0 +
∑n

i=1 αiµi

µi = µLi + µRi or µi = µLi − µRi

(1)

where n is the number of windows and µLi and µRi are the means of the pixel

values over respectively the left and right window of pair i.

The number of windows pairs, their positions, sizes, operator and coefficient along

with the global coefficient are characteristic parts of the primitive and will be

customized by the evolutionary process.

– Scalar operators (input: scalar(s), output: scalar):

– Addition, subtraction, multiplication and division operators.

– Temporal mean calculation. This is simply the mean value computed on the N

last time steps.

– Command generation (input: two scalars, output: command): The motor com-

mand is represented by two scalar values: the requested linear and angular speeds.

3.3 Construction grammars

We use context-free grammars to represent and build these vision algorithms. We will

describe here the sets of terminal and non-terminal symbols in these grammars, and

the two different structures we use to design our obstacle avoidance algorithms. The

build process itself will be detailed in Section 4.3.

The base set of non-terminal symbols is simply the list of primitives that we have

just described in Section 3.2. The terminal symbols are the current video image and
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Table 1: Parameters of the primitives used in our system (units are shown in parenthesis where
applicable).

Primitive and parameter Distribution Min. Max. Mean Std

Scalar constant
Value Normal - - 0,0 50,0

Temporal regularization
Number of values Normal 1 100 1 3

Windows integral computation
Global coefficient α0 Uniform -180,0 180,0 - -

Window
Position x1 (rel. to image width) Uniform 0,0 0,5 - -
Position x2 (rel. to image width) Uniform 0,0 0,5 - -
Position y1 (rel. to image height) Uniform 0,0 1,0 - -
Position y2 (rel. to image height) Uniform 0,0 1,0 - -
Coefficients αi Normal - - 0,0 3,0
Operator (+ or -) Uniform - - - -

Gaussian filter
Standard deviation (pixels) Normal 0,0001 20,0 3,0 2,0

Threshold filter
Threshold (gray level) Uniform 0 255 - -

Gabor filter
Orientation (degrees) Uniform 0,0 180,0 - -
Wavelength (pixels) Normal 2,1 20,0 5,0 2,0
Bandwidth Normal 0,5 2,0 1,0 0,3

Difference of Gaussians
Standard deviation 1 (pixels) Normal 0,0001 20,0 3,0 2,0
Standard deviation 2 (pixels) Normal 0,0001 20,0 3,0 2,0

Sobel filter
Orientation (H or V) Uniform - - - -

Subsampling filter
Size coefficient Uniform 0,01 1,0 - -

Recursive mean
Multiplying coefficient α Uniform 0,01 1,0 - -

Horn-Schunck optical flow
Weight coefficient α

2 Normal 0,0 100,0 2,0 1,0
Lucas-Kanade optical flow

Size of the window (pixels) Uniform 1 15 - -

a scalar constant (the constant value is a random generated parameter, see Table 1).

Depending on the kind of structure used to build the algorithm, these sets will be

completed with a few other symbols.

The first controllers we have constructed can be represented with a single algorith-

mic tree. This tree is entirely built by the evolutionary process without any a priori

in the structure of the algorithm. In this paper, we will call them structure-free con-

trollers. In this case, we shall add two terminal symbols to the base set: the distance

(in cm) and the direction (in degrees) of the target point. We shall also add one non-

terminal symbol: an if-then-else test, which is a scalar operator with four inputs and

one output. If the first input value is greater than the second, the output value is equal

to the third input value, otherwise it is equal to the fourth input value. This allows

the evolutionary process to create more complex and non-linear combinations between

new scalar input variables and the scalars issued from the vision part of the algorithm.

Fig. 1 shows a controller that can be built with this structure. The algorithm is a single

tree and all the primitives between the input data and the resulting motor command

are created and parameterized by the evolution.
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Fig. 1: Example of a structure-free controller for obstacle avoidance based on optical flow.
Rectangles represent primitives and ellipses represent data.

The price to pay for the maximal genericity in these structure-free controllers is that

there is no guarantee that the evolved controllers will use the input variables (target

heading and distance in particular). Thus, it is quite unlikely that such a controller

evolved in a given environment could develop a geometric abstraction of the target

reaching task.

This is why we also designed a second kind of controllers with a more constrained

structure, which facilitates the trade-off between avoiding obstacles and reaching the

target point. We will call them structure-restricted controllers in the rest of this paper.

First, a vision algorithm is used to detect nearby obstacles. If no obstacle is around,

the robot will just go straight to the target point. If an obstacle is detected, another

vision algorithm will be used to generate a command to avoid this obstacle. The parts

that will be customized by the evolution are the two vision algorithms along with a

few parameters like the speed of the robot when going straight to the goal. This global

structure is represented on Figure 2.

The first vision algorithm (obstacle detection) is in fact always a simple function

chain, starting with the video image and computing a Boolean as output. We obtain this

Boolean value by comparing the scalar produced by the feature extraction step with a

scalar threshold. This result will indicate the presence or absence of a nearby obstacle.

Formally, this means that the grammar used to generate this algorithm will be slightly

different. We add two non-terminal symbols to the base set: the Boolean function not

and a threshold function with a scalar value as input, a Boolean value as output, and

a scalar parameter (the threshold value). We also remove the terminal symbol scalar

constant, the binary scalar operators and the command generation primitive.

The second vision algorithm (command generation) can use as an input either the

original video image or the image filtered by the obstacle detection algorithm. This

allows the reuse of interesting features between the two algorithms. The grammar used

to generate this algorithm contains the base set of terminal and non-terminal symbols,



9

Fig. 2: Overview of the global fixed structure of the structure-restricted controllers. The algo-
rithms in light gray will be customized by the evolution.

completed with this filtered image terminal symbol. Fig. 3 illustrates this restricted

structure with an example of the two different algorithms.

Fig. 3: Structure-restricted controller. Left: an example of obstacle detection algorithm. Right:
an example of command generation algorithm. Rectangles represent primitives and ellipses
represent data.

4 Evaluation and evolution process

In this section we describe how the grammar presented above is used to automatically

construct efficient algorithms. Starting from an initial population of randomly produced
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algorithms, we evaluate them to select the ones most adapted to the obstacle avoidance

task, we then combine the best individuals to produce a new population, and reiterate

the process to obtain a certain number of generations. Let us first present the different

evaluation (fitness) functions we have used.

4.1 Evaluation 1: goal reaching vs contact

The principle of the first evaluation method is to measure the ability of the controllers

to reach a given target whilst avoiding the obstacles. The protocol is as follows: a course

is defined by the location of a starting point and a goal point in the environment. We

place the robot at the starting point and let it move in the environment during 30 or

60 s (depending on the experiments) driven by the obstacle avoidance algorithm. Two

scores are attributed to the algorithm depending on its performance: a goal-reaching

score G rewards algorithms reaching or approaching the goal location, whereas contact

score C rewards the individuals that didn’t hit obstacles on their way. Those scores

are calculated with the following formulas:

G =

{

tG if the goal is reached

tmax + dmin/V otherwise

C = tC

(2)

where tG is the time needed to reach the goal in seconds, tmax is the maximum time

in seconds (30 or 60 s), dmin is the minimum distance to the goal achieved in meters,

V is a constant of 0.1 m/s and tC is the time spent near an obstacle (i.e. less than 18

cm, which forces the robot to keep some distance away from obstacles). The goal is

hence to minimize those two scores G and C. For better generalization performances,

we designed several courses with different starting points and goal locations (2 or

4 courses depending on the experiments). Final scores are the means of the scores

obtained on the different courses. The starting and goal points are fixed because we

want to evaluate all algorithms on the same problem.

Due to the number of individuals to be evaluated and the necessity of keeping

the conditions the same for all of them, this protocol cannot be implemented in a real

environment. As such, we use a simulation environment in which the robot moves freely

during each experiment. The simulation is based on the open-source robot simulator

Gazebo [1]. The simulator uses ODE physics engine [2] for the movement of the robot

and collisions detection and OpenGL [3] for the rendering of the camera images. The

physics engine update rate is 50 Hz, while the camera update rate is 10 Hz. In all the

experiments presented in this paper, the simulated camera produces 8-bits gray-value

images of size 320× 160 representing a field of view of approximately 100◦ × 60◦. This

large field of view reduces the dead angles and hence facilitates obstacle detection and

avoidance. The simulation environment is a closed room of 36 m2 area (6 m × 6 m)

containing three bookshelves (Fig. 4). All the obstacles are immovable to prevent the

robot from just pushing them instead of avoiding them.

4.2 Evaluation 2: imitation

In the obstacle avoidance problem, it is very difficult to manually design a mediocre

controller but it is very easy to manually guide the robot toward the target point while
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Fig. 4: Snapshot of the simulation environment, containing three bookshelves in a 6 m × 6 m
closed room.

avoiding obstacles. We can obtain a good example of an efficient behavior by recording

the video sequence and command parameters while we guide the robot. With this

evaluation method, we try to evolve algorithms that imitate this efficient example

behavior.

For the evaluation of the algorithms, we replay the recorded sequence, using it as

input of the evaluated algorithm, and compare the command issued by this algorithm

with the command recorded during the manual control of the robot. The goal is to

minimize the difference between these two commands along the recorded sequence.

Formally, we try to minimize two variables F and Y defined by the formulas:

F =

√

√

√

√

n
∑

i=1

(fRi − fAi)
2 and Y =

√

√

√

√

n
∑

i=1

(yRi − yAi)
2 (3)

where fRi and yRi are the recorded forward and yaw speed commands for frame i, fAi

and yAi are the forward and yaw speed commands from the tested algorithm for frame

i and n is the number of frames in the video sequence.

In this case, we also perform a set of several courses using different recorded se-

quences, and compute the average of the scores obtained on the different sequences.

Compared with the previous evaluation, this method is somewhat less generic, as it

forces the controller to follow a guided trajectory, which restricts the type of solution

that an individual can provide. Nonetheless, the imitation strategy may favor efficient

solutions from an energetic point of view, as the guided trajectories are deliberately

the smoothest, safest and as direct as possible.

Furthermore, unlike the last method, the imitation strategy can be implemented

in a real environment as easily as in a virtual environment: the recorded video and

command sequence can be acquired using a real platform, such as the Pioneer 3 DX

robot (Fig. 5).

4.3 Evolution through genetic programming

We use genetic programming to evolve vision algorithms with little a priori on their

structure. As usual with evolutionary algorithms, the population is initially filled with

randomly generated individuals. We use the grammar based genetic programming sys-

tem introduced by Whigham [35] to overcome the data typing problem. It also allows

us to bias the search toward more promising primitives and to control the growth of

the algorithmic tree.
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Fig. 5: The Pioneer 3 DX robot with its Canon VC-C50i camera.

Table 2: Grammar used in the genetic programming system for the creation and transformation
of the command generation algorithm for structure-restricted controllers. The grammars used
for the obstacle detection algorithm and for the structure-free controllers are very similar to
this one.

[1.0] start → command

[1.0] command → directMove(real,real)
[0.15] real → scalarConstant
[0.075] real → add(real,real)
[0.075] real → subtract(real,real)
[0.05] real → multiply(real,real)
[0.05] real → divide(real,real)
[0.1] real → temporalRegularize(real)
[0.5] real → windowsIntegralCompute(image)
[0.3] image → videoImage
[0.3] image → previouslyFilteredImage
[0.25] image → spatial filter(image)
[0.1] image → projection(optical flow)
[0.05] image → temporal filter(image)
[0.33] optical flow → hornSchunck(image)
[0.33] optical flow → lucasKanade(image)
[0.34] optical flow → blockMatching(image)

[0.15] spatial filter → gaussian
[0.14] spatial filter → laplacian
[0.14] spatial filter → threshold
[0.14] spatial filter → gabor
[0.14] spatial filter → diffOfGaussians
[0.14] spatial filter → sobel
[0.15] spatial filter → subsampling
[0.2] temporal filter → temporalMin
[0.2] temporal filter → temporalMax
[0.2] temporal filter → temporalSum
[0.2] temporal filter → temporalDiff
[0.2] temporal filter → recursiveMean
[0.2] projection → horizontalProjection
[0.2] projection → verticalProjection
[0.2] projection → euclideanNorm
[0.2] projection → manhattanNorm
[0.2] projection → timeToContact

In the same way that a grammar can be used to generate syntactically correct ran-

dom sentences, a genetic programming grammar is used to generate valid algorithms.

The grammar defines the primitives and data (the bricks of the algorithm) and the

rules that describe how to combine them. The generation process consists in succes-

sively transforming each non-terminal node of the tree with one of the rules. This

grammar is used for the initial generation of the algorithms and for the transforma-

tion operators. The crossover consists in swapping two subtrees issued from identical

non-terminal nodes in two different individuals. The mutation consists in replacing

a subtree by a newly generated one. Table 2 presents the grammar we used in our

experiments with the structure-restricted controllers.

The numbers in brackets are the probability of selection for each rule. A major

advantage of this system is that we can bias the search toward the usage of more

promising primitives by setting a high probability for the rules that generate them. We
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can also control the size of the tree by setting small probabilities for the rules that are

likely to cause an exponential growth (rules like real → add(real,real) for example).

As described previously, we wish to minimize two criteria (G and C for the first

method, F and Y for the second one). There are different ways to use evolutionary

algorithms to perform optimization on several and sometimes conflicting criteria. For

the experiments described in this paper, we chose the widely used multi-objective evo-

lutionary algorithm called NSGA-II. This algorithm is based on the Pareto dominance

principle. Individuals are sorted by non-dominance rank, so that non-dominated indi-

viduals get a higher probability of being selected for breeding. This algorithm is elitist

and a “crowding distance” is used to promote diversity among the individuals. More

details can be found in the paper by K. Deb [7].

In order to prevent problems of premature convergence, we separate the population

of algorithms in 4 islands, each containing 100 individuals. Those islands are connected

with a ring topology; every 10 generations, 5 individuals selected with binary tourna-

ment will migrate to the neighbor island while 5 other individuals are received from

the other neighbor island. For the parameters of the evolution, we use a crossover rate

of 0.8 and a probability of mutation of 0.01 for each non-terminal node. We use a

classical binary tournament selection in all our experiments. Due to the length of the

experiments, we did not conduct a thorough statistical analysis of the influence of those

parameters, which were determined empirically.

5 Experiments in simulation

In this section we present and discuss the results obtained in simulation using the pro-

posed system. In section 5.1, we focus on the first results, obtained with the structure-

free grammar, i.e. with the least a priori, and using the goal-reaching evaluation. In

section 5.2, we apply a two-phase evolution using the imitation strategy to guide the

evolution, and compare the results with other strategies classically used to improve or

speed up the evolution. In section 5.3, we discuss the generalization performance and

show the interest of using the restricted structure grammar.

5.1 Analysis of the evolved controllers

The objectives of our first experiments were to see what kind of controllers could be

automatically designed with the minimal level of a priori, and without biasing the evo-

lution with any subjective decision. As such, the evolution process in this section has

been made with genetic programming using structure free grammar, and an evaluation

based on the objective performances of the algorithm, i.e. the goal-reaching evaluation.

The evolution lasts 100 generations, and the population is divided in 4 islands of 100

individuals. Every experiment then represents 40,000 evaluations. Three experiments

have been conducted, using three different simulation environment: (1) A simple en-

vironment made of non-textured blocks, (2) A simple environment made of textured

blocks and walls, and (3) A more realistic environment, made of a room with three

bookshelves (analogous to Fig. 4).

The performance analysis of the successive generations can be done by plotting the

contact vs goal accession scores of the non dominated individuals of every generation,

which correspond to the Pareto fronts. In the three types of environment, it can be
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observed that the performances increase rapidly during the first generations. The pro-

gression is much slower during the second half of the evolution, but is always globally

significant, and the best algorithms are always better than the reference controller,

that has been designed by hand for this specific environment. As an example, Fig. 6

shows the Pareto fronts for the textured blocks environment. In this case, the reference

controller (represented here as the cross), is the algorithm based on balancing the av-

erage optical flow horizontal components on the left and right sides of the image. (The

constructed algorithm corresponds to the tree shown on Fig. 1).
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Fig. 6: Pareto fronts during the evolution process with the textured blocks environment.

Another useful analysis to be made is to observe the results of the best individuals of

the evolution, to see what type of behavior they have developed to avoid the obstacles.

To do this, we first plot the actual trajectory that has been performed by the robot

guided by the evolved algorithm, and then display what we can call the genotype of the

individual, which corresponds to the constructed algorithm. Fig. 7 shows as an example

those data for one individual from the last Pareto front of the evolution realized on

the textured blocks environment. More specifically, this individual corresponds to the

point with the smallest contact score, i.e. the most careful behavior. If we look at the

algorithmic tree, we can see that the forward speed command is based on an optical flow

computation, which allows to detect close frontal obstacles, and to generate a negative

velocity command (the robot moves backward when a frontal obstacle is detected). The

yaw speed command is based on a Gabor filter whose purpose is to move away from

the lateral obstacles seen at a certain distance. The resulting trajectories show many

backward motions, relatively poor results in goal reaching, but very few collisions.

Fig. 8 displays the same observations for an individual evolved in the bookshelves

environment. In this case, the forward speed relies on integral measures made after

a Gaussian filter followed by a threshold. This corresponds to the detection of an

obstacle, since the floor is globally lighter than the bookshelves or the walls. When

the area covered by an obstacle is beyond a certain threshold, it generates a negative

forward speed, corresponding to a backward motion. The yaw speed is simply provided

by a linear function of the target direction, which allows the robot to maintain the

global heading of the trajectory. As seen in the resulting trajectories, this algorithm
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Start point 1
Target point 1
Trajectory 1

Start point 2
Target point 2
Trajectory 2

Contact points

Fig. 7: Example of an algorithm evolved in the textured blocks environment

is very efficient in the evolution environment: the target is always reached, and the

trajectories are relatively rapid with very few contacts.

To summarise these first results, it can be said that our initial evolutionary system

with objective evaluation measure has shown a certain level of efficiency since relevant

adaptation behaviors were observed in the different environments. Furthermore, the

progression of the Pareto curves proves that the best individuals of the last generations

can favorably compete with hand-designed controllers in the evolution environment.

Now, the main problems we have to address at this point are that: (1) the extreme

variability of the best individuals from one experience to the other limits the usability

and the generality of the evolved controllers, and (2) the trajectories obtained with the

best individuals are often chaotic and not very efficient.
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Start point 1
Target point 1
Trajectory 1

Start point 2
Target point 2
Trajectory 2

Contact points

Fig. 8: Example of an algorithm evolved in the bookshelves environment

5.2 Comparison of different strategies

It is obvious that the size of the optimization space, corresponding to all the con-

structible algorithms is huge, and that only a tiny part of this space can be explored

with the 40,000 evaluations. In order to limit the variability of the experiments and to

get smoother trajectories, we have decided to use a 2-phase evolution using the imi-

tation based evaluation, with the objective to guide the optimization process toward

more promising regions of the controller space. Hence, in this section, the evolution is

split into 2 phases: the overall number of evaluations remains the same, but, during

the first 50 generations, the fitness functions correspond to formula 3, every candidate

algorithm using as input the video sequence and the command sequence recorded by

a hand guided robot. For the 50 last generations, we use the same goal accession vs

contact fitness functions as in Sec. 5.1 (i.e. using formula 2).

In Fig. 9, we show the resulting trajectories using this method, compared with

the one-phase evolution presented in the previous section, and with two other classical

methods used to guide the evolution, that will be presented in further detail. To get

an idea of the variability of the different systems, we have realized several experiments

(every experiment corresponding to a set of 40,000 evaluations) for each type of evolu-

tion. In Fig. 9, we display for each system one individual from the worst experiment,

and one individual from the best experiment. The ranking of two different experiments
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can generally be done in an objective way, as long as the Pareto curves of their last

generation do not cross each other, which is often the case. The choice of one individual

in the Pareto curve is more subjective, and was selected here by using the “visually

best” trajectory.

The controllers obtained in one phase (Fig. 9(a)), have been presented in the pre-

vious section. The chaotic character of the trajectory is particularly visible in the

individual issued from the worst experiment (bottom).

Fig. 9(b) corresponds to incremental evolution, which is a classical method used

to improve the evolution. The principle is to divide the evolution into several phases

corresponding to different environments with increasing complexity [14]. In our case, we

have divided the evolution in 3 phases, using the realistic synthesis environment with

1, 2 then 3 bookshelves. What we observe in this case is that the evolution immediately

provides adapted individuals in the simplest environment, which is quite trivial. In the

intermediate environment, it manages to improve the algorithms performance a little,

but in the final environment it generally fails to improve the controller’s behavior. The

main problem is that in our case it is very difficult to design an evolving environment

with increasing complexity. It seems that better results could be obtained by increasing

the difficulty in a more gradual way, but this would require deeper modifications of the

simulation protocol.

Another classical method to guide the evolution is seeding (Fig. 9(c)). Its principle

is to introduce in the evolution individuals with acceptable performances. In our case,

we simply added in the initial population the individual corresponding to the hand-

design algorithm for the specific environment. What we observe in this case is that the

evolution manages to improve the performance with respect to the seed, but that the

structure (genotype) of the evolved individuals is always very close to that of the seed,

which means that this approach seems to drastically limit the innovation within the

algorithms.

Finally, the two-phase evolution (Fig. 9(d)) seems the most stable with respect to

the different experiments (Note the little difference between the best and worst exper-

iment). The evolved controllers are efficient and rapid in the evolution environment,

and the resulting trajectories are much smoother than in other cases, which is clearly

a benefit from an energetic point of view. Another important advantage of two-phase

evolution with respect to the other strategies is that it is much easier to implement:

recording a video sequence from a hand-guided robot is indeed straightforward, com-

pared to conceiving a gradual complexity increase in the environment, or designing a

visual controller by hand.

5.3 Generalization performances

In this section, we discuss the ability of the evolved controllers to generalize obstacle

avoidance behavior, i.e. we create an environment whose visual appearance is the same

as the evolution environment, but the geometry and location of the obstacles have been

changed. Fig. 10 shows the results for the different evolution strategies presented in

the previous section.

We can see that the generalization performances are poor for all the strategies. The

first explanation that can be given for this problem is over-learning: the best evolved

individuals have not only learned to avoid obstacles from their appearance or apparent

motion, but they also have learned the geometry and location of the different obstacles
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(a) One-phase evolution (b) Incremental evolution (c) Seeded evolution

(d) Two-phase evolution

Start point 1
Target point 1
Trajectory 1

Start point 2
Target point 2
Trajectory 2

Contact points

Fig. 9: Comparison of trajectories produced by controllers evolved with different kinds of
evolution process. Top: best experiment. Bottom: worst experiment.



19

(a) One-phase evolution (b) Incremental evolution (c) Seeded evolution

(d) Two-phase evolution

Start point 1
Target point 1
Trajectory 1

Start point 2
Target point 2
Trajectory 2

Contact points

Fig. 10: Performance of the different controllers (designed with a free structure) in a test
environment where the obstacles, and start and target points, have been moved.

in the evolution environment. The first idea to develop a more position-independent

controller was to increase the number of courses that should be performed by each

individual in its evaluation process (Those courses are referred to as “learning courses”

from now on). Changing the number of learning courses from 2 to 4 resulted in better

generalization performances (see Fig. 11), but consequently the evolution time was

multiplied by 2.

Start point 1
Target point 1
Trajectory 1

Start point 2
Target point 2
Trajectory 2

Contact points

Fig. 11: Generalization performance of a 2-phase evolved controller using a free structure and
4 learning courses. The two figures show 4 trajectories obtained on test courses that are all
different from the learning courses.
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In fact, a more fundamental problem in the structure of the controllers can explain

the difficulty in generalizing the obstacle avoidance behavior. In the structure-free

grammar, i.e. without a priori in the structure of the controller, it is very difficult for

the algorithms to automatically develop a trade-off between obstacle avoidance and

target reaching, as the target heading information is just an input of the algorithm,

and nothing guarantees a relevant use of this input. This is why we also developed a

more restricted grammar, making a more explicit distinction in the controller struc-

ture between goal reaching and obstacle avoidance behaviors. The structure restricted

grammar has been presented in detail in Section 3.3.

Fig. 12 shows the performances of an individual evolved with structure restricted

grammar on 4 courses different from the learning courses. The generalization perfor-

mance in this case is much better, due to explicit separation between target reaching

and obstacle avoidance within the algorithms structure, thus making it easier for the

emergence of a real obstacle detection and avoidance behavior. Another positive im-

pact of the structure restricted grammar is that it usually simplifies the structure of

the algorithms, thus lowering the evaluation time of an individual on one course. This

allows for a greater number of courses to be evaluated, this further improving the

generalization capacity.

Regarding the quality of the results, it is noticeable that the individuals such as

the one shown Fig. 12, considered to be the “most evolved” algorithms obtained from

simulation, may fail the goal reaching task or hit some obstacles. However, it should

be pointed out that: (1) We do not consider in this work the goal reaching task as

fundamental; it is rather a way to enforce a certain heading and keeping the robot

from staying still or turning around. (2) The most generic algorithms are those which

globally best perform on different environments, but they also make more errors than

the less generic individuals on a specific environment.

Start point 1
Target point 1
Trajectory 1

Start point 2
Target point 2
Trajectory 2

Contact points

Fig. 12: Generalization performance of a 2-phase evolved controller using a restricted structure
and 4 learning courses. The two figures show 4 trajectories obtained on test courses that are
all different from the learning courses.

An open problem regarding the generalization capacities of the algorithm, is how

to select the best individuals in terms of generalization, and what is the best moment

to stop the evolution process to avoid over-learning and favor the generalization abil-

ities. Gagné [13] proposed an interesting solution to address this problem. The idea

is to evaluate all the individuals from the Pareto front in a validation environment,

which is different from the evolution environment. When the performances on the val-

idation environment decrease, it means that we enter the phase of over-learning and
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the evolution is stopped. Naturally, this biases the evolution results with respect to

the validation environment. As such, a third distinct environment (test data) should

be used to test the generalization performance.

6 Experiments on the real robot

In this section, we show the results obtained on the real robot platform Pioneer 3DX.

Using an off-line evolution method based on the imitation strategy, we present and

discuss some results obtained for a corridor centering task, first around the evolution

environment, and then in another unseen environment.

6.1 Evolving controllers in real environment

When evolving controllers in a real environment, it is clearly not feasible to perform

the same evaluation protocol as in simulation, because that would imply repeating

a huge number of experiences with exactly the same conditions. However, the imita-

tion strategy presented above (Sec. 4.2) can be applied on synthesis or real sequences

alike, therefore we have implemented an off-line evolutionary algorithm based on the

imitation only, using video sequences recorded by the robot Pioneer 3DX guided by

hand.

Our first experiments have shown that is was difficult to obtain acceptable obstacle

avoidance performances using long sequences involving complex trajectories. On the

contrary, very promising results have been obtained relatively quickly, using a large set

(around 20) of very short (approx. 2 or 3 s) video sequences. In those sequences, the

robot was placed in different positions along the corridor, with its optical axis forming

an angle of around 30◦ with the wall. The robot was then guided manually in such a

way that it moves away from the closest wall and centers itself in the corridor. The

top of Fig. 13 shows 3 examples of learned trajectories (red arrows) in a corridor of

our laboratory. At the bottom of the figure, 3 images extracted from these sequences

are shown, with the corresponding angular speed command represented as the yellow

arrow. The forward speed was approximately constant (30 cm/s) in all the sequences

and is not represented in the figure.

The genetic algorithm is then run in one phase, using 100 generations and fitness

functions equal to the mean values of Y and F functions of formulas 3 over the 20

sequences. As there is no starting and target points here, the expected behavior when

plugging the evolved algorithm in the robot is not a precise displacement, but rather a

wandering behavior, allowing to explore the environment with no pre-defined objective.

The progression of the Pareto fronts in the successive generations shows that learn-

ing the forward speed is straightforward, which is logical since the forward speed was

almost constant in all the command sequences. Consequently, the system acts like

mono-objective genetic algorithm, as shown by a significant progression in the yaw

speed command error values Y .

Fig. 14 shows an example of one of the best evolved algorithms using this method.

The filter chain used to generate the angular speed is not shown completely, as it

contains more than 29 operators. This complexity is partially due to bloating, but

it is also a solution found by the evolution process to overcome a limitation of our

system. This algorithm is mostly based on the use of Sobel filters, to detect the edge
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Fig. 13: Top: Examples of trajectories used for the learning base. Bottom: Examples of recorded
images and commands.

between the floor and the walls. As the command generation operator needs to extract

a scalar from an image, and as the functions that produce scalars from images are

based on combination of integral measures on left and right region in the images, the

long operator sequence of the filter chain is mainly used to enlarge the edge in order to

enhance the detection of the floor border. This could have been done more efficiently

using a morphological dilatation filter (not in the available primitives), but the fact

that the evolution found a way to compensate a limitation of the system is a good

indication of its adaptation capabilities.

Fig. 15 illustrates the method used by this evolved algorithm to compute the motor

command. The filter chain highlights and enlarges the boundary between the floor and

the wall, as well as the more contrasted zone at the end of the corridor. In the resulting

image, the wall appears completely white and the boundary is darker. This difference

is used by the windows integral computation operator to produce a command that

drives the robot away from the wall: the resulting command depends on the difference

between the mean pixel value of each red window (right image). On the left image,

we display a red arrow corresponding to the command issued by the algorithm, and

a yellow one which is the command that was recorded when the robot was manually

guided.

6.2 Generalization performances

In order to test the robustness and generalization performance of these evolved con-

trollers, we placed the robot at different positions in the corridor and allowed it to be

driven by the evolved algorithm. The robot should move to the end of the corridor

without hitting the walls. We placed the robot so that the direction it faces and the

corridor make an angle of approximately 30◦. In this position, the problem is possible

to solve without being trivial. We made about ten tests with different starting posi-

tions. Each time, the robot managed to reach the end of the corridor except once where
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Fig. 14: Example of an evolved algorithm.

Fig. 15: Left: Resulting command from the evolved algorithm on an image from the learning
base. Right: The same image transformed by the filter chain.

it turned into one of the openings in the wall. In one test, it even turned at the end of

the corridor to go into the smaller corridor on the right of the map. Fig. 16 shows two

trajectories, together with some sample images and the corresponding angular speed

command.

We also tested this evolved algorithm in another corridor, visually different from the

previous one. In one direction the robot reaches the end of the corridor without problem.

On the return trip it failed against two obstacles as shown on Fig. 17. Nevertheless this

result is encouraging since this corridor is very different from the one that was recorded

in the learning base. The second and third images of Fig. 17 show the 2 obstacles that

the algorithm failed to avoid.
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Fig. 16: Top: Trajectories followed by the robot when driven by an evolved algorithm. Bottom:
Example images and commands issued by the algorithm in the generalization tests.

Fig. 17: Top: Trajectories followed by the robot driven by the evolved algorithm in another
corridor. Bottom: Images and commands issued by the evolved algorithm in this other corridor.
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7 Conclusion

We have presented in this article a genetic programming system to automatically design

vision algorithms from a collection of primitives and a set of construction rules. The

originality of our approach lies in the fact that the visual task is considered as a whole,

with the lowest levels of processing also taking part of the learning process. From a

computational point of view, the collection of primitives could be ideally identified

with the instruction set(s) of the processor(s) used to compute the algorithm. We

have made a more realistic choice from a combinatorial point of view, which consists

in constructing the primitive collection from the earliest stages of visual perception

(mostly, spatio-temporal filtering). Nonetheless, the choice of the primitives and their

complexity level is an interesting open problem that should be addressed in the future.

Although we have concentrated here on the obstacle avoidance problem, we believe

that the proposed system can be adapted to automatically design other artificial vision

tasks. This can be easily done as long as an objective evaluation can be determined.

Typically, such automatic design can be envisaged for: visual categorization, salient

features detection, room recognition, etc.

The results we have obtained in simulation have shown that our system was able

to provide interpretable controllers adapted to the visual environment. The 2-phase

evolution has proven an efficient way to guide the evolution towards more promising

solutions. Regarding the generalization capabilities, the restricted structure controllers

behaved better than the free structured ones, but at the price of an important a priori in

the structure of the algorithms. Finding a trade-off between goal accession and obstacle

avoidance remains a difficult problem. In that sense, it is possible that the combination

between two objectives with very different cognitive levels (obstacle avoidance and goal

accession) constitutes a fundamental difficulty.

Unexpectedly, the final results obtained on the real robot were better than those

obtained in simulation, possibly due to the removal of the goal accession constraint.

The task to achieve was simpler (wandering in a corridor while avoiding the walls), but

the results, particularly in generalization were much better. As it turns out, this type of

imitation based learning is both easy to implement and promising in real environment,

thus we will continue to investigate future solutions in a similar manner.

One limitation of our system is that it is subject to bloating. Several solutions

have been proposed to limit bloating in genetic programming. One such example is the

inclusion of program size as an independent criterion in a multi-objective evolutionary

algorithm, which has been shown to produce efficient and small-sized programs (see [4]

for instance). Such adaptation should be envisaged in the future.

Finally the most important perspective of our work is the adaptation to on-line

learning. Presently, the proposed system only performs off-line evolution. To reach the

global objective of our research, which is providing the mobile robots with more auton-

omy, we must also integrate a certain level of reactive adaptation. Our method can be

adapted to that in several ways. A first level of adaptation can be experimented while

keeping the structure of the existing off-line evolution system: a collection of evolved

algorithms can be plugged into the robot and a subsequent on-line learning is used to

select and parameterize the algorithm which is best adapted to the current context.

Another level which would to be interesting to pursue is to modify the structure of

the algorithms, which is essentially bottom-up, in order to explicitly allow the imple-

mentation of top-down mechanisms. Typically, the size and position of the integration

windows for the extraction primitive could vary according to the image content; the na-
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ture of the spatio-temporal filters could also be made variable according to the context.

Such mechanisms are not excluded by our current system, but could be more explicitly

taken into account in the structure of the controllers. In this purpose, active vision and

attention mechanisms [22,12,31] provide frameworks that could help to improve the

automatic design of the algorithms and hence will be investigated in our future works.
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