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Conceptual differential calculus. I

Introduction

The present work continues the line of investigations on general differential calculus and general differential geometry started with [START_REF] Bertram | Differential Calculus, Manifolds and Lie Groups over Arbitrary Infinite Fields[END_REF][START_REF] Bertram | Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings[END_REF][START_REF] Bertram | Simplicial differential calculus, divided differences, and construction of Weil functors[END_REF][START_REF] Bertram | A general construction of Weil functors[END_REF][START_REF] Bertram | Weil Spaces and Weil-Lie Groups[END_REF]. Combining it with ideas present in work of Nel [START_REF] Nel | Categorical differential calculus for infinite dimensional spaces[END_REF] and in synthetic differential geometry (see [START_REF] Kock | Synthetic Geometry of Manifolds[END_REF][START_REF] Moerdijk | Models for Smooth Infinitesimal Analysis[END_REF]), we obtain a purely algebraic and categorical presentation of the formal rules underlying differential calculus. The results can be read on two different levels:

• even for ordinary (finite-dimensional, real or complex) manifolds M, the construction of a canonical first order difference groupoid M {1} and of a first order double category M {1} seem to be new -indeed, they contain as a special case a new and more conceptual construction of Connes' tangent groupoid ( [START_REF] Connes | Noncommative Geometry[END_REF], II.5), and hence our theory may be of some interest in non-commutative geometry and quantization (see, e.g., [START_REF] Landsmann | Quantization and the tangent groupoid[END_REF]), • and these constructions open the way for a general, "conceptual", approach to calculus and manifolds over any commutative base ring.

The term "conceptual differential calculus" is an allusion to the title of the book [START_REF] Lawvere | Conceptual Mathematics: A First Introduction to Categories[END_REF], in the sense that "conceptual" means "categorical". Most of the concepts we are going to use (in particular, double categories and double groupoids) go back to work of Charles Ehresmann, see [E65]; but, while Ehresmann applied them to the output of differential calculus (i.e., to differential geometry), I shall advocate here to apply them already on the level of the input (i.e., to the calculus itself).

0.1. Topological differential calculus. "Usual" differential calculus is not intrinsic, in the sense that it takes place in a chart domain, and not directly on a manifold: the usual difference quotient, for a function f : U → W , defined on a subset U of a vector space V , at a point x ∈ U in direction v and with t = 0, (0.1) F (x, v, t) := f (x + tv) -f (x) t depends on the vector space structure, hence on a chart, and it cannot directly be defined on a manifold. Thus, one first has to develop "calculus in vector spaces", from which one then extracts "invariant" information, in order to define manifolds and structures living on them; our work [START_REF] Bertram | Differential Calculus, Manifolds and Lie Groups over Arbitrary Infinite Fields[END_REF][START_REF] Bertram | Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings[END_REF] is no exception to this rule -in Section 1 of the present work, we recall that approach, which we call topological differential calculus (cf. [START_REF] Bertram | Calcul différential topologique élémentaire[END_REF]). 0.2. Conceptual differential calculus: the groupoid approach. The path from topological calculus to the conceptual version to be presented here has been quite long, and I refer the reader wishing to have more ample motivation and heuristic explanations to my books and papers given in the reference list (in particular, the attempts to solve the problems listed in [START_REF] Bertram | Difference Problems and Differential Problems[END_REF] have played an important rôle). Also, it would take too much room to mention here all the work that influenced this approach, foremost synthetic differential geometry (see, e.g., [START_REF] Kock | Synthetic Geometry of Manifolds[END_REF][START_REF] Moerdijk | Models for Smooth Infinitesimal Analysis[END_REF]).

In a nutshell, our categorical approach can be summarized as follows: intuitively, we think of a manifold, or of a more general "smooth space", as a space M that is locally, or infinitesimally, linear. Seen algebraically,

• a linear space, V , is defined by two laws, + and • , living in the space V , meaning that these laws are everywhere defined on V × V , resp. on K × V (here, K is the base field or ring), • saying that M is locally linear amounts to saying that M is defined by two laws, * and •, living over the space M, in the sense that they are not everywhere defined and live in a certain bundle, M {1} , over M × K. More precisely, * is a groupoid law and • a category law; and the compatibility of + and • in V generalizes to the compatibility of * and •, meaning that the whole structure forms a (small) double category. 1 In fact, the law * generalizes Connes' tangent groupoid ( [START_REF] Connes | Noncommative Geometry[END_REF], II.5): as in Connes' construction, for each t ∈ K, the fiber in M {1} over M × {t} is still a groupoid; for t = 0 we get the usual tangent bundle T M (with its usual vector bundle structure), and for invertible t, we get a copy of the pair groupoid over M. Our construction is natural and does not proceed by taking (as in [START_REF] Connes | Noncommative Geometry[END_REF]) a disjoint union of groupoids: if M is a Hausdorff manifold, it is obvious from our construction that we get an interpolation between the pair groupoid and the tangent bundle of M (Theorem 2.11) .

Starting with the difference quotient (0.1), it is indeed quite easy to explain how to arrive at these concepts -see Sections 2 and 3: multiplying by t in (0.1), we get the notion of difference factorizer (terminology following Nel, [START_REF] Nel | Categorical differential calculus for infinite dimensional spaces[END_REF]). Analyzing commutativity of K does not enter before dealing with bilinear maps (Section 4); the construction of the first order double category M {1} goes through for possibly non-commutative rings. This makes it clear that commutativity becomes crucial for second and higher order calculus, but not before; and it seems very likely that a careful analysis of this situation may lead to a new conceptual foundation of super-calculus (cf. [START_REF] Bertram | Difference Problems and Differential Problems[END_REF], Problem 9). 0.5. Notation and conventions. Throughout, the letter K denotes a base ring with unit 1. Unless otherwise stated, this ring is not equipped with a topology and not assumed to be commutative. All K-modules V, W, . . . are assumed to be right K-modules. By definition, a linear set is a pair (U, V ), where V is a K-module and U ⊂ V a non-empty subset. The linear set ({0}, {0}) will be denoted by 0 ("terminal object"). Informally, by local linear algebra we mean the theory of linear sets, their prolongations and morphisms, as developed in this work.

Acknowledgment. I would like to thank Mélanie Bertelson for illuminating discussions concerning the paper [START_REF] Bertelson | Affine connections and symmetry jets[END_REF] and for explaining to me the usefulness of the groupoid concept in differential geometry, and Ronnie Brown for helpful comments on double categories and double groupoids. I also thank Anders Kock for his critical and constructive remarks on V1 of this work.

Difference factorizers and differential calculus

1.1. Difference factorizer. In order to get rid of the division by the scalar t in the difference quotient (0.1), we define, following a terminology used by Nel [Nel88]: Definition 1.1 (Difference factorizer). Let U ⊂ V be a linear set (cf. conventions above). As in [START_REF] Bertram | Differential Calculus, Manifolds and Lie Groups over Arbitrary Infinite Fields[END_REF][START_REF] Bertram | Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings[END_REF][START_REF] Bertram | Calcul différential topologique élémentaire[END_REF], we define its first prolongation by

U [1] := U [1] K := U [1] V,K := {(x, v, t) ∈ V × V × K | x ∈ U, x + vt ∈ U} .
The non-singular part of the first prolongation is the set where t is invertible:

(1.1) (U [1] ) × := {(x, v, t) ∈ U [1] | t ∈ K × },
For a map f from U to a K-module W , a difference factorizer for f is a map

f [1] : U [1] → W such that ∀(x, v, t) ∈ U [1] : f (x + vt) -f (x) = f [1] (x, v, t) • t .
When (x, v, t) belongs to the non-singular part, then f [1] (x, v, t) is necessarily given by (0.1), and the proof of the following relations is straightforward:

∀s, t ∈ K × , (1.2) f [1] (x, 0, t) = 0, (1.3) f [1] (x, v + v ′ , t) = f [1] (x + vt, v ′ , t) + f [1] (x, v, t), (1.4) f [1] (x, vs, t) = f [1] (x, v, st) s,
and, if g and f are composable, then, for

t ∈ K × , (1.5) (g • f ) [1] (x, v, t) = g [1] f (x), f [1] (x, v, t), t .
Now, difference factorizers are not unique -e.g., the values for t = 0 are not determined by the condition. 2 Differential calculus is a means to assign a welldefined value when t = 0. We recall briefly the main ideas, following [START_REF] Bertram | Differential Calculus, Manifolds and Lie Groups over Arbitrary Infinite Fields[END_REF]; as in [START_REF] Bertram | Calcul différential topologique élémentaire[END_REF] we will call this theory topological differential calculus:

1.2. Topological differential calculus.

Definition 1.2. The assumptions of topological differential calculus are: K is a topological ring having a dense unit group K × , and V, W are topological K-modules. Maps f : U → W are assumed to be defined on open subsets U ⊂ V .

Definition 1.3. We say that f :

U → W is of class C 1 K if f admits a continuous difference factorizer f [1]
. Because of density of K × in K, such a difference factorizer is unique, if it exists, and hence we can define the first differential of f at x by

df (x)v := f [1] (x, v, 0).
The philosophy of differential calculus can be put with the words of G. W. Leibniz (quoted in the introduction of [START_REF] Bertram | Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings[END_REF]): "The rules of the finite continue to hold in the infinite" -properties valid for difference factorizers and invertible scalars t continue to hold for "singular" scalars, in particular for the most singular value t = 0. For instance, by density and continuity, identities (1.2) -(1.5), continue to hold for t = 0, proving the "usual" properties of the differential, linearity and chain rule:

df (x)(v + v ′ ) = df (x)v + df (x)v ′ , df (x)(vs) = (df (x)v)s, d(g • f )(x)v = dg(f (x)) df (x)v (1.6)
which then allow to define manifolds having a linear tangent bundle, and so on. What we need for such "invariant" constructions is essentially only a "functorial" rule like the cain rule; this permits to define bundles, carrying structure according to what is preserved under coordinate changes (cf. Appendix D).

2. The first order difference groupoid and its morphisms 2.1. The first order difference groupoid. Definition 2.1. If (U, V ) is a linear set, we shall henceforth use the notation 3

U {1} := U [1] , (U {1} ) × := (U [1] ) × ,
and we define two surjections called "source" and "target"

π 0 : U {1} → U × K, (x, v; t) → (x; t) π 1 : U {1} → U × K, (x, v; t) → (x + vt; t)
and one injection called "zero section" or "unit section"

z : U × K → U {1} , (x, t) → (x, 0, t).
2 If K is a field, then t = 0 is the only "exceptional" value; but it will be very important to allow more general rings. Note that the case of an integral domain, like K = Z, and free K-modules, behaves much like the case of a field, in the sense that f [1] (x, v, t) is unique for all t = 0.

3 The deeper reason for this change of notation will only appear at second order, when iterating the constructions: in [START_REF] Bertram | Differential Calculus, Manifolds and Lie Groups over Arbitrary Infinite Fields[END_REF], the index [2] is used, but in Part II we shall rather use {1, 2}.

Obviously, z is a bisection of the projections, i.e., π 0

• z = id U = π 1 • z.
Lemma 2.2. Assume given a map f : U → W . Then there is a 1:1-correspondence between difference factorizers of f and maps f {1} : U {1} → W {1} that commute with source and target maps and coincide with f on the base, in the sense that for σ = 0, 1 :

π σ • f {1} = (f × id K ) • π σ : U {1} f {1} -→ W {1} U × K f ×id K -→ W × K
Namely, the difference factorizer f [1] corresponds to the map

f {1} : U {1} → W {1} , (x, v, t) → f (x), f [1] (x, v, t); t .
Moreover, f [1] satisfies condition (1.2) if, and only if, f {1} commutes with z in the sense that

f {1} • z = z • (f × id K ). Proof. Assume f {1} : U {1} → W {1} is a map. The condition π 0 • f {1} = (f ×id K ) • π 0 is equivalent to the existence of a map F such that, for all (x, v, t) ∈ U {1} , f {1} (x, v, t) = f (x), F (x, v; t); t ,
and then the condition

π 1 • f {1} = (f × id K ) • π 1 is equivalent to f (x) + F (x, v; t) • t = f (x + vt), for all (x, v, t) ∈ U {1} . Thus f {1} commutes with projections iff f [1] (x, v, t) := F (x, v, t
) is a difference factorizer. Finally, the condition f {1} (x, 0, t) = (f (x), 0, t) is equivalent to F (x, 0, t) = 0, for all t, that is, (1.2).

Definition 2.3. Given a map f : U → W , a map f {1} : U {1} → W {1} as in the lemma will be called a map over f , and f will be called the base map of f {1} . Definition 2.4. For a = (x, v, t), a ′ = (x ′ , v ′ , t ′ ) ∈ U {1} such that π 1 (a) = π 0 (a ′ ) (so t = t ′ and x ′ = x + vt), we define

a ′ * a := (x + vt, v ′ , t) * (x, v, t) := (x, v ′ + v, t) .
Note that a ′ * a belongs again to U {1} . Indeed,

x + (v + v ′ )t = x ′ + v ′ t, that is, (2.1) π 0 (a ′ * a) = π 0 (a), π 1 (a ′ * a) = π 1 (a ′ ).
Theorem 2.5. The data π 0 , π 1 : U {1} U × K, z, * define a groupoid. This groupoid is a bundle of groupoids over K, i.e., for every fixed value of t ∈ K, we have a groupoid (π : U t U, z, * ),

U t := {(x, v) | x ∈ U, x + vt ∈ U} U, (x ′ , v ′ ) * (x, v) = (x, v ′ + v), U t × U U t = {((x ′ , v ′ ), (x, v) ∈ U t × U t | x ′ = x + vt, t ′ = t}.
Proof. We check the defining properties of a groupoid (Appendix A): let a = (x, v, t), a = (x ′ , v ′ , t ′ ), a ′′ = (x ′′ , v ′′ , t ′′ ). As noted above, (2.1) holds. To check associativity,

(x ′′ , v ′′ , t ′′ ) * ((x ′ , v ′ , t ′ ) * (x, v, t)) = (x ′′ , v ′′ , t ′′ ) * (x, v ′ + v, t) = (x, v ′′ + (v ′ + v), t), ((x ′′ , v ′′ , t ′′ ) * (x ′ , v ′ , t ′ )) * (x, v, t) = (x ′ , v ′′ + v ′ , t ′ ) * (x, v, t) = (x, (v ′′ + v ′ ) + v, t),
and hence associativity of * follows from associativity of addition in (V, +). Next,

(x, 0, t) * (x ′ , v, t) = (x ′ , 0 + v, t) = (x ′ , v, t), (x, v, t) * (x, 0, t) = (x, v + 0, t) = (x, v, t),
hence z(x, t) is a unit for * . We show that (x + vt, -v, t) is an inverse of (x, v, t):

(x, v, t) * (x + vt, -v, t) = (x + vt, 0, t),

(x + vt, -v, t) * (x, v, t) = (x, 0, t).
It is obvious from these formulae that, for any fixed t, we get again a groupoid.

Definition 2.6. The groupoid (π 0 , π 1 , U {1} U × K, z, * ) defined by the theorem is called the first order difference groupoid of U. The symbol U {1} will often be used both to denote the morphism set and the groupoid itself, and we use (U {1} ) × for the groupoid with underlying morphism set (U {1} ) × defined by (1.1).

Theorem 2.7 (The groupoids U 0 and U 1 , and Connes' tangent groupoid).

(1) The groupoid U 0 is a "group bundle" T U := U 0 = U × V over the base U, with fiber the group (V, +).

(2) The groupoid U 1 is isomorphic to the pair groupoid

U × U over U. (See Example A.1: composition on U × U is (x, y) • (y, z) = (x, z).) (3 
) More generally, for every t ∈ K × , the groupoid U t is isomorphic to the pair groupoid over U, via

Φ t : U t → U × U, (x, v) → (y, x) := (x + vt, x).
The non-singular groupoid (U {1} ) × is, via the map (x, v, t) → (x + vt, x, t), isomorphic to the direct product U × U × K × of the pair groupoid of U with the trivial groupoid of K × . (4) If K is a field, then U {1} is isomorphic to a disjoint union of groupoids

T U ∪ [(U × U) × K × ].
Proof. (1) is obvious from the formulae. To prove (3), note that pr 2

• Φ t (x, v) = x = π 0 (x, v), pr 1 • Φ t (x, v) = x + vt = π 1 (x, v), and Φ t ((x + tv, v ′ ) * (x, v)) = Φ t (x, v + v ′ ) = (x + (v ′ + v)t, x) = (x + v ′ t + vt, x + vt) • (x + vt, x) = Φ t (x + tv, v ′ ) • Φ t (x, v).
Concerning units, note that Φ t (x, 0) = (x, x), proving that Φ t is a morphism. It is bijective since (y, x) → (x, (y -x)t -1 ) is an inverse map. Finally, (2) is the case t = 1 of (3), and (4) follows from (3) since, for a field, K = {0} ∪ K × .

For K = R, the construction from Part (4) corresponds to Connes' construction of the tangent groupoid, [START_REF] Connes | Noncommative Geometry[END_REF], II.5. Note that our construction gives, when V ∼ = R n , ready-made the topology defined by Connes in loc.cit., p. 103.

Remark 2.1 (Pregroupoids). By forgetting the units, U {1} defines (just like any groupoid) a pregroupoid (see A.6): the ternary product [a ′′ , a ′ , a] = a ′′ * (a ′ ) -1 * a is explicitly given by [a ′′ , a ′ , a] = (x, v ′′ -v ′ + v, t).

Morphisms of first order difference groupoids.

Theorem 2.8. Given a map f : U → W , there is a 1:1-correspondence between

(1) difference factorizers of f satisfying Condition (1.3) for all t ∈ K, (2) morphisms of groupoids f {1} : U {1} → W {1} over f .

Proof. In view of Lemma 2.2, it only remains to show that f {1} preserves * iff f [1] satisfies (1.3). We compute

f {1} ((x ′ , v ′ , t ′ ) * (x, v, t)) = f {1} (x, v ′ + v, t) = (f (x), f [1] (x, v ′ + v, t), t) f {1} (x ′ , v ′ , t ′ ) * f {1} (x, v, t) = (f (x), f [1] (x + vt, v ′ , t), t) * (f (x), f [1] (x, v, t), t) = f (x), f [1] (x + vt, v ′ , t) + f [1] (x, v, t), t .
Thus equality holds iff (1.3) holds for f [1] . Finally, note that Condition (1.2) follows from (1.3) by taking v = 0 there.

Example 2.1. Every K-linear map f : V → W gives rise to a morphism

f {1} : V {1} = V 2 × K → W {1} = W 2 × K, (x, v; t) → (f (x), f (v); t).
Indeed, since, by linearity,

f (x + vt) -f (x) = f (v)t, the map f [1] (x, v; t) = f (v) is a difference factorizer, and it satisfies (1.2) since f is linear. Example 2.2. If f (x) = αx + b is an affine map, then f {1} (x, v; t) = (αx + b, αv; t) is a groupoid morphism.
Theorem 2.9 (General morphisms). Assume given two maps f : U → W and ϕ : K → K ′ . Then the pair of maps

U {1} K → W {1} K ′ , (x, v; t) → f (x), F (x, v; t); ϕ(t) , U × K → W × K ′ , x, t) → (f (x), ϕ(t)
is a groupoid morphism if, and only if, F is a ϕ-twisted difference factorizer, i.e.,

∀(x, v, t) ∈ U {1} : f (x) + F (x, v; t) • ϕ(t) = f (x + vt)
which satisfies, whenever defined, the condition corresponding to (1.3):

F (x + vt; v ′ , t) + F (x, v; t) = F (x, v ′ + v; t).
Proof. By the arguments given in the proof of Lemma 2.2, compatibility with π 0 is equivalent to the existence of a map F as in the defining formula from the theorem, and compatibility with π 1 then is equivalent to saying that F is a ϕ-twisted difference factorizer of f . As in the preceding proof it is seen that compatibility with * then amounts to the last condition stated in the theorem.

Definition 2.10. We say that a groupoid morphism U {1} → W {1} is of the first kind, or: spacial, if it is of the above form with K = K ′ and ϕ = id K , and of the second kind, or: internal, if it is of the above form with f = id U .

Example 2.3. For f = id, and

F (v, t) := F (x, v; t) independent of x, the conditions read F (v, t) • ϕ(t) = vt, F (v ′ , t) + F (x, t) = F (v ′ + v, t).
For instance, taking, for s ∈ K × fixed, ϕ(t) := st and F (v, t) := vs -1 , the conditions are satisfied (giving rise to scaling automorphisms, see next chapter).

Example 2.4. If K = C and U = V = W = C n , then complex conjugation f (z) = z, F (z, v; t) = v, ϕ(t) = t
defines a groupoid automorphism. More generally, every ring automorphism ϕ of K together with a ϕ-conjugate linear map f gives rise, in the same way, to a groupoid morphism (x, v; t) → (f (x), f (v); ϕ(t)).

2.3.

The topological case, and first difference groupoid of a manifold. Recall from Subsection 1.2 the framework of topological differential calculus. In this case, the preceding results carry over to the manifold level without any difficulties: Theorem 2.11. Assume K is a topological ring with dense unit group, V, W Hausdorff topological K-modules and M, N are Hausdorff C 1 K -manifolds modelled on V , resp. on W .

(

1) A C 1 K -map f : U → W induces a morphism of groupoids f {1} : U {1} → W {1} . (2)
To the manifold M we can associate a bi-bundle π 0 , π 1 : M {1} M × K, carrying a canonical continuous groupoid structure.

(3) The groupoid M {1} is a bundle of groupoids over K, and hence, for all t ∈ K, the fiber M t over t is a continuous groupoid with object set M. (4) The groupoid M 0 is the usual tangent bundle (additive group bundle), and M 1 is isomorphic to the pair groupoid over M. More generally, the groupoid (M {1} ) × lying over K × is naturally isomorphic to the direct product of the pair groupoid of M with the trivial groupoid of K × . If K is a field, then M {1} is the disjoint union of that groupoid with the tangent bundle. (5) Let f : M → N be a map. Then f is of class C 1 K if, and only if, it extends to a continuous morphism of groupoids f {1} : M {1} → N {1} . Put differently: there is a 1:1-correspondence between C 1 -maps M → N and continuous groupoid morphisms M {1} → N {1} of the first kind. (6) There is a natural homeomorphism of bundles over

M × N × K (M × N) {1} ∼ = M {1} × K N {1} .
In other words, for all t ∈ K, we have

(M × N) t ∼ = M t × N t . Proof. (1) If f is of class C 1 ,
then it admits a continuous difference factorizer f [1] . As said in Section 1, such a difference factorizer satisfies (1.2) and (1.3), and hence, by Theorem 2.8, it induces a morphism of groupoids f {1} .

(2) Let us first describe the construction of the set

M {1} : via Theorem D.4, M is described by "local data" (V ij , φ ij ) (i,j)∈I 2 . By definition of a C 1 -manifold, the transition maps φ ij are C 1 , hence we get local data ((V ij ) {1} , (φ ij ) {1} ) (i,j)∈I 2 .
Again by Theorem D.4, such data define a manifold which we denote by M {1} . By the same theorem, the natural projections

(V ij ) {1} → V ij × K define projections π σ : M {1} → M × K.
In the same way we get the unit section M × K → M {1} . The products * i defined for each (U i ) {1} are compatible with transition maps, and hence coincide over intersections U ij = U i ∩ U j . We have to show that these groupoid structures fit together and define a groupoid law * : (3) -( 6): This now follows from (2) and the corresponding local statements in Theorem 2.5 and in Lemma 2.7. Note that the argument from (2), using Lemma D.3 and the Hausdorff property,4 shows that M 1 ∼ = M × M (pair groupoid). For the proof of (6), the local version is, for chart domains U ⊂ V and S ⊂ W ,

M {1} × M ×K M {1} → M {1} . To this end, consider a, b ∈ M {1} such that u := π 1 (a) = π 0 (b). Let x := π 0 (a)
(U × S) {1} = {(x, u; y, v; t) ∈ (U × S) × (V × W ) × K | (x, y) + t(u, v) ∈ U × S} = {(x, u; y, v; t) | (x, u, t) ∈ U [1] , (y, v, t) ∈ S [1] } = U [1] × K S [1] ,
and this naturally carries over to the level of manifolds.

Scalar action, and the double category

3.1. The scaling morphisms. We have seen that the first order difference groupoid U {1} takes account of the additive aspect (1.3) of tangent maps. Now let us deal with multiplicative aspects, i.e., with the homogeniety condition (1.4)

f [1] (x, vs, t) = f [1] (x, v, st) • s.
Theorem 3.1 (The scaling morphisms). Fix a couple of scalars (s, t) ∈ K 2 . Then there is a morphism of groupoids U st → U t , given by φ s,t : U st → U t , (x, v; st) → (x, vs; t), with base map id U .

A groupoid morphism of the type f {1} : U {1} → W {1} commutes with all morphisms of the type φ s,t if, and only if, its difference factorizer satisfies relation (1.4). If K is a topological ring and M a Hausdorff C 1 K -manifold, then the morphisms φ s,t carry over to globally defined continuous groupoid morphisms M st → M t .

Proof. Clearly, we have φ s,t • π 0 = π 0 • φ s,t , and the condition φ s,t

• π 1 = π 1 • φ s,t holds since x + v(st) = x + (vs)t. The condition φ s,t (a ′ * a) = φ s,t (a ′ ) * φ s,t (a) is equivalent to (v ′ + v)st = v ′ st + vst, that
is, to distributivity of the K-action on V . Finally, φ s,t (x, 0, st) = (x, 0, t), so units are preseved. Thus φ s,t is a morphism. Given f : U → W , we compute

f {1} • φ s,t (x, v; st) = (f (x), f [1] (x, vs; t), t), φ s,t • f {1} (x, v; st) = (f (x), f [1] (x, v; st)s, t),
and the last claims follow. (Note that K need not be commutative for all this.) Remark 3.1. When s is invertible, we get the scaling automorphism of M {1} , given by (x, v; t) → (x, vs; s -1 t) (see Example 2.3). For s = -1, we get the important automorphism (x, v; t) → (x, -v; -t). We interprete φ s,t as a scaling morphism, where s is the scalar acting; morphisms with different scaling level t on target spaces have to be distinguished. It is quite remarkable that such structure fits together with the groupoid structure from the preceding chapter into a double category, which we will define next.

3.2. The first order double category. We will define a (small) double category (3.1)

C 11 ⇉ C 01 C 10 ⇉ C 00 : U {1} π ⇉ U × K × K ∂ ∂ U {1} π ⇉ U × K
(see Appendix C for definitions), as follows: for a linear set (U, V ), define its first double prolongation by

U {1} := {(x, v; s, t) ∈ V 2 × K 2 | x ∈ U, x + vst ∈ U} = {(x, v; s, t) ∈ V 2 × K 2 | (x, v; st) ∈ U {1} }. (3.2)
This comes ready-made with the following projections (the last two have already been defined):

∂ 0 : U {1} → U {1} , (x, v; s, t) → (x, v; st) ∂ 1 : U {1} → U {1} , (x, v; s, t) → (x, vs; t) ∂ 0 : U × K 2 → U × K, (x; s, t) → (x; st) ∂ 1 : U × K 2 → U × K, (x; s, t) → (x; t) π 0 : U {1} → U × K 2 , (x, v; s, t) → (x; s, t) π 1 : U {1} → U × K 2 , (x, v; s, t) → (x + vst; s, t) π 0 : U {1} → U × K, (x, v; t) → (x; t) π 1 : U {1} → U × K, (x, v; t) → (x + vt; t) Lemma 3.2. For i, j ∈ {0, 1}: ∂ i • π j = π j • ∂ i : U {1} → U × K Proof. By direct computation, ∂ 1 π 0 (x, v; s, t) = (x, t) = π 0 ∂ 1 (x, v; s, t), ∂ 0 π 0 (x, v; s, t) = (x, st) = π 0 ∂ 0 (x, v; s, t) ∂ 0 π 1 (x, v; s, t) = (x + vst, st) = π 1 ∂ 0 (x, v; s, t) ∂ 1 π 1 (x, v; s, t) = (x + vst, t) = π 1 ∂ 1 (x, v; s, t)
Next define "unit (resp. zero) sections"

z π : U × K → U {1} , (x; t) → (x, 0; t) z ∂ : U × K → U × K 2 , (x; t) → (x; 1, t) z ∂ : U {1} → U {1} , (x, v; t) → (x, v; 1, t) z π : U × K 2 → U {1} , (x; s, t) → (x, 0; s, t) It is immediately checked that z π • z ∂ = z ∂ • z π : U × K → U {1} : (x, t) → (x, 0; 1, t) : U {1} ← U × K 2 ↑ ↑ U {1} ← U × K Lemma 3.3.
The maps z are bisections of the projections defined above, that is,

for i = 0, 1, ∂ i • z ∂ = id, π i • z π = id .
Proof. Immediate, since 0 appears in the definition of z π and 1 in the one of z ∂ .

Lemma 3.4. For i = 0, 1, we have

∂ i • z π = z π • ∂ i : U × K 2 → U {1} . Proof. For i = 0, z π ∂ 0 (x; s, t) = z π (x; st) = (x, 0; st) = ∂ 0 (x, 0; s, t) = ∂ 0 z π (x; s, t)
and similarly for i = 1. Lemma 3.5. For i = 0, 1, we have

π i • z ∂ = z ∂ • π i : U {1} → U × K 2 Proof. z ∂ π 1 (x, v; s) = z ∂ (x + vs; s) = (x + vs; 1, s) = π 1 (x, v; 1, s) = π 1 z ∂ (x, v; s) for i = 1. Similarly for i = 0.
Now we define composition of morphisms. In the following formulae, we assume that a = (x, v; s, t), a ′ = (x ′ , v ′ ; s ′ , t ′ ) ∈ U {1} . The two compositions * are "additive" and the two compositions • are "multiplicative":

(1) if π 1 (a) = π 0 (a ′ ) (so s ′ = s, t ′ = t, x ′ = x + vst) , we define a ′ * a ∈ U {1} : a ′ * a = (x ′ , v ′ ; s, t) * (x, v; s, t) = (x + vst, v ′ ; s, t) * (x, v; s, t) = (x, v + v ′ ; s, t) .
(2) For (x, v; t), (x ′ , v ′ , t ′ ) ∈ U {1} such that π 1 (x, v, t) = π 0 (x ′ , v ′ , t ′ ), (so t ′ = t,

x ′ = x + vt), as in the preceding section,

(x ′ , v ′ ; t) * (x, v; t) = (x, v + v ′ ; t) . (3) If ∂ 1 (a) = ∂ 0 (a ′ ) (so x = x ′ , v ′ = vs and t = s ′ t ′ ), then define a ′ • a a ′ • a = (x, v ′ ; s ′ , t ′ ) • (x, v; s, t) = (x, vs, s ′ , t ′ ) • (x, v, s, s ′ t ′ ) = (x, v; ss ′ , t ′ ) . (4) If ∂ 1 (x; s, t) = ∂ 0 (x ′ ; s ′ , t ′ ) (so x ′ = x and t = s ′ t ′ ), let (x; s ′ , t ′ ) • (x; s, t) = (x; ss ′ , t ′ ) .
Theorem 3.6 (First order double category).

(1) The data (2) Morphisms of double categories f : U {1} → W {1} which are trivial on K are in 1:1-correspondence with maps f : U → W together with a difference factorizer f [1] satisfying (1.3) and (1.4).

(U {1} , U {1} , U × K 2 , U × K, π, ∂,
(3) The unique map U → 0 induces a canonical morphism of the •-category to the left action category of (K, •):

U {1} π ⇉ U × K × K → K × K ∂ ∂ U {1} π ⇉ U × K → K
(4) The maps j(x, v; s, t) := (x + vst, -v; t, s), resp. j(x, v; t) := (x + vt, -v; t), j(x; s, t) = (x, s, t), and j(x; t) = (x; t), define an isomorphism of double categories ( * , •) → ( * op , •).

(5) The inverse image of the left action category ((K × ) 2 , K × ) under the projections from Item (3) forms a double groupoid, denoted by (U {1} ) × , which is isomorphic to the double groupoid given by the direct product of categories U × U (pair groupoid) and K × × K × (pair groupoid). (6) If K is a topological ring and M a Hausdorff C 1 -manifold, then there is a continuous double category M {1} over M × K, and statements analoguous to those of Theorem 2.11 hold. Continuous morphisms M {1} → N {1} which are trivial on K are in bijection with maps f :

M → N of class C 1 K . Proof.
(1) We check that properties (1) -( 9) from Theorem C.1 hold. We have already checked the compatibility conditions for target and source projections and for the unit sections (Lemmas above), and we have seen in the preceding section that (U {1} , * ) is a category. Similar computations show that (U {1} , * ) is a category, too. For any fixed x, (U {1} , ∂, •) corresponds to the scaled action category from Lemma B.1, Appendix B (with S the monoid (K, •)), and hence we have •-categories. Let us show that projections π, ∂ are morphisms between the respective categories. We write a ′ = (x ′ , v ′ ; s ′ , t ′ ), a = (x, v; s, t), and when writing compositions a ′ • a and a ′ * a, it is understood that these compositions are defined.

π 0 (a ′ • a) = π 0 (x, v; ss ′ , t ′ ) = (x; ss ′ , t ′ ) = (x ′ , s ′ , t ′ ) • (x, s, t) = π 0 (a ′ ) • π 0 (a) π 1 (a ′ • a) = π 1 (x, v; ss ′ , t ′ ) = (x + vss ′ t ′ ; ss ′ , t ′ ) = (x + v ′ s ′ t ′ ; s ′ , t ′ ) • (x + vst; s, t) = π 1 (a ′ ) • π 1 (a) ∂ 0 (a ′ * a) = ∂ 0 (x, v ′ + v; s, t) = (x, v ′ + v; st) = ∂ 0 (a ′ ) * ∂ 0 (a) ∂ 1 (a ′ * a) = ∂ 1 (x, v ′ + v; s, t) = (x, (v ′ + v)s; t) = (x, v ′ s + vs; s) = ∂ 1 (a ′ ) * ∂ 1 (a)
In the last line we used distributivity in V . Next, the bisections z are functors:

z ∂ (a ′ * a) = z ∂ (a ′ ) * z ∂ (a), z π (b ′ • b) = z π (b ′ ) • z π (b ′ ). Indeed, (x, v ′ + v; 1, t) = (x, v ′ ; 1, t) * (x, v; 1, t), (x, 0; ss ′ , t) = (x, 0; s ′ , t ′ ) • (x, 0; s, t).
Finally, let us prove the interchange law (C.1):

(x ′ , v ′ ; s ′ , t ′ ) * (x, v; s, t) • (y ′ , w ′ ; p ′ , q ′ ) * (y, w; p, q) = (x, v + v ′ ; s, t) • (y, w + w ′ ; p ′ , q ′ ) = (y, w + w ′ ; ps, t) = (y ′ , w ′ ; p ′ s ′ , t ′ ) * (y, w; ps, t) = (x ′ , v ′ ; s ′ , t ′ ) • (y ′ , w ′ ; p ′ , q ′ ) * (x, v; s, t) • (y, w; p, q)
This proves that U {1} is a double category.

(2) Let f be a morphism, that is, a double functor from U to W, and assume that it is trivial on K. Denote by f : U → W the corresponding map on the base and by f {1} : U {1} → W {1} and f {1} : U {1} → W {1} the corresponding maps. As in the proof of Theorem 2.8 and Lemma 2.2, we get f {1} (x, v; t) = (f (x), f [1] (x, v, t), t) with a difference factorizer f [1] satisfying (1.2). From compatiblity with π we gt

f {1} (x, v; s, t) = f (x), F (x, v; s, t); s, t with some map F : U {1} → W . From ∂ 0 • f {1} → f {1} • ∂ 0 , it follows that F (x, v; s, t) = f [1] (x, v, st), and from f {1} • ∂ 1 = ∂ 1 • f {1} we now get f [1] (x, sv; t) = f [1] (x, v; st) s, that is (1.4). If these conditions hold, the property f {1} (a ′ • a) = f {1} (a ′ ) • f {1} (a) is proved without further assumptions. Recall that (1.3) corre- sponds to the property f {1} (a ′ * a) = f {1} (a ′ ) * f {1} (a)
. Finally, all computations can be reversed, so that a base map f together with a difference factorizer satisfying (1.3), (1.4) defines a double functor f.

(3) This is proved by direct computation (cf. Lemma B.2), or by using that the constant map U → 0 induces a morphism (Lemma 4.9).

(4) The map j is the inversion map of the * -groupoids. The statement holds more generally for double categories two of whose edges are groupoids; in the present case it can of course also be checked by direct computations.

(5) The trivialization map is

U × → U 2 × (K × ) 2
, (x, v; s, t) → (y, x; u, t) := (x + vst, x; st, t)

with inverse map (y, x; u, t) → (x, v; s, t) = (x, (y -x)u -1 ; ut -1 , t).

(6) The same arguments as in the proof of Theorem 2.11 apply.

Theorem 3.7 (General morphisms). Assume given a map f : U → W and two maps ϕ : K → K, ψ : K → K. Then a map of the form

U {1} → W {1} , (x, v; s, t) → (f (x), G(x, v; s, t); ϕ(s), ψ(t))
is a morphism of double categories if and only if, whenever defined:

(1) there is a map

F such that G(x, v; s, t) = F (x, v; st), (2) f (x + vst) = f (x) + F (x, v; st) ϕ(s)ψ(t), (3) ϕ(st) = ϕ(s)ψ(t), (4) F (x + vt, v ′ , t) + F (x, v, t) = F (x, v ′ + v, t), (5) 
F (x, vs; t) = F (x, v; st)ϕ(s).

Proof. Similar to the proof of Theorem 2.9.

Definition 3.8. A morphism with ϕ = ψ = id K is called of the first kind (spacial), and a morphism with f = id is called of the second kind (internal).

One can give examples similar to those following Theorem 2.9: conjugate-linear maps define morphisms (then ϕ = ψ must be a ring automorphism), and there are scaling automorphisms (then ϕ(t) = λt, ψ(t) = t, F (x, v, t) = vλ -1 for λ ∈ K × ).

Laws of class C 1 over arbitrary rings

4.1. Definition and first properties. In this section we define the framework of local linear algebra: we develop (first order) "calculus" over arbitrary base rings K. Just like polynomial laws generalize polynomial maps, laws of class C 1 generalize usual differentiable maps. In Part II, laws of class C n and C ∞ will be defined. Definition 4.1 (C 1 K -laws). Let (U, V 1 ), (W, V 2 ) be linear sets. A C 1 K -law between U and W is a morphism of the first kind between double categories, f : U {1} → W {1} . Thus f is given by four set-maps

f {1} : U {1} → W {1} , f {1} : U {1} → W {1} , f × id K × id K : U × K 2 → W × K 2 , f × id K : U × K → W × K,
satisfying the conditions from Theorem 3.6. Equivalently, f is given by a base map f : U → W and a difference factorizer f [1] satisfying (1.3) and (1.4). We then say that f is a C 1 K -law over f . Obviously, linear sets with C 1 K -laws as morphisms form a (big) concrete category which we denote by C 1 K -linset. The set of all C 1 K -laws from U to W will be denoted by C 1 K (U, W ). Definition 4.2 (Underlying C 1 Z -law). With notation as above, f has an underlying C 1 Z -law f Z , by restricting scalars in (1.3) and (1.4) to Z. Example 4.1. If K is a topological ring and V, W topological K-modules, then a C 1 K -map (in the sense of topological differential calculus) f : U → W gives rise to a law f : U → W. Indeed, the continuous difference factorizer of f gives rise to a (continuous) morphism of double categories f {1} , see Theorem 3.6, Item (5). We call this the law defined by f . Remark 4.1. We use the boldface letters in order to stress that f is in general not uniquely determined by the base map f . For instance, if U = {x 0 } is a singleton, then f is a constant map, whence f [1] (x 0 , v, t) = 0 for all t ∈ K × , and the values f [1] (x 0 , v, 0) can be chosen independently of f .

If there is no risk of confusion, we will occasionally switch back to the notation f {1} , f {1} instead of f {1} , f {1} , and, keeping in mind that these need not be determined by f , we nevertheless think of f {1} as a sort of "first derivative of f ". Definition 4.3 (Tangent map). Given a C 1 K -law f with base map f and difference factorizer f [1] , and if t ∈ K is fixed, we write

f t : U t = {(x, v) ∈ U × V, x + vt ∈ U} → W × W, (x, v) → (f (x), f [1] (x, v, t)).
For t = 0, this map is called the tangent map of f, also denoted by

T f := f 0 : T U := U × V → T W := W × W, (x, v) → T f(x)v := (f (x), df(x)v) := (f (x), f [1] (x, v; 0)).
By definition of composition of morphisms, we have the functorial rule

(4.1) (g • f) t = g t • f t ,
and hence, for a linear law, f is uniquely determined by its base map f .

Example 4.2. The addition map a : V × V = V ⊕ V → V is K-linear, hence corresponds to the linear law, called the addition law of V , a {1} ((x, y), (u, v); s, t) = (x + y, u + v; s, t).

For fixed t, s, this is addition in V 2 .

Example 4.3. The diagonal map δ :

V → V × V = V ⊕ V , x → (x, x) is linear. It corresponds to the diagonal law δ {1} (x, v; s, t) = ((x, x), (v, v); s, t)
For fixed (s, t), this is the diagonal imbedding of V 2 in V 4 .

4.4. Bilinear laws, and algebra laws. Two preliminary remarks:

(1) Note that we have, for

M ⊂ V 1 and N ⊂ V 2 , like in Item (6) of Theorem 2.11, a natural isomorphism of bundles over M × N × K 2 (M × N) {1} ∼ = M {1} × K 2 N {1}
by identifying ((x, y), (u, v); s, t) with ((x, u), (y, v); s, t) (which projects to (x, y; s, t)). We will use these identifications frequently. (2) In this subsection (and in the following ones) we have to assume that K is commutative (and then we prefer to write modules as left modules).

Theorem 4.10.

Assume f : V 1 × V 2 → W is a K-bilinear map. Then the following formulae define a C 1 K -law f : V 1 × V 2 → W: f {1} ((x, u), (y, v); t) = f (x, y), f (x, v) + f (u, y) + tf (u, v); t f {1} ((x, u), (y, v); s, t) = f (x, y), f (x, v) + f (u, y) + stf (u, v); s, t Proof. Since f is bilinear, f ((x, y)+t(u, v))-f (x, y) = t(f (x, v)+f (u, y)+tf (u, v)), hence f [1] ((x, y), (u, v), t) = f (x, v) + f (u, y) + tf (u, v
) is a difference factorizer for f . It satisfies (1.3) and (1.4), hence f indeed defines a C 1 -law. Definition 4.11. A bilinear law is a law coming from a bilinear map, as in the theorem. If, moreover, V 1 = V 2 = W , then the law is called an algebra law. Thus, by definition, there is a bijection between bilinear base maps and their bilinear laws. For any fixed t, the map f t is again bilinear; however, f {1} , seen as a polynomial, is already of degree 3. If f is an algebra law, we often write x • y := f (x, y) (which does not mean that we assume the product to be associative), and then the formula for f t reads

(4.4) (x, u) • (y, v) := f t (x, u), (y, v) = (xy, xv + uy + tuv).
Theorem 4.12. Assume f :

V × V → V , (x, y) → f (x, y) = x • y is a bilinear map.
For fixed t ∈ K, the set of composable elements in the category (V t , * ),

V t × V V t = {((x ′ , v ′ ), (x, v)) ∈ V t × V t | x ′ = x + tv}
is a subalgebra of the direct product algebra V t × V t , and the law * of this category,

α : V t × V V t → K t , (x ′ , v ′ ; x, v) → (x ′ , v ′ ) * (x, v) = (x, v ′ + v)
is a morphism of K-algebras.

Proof. The first claim follows from computing in

V t × V t ((x ′ , v ′ ); (x, v)) • ((y ′ , w ′ ); (y, w)) = ((x ′ y ′ , x ′ w ′ + v ′ y ′ + tv ′ w ′ ); (xy, xw + vy + tvw))
and noting that x ′ y ′ = (x + tv)(y + tw) = xy + t(vy + xw + tvw). Now we prove that α is a morphism of algebras:

α((x ′ , v ′ ; x, v) • (y ′ , w ′ ; y, w)) = (xy, x ′ w ′ + v ′ y ′ + tv ′ w ′ + xw + vy + tvw) = (xy, xw ′ + tvw ′ + v ′ y + tv ′ w + tv ′ w ′ + xw + vy + tvw) α(x ′ , v ′ ; x, v) • α(y ′ , w ′ ; y, w) = (x, v + v ′ ) • (y, w + w ′ ) = (xy, x(w + w ′ ) + (v + v ′ )y + t(v + v ′ )(w + w ′ )).
Both terms coincide, hence α :

V t × V V t → V t is an algebra morphism.
The last claim of the theorem is a kind of interchange law (cf. equation (C.1)):

(4.5) (x ′ , v ′ ) • (y ′ , w ′ ) * (x, v) • (y, w) = (x ′ , v ′ ) * (x, v) • (y ′ , w ′ ) * (y, w)
Consider the following commutative diagram:

(4.6)

V {1} → 0 {1} = K ↓ id K V × K → 0 × K = K
The two vertical arrows indicate small categories (where the law * on 0 {1} is trivial, but the one on V {1} is not), and the two horizontal arrows indicate bundles of products • indexed by K. The whole thing satisfies properties similar to the ones of a small double category, except that • need not be associative or unital. If, however, the product • on V is associative and unital, then (V, •) is a monoid, hence a small category with one object, and the theorem implies that diagram (4.6) defines a small double category with products * and • . For the special case V = K, with its bilinear ring product, we can identify the product on V t in terms of truncated polynomial rings, as follows:

Lemma 4.13 (The ring laws). Let a : K × K → K and m : K × K → K be addition and multiplication in the (commutative) ring K. For any t ∈ K, these define maps

a t : K t × K t → K t , m t : K t × K t → K t .
Identifying K t with K 2 , the maps a t and m t define a ring structure on K 2 , which is isomorphic to the ring

K[X]/(X 2 -tX) with K-basis [1] and [X].
Proof. The ring structure on K

[X]/(X 2 -tX) is given by [X 2 ] = t[X] whence (x[1] + u[X])(y[1] + v[X]) = xy[1] + (xv + uy + tuv)[X].
Comparing with (4.4), we see that the bilinear product on K t is given by the same formula, and hence K t is a ring, isomorphic to K[X]/(X 2 -tX).

The neutral element of K t is e = (1, 0). We identify K with the subalgebra Ke and thus consider K t as K-algebra. According to Theorem 4.12, for fixed t ∈ K,

the set K t × K K t = {((x ′ , v ′ ), (x, v) ∈ K t × K t | x ′ = x +
tv} is a subalgebra of the direct product algebra K t × K t , and the law * of this category, * : 

K t × K K t → K t , (x ′ , v ′ ; x, v) → (x ′ , v ′ ) * (x, v) = (x, v ′ + v) is a morphism of K-algebras.
V : K × V → V , (λ, v) → λv, is K-bilinear, hence gives rise to a law m {1} V : K {1} × K 2 V {1} → V {1} .
For any t ∈ K, we get a map (m V ) t : K t × V t → V t . Writing explicitly the formulae, one sees that this map describes the action of the ring K

t = K[X]/(X 2 -tX) on the scalar extended module V t = V ⊗ K (K[X]/(X 2 -tX)),
given by (r, s) • (x, v) = (rx, rv + sx + tsv). We call this the K-module law of V . 4.5. Polynomial laws. Informally, a polynomial law is given by a map together with all possible scalar extensions. We recall from [START_REF] Roby | Lois polynomes et lois formelles en théorie des modules[END_REF] the relevant definitions (see also [START_REF] Loos | [END_REF], Appendix); the base ring K is assumed to be commutative. Definition 4.14. Denote by Alg K the (big) concrete category of unital commutative K-algebras and Set the concrete category of sets and mappings. Any K-module V gives rise to a functor V : Alg K → Set by associating to A the scalar extended module

V A = V ⊗ K A and to φ : A → B the induced map φ V := id ⊗ K φ : V A → V B .
A polynomial law between V and W is defined to be a natural transformation P : V → W , i.e., for every K-algebra A we have a map P A : V A → W A , compatible with algebra morphisms φ : A → B in the sense that P B • φ V = φ W • P A . We say that P A : V A → W A is a scalar extension of the base map P K : V → W .

Theorem 4.15 (Polynomial laws are C 1 -laws). Every polynomial law P : V → W gives rise to a C 1 K -law P : V → W. More precisely, if P is a polynomial law, letting P r := P K[X]/(X 2 -rX) : V r → W r , the map P {1} is obtained by P {1} (x, v; s, t) := (P st (x, v); s, t).

In particular, the tangent map T P : T V → T W is given by scalar extension by dual numbers K[X]/(X 2 ), and the differential dP (x) :

V → W , v → P 0 (x, v) is K-linear.
Proof. Let us prove that P {1} , defined as in the theorem, is a C 1 K -law. This is done by showing that all relevant maps are induced by algebra morphisms. Note first that the two projections

π 0 : K t → K, (x, v) → x, π 1 : K t → K, (x, v) → x + tv
are algebra morphisms, and they induce the two projections

π i := V π i : V t → V .
Thus, from the definition of polynomial laws, we get π i • P t = P K • P i , hence

P [1] (x, v, t) := pr 2 (P t (x, v))
is a difference factorizer for the base map P K : V → W . Let us show that P [1] satisfies (1.4). For any (s, t) ∈ K 2 , the map φ s,t : K st → K t , (x, v) → (x, sv) is an algebra morphism, as is immediately checked. It induces a map Φ s,t : V st → V t , and by definition of polynomial laws, we then have P t •Φ s,t = Φ s,t •P ts . The computation given in the proof of Theorem 3.1 shows that then (1.4) holds.

Let us prove that P [1] satisfies (1.3). By Theorem 4.12, * : K t × K K t → K t is an algebra morphism, and this morphism induces the category law * :

V t × V V t → V t .
By definition of a polynomial law, P commutes with the induced maps, which means that P t (a ′ * a) = P t (a ′ ) * P t (a), or, equivalently, that P t satisfies (1.3).

Finally, for r = 0, P 0 is obtained by scalar extension with K 0 = K[X]/(X 2 ).5 

Remark 4.3. Constant, linear, and bilinear C 1 -laws obviously come from polynomial laws, in the way described by the theorem.

Remark 4.4 (Formal laws). In the second part of his long paper [START_REF] Roby | Lois polynomes et lois formelles en théorie des modules[END_REF], Roby defines and investigates formal laws ("lois formelles"). They generalize formal power series. We will show in subsequent parts of this work that formal laws are laws of class C ∞ . The underlying linear set is ({0}, V ) (since 0 is they only point where all formal series converge).

Manifold laws of class C 1

5.1. C 1 -manifold laws over K. Using the general principles from Appendix D, subsets of V can be glued together by using a specified set of laws ("atlas law"):

Definition 5.1. Let K be a topological ring and V a topological K-module; we do not assume here that K × is dense in K, so in particular the discrete topology on

K and V is admitted. A C 1 K -manifold law modelled on V , denoted by M, is given by C 1 K -laws (V, T V , (V ij , φ ij ) (i,j)∈I 2
) in the sense of Theorem D.4, that is, base sets and base maps of these data form "gluing data" as described in that theorem, and likewise for the other components of the laws. For each U = V ij , the topology on U {1} shall be the initial topology with respect to π 1 , π 0 : U {1} → U. The manifold law is called handy if the base manifold (V, (V ij , φ ij )) is handy in the sense of Definition D.2.

A C 1 K -law f between manifold laws M and N is given by a family of C 1 K -laws f ij such that all components of the law are is an Theorem D.4. Theorem 5.2. Let M be a manifold law over K, modelled on V . Then there are primitive manifolds M {1} , M {1} together with projections and injections fitting into the diagram

M {1} π ⇉ M × K × K → K 2 ∂ ∂ M {1} π ⇉ M × K → K .
There are also partially defined products * and • defining, if the manifold law is handy, the structure of a double category on M {1} . If N is another manifold law over K, modelled on W , then C 1 K -laws f between M and N are precisely the morphisms of the structure defined by projections, injections and partially defined laws * and •.

Proof. Existence of the sets M {1} and M {1} , as well as of the projections and injections, follows directly from the above definition combined with Theorem D.4. As in the proof of Theorems 3.6 and 2.11, the same holds for the definition of locally defined products * and •. As in these proofs, the only point that needs attention is when checking if M {1} × (M ×K) M {1} is stable under * : for this, we infer the assumption that the manifold law is handy, as in the proof of Theorem 2.11.

Remark 5.1. In the general case (handy or not), we obtain a local small double category M {1} . To avoid technicalities, we do not give formal definitions here (see, e.g., [START_REF] Kock | Extension theory for local groupoids[END_REF]): the groupoid law is no longer defined on all of M {1} × (M ×K) M {1} , but only on an open neighborhood of the zero section; and similarly for M {1} .

5.2. Towards more general categories of spaces. We postpone the general theory of manifold laws to subsequent parts of this work. In guise of a conclusion, let us, however, already mention that this very general category of manifolds still has the drawbacks that the category of usual manifolds already has: (1) the lack of inverse images, (2) it is not cartesian closed:

Remark 5.2 (Inverse images). In general, the inverse image of a small [double] category (and of a [double] groupoid) under a morphism is again a small [double] category (resp. a [double] groupoid). Therefore, if f : M → N is a morphism, and c ∈ N a fixed element, then the inverse image of the "isolated point c" (sub-double category c := {(c, 0; s, t) | s, t ∈ K} ∼ = K 2 ) in N under f is again a sub-double category of M. Explicitly, on the chart level, if f : U {1} → W {1} is a law and c ∈ W a fixed element, the inverse image

f -1 (c) = {(x, v; s, t) ∈ U {1} | f {1} (x, v; s, t) = (c, 0; s, t)} = {(x, v; s, t) ∈ U {1} | f (x) = c, f [1] (x, v, st) = 0} (5.1)
is a sub-double category. However, f -1 (c) will in general not be a manifold: it may be a "singular space".

Remark 5.3 (Cartesian closedness). If M and N are usual manifolds, then the set C 1 (M, N) of C 1 -morphisms from M to N is in general not a manifold. The same problem arises for any other kind of manifolds. On the other hand, the space of mappings from U to a K-module W is always a linear space, with pointwise defined structure, having the additive maps as subspace (this is true for commutative groups (W, +) and fails for general groups). The following result can be interpreted by saying that the "locally linear maps" share this property (and the proof shows that commutativity of (W, +) enters here in the same way):

Theorem 5.3 (The double category structure on the set of C 1 -laws).

(1) The set Hom K (U {1} , W {1} ) of groupoid morphisms of the first kind between U {1} and W {1} carries a natural groupoid structure, namely, the pointwise groupoid structure inherited from W {1} .

(2) If K is commutative, then the set C 1 K (U, W ) of C 1 -laws from U to W carries a natural structure of small double category, given by the pointwise structure. In particular, for U = W and t = 0, we get the natural linear structure on the space of vector fields.

Proof. (1) Let f, g ∈ Hom K (U {1} , W {1} ). The two projections are f → π i (f) := π i •f. Assume π 1 (g) = π 0 (f), that is, (5.2) ∀c ∈ U {1} : π 1 (g(c)) = π 0 (f(c)),
and define a map by "pointwise product" f * g : U {1} → W {1} , a → f(a) * g(a). Because of (5.2) this is well-defined. We show that f * g is again a groupoid morphism: let a ′ , a ∈ U {1} such that π 1 (a) = π 0 (a ′ ), so a ′ * a is defined, hence

(f * g)(a ′ * a) = f(a ′ * a) * g(a ′ * a) = f(a ′ ) * f(a) * g(a ′ ) * g(a).
From (5.2) with c = a ′ * a we get

π 1 g(a ′ ) = π 1 g(a ′ * a) = π 0 f(a ′ * a) = π 0 f(a).
On the other hand, since f is a morphism, from π 1 (a) = π 0 (a ′ ), it follows with (5.2),

π 1 f(a) = π 0 f(a ′ ) = π 1 g(a ′ ), so that π 0 f(a) = π 1 g(a ′ ) = π 1 f(a) = π 0 g(a ′
). Thus both f(a) and g(a ′ ) are endomorphisms of the same object. Now, since (W, +) is commutative, endomorphisms of the same object commute:

(5.3) (x, v ′ , t) * (x, v, t) = (x, v ′ + v, t) = (x, v + v ′ , t) = (x, v, t) * (x, v ′ , t),
and hence we get

(f * g)(a ′ * a) = f(a ′ ) * g(a ′ ) * f(a) * g(a) = (f * g)(a ′ ) * (f * g)(a),
proving that f * g is again a morphism. Thus Hom K (U {1} , W {1} ) is stable under the pointwise structures, and by general principles, we get again a structure of the same type, that is, a groupoid. If K is commutative, then endomorphisms in the •-categories also commute with each other, so that the same arguments as above imply that the pointwise product f • g belongs to a well-defined category structure on Hom K (U, W), which together with the * -structure defined before forms a double category, proving (2).

Summing up, there ought to be some (big) cartesian closed category of local double categories containing C 1 -manifold laws and their inverse images. This category would, then, be a good candidate for a general notion of "space laws". We come back to this issue as soon as the general k-th order theory is developed.

Appendix A. Categories, groupoids

A.1. Concrete categories. Formally, a concrete category (abridged: ccat) is defined as a category together with a faithful functor to the category of sets. For our purposes, concrete categories are just a piece of language, and we rather think of a concrete category as given by a certain "type T of structure defined on sets": objects are "sets with structure of type T ", and morphisms are "maps preserving structure". We will denote such concrete categories by underlined roman letters, for instance

• the ccat Vect K of all K-vector spaces (with linear maps as morphisms),

• the ccat Top of all topological spaces (with continuous maps),

• the ccat Man K of smooth manifolds over K (with smooth maps),

• the ccat Grp of all groups, its subcat Cgroup of all commutative groups, • the ccat Ring of all rings, its subcat Field of all fields, • the ccat Alg K of all (associative) K-algebras,

• the ccat Cat of all small cats (see below) and its subcat Goid of all groupoids,

• the ccat Set of all sets (with arbitrary set-maps).

A.2. Small categories. A small category (abridged: small cat) is given by a pair of sets (B, M), B called the set of objects and M called the set of morphisms, together with two maps "source" and "target" π 0 , π 1 : M → B (we shall write π σ , where σ takes two values; instead of 0 and 1 one may also use the values s et t, or + and -, or others), and map z : B → M "zero section" or "unit section", and finally a binary composition g * f , defined for (g, f ) ∈ M × B M where

(A.1) M × B M := M × B,π M := {(g, f ) ∈ M × M | π 0 (g) = π 1 (f )},
such that these data satisfy the following properties:

(A.2) π 1 (g * f ) = π 1 (g), π 0 (g * f ) = π 0 (f ),
and the law * is associative: whenever (h, g) and (g, f ) are in M × B M, then

(A.3) (h * g) * f = h * (g * f ). Moreover, z : M → B is a bisection (that is, π σ • z = id B for σ = 0, 1), such that (A.4) z(π 1 (f )) * f = f, g * z(π 0 (g)) = g.
The small cat will be denoted by (B, M, π σ , s, * ), or, shorter, (M B, * ) or (B, M). Especially in Part II it will be useful to write (C 0 , C 1 ) instead of (B, M), and to call the disjoint union C := C 0 ∪C 1 = B ∪M the underlying set of the small cat.

By a bundle of small cats M ⇉ B → I we just mean an indexed family (M i , B i ) of small cats indexed by a set I. The total space (M, B) is then again a small cat. A.3. Functors. A morphism between small cats (M B, * ), (M ′ B ′ , * ′ ), or (covariant) functor, is a pair of maps (F :

M → M ′ , f : B → B ′ ) such that (A.5) f • π 0 = π ′ 1 • F, F • z = z ′ • f, F (h) * ′ F (g) = F (h * g).
It is obvious that the composition of functors is again a functor, and that the identity id C of the underlying set C = M ∪B is a functor. Identifying (F, f ) with f ∪F : C → C ′ , small cats form a concrete category Cat.

B.3. The scaled action category. The effect of the construction of the action groupoid is to break up the "single object V " into a collection of different objects and to distinguish all the isomorphisms (v, g) when v runs over the set of objects. If S is not a group, we will need a kind of refinement of the monoid action category: we will distinguish various "scaling levels" of v -the couple (v, k) with k ∈ S should be seen as "the object v, scaled at level k". Then each g ∈ S gives rise to morphisms (denoted by (v; g, k)) from v, scaled at gk, to vg, scaled at k. Finally, a most symmetric formulation of this concept is gotten when the "scale" k lives in a space K on which S acts from the left (later we take S = K).

Lemma B.1. Assume S is a monoid acting from the right on V and from the left on a set K. The following data (M, B, ∂, z, •) = (V × S × K, V × K, ∂, z, •) define a small cat, called the scaled action category:

∂ 0 : V × S × K → V × K, (v; s, t) → (v; st) ∂ 1 : V × S × K → V × K, (v; s, t) → (vs; t). The composition a ′ • a for a = (v; s, t), a ′ = (v ′ ; s ′ , t ′ ) is defined if ∂ 1 (a) = ∂ 0 (a ′ ), so (v ′ , s ′ t ′ ) = (vs, t), so v ′ = vs, s ′ t ′ = t, (B.1) (v ′ ; s ′ , t ′ ) • (v; s, t) = (vs; s ′ , t ′ ) • (v; s, s ′ t ′ ) := (v; ss ′ , t ′ ),
and, if 1 denotes the unit of the monoid S, the unit section is defined by

(B.2) z(v; s) := (v; 1, s).
If, moreover, S is a group, then the category (M, , B) is a groupoid.

Proof. Everything is checked by straightforward computations. For convenience, we give some details: first, note that

∂ 0 (a ′ • a) = (v, ss ′ t ′ ) = (v, st) = ∂ 0 (a) ∂ 1 (a ′ • a) = (vss ′ , t ′ ) = (v ′ s ′ , t ′ ) = ∂ 1 (a ′
), and associativity follows from the one of S:

(v ′′ ; s ′′ , t ′′ ) • (v ′ ; s ′ , t ′ ) • (v; s, t) = (v ′ ; s ′ s ′′ , t ′′ ) • (v; s, t) = (v; ss ′ s ′′ , t ′′ ) (v ′′ , s ′′ , t ′′ ) • (v ′ ; s ′ , t ′ ) • (v; s, t) = (v ′′ ; s ′′ , t ′′ ) • (v; ss ′ , t) = (v; ss ′ s ′′ , t ′′ ). The element (v; 1, s) is a unit for the categorial product: (v ′ ; s ′ , t ′ ) • (v; 1, t) = (v; s ′ , t ′ ) (note v ′ = v1 = v) and (v ′ , 1, t ′ ) • (v; s, t) = (v; s ′ , t) = (v; s, t) since s = s ′ t ′ = s ′ . Note that the morphism (v; s, t) is invertible if, and only if, s is invertible in the multiplicative semigroup of K: (v ′ ; s, t ′ ) • (v, s -1 , t) = (v, 1, t ′ ). Remark B.2. As above (Remark B.1), for every U ⊂ V , there is a subcategory {(v; s, t) | v ∈ U, vst ∈ U}.
Lemma B.2. With notation from the preceding lemma, the following maps of objects and morphisms define a functor from the scaled action category to the left action category of S on K:

V × S × K → S × K, (v, s, t) → (s, t), V × K → K, (v, s) → s.
If the action V × S → V admits a fixed point o, then we also get a functor in the other sense, via S × K → V × S × K, (s, t) → (o; s, t).

Proof. The left action category of S acting on itself is given by the morphism set S × S and object set S and source and target maps

(B.3) ∂ 0 : S × S → S, (s, t) → st, ∂ 1 : S × S → S, (s, t) → s,
and composition, whenever t

= s ′ t ′ , (B.4) (s ′ , t ′ ) • (s, t) = (ss ′ , t)
From these formulae it is seen that the maps given above define a functor.

Appendix C. Small double categories, double groupoids

The following presentation follows [START_REF] Brown | Double groupoids and crossed modules[END_REF] (where letters H, V "horizontal, vertical" are used for our (C 11 , C 10 , C 01 , C 00 )). We give full details in order to prepare for the algebraic presentation of small n-fold cats in Appendix B of Part II, and we are more tedious than in usual presentations, regarding "size questions". C.1. Small cats and groupoids of a given type. Let T be a concrete category. A small cat of type T is a set C carrying both a structure of type T and the structure of a small cat (C 0 , C 1 , π σ : C 1 C 0 , * ), so C = C 0 ∪C 1 , such that all structure maps of the small cat C are compatible with the structure T . This includes the assumption that C 0 , C 1 and C 1 × C 0 C 1 also carry structures of type T (in practice, one will often check this by first noticing that C 1 × C 1 carries a structure of type T , and then that equalizers as given by (A.1) are again of type T ), and hence it makes sense to require that π σ , z and * are morphisms for T . A morphism between two small cats of type T , say C and C ′ , is a map f : C → C ′ which is a functor (for the small cat-structures) and a structure-preserving map for T . This defines a new concrete category T -Cat. In the same way the concrete category T -Goid of groupoids ot type T is defined. C.2. Small double categories. A (strict) small double category (abridged: small doublecat) is a small cat of type Cat. In other words, in the preceding paragraph we take T = Cat. This defines a concrete category Doublecat. A small doublecat is thus an algebraic structure of a certain type. We wish to give a more explicit description, in the spirit of usual algebra: a small doublecat C is, first of all, a small cat C = C 1 ∪C 0 with projections π σ and product * , and C 1 = C 11 ∪C 10 and C 0 = C 01 ∪C 00 are in turn two small cats with 4 projections all indicated by the symbol ∂ and two products both indicated by •. Since π restricts to two projections, we also get 4 projections denoted by the symbol π, and similar for the unit sections, everything fitting into two commutative diagrams: Using this notation, saying that every edge of the square defines a small cat and that the pairs (π σ , π σ ), resp. (∂ σ , ∂ σ ) are functors, amounts to the following requirements:

(1) ∀i, j ∈ {0, 1}: A morphism of small double cats is given by four maps which define a functor for each of the four small cats forming the edges of (C.1).

∂ i • π j = π j • ∂ i : C 11 → C 00 , ( 
Proof. It only remains to show that, in presence of (1) -( 8), the interchange law Definition C.2. The four small cats forming the edges of the diagram (C.1) are called the edge cats of the small doublecat. It is obvious from the description given in the theorem that, exchanging C 01 and C 10 and * and •, we get again a small doublecat, called the transposed doublecat. A small doublecat is called edge symmetric if it admits an isomorphism onto its transposed doublecat.

C.3. Double groupoids.

A double groupoid is a small doublecat such that each of its four edge categories is a groupoid. Equivalently, it is a groupoid of type Goid. This defines a concrete category Doublegoid.

C.4. Double bundles. A double group bundle is a double groupoid such that π 0 = π 1 and ∂ 0 = ∂ 1 . E.g., double vector bundles (see [START_REF] Brown | Determination of a double Lie groupoid by its core diagram[END_REF]) are double group bundles.

C.5. Opposite double cat. In a double cat, we may replace each of the pairs of vertical, resp. horizontal, cats, by its opposite pair, and we get again a double cat. Thus we get altogether 4 double cats: ( * , •), ( * op , •), ( * , • op ), and ( * op , • op ). In general, they are not isomorphic among each other; however, if * or • belongs to a groupoid, then inversion is an isomorpism onto * op , resp. onto • op , and compatible with the other law.

  and y := π 1 (b) ∈ M. By Lemma D.3, we can find a chart domain U ⊂ M containing u, x and y. Now define a * b ∈ U {1} with respect to this chart. As explained above, this does not depend on the chart, and we are done.

  z, * , •) define a double category which we denote by U {1} and indicate by a diagram of the form (3.1).

  Example 4.4 (Module laws). Left multiplication by scalars, m

(

  

  2) z π • z ∂ = z ∂ • z π : C 00 → C 11 , (3) ∀σ ∈ {0, 1}: ∂ σ • z ∂ = id C σ0 , π • • z π = id C 0σ , (4) ∀σ ∈ {0, 1}: ∂ σ • z π = z π • ∂ σ : C 01 → C 10 , π σ • z ∂ = z ∂ • π σ : C 10 → C 01 ,(5) the partially defined products * and • are associative, (6) elements z ∂ (u) are units for • and elements z π (v) are units for * , (7) ∀σ ∈ {0, 1}: the pairs of maps (∂ σ , ∂ σ ), (π σ , π σ ) preserve partially defined products:∂ σ (a ′ * a) = ∂ σ (a ′ ) * ∂ σ (a), π σ (b ′ • b) = π σ (b ′ ) • π σ (b), (8) the maps z ∂ : (V, * ) → (C, * ), z π : (H, •) → (C, •) are sections of ∂, resp. of π, and z ∂ (a ′ * a) = z ∂ (a ′ ) * z ∂ (a), z π (b ′ • b) = z π (b ′ ) • z π (b).Theorem C.1. Data (C 11 , C 10 , C 01 , C 00 , π, ∂, z, * , •) given by spaces, maps and partially defined products define a small doublecat if, and only if, they satisfy (1) -(8) together with the following interchange law: (9) whenever both sides are defined (which is the case iff π 1 (b) = π 0 (a) = π 0 (c) = π 1 (d) and ∂ 0 (b) = ∂ 1 (c) = ∂ 0 (a) = ∂ 1 (d)), then (a * b) • (c * d) = (a • c) * (b • d).

  (9) is equivalent to saying that * : C 1 × C 0 C 1 → C 1 defines a morphism for the (∂, •)-cat structure. Here, C 1 × C 1 is the direct product of two •-small cats, and the equalizer (A.1) is a small subcat since the projections π σ : C 1 C 0 are morphisms, by (7). Thus the product onC 1 × C 0 C 1 is given by (a, b) • (c, d) := (a • c, b • d).Then, the map A := * :C 1 × C 0 C 1 → C 1 , (a, b) → a * b is a morphism for • iff A((a, b) • (c, d)) = A(a, b) • A(c, d),that is, the interchange law (a • c) * (b • d) = (a * b) • (c * d) holds.

If we drop the Hausdorff assumption, then the same arguments show that M 1 is an open neighborhood of the diagonal in M × M ; this open neighborhood will in general not be a groupoid, but a local groupoid, in the sense of[START_REF] Kock | Extension theory for local groupoids[END_REF].

The proof given here generalizes the one from[START_REF] Bertram | Weil Spaces and Weil-Lie Groups[END_REF] proving linearity of dP (x). The proof of linearity given in[START_REF] Roby | Lois polynomes et lois formelles en théorie des modules[END_REF] (and in[START_REF] Loos | [END_REF]) is different, using heavily the decomposition of a polynomial into homogeneous parts, which is not adapted to the case r = 0.

In Part II of this work [Beρτ ], we shall define laws of class C n and prove that they are morphisms of 2n-fold categories, and, in particular, of n-fold groupoids, and study their structure. Topics for further work include: revisiting notions of differential geometry (and of synthetic differential geometry), in particular, connection theory, Lie groups and symmetric spaces, from the groupoid viewpoint (in this context, the paper [START_REF] Bertelson | Affine connections and symmetry jets[END_REF] is highly relevant); a conceptual version of the simplicial approach presented in [START_REF] Bertram | Simplicial differential calculus, divided differences, and construction of Weil functors[END_REF], and, finally, the very intriguing topic of possible non-commutativity of the base ring: as noted in [START_REF] Bertram | Difference Problems and Differential Problems[END_REF], Problem 8, it is possible to develop most of the first order theory without assuming commutativity of K. Indeed, it turns out, in the present work, that which for t = 0 is the "chain rule" (4.2)

Written out in terms of the difference factorizers, Equation (4.1) reads

Proof. As said above, f [1] satisfies (1.3), (1.4). For t = 0, this yields the claim.

4.2. Constant laws. The following will carry over to general manifolds and spaces:

and only if, its difference factorizer vanishes:

There is a 1:1-correspondence between constant laws and constant maps:

Proof. The first statement is obvious from the formula defining f {1} . Note that f [1] = 0 satisfies (1.2) -(1.4), hence indeed defines a law.

Whenever f [1] = 0, the base map must be constant since then

Conversely, when the base map is constant, then the zero map certainly is a possible difference factorizer for f . Remark 4.2. If f [1] = 0, then df = 0, but the converse need not hold. Note that, even in "usual" ultrametric calculus this need not be true -cf. remarks in [START_REF] Bertram | Differential Calculus, Manifolds and Lie Groups over Arbitrary Infinite Fields[END_REF].

Lemma 4.7. Let (U, V ) be a linear set. Then there is a unique C 1 K -law from U to the linear set 0 = ({0}, {0}) (Conventions 0.5), given by f {1} (x, v; s, t) = (0, 0; s, t).

Proof. The law is induced by the constant map U → 0 (cf. Part (3) of Th. 3.6). 4.3. Linear laws. The following uses the linear structure of V and W :

Lemma 4.9. There is a 1:1-correspondence between K-linear maps f : V → W and linear C 1 K -laws f : V → W, given by

In particular, a linear law is uniquely determined by its base map.

Proof. A K-linear map f : V → W gives rise to a morphism f {1} (x, v; s, t) := (f (x), f (v); s, t) (see Example 2.1), and obviously this map is K-linear.

Conversely, if f is a linear law, then (f (x), 0; 0, 0) = f {1} (x, 0; 0, 0) is linear in x, hence f is linear, and and similarly f [1] : V 2 ⊕ K → W is also linear. Thus we have, for all t ∈ K,

if there is another one, g, such that π 0 (g) = π 1 (f ) and π 1 (g) = π 0 (f ) and g * f = z(π 0 (f )) and f * g = z(π 0 (g)). By standard arguments, such a g is unique. It is then called the inverse of f and denoted by g = f -1 . A groupoid is a small category in which every f ∈ M is invertible. Groupoids and functors form a concrete category Goid. For every groupoid, the inversion map i : M → M, f → f -1 , together with id B , is an isomorphism onto the opposite groupoid. See, e.g., [START_REF] Mackenzie | General Theory of Lie Groupoids and Lie Algebroids[END_REF], for more information on groupoids.

A group bundle is a groupoid such that π 1 = π 0 . Then the fibers of π σ are groups.

) is a subgroupoid of the pair groupoid if, and only if, R is an equivalence relation on A.

Example A.2 (The anchor morphism). For a category (π : M B, z, * ), the anchor

A.5. Opposite category, and notation. The opposite category (resp. groupoid) of a category (resp. groupoid

Note that each groupoid is isomorphic to its opposite groupoid, via the inversion map (but a category needs not be isomorphic to its opposite category). A contravariant functor between categories is a morphism to the opposite category. We are aware that several authors use other conventions concerning notation of the product. 6 However, once a convention is fixed, it should be kept.

A.6. Pregroupoids. In every groupoid we may define a ternary product

whenever π 1 (a) = π 1 (a ′ ) and π 0 (a ′′ ) = π 0 (a ′ ). In Part II we will need the notion of pregroupoid (cf. [START_REF] Kock | Synthetic Geometry of Manifolds[END_REF], see also [START_REF] Bertram | Universal associative geometry[END_REF]):

Definition A.1. A pregroupoid is given by a set M together with two surjective maps a : M → A, b : M → B and a partially defined ternary product map

where

6 See [BHS11], p. 145 Rk 6.1.1 and p. 556: "The first notation is taken from the composition of maps and the second is more algebraic.

... we have used both...".

Our convention, given by (A.1), follows the conventions that seem to be most common, see, e.g., http://ncatlab.org:8080/nlab/show/category and http://ncatlab.org/nlab/show/opposite+category. such that these data satisfy

and the para-associative and the idempotent law hold:

Note that such structure only depends on the equivalence relations of fibers defined by a and b, hence the sets A and B may be eliminated from the definition by considering a, b just as equivalence relations on M (as done in [START_REF] Bertram | Universal associative geometry[END_REF]). A morphism of pregroupoids is given by a map f : M → M ′ sending fibers of a to fibers of a ′ and fibers of b to fibers of b ′ and preserving the ternary product:

Obviously, pregroupoids and their morphisms form a concrete cat Pgoid.

Theorem A.2. The ccat of groupoids is equivalent to the ccat of pregroupoids together with a fixed bisection.

Proof. This observation is due to Johnstone, cf. [START_REF] Bertram | Universal associative geometry[END_REF].

Example A.3. If A, A ′ are two sets, there is a pregroupoid (A × A ′ , , A, A ′ , [ , , ]) with [(x, y), (u, y), (u, v)] = (x, v). It admits a bisection if, and only if, A and A ′ are equipontentious. See [START_REF] Bertram | Universal associative geometry[END_REF] for more on this.

Appendix B. Scaled monoid action category

B.1. The action groupoid. If S is a group and V × S → V a right group action, then the following construction of the action groupoid is well-known in category theory (see, eg., http://ncatlab.org/nlab/show/action+groupoid). The sets of morphisms and objects are defined by (M, B) = (V × S, V ), with two projections

and product when vg

Units are (v, 1), where 1 is the unit of S, and the inverse of (v, g) is (vg, g -1 ). In case of a left action, we take

B.2. Monoid action category.

Let S be a monoid acting from the right on a set V , via V × S → V . (In the main text, S = (K, •) is the multiplicative monoid of a ring (K, +, •), and V a K-module.) Then, of course, the preceding construction still works, but instead of a groupoid it merely defines a small cat.

Remark B.1. In the preceding situation we may define, for any non-empty subset U ⊂ V , a subcategory

Even if S is a group, this need not be a groupoid (the category M U then rather belongs to the semigroup {g ∈ G | U.g ⊂ U}, and not to a group).

Appendix D. Primitive manifolds

The following is a generalization of the usual definition of atlas of a manifold. It formalizes the idea that a space M "is modelled on a space V " (which may be a linear space, or not -linearity of the model space is not needed for the following).

Definition D.1. Let V be a topological space that will be called model space (the topology need not be separated or non-discrete). A primitive manifold modelled on V is given by (M, T , V, (U i , φ i , V i ) i∈I ), where (M, T ) is a topological space, (U i ) i∈I an open cover of M, so M = ∪ i∈I U i and the U i are open and non-empty, and and φ i : U i → V i are homeomorphisms onto open sets V i ⊂ V . We then also say that A = (U i , φ i , V i ) i∈I is an atlas on M with model space V . The atlas is called maximal if it contains all compatible charts (defined as usual in differential geometry, see e.g., [START_REF] Husemoller | Fibre Bundles[END_REF]). The primitive manifold is called a Hausdorff manifold if its topology is Hausdorff and if the atlas is maximal. A morphism of primitive manifolds (M, T , A), (M ′ , T ′ , A ′ ) is a continuous map f : M → M ′ . Thus primitive manifolds form a concrete category Pman.

Remark D.1. One may suppress the topology T from this definition by considering on M the atlas topology, which is the coarsest topology such that chart domains are open (topology generated by the U i ). This is the point of view taken in a first version of this work; however, including the topology T as additional datum gives more freedom and is closer to usual definitions. Definition D.2. An atlas A, and the primitive manifold M, are called handy if, for any finite collection x 1 , . . . , x n ∈ M, there exists a chart (U i , φ i ) such that x 1 , . . . , x n ∈ U i .

Lemma D.3. A Hausdorff manifold modelled on a topological group V is handy.

Proof. Let n = 2. If x 1 = x 2 , there is nothing to show. If x 1 = x 2 , choose disjoint charts (U ′ , φ ′ ) around x 1 and (U ′′ , φ ′′ ) around x 2 . By shrinking chart domains if necessary and using translations on V , we may assume that V ′ := φ ′ (U ′ ) and V ′′ := φ ′′ (U ′′ ) are disjoint. But then the disjoint union (U ′ ∪ U ′′ , φ ′ ∪ φ ′′ , V ′ ∪ V ′′ ) is a chart (by maximality of the atlas) with the required properties (note that connectedness is not required for chart domains), and we are done. For n > 2, one proceeds in the same way.

Given an atlas, we let for (i, j) ∈ I 2 , (D.1)

and the transition maps belonging to the atlas are defined by (D.2)

They are homeomorphisms satisfying the cocycle relations

Theorem D.4 (Reconstruction from local data). The data of a primitive manifold (M, T , A) are equivalent to the data (V, T V , (V ij , φ ij ) (i,j)∈I 2 ), where

are homeomorphisms satisfying the cocycle relations (D.3). Morphisms of primitive manifolds then are the same as families of continuous maps

Proof. Given a primitive manifold M, the data (V, T V , (V ij , φ ij ) (i,j)∈I 2 ) are defined as above, and if f : M → M ′ is a morphism, we let

The topology on M is defined to be the topology generated by all (φ i ) -1 (X) with X open in V i and i ∈ I. Moreover, given a family f ij as in the theorem, the map

is well-defined and continuous. All properties are now checked in a straightforward way; we omit the details (cf. [START_REF] Husemoller | Fibre Bundles[END_REF], Section 5.4.3).

Example D.1. If all U ij are empty for i = j, then M is just the disjoint union of the sets V i := V ii , and there are no transition conditions. In particular, when |I| = 1, we see that every open subset U ⊂ V is a manifold, with a single chart.

Remark D.2. The preceding theorem is used to "globalize" local functorial constructions: if such a construction transforms local data, as described in the theorem, into other such local data, then, again by the theorem, such a construction carries over to the manifold level. For instance, in topological differential calculus, this construction permits to define the tangent bundle T M of a manifold M, and, much more generally, the Weil bundle F M of M for any Weil functor F (see [START_REF] Bertram | A general construction of Weil functors[END_REF][START_REF] Bertram | Weil Spaces and Weil-Lie Groups[END_REF]). In the present work, it is applied to the local construction U → U {1} .