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Analysing and monitoring users' engaged-behaviours continuously and under ecologically valid conditions can reveal valuable information for designers and practitioners, allowing them to analyse, design and monitor the interactive mediated activity, and then to adapt and personalise it. An interactive mediated activity is a human activity supported by digital interactive technologies. While classical metric methods fall within quantitative approaches, this paper proposes a qualitative approach to identifying users' engagement and qualifying their engaged-behaviours from their traces of interaction. Traces of interaction represent the users' activities with an interactive environment. The basis of our approach is to transform low-level traces of interaction into meaningful information represented in higher-level traces. For this, our approach combines three theoretical frameworks : the Self-Determination Theory, the Activity Theory and the Trace Theory. Our approach has been implemented and tested in the context of the QUEJANT Projet. QUEJANT targets the development of a system allowing the actors of Social Gaming to analyse players' engagement from an analysis of their activity traces. In order to demonstrate the feasibility of our approach, we implemented the whole pro-

Introduction

User's engagement is considered as an important dimension (O' Brien and Toms, 2008) of the user experience 1 [START_REF] Hassenzahl | User experience -a research agenda[END_REF][START_REF] Law | Understanding, scoping and defining user experience: a survey approach[END_REF] during an interactive mediated activity. An interactive mediated activity is a human activity supported by digital interactive technologies such as mobile platforms, Internet, computer applications or virtual reality system.

Indeed, several works highlight the significance of the user's engagement in di↵erent scientific fields such as digital gaming [START_REF] Brockmyer | The development of the game engagement questionnaire: A measure of engagement in video game-playing[END_REF], Web applications [START_REF] Attfield | Towards a science of user engagement[END_REF], human-robot interaction [START_REF] Rich | Recognizing engagement in human-robot interaction[END_REF], virtual reality [START_REF] Schubert | The experience of presence: Factor analytic insights[END_REF] or education [START_REF] Garris | Games, motivation, and learning: A research and practice model[END_REF].

Further to their systematic review of engagement in entertainment digital gaming, [START_REF] Boyle | Engagement in digital entertainment games: A systematic review[END_REF] acknowledge that the nature of engagement is still not fully understood and there is a lack of a widely accepted definition of engagement. Many definitions of engagement have been proposed in the literature (see for instance [START_REF] Chen | Modeling but not measuring engagement in computer games[END_REF] in digital gaming, [START_REF] Sidner | Where to look: a study of humanrobot engagement[END_REF] in human-robot interaction or [START_REF] Fredricks | School Engagement: Potential of the Concept, State of the Evidence[END_REF]) in education). While this discussion about the nature of engagement goes beyond the scope of this paper, we still consider it necessary to clarify the object of the present study. In this work we consider engagement as the willingness to have emotions, a↵ect and thoughts directed towards and aroused by the mediated activity in order to achieve a specific objective (Bouvier et al, 2013a). In our view, engagement may continue beyond the duration of the mediated activity. For instance, even when the activity is finished, engaged-users may think back to the previous session of the mediated activity or may anticipate the following one.

The objective of our research is to propose a generic approach to identifying users' engagement and qualifying their engaged-behaviours from their traces of interactions. By trace, we mean the history of users' actions collected in real time from their interactions with a computer system. Through our approach we can analyse engagement continuously (i.e. session after session) and under ecologically valid conditions. We consider that the conditions are ecologically valid since the activity is performed in its natural environment and in authentic conditions (the process underlying our approach does not interfere with the normal course of the activity and so is fully transparent for the user).

This paper proposes a theory-driven and qualitative approach. Our proposal is theory-driven as it relies on a theoretical work on engagement and engaged-behaviours, the Self-Determination Theory, the Activity Theory and the Trace Theory combined through a three-stage process. Our proposal is also qualitative as it can qualify the users' engaged-behaviours according to four categories : environmental-directed, social-directed, self-directed and actiondirected. In our model, a behaviour corresponds to a chain of actions (i.e. an aggregation of actions) actually performed by the user in the interactive system. Considering some chains of actions rather than single actions provides comprehensive contextual information on behaviours and thus, facilitates their understanding.

This work has been conducted in the context of the QUEJANT Project. This project targets the development of a system allowing the actors of Social Gaming to analyse players' engagement based on an analysis of their activity traces. This project is undertaken in partnership with the LIRIS laboratory and video games companies.

The proposed approach has been implemented in a prototype that supports the whole process of analysis within the context of the QUEJANT project. We analysed the interaction traces of twelve players selected by experts as representative of user's engaged and non-engaged behaviours. We were able to identify four high-level activities that reflect several types of engaged-behaviours. This implementation shows the feasibly of our approach. We also present the results of a user study that involved three experts. The objective of this study, based on a comparative method, was to validate the performance of our approach with real data. The principle of this evaluation consisted in comparing, for the same traces, the results generated by our prototype with those of three experts. The high prediction rates obtained suggest that our models and prototype are valid in this context. This evaluation also highlights some limitations of our proposal regarding its implementation and the question of scalability.

The assessment of users' engagement during an interactive mediated activity can provide some relevant information for designers, practitioners and facilitators to analyse, design or modify the activity. Indeed, the information on users' engagement given by our tool may be di↵erent from their intuitions and may help them to gain a better understanding of the users. These information may also be used to adapt and personalise the form and the content of the application. For instance, the analysis may inform about users' specific interests or about design problems of the activity (like a wrong balance between the di↵erent types of engagement). Thus the activity may be modified or adapted accordingly in order to maintain engagement.

The article is organized as follows. Section 2 outlines the background and motivation of our work on engagement for behavioural interventions. Section 3 presents the state of the art regarding the existing methods to identifying user's engagement in interactive activities. Section 4 details the three theories (Self-Determination Theory, Activity Theory and Trace Theory) on which we rely in order to define our approach. Section 5 describes the three stages of our approach to identifying and qualifying engaged-behaviours from the users' interaction traces. Section 6 presents the architecture of the system we have developed and the implementation of our approach in the context of the QUEJANT project. We also give some examples in order to illustrate the process. Section 7 is devoted to the user study we conducted in order to validate our approach. The principle consists of comparing, for the same traces, the results generated by our system with those of three experts. Section 8 summarizes our contribution and highlights some limitations and implications of our works. Section 9 is devoted to our future works.

Background and motivation

Our contribution may be particularly relevant in the digital behaviour intervention field. A behaviour change is desirable since the change may be beneficial for instance to the person, to the environment or to society. Thus, behaviour change may be applied in various fields such as health (for instance to promote a good diet [START_REF] Baranowski | Squire's quest!: Dietary outcome evaluation of a multimedia game[END_REF] or exercise [START_REF] Consolvo | Design requirements for technologies that encourage physical activity[END_REF] or to manage chronic diseases [START_REF] Camerini | Design and implementation of a web-based tailored gymnasium to enhance selfmanagement of fibromyalgia[END_REF])), sustainable development [START_REF] Jackson | Motivating sustainable consumption. a review of evidence on consumer behaviour and behavioural change[END_REF] or education [START_REF] Mintz | The application of persuasive technology to educational settings[END_REF].

The role of interactive technologies such as mobile platforms [START_REF] Kjeldskov | Using mobile phones to support sustainability: a field study of residential electricity consumption[END_REF], Internet [START_REF] Barak | A comprehensive review and a meta-analysis of the e↵ectiveness of internet-based psychotherapeutic interventions[END_REF], social networking [START_REF] Maitland | Designing for peer involvement in weight management[END_REF], computer games [START_REF] Baranowski | Playing for real: Video games and stories for health-related behavior change[END_REF] or virtual reality [START_REF] Chittaro | The persuasive power of virtual reality: e↵ects of simulated human distress on attitudes towards fire safety[END_REF] in supporting behaviour change in a desirable way is a growing area of research.

But, to change or influence users' behaviour, technology-based behavioural interventions must be attractive and motivating [START_REF] Vassileva | Motivating participation in social computing applications: a user modeling perspective[END_REF]). User's motivation is known as one of the users' key determinants of behaviour change [START_REF] Michie | From theory to intervention: Mapping theoretically derived behavioural determinants to behaviour change techniques[END_REF]. [START_REF] Vassileva | Motivating participation in social computing applications: a user modeling perspective[END_REF] notes that "motivation is always personal". And so, what a user can judge attractive and motivating may be experienced in a very di↵erent manner by another user. Therefore, personalising the mediated activity according to gamer types [START_REF] Orji | Modeling the e cacy of persuasive strategies for di↵erent gamer types in serious games for health. User Modeling and User-Adapted Interaction this issue[END_REF] or to users' specific needs and motivations is a relevant solution to support the e↵ectiveness of the digital intervention [START_REF] Ritterband | A behavior change model for internet interventions[END_REF][START_REF] Vassileva | Motivating participation in social computing applications: a user modeling perspective[END_REF]. But detecting users' needs and motivations to adapt the intervention accordingly, is particularly challenging.

To achieve better results, some adaptation or personalisation techniques using persuasive technology [START_REF] Fogg | Persuasive technology: using computers to change what we think and do[END_REF] or a↵ective computing [START_REF] Picard | A↵ective computing[END_REF] strategies may be implemented [START_REF] Mintz | The application of persuasive technology to educational settings[END_REF]. Persuasive technology deals with interactive technologies intentionally designed to support behaviour change [START_REF] Fogg | A behavior model for persuasive design[END_REF]. A↵ective computing aims to understand and modelling emotions and related a↵ective phenomena in order to design inter-active systems that can recognize, interpret and simulate them [START_REF] Honka | Rethinking health: Ict-enabled services to empower people to manage their health[END_REF]. The objective of these strategies is to personalise the digital intervention (its form and/or content) according to users' motivations.

In the health intervention field, users' adherence is considered as the key determinant in the e↵ectiveness of treatment or in promoting a healthy lifestyle [START_REF] Ritterband | A behavior change model for internet interventions[END_REF]. Adherence corresponds to the intensity of the use and the variety of intervention program usage by the user [START_REF] Donkin | A systematic review of the impact of adherence on the e↵ectiveness of etherapies[END_REF]. Then adherence can be measured through the time spent online or the number of completed tasks [START_REF] Donkin | A systematic review of the impact of adherence on the e↵ectiveness of etherapies[END_REF]. The connection between adherence and engagement is quite obvious and often highlighted [START_REF] Christensen | Adherence in internet interventions for anxiety and depression: Systematic review[END_REF][START_REF] Doherty | Engagement with online mental health interventions: an exploratory clinical study of a treatment for depression[END_REF]. Beyond the health sphere, users' engagement is also considered as a key factor in supporting behaviour change in the environmental [START_REF] Froehlich | Ubigreen: investigating a mobile tool for tracking and supporting green transportation habits[END_REF] or educational [START_REF] Linehan | Practical, appropriate, empirically-validated guidelines for designing educational games[END_REF] fields. The information about users' engaged-behaviours obtained with our approach can be used to adapt and personalise the form and the content of the interactive system and so improve the digital intervention.

Related research works

As [START_REF] Chen | Modeling but not measuring engagement in computer games[END_REF] acknowledge, measuring engagement is not straightforward. In this section, we present and discuss some subjective and objective methods for the assessment of users' engagement.

Subjective methods

Subjective measures mostly rely on self-report methods like Likert scale questionnaires [START_REF] Jennett | Measuring and defining the experience of immersion in games[END_REF][START_REF] Brockmyer | The development of the game engagement questionnaire: A measure of engagement in video game-playing[END_REF]. These measures seek to assess the engagement and some associated states like the allocation of attention or immersion. Questionnaires present a number of advantages. They are not expensive, they are easy to administer and to analyse. When they are proposed after the activity, questionnaires have the advantage of not disrupting the activity. However, they su↵er from numerous biases and limitations, such as the wording of the questions that can lead to ambiguities. This is particularly true when the object of the study is an abstract quantity like engagement.

There are other post-activity and subjective methods, such as interviews [START_REF] Brown | A grounded investigation of game immersion[END_REF], discussions with a small group of participants or asking them to write and describe their experience. This type of study may provide comprehensive results. So it may enable the analysis of engagement in a more accurate and subtle way than with a questionnaire. But, the amount of data collected make the results more di cult to administer and to interpret.

While most self-report methods are performed after the activity, D 'Mello et al (2006) and [START_REF] Arroyo | Emotion sensors go to school[END_REF] propose two di↵erent methods that can be used during the activity. But this kind of continual self-report may disrupt the activity and so the user experience. Measurement by self-report may also su↵er from a lack of introspection on the user's part. When these measures are conducted after the activity, there is no guarantee that the remembered experience is identical to the actual experience. Furthermore, apart from the few methods that can be completed during the activity, self-report methods do not make it possible to reflect the changes in engagement that may occurred during the activity.

So these subjective measures can provide complementary information when conducted in parallel with objective measures of engagement. For example, it may be interesting to know when and why a user is more or less engaged during the activity. But it is necessary to evaluate engagement in an objective way if we want the results to be interpretable and usable by the interactive system to adapt and personalize the mediated activity.

Objective methods

Objective measures assess users' unconscious or spontaneous manifestations or responses that result from their engagement. The latter may be physiological, emotional or behavioural. For example, [START_REF] Mandryk | A continuous and objective evaluation of emotional experience with interactive play environments[END_REF] use some psychophysiological techniques (recently reviewed by [START_REF] Kivikangas | A review of the use of psychophysiological methods in game research[END_REF]) to measure users' physiological responses. As engaging tasks lead to a shorter duration estimation, [START_REF] Hägni | The E↵ect of Task and Ownership on Time Estimation in Virtual Environments[END_REF] evaluate users' altered perception of time.

Other behavioural manifestations such as gaze tracking [START_REF] Jennett | Measuring and defining the experience of immersion in games[END_REF] or body movements (Bianchi-Berthouze, 2013) may be assessed. The assumption underlying these kinds of methods is that the physiological, emotional or behavioural responses reflecting engagement are su ciently pronounced to be detected. We consider that physiological, emotional or behavioural methods show great promise. But currently, the technology to be implemented may be complex and intrusive and so disrupt the user's experience. Another significant di culty with these methods is determining which manifestations or responses are objective and really inherent to user engagement. A final limit to these objective methods is that the physiological, emotional or behavioural responses reflecting users' engagement that these methods seek to recognise, depend on the content of the activity.

Metrics, another objective measure, is used in industry and by academics in order to fulfil the constraints mentioned above. It consists in automatically collecting and storing any users' actions performed, through input devices toward the system, such as users' choices, interactions with agents or time spent connected. It is possible to record the complete users' activity. In the gaming domain, this user-centred analysis, mainly based on statistical processing, may be used during the game development [START_REF] Kim | Tracking real-time user experience (true): a comprehensive instrumentation solution for complex systems[END_REF][START_REF] Tychsen | Defining personas in games using metrics[END_REF] or after the game launch [START_REF] Gagné | A deeper look at the use of telemetry for analysis of player behavior in rts games[END_REF]. The purpose is to inform designers about users' behaviour. Without interfering with the activity, metrics enable one to analyse user's behaviour during the activity and not a posteriori. It also makes it possible to conduct research on the whole popula-tion and not only on a selected sample and, over a long time interval. Metrics data are directly and automatically collected and sent by the system. In addition, the process does not require any intervention from the user nor does it disrupt the process underlying the activity. So this process is transparent for the user performing the activity. Regarding the assessment of engagement, [START_REF] Canossa | Patterns of play: Play-personas in user-centred game development[END_REF] restrain the use of metrics for monitoring users' actions as they consider that metrics cannot give information about abstract or psychological quantities. Yet, [START_REF] Bauckhage | How players lose interest in playing a game: An empirical study based on distributions of total playing times[END_REF] note that since engagement influences the behaviour, some measurable quantities can be considered in identifying engaged-behaviours. However, the main di culty with metric methods is to select the relevant telemetry data to convert to metrics in order to extract some valuable (i.e. interesting, interpretable and useful) information about engaged-behaviours.

Several data mining or analysis techniques can be applied on user-generated data to analyse the engagement. To assess the impact of tutorials on players' engagement in digital entertainment games, [START_REF] Andersen | The impact of tutorials on games of varying complexity[END_REF] collect some raw data such as the number of unique levels completed, the total playing time and the number of times players have loaded the game. Expecting to predict when players will stop playing, Bauckhage et al ( 2012) study how engagement evolves over time. They apply techniques from lifetime analysis on players' playing time information (when they play and for how long) collected from five AAA-games like Tomb Raider or Crysis. Dealing with learners' disengagement detection in web-based e-learning system, [START_REF] Cocea | Log file analysis for disengagement detection in e-learning environments[END_REF] compare eight machine learning techniques on several raw data. The latter are mainly related to reading pages (number of pages read, time spent reading pages) and quiz events. By conducting quantitative measure on isolated (i.e. unlinked) utilitarian metrics, these methods remain on a basic level that only give information about what the user is actually doing during the activity but cannot reach the experiential level where engagement is situated. Indeed, [START_REF] Pagulayan | User-centered design in games[END_REF] discuss the di↵erences between hedonic applications such as video games and utility applications such as tax management systems or spreadsheets. One di↵erence is that utilitarian metrics such as the time required to perform a task or the number of tasks successfully completed do not enable the analysis of the experiential level of a mediated activity and thus engagement.

While the methods presented in the previous paragraph only consider some isolated users' actions, sequence-mining methods consider user's engagedbehaviour as sequences of actions. [START_REF] Beal | Classifying learner engagement through integration of multiple data sources[END_REF] propose a classification approach to user engagement within an ITS to learn mathematics. For that purpose, they defined five student's time-dependent patterns of actions based on time traces of actions within the ITS: 1. The problem is displayed for at least 10 seconds + selection of the correct answer; 2. The problem is displayed for at least 10 seconds + selection of an incorrect answer + the problem is displayed for at least 10 seconds + selection of the correct answer; 3. Student selected one or more answers within 10 seconds of the problem presentation and no help was viewed; 4. The student clicked on help with inter-click in-tervals of less than 10 seconds; 5. The problem is displayed for at least 10 seconds + help was requested and presented for at least 10 seconds before an answer was selected or another hint was requested. More recently, [START_REF] Köck | Activity sequence modelling and dynamic clustering for personalized e-learning[END_REF] adopt a clustering approach to detect sequences of learner's actions in the Andes ITS. These studies only occur in high-constraint environments like ITS. In such environments, the variety of actions is limited and fully determined by the interactive activity (attempts, request for hint, results etc.) and so the number of items is limited. Thus, sequence-mining may constitute an e cient method for discovering some statistically relevant sequences of actions. But, in low-constrained interactive systems like digital games, a wide range of actions may be possible. For instance in entertainment digital games, players have more freedom to explore the environment or to interact with agents than in an Intelligent Tutoring System. Then, sequence-mining may return a high number of sequences that are di cult to interpret. Also, the sequences of user's actions discovered by the sequence-mining algorithm are not necessarily directly valuable and still need to be interpreted by the analyst. Finally, machine learning for sequential data mining su↵ers from several issues such as long-distance interactions [START_REF] Dietterich | Machine learning for sequential data: A review[END_REF]. Indeed, if the elements that compose a significant sequence are not adjacent or in the near neighbourhood, the sequence-mining algorithm may not be able to discover this sequence.

To sum up, subjective methods may provide some accurate and subtle information on engagement. But as these methods require the active and voluntary participation of the users, their implementation tends to restrain them to laboratory experimentations. Physiological or behavioural measures show great promise but they are hard to implement in ecologically valid conditions and they require the users to possess some specific devices. Metrics methods are transparent to the users but the strategies currently implemented do not allow for the assessment of users' engagement during low-constraint interactive mediated activities. In section 5 we present our approach to identifying engagement in low-constraint interactive mediated activities, directly, continuously and under ecologically valid conditions and over a long period of time. But first, in section 4 we detail the theories on which we rely in order to define this approach.

Theoretical background

The approach proposed in section 5 relies on three theories: the Self-Determination Theory to identify users' motives, the Activity Theory to deconstruct highlevel engaged-behaviours in activity, actions and operations and the Trace Theory to extract meaningful information from low-level interaction traces.

Self-Determination Theory (SDT)

The Self-Determination Theory (SDT) is a theory of human motivation initiated by [START_REF] Ryan | Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being[END_REF]. The two psychologists developed this theory in order to understand Human personality development and well-being. This theory postulates A) that individuals have three basic psychological needs: competence (sense of e cacy), autonomy (volition and personal agency) and relatedness (social interaction) and B) that Humans strive to fulfill these three needs in order to enhance wellbeing. Then Humans engage in tasks that enable them to satisfy these needs and so their behaviour is determined by this need fullfilment. SDT has been applied in many fields such as education, health or digital gaming2 .

Activity Theory (AT)

The Activity Theory (AT) initiated by [START_REF] Vygotsky | Mind in Society: The Development of Higher Psychological Processes[END_REF] and [START_REF] Leontiev | Activity, consciousness and personality[END_REF] aims to understand Human development through an analysis of the genesis, structure and processes of activities. AT has been used for more than a few years in the Human-Computer Interactions field [START_REF] Kaptelinin | Acting with Technology: Activity Theory and Interaction Design[END_REF]. Activity Theory proposes to deconstruct human' activities according to the three di↵erent levels of analysis it distinguishes:

-An activity is performed by a subject, through a tool, in response to a specific need or motive in order to achieve an object (i.e. an objective).

The need generates the motive, the motive elicits the activity, the object structures and directs [START_REF] Kaptelinin | The object of activity: Making sense of the sense-maker[END_REF] the activity towards a desired and anticipated [START_REF] Bardram | Plans as situated action: an activity theory approach to workflow systems[END_REF] outcome. The object is what characterizes an activity and di↵erentiates one activity from another [START_REF] Leontiev | Activity, consciousness and personality[END_REF]. The object has to be of high significance to the subject i.e. be self-su cient. -An action (or chains of actions) can be seen as the actual transcription of the activity. An action can be used by di↵erent activities in order to reach a goal. Thus, the goal of the action (and so of the chain of actions) depends on the activity to which it is subordinated. The di↵erence between objects (activity level) and goals (action level) is the significance regarding the motive of the activity. The object directly depends on the motive that elicits the activity. The goals can be seen as sub-object or steps that have to be reached in order to complete the object. Actions are performed consciously and with e↵ort through operations. -An operation enables the actual realization of the actions. Operations are automatized, that means performed without conscious thoughts or e↵orts. They are determined by the environmental and contextual conditions of the activity and can be used by di↵erent actions.

Trace Theory (TT)

The Trace Theory (TT) is a framework for collecting, analyzing and representing users' interaction traces [START_REF] Clauzel | Enhancing synchronous collaboration by using interactive visualisation of modelled traces[END_REF]. At the lowest level of the framework are the observed elements (labeled obsels). Typically, an obsel corresponds to a user's raw action collected in the interactive system (like a mouse click or a key pressed on the keyboard). An obsel contains a type of event, a timestamp and a set of contextual information useful for characterizing the event and deriving meaning. A primary trace is a set of temporally situated obsels that may be connected. A primary trace may contain a very large number of obsels whose informational level may be very low. So, it may be di cult to extract valuable knowledge from a primary trace. The formalization proposed by [START_REF] Settouti | A trace-based system for technology-enhanced learning systems personalisation[END_REF] aims to facilitate the transition from primary traces to meaningful information represented in high-level traces. It consists in transforming a primary trace into a trace of a higher level based on a rule-based system. A rule consists in temporal constraints or in operations on the contextual attributes performed between obsels. The transformation process can aggregate several obsels according to the rules. The obsels generated constitute the new transformed trace. The experts' knowledge that has been injected during the construction of the rules leads to the extraction of a more complex or abstract knowledge than the one that can be initially extracted from the primary trace.

A qualitative approach to identifying and qualifying engaged-behaviours from users' interaction traces

We consider engagement as the willingness to have emotions, a↵ects and thoughts directed towards and aroused by the mediated activity, in order to achieve a specific objective (Bouvier et al, 2013a). This means that emotions such as enjoyment, pride or accomplishment are provoked by the game or that players' thoughts are focused on the game during, but also between, gaming sessions. In this view, engagement is considered as a connection maintained between players and the gaming sessions. From an operational point of view, we qualify in this study a player as being engaged since s/he manifests at least one engaged-behaviour (i.e. at least one obsel from the activity level is generated).

In this section, we propose an approach to identifying engaged-behaviours from the users' interaction traces. Two main questions have to be addressed:

1. How can engaged-behaviours be distinguished from non-engaged-behaviours? 2. How can these engaged-behaviours be detected among all the collected data?

To address the two questions above, we propose an approach that combines the three theories mentioned in section 4. Our approach is composed of three stages explained in the following three subsections. In part 5.1, we answer the first question mentioned above by identifying four types of high-level engagedbehaviours. Parts 5.2 and 5.3 allow us to address the second question. First, in part 5.2 we explain how we deconstruct these high-level engaged-behaviours into activities, chains of actions and chains of operations actually performed within the interactive system. Then, in part 5.3 we explain how, among all the collected data, we detect all these elements (identified in part 5.2) that constitute an engaged-behaviour.

Determining engaged-behaviours with the SDT

The aim of this stage is to distinguish engaged-behaviours (i.e. behaviours reflecting an engagement) from non-engaged behaviours. To structure the analysis of engaged-behaviours, we first consider that most of the mediated interactive activities consist in performing actions (decision-making process), directly or through a character (by adopting a specific role), within an environment (or at least on a frame) which may involve social interaction with human or virtual agents. The role adopted during the mediated activity may be the one intended by the mediated activity or another one independently chosen by the participant. This categorization enables us to identify four types of high-level behaviours.

Then, in agreement with the SDT (introduced in part 4.1) we consider that users engage in behaviours that enable them to fulfil their basic needs. This leads to the identification of the four following types of engaged-behaviours:

environmental, in relation to the need for autonomy and directed towards the environment or frame that support the activity; social, in relation to the relatedness need and directed towards the social connections that may occur during the activity; self, in relation to the autonomy need and directed towards the character or role adopted during the activity; action, in relation to the competence and autonomy needs and directed towards the actions to perform during the activity.

This categorization of engaged-behaviours (environment-directed, socialdirected, self-directed and action-directed) aims to define some hypotheses about the high-level engaged-behaviours that we seek to detect within the recorded users' actions. By relying on these basic psychological needs perspective rather than on empirical observation of users' behaviours in interactive systems, our approach aims to determine a wide and non-stereotyped range of behaviours.

Characterizing engaged-behaviours with Activity Theory

The work conducted during the first stage of our approach (section 5.1) enables us to establish the relationships between users' needs and the corresponding high-level engaged-behaviours. These high-level engaged-behaviours remain distant from the users' actions actually performed during the activity. Thus, it is necessary to extend these relationships to the actions actually performed. To this end we combine the SDT with the Activity Theory (described in part 4.2). We use the Activity Theory to deconstruct an engaged-behaviour (determined during the previous stage using the SDT) in activity, chains of actions and chains of operations actually performed in the interactive system by the users.

According to the Activity Theory the need generates the motive and the motive elicits the activity (see section 4.2 page 9). We consider that the emotions felt by the users when one of their needs is fulfilled constitute the motive of the engagement. So the emotions sought determine users' engagedbehaviours within the interactive system. The support and the orientation of the emotions are specific to each of the four types of engaged-behaviours and so can di↵erentiate the four types of engaged-behaviours (environmental-oriented vs. social-oriented vs. self-oriented vs. action-oriented). For instance the emotions that motivate the social-engagement activities are oriented towards the other users, while the emotions that motivate the action-engagement activities are oriented towards the action to perform. But within each type of engagedbehaviours, while the emotions felt may be di↵erent, the emotions share the same orientation. For instance the emotions related to collaboration or to social recognition are di↵erent but share the same orientation towards the other users.

Table 1 illustrates the categorization of the four types of engaged-behaviours according to the basic needs these engaged-behaviours can fulfill and the elicited associated emotions. We also list some examples of activities that the users may conduct according to the entertainment digital game context of the QUEJANT project. Regarding the elicited (or at least sought) emotions, we use the term pleasure as a blanket term that can cover several basic emotions such as joy, surprise, fear, stress and non-basic emotions such as curiosity or enjoyment [START_REF] Calvo | A↵ect detection: An interdisciplinary review of models, methods, and their applications[END_REF]. The frequency and the intensity of these engaged-behaviours depend on the nature of the mediated activity.

The decomposition of an engaged-behaviour into activities, chains of actions and chains of operations is illustrated in Figure 1. Within the socialengagement type, Motive A and Motive B share the same orientation towards the other users and generate Activity A and Activity B respectively. Object A and Object B are the object of Activity A and Activity B respectively. As the object structures and directs the activity, the object determines the underlying chain of actions. For instance Activity A is supported by the chain Action 1 -Action 2 -Action 4 while Activity B is supported by the chain Action 2 -Action 3 -Action 5.

The example above highlights that an action (in this case Action 2 ) may belong to several chains of actions which have di↵erent goals. Indeed, as an activity is realised through a specific (i.e. unique) chain of actions, the goal of the chain depends on the activity to which the chain is subordinated. For instance Action 2 whose goal (entitled Goal 2) remains stable may belong to two di↵erent chains of actions. But these two chains have their own goals (Goal A and Goal B) according to which activity (Activity A and Activity B respectively) the chain belongs to. Finally each action is realized through its own chain of operations actually performed with the input devices provided. Similarly, an operation may belong to several chains of operations in order to enable the realization of di↵erent actions.

Detecting engaged-behaviours with Trace Theory

To detect the engaged-behaviours among all the actions recorded, we combine the Activity Theory and the Trace Theory (see part 4.3) by establishing the following correspondences:

-An operation corresponds to an obsel from the primary trace.

-An action corresponds to an obsel from the transformed trace.

-An activity corresponds to an obsel from the highest-level transformed trace.

The Trace Theory can detect the relevant operations among all the collected and stored obsels and then reify (through the transformation process) the relationship between a chain of operations and an action and between a chain of actions and an activity. These relationships have been identified during the second stage of our approach using the Activity Theory. The obsels which compose the highest-level trace correspond to the activities that belong to a specific engaged-behaviour. The highest-level transformed trace may have been generated after several transformation processes. For instance in Fig. 1 Our approach combines the Self-Determination Theory and Activity Theory in order to decompose an engaged-behaviour into activity, chain of actions and chain of operations.

Fig. 2 To detect user's engaged-behaviours among the collected and recorded data, our approach uses the Trace Theory to reify through the transformation process, the relationship between a chain of operations and an action and a chain of actions and an activity. Let us consider an example illustrated in Figure 2. During a session we collect numerous obsels from di↵erent types (i.e. which may correspond to di↵erent specific events that occurred during the activity). In relation to the work conducted during the second stage of our approach, a transformation rule labelled r action 1 is defined in order to aggregate some specific obsels from the primary trace (see section 6.4 for an example of rule). This rule enables us to detect, in the primary trace, the presence of the targeted specific chains of operations according to some temporal constraints determined during the second stage. For instance, if operation 5 and operation 19 occurred within the right time interval then the transformation rule generates a new obsel with higher-level labelled Action 1 in the transformed trace of level Action. The time intervals are defined during a step of analysis of the game that belongs to this third stage. This step involves analysing the traces in order to determine the suitable time interval for each rule. The input data (i.e. the lower-level obsels) and the constraints constitute the signature of a rule. Since this signature is unique, the higher-level obsels generated are from a single type and so with a single purpose.

The transformation process has also a rule labelled r action 2 that enables us to aggregate another targeted chain of operations (for instance operation 3, operation 8 and operation 22 ). This transformation rule may generate an obsel labelled Action 2 in the transformed trace of level Action. A third rule labelled r action 4 is defined in order to generate the obsel Action 4 from its own chain of operations (for instance operation 22, operation 9 and operation 10 ). This example highlights that an operation (in this case operation 22 ) may belong to several chains of operations in order to enable the realization of di↵erent actions (Action 2 and Action 4 ).

Then in a second transformation process of higher level, a rule labelled r activity A is defined in order to aggregate the three obsels of level Action labelled Action 1, Action 2 and Action 4, according to a specific temporal constraint. If this chain of actions occurred during the right interval time then the obsel Activity A is generated. This obsel belongs to the trace of highestlevel i.e. the activity level. The same process is reiterated in order to define and instantiate the set of rules that enable us to identify each action and each activity identified during the second step.

Summary of the proposed approach

Figure 2 illustrates the three stages of our approach. The first stage (see section 5.1) combines a theoretical work on engagement, engaged-behaviours and the Self-Determination Theory. By determining some high-level engagedbehaviours, this stage allows us to address the first question mentioned at the top of the section 5 (How can engaged-behaviours be distinguished from non-engaged-behaviours? ). The second and third stages (see sections 5.2 and 5.3 respectively) allow us to address the second question identified at the top of the section 5 (How can these engaged-behaviours be detected among all the collected data? ). Indeed, the high-level engaged-behaviours identified during the first stage may be very distant from the users' actions actually performed in the system. So, to identify the relationship between these high-level engagedbehaviours and the actions actually performed we adopt an Activity Theory perspective in the second stage. The latter enables us to deconstruct these high-level engaged-behaviours into activities, chains of actions and chains of operations actually performed by the users. Then, in the last stage, we rely on the Trace Theory to detect and extract the relevant chains of operations among all the collected and recorded actions and also to reify (through the transformation process) the relationship between a chain of operations and an action and between a chain of actions and an activity. So, a chain of actions is an aggregation of several user's actions according to the temporal constraints or to the characteristics of the actions. Considering some chains of actions rather than single actions provides comprehensive contextual information on behaviours and thus, facilitates their understanding. Each activity belongs to a specific type of engaged-behaviour.

Implementation

We implemented all the processes underlying our approach: collecting the system-or user-generated events, storing and organising the data, characterising the engaged-behaviours and detecting the engaged-behaviours within the interaction traces. This implementation is based on an actual commercial game rather than on a laboratory product. This enables us to analyse actual players' engaged-behaviours in low-constraint interactive systems, directly, continuously, under ecologically valid conditions and over a long period of time.

Context

For this implementation, we used the BodyBoarding game developed by the company IntellySurf 3 . The game consists in travelling from spot to spot on the five continents in order to perform some bodyboarding maneuvers, to complete some challenges or to play against other players. The game has a strong social dimension in that it encourages competition between players. It also promotes game events sharing on social networks. In addition, by o↵ering a realistic rendering of the bodyboarding activity (performing maneuvers, the weather and wave conditions depend on actual meteorological and topographical reports) the game highlights a strong action dimension. Thus, this game provides a variety of engaged-behaviours that can cover the four types of engaged-behaviours identified in section 5.1.

YouRiding BodyBoarding game already collects information about the players' actions. The objective is twofold. The first one, technological, aims to track bugs, to check the e↵ectiveness of the game (response time etc.) or to ensure the relevance of the gameplay4 (level of di culty of the tutorial, use of the help information etc.). The second objective is to compute some marketing metrics such as retention rate5 , DAU (Daily Active Users), MAU (Monthly Active Users) or ARPU (Average Revenue Per User).

Architecture

Figure 3 illustrates the architecture underlying our approach. The BodyBoarding game developed by our partners is instrumented to automatically collect players' interactions. This collection uses a classic client-server architecture with JavaScript and PHP scripts in order to trigger the collection of the data and then, their storage in a MySQL database (see Figure 3 -step 1). Each collected obsel contains two timestamps, a name that identifies its type and at most three attributes that provide some contextual information such as the name of the button that triggered the collection or the ID number of an object (spot, equipment etc.). The first and second timestamps refer to the beginning and the end of the event respectively. Thus, most of the time the two timestamps of an obsel of the primary trace are the same.

The interaction data are then exported from the MySQL database in a CVS (Comma-Separated Values) file (Figure 3 -step 2). The following example is extracted from the CVS file of a collected trace.

08/01/2012 0 0 : 4 2 : 1 0 ; 0 8 / 0 1 / 2 0 1 2 0 0 : 4 2 : 1 0 ; o p e n p r o f i l e s k i l l s ; s k i l l s B t n 08/01/2012 0 0 : 4 2 : 4 2 ; 0 8 / 0 1 / 2 0 1 2 0 0 : 4 2 : 4 2 ; o p e n p r o f i l e i m p r o v e m e n t s ; improvementBtn 08/01/2012 0 0 : 4 3 : 1 4 ; 0 8 / 0 1 / 2 0 1 2 0 0 : 4 3 : 1 4 ; open shop ; p l a c e Z o n e s p o t S u r f S h o p 08/01/2012 0 0 : 4 3 : 4 6 ; 0 8 / 0 1 / 2 0 1 2 0 0 : 4 3 : 4 6 ; i t e m e q u i p ; 2 4 08/01/2012 0 0 : 4 4 : 0 2 ; 0 8 / 0 1 / 2 0 1 2 0 0 : 4 4 : 0 2 ; g o t o s p o t ; p l a c e Z o n e s p o t b u t t o n 1 ; 6 6 08/01/2012 0 0 : 4 4 : 1 6 ; 0 8 / 0 1 / 2 0 1 2 0 0 : 4 4 : 1 6 ; p l a y s t a r t o n s p o t ; 6 6

The primary traces are recorded in a trace based management system called kTBS6 [START_REF] Champin | ktbs: Kernel for trace-based systems[END_REF]. The kTBS can store and execute the transformation rules in order to compute the transformed traces. The kTBS records the primary and transformed traces in RDF7 format. The transformation rules are written in SPARQL8 query language in the kTBS. To interact with the kTBS, we use the graphical software D3KODE9 [START_REF] Champalle | Assistance to trainers for the observation and analysis activities of operators trainees on nuclear power plant full-scope simulator[END_REF]. D3KODE Fig. 3 The process underlying our approach. The main steps are: collecting the system-oruser generated events, storing and organising the data and qualifying users' behaviours.

implements the Trace Theory (presented in section 4.3) by providing the following features: loading the CVS data as a primary trace, creating the transformation rules and visualising the primary and transformed traces. The CVS file is loaded (Figure 3 -step 3) into the tool D3KODE. The primary trace is converted (Figure 3 -step 4) into RDF format by D3KODE in order to be stored in the kTBS. D3KODE can graphically create the transformation rules and convert them into SPARQL language so that they can be recorded in the kTBS (Figure 3 -step 5). The kTBS executes the transformation rules to compute the transformed traces. The transformed traces are also stored under RDF format in the kTBS. Finally D3KODE proposes a graphical representation of the primary and transformed traces and of the transformations that link them (Figure 3 -step 6). See Figure 5 for a screenshot of this last step.

Identification of high-level activities

Considering the features of the game studied within the QUEJANT project, we identify four activities from three of the four types of engaged-behaviours identified in section 5.1. Indeed, the self-engagement dimension is not su ciently promoted to be detected in the user traces. We characterized the following four activities:

-Social-engagement dimension:

the activity 'Develop new social relationship' is supported by the actions: 'Propose confrontation', 'Find players', 'Be interested in other player', 'Ask to be friend' and 'Accept to be friend'; the activity 'Share moment with real friends' is supported by the actions: 'Share game events on social networks', 'Import real friends into the game' and 'Propose confrontation with friends'; -Action-engagement dimension:

the activity 'Achieve challenges' is supported by the actions: 'Seek information about challenges', 'Improve character equipment', 'Improve player' and 'Improve character'; -Environment-engagement dimension:

the activity 'Increase knowledge about the game' is supported by the actions: 'Seek information about the game', 'Practice the tutorial' and 'Configure the game options'.

We also decomposed each action in the chain of operations that enables the actual realisation of the actions. These operations are performed with the input devices (which in our case are the mouse and the keyboard).

Transformation rules

Transformation rules allow us to reify the relationships between the chains of operations (belonging to the primary trace) and the actions (belonging to the intermediate transformed trace) and between the chains of actions and the activities (belonging to the highest-level transformed trace). In this part, we first give an example of the transformation process that we implemented in D3KODE. Then we present an example of transformation rule.

During sessions, we collect many obsels from 89 types. Each type of obsel corresponds to a specific type of action that the player can undertake in the game. Among the 89 types of collected actions, i.e. types of obsels in the primary trace, one can find for instance 'Proposing a challenge to another player', 'Buying new equipment for the character', 'Changing the configuration of the keyboard', etc.

For instance in the social-engagement dimension (see Figure 4 for an illustration), we identified the activity 'Develop new social relationship' whose motive is 'Feeling emotions related to social interactions' and object is 'Increasing the number of Friends'. We defined a transformation rule labelled 'Find players' in order to aggregate some specific obsels from the primary trace. This rule makes it possible according to some temporal constraints to detect the presence of the pair of obsels 'game social open' and 'game social search' in the primary trace. The presence of these obsels in the primary trace indicates that the player has opened the social panel of the game and has looked for other players according to several attributes such as the name and/or the town or the country. If these obsels occurred within a certain time interval, then the transformation rule generates a new obsel with higher-level labelled 'Find players' in the transformed trace of action level. The transformation rule labelled 'Propose confrontation' enables to aggregate some specific obsels regarding the phase of play where several players challenge one another on the same wave. This rule may generate an obsel labelled 'Propose confrontation' in the transformed trace of the action level. This process was reiterated for the three other actions ('Be interested in other players', 'Ask to be friend' and 'Accept to be friend'). Then a second transformation process of higher level contains some rules to aggregate the previously generated obsels of action level. The highest-level transformed trace may contain the obsel of highest-level that corresponds to the activity 'Develop new social relationship'.

A rule can rely on temporal constraints or on the contextual attributes. Lets consider an example illustrated in Figure 5. Figure 5 is a screenshot extracted from D3KODE that graphically represents the transformation process. For a better readability, this example representing the identification process of the activity 'Develop new social relationship' has been simplified by considering only two underlying actions: 'Propose confrontation' and 'Be interested in other players'. Regarding this graphical representation, D3KODE allows one to zoom and translate within the traces (and so the transformation process). The obsels 'Propose confrontation' and 'Be interested in other players' indicate that the player proposes a challenge to other players and that the player opens the players' profile page respectively.

According to our characterisation, the obsels 'challenge wait', 'challenge start' and 'challenge end' may be aggregated if they match the temporal constraint. If the condition is validated then the obsel of action level 'Propose confrontation' is generated. The following rule detects when these three obsels occurred in the primary trace in the interval of 10 minutes (the temporal constraint is defined in seconds). { ( g a m e c h a l l e n g e w a i t . hasEnd < g a m e c h a l l e n g e s t a r t . hasBegin ) AND ( g a m e c h a l l e n g e s t a r t . hasEnd < g a m e c h a l l e n g e e n d . hasBegin ) AND ( game c h a l l e n g e e n d . hasBegin g a m e c h a l l e n g e w a i t . hasEnd ) <=600 }

The generated 'Propose confrontation' obsel incorporates the information from the underlying obsels. So, its begin and end timestamps take the 'game challenge wait.hasEnd' and 'game challenge end.hasBegin' timestamps respectively. In Figure 5, the temporal dimension of the obsel 'Propose confrontation' is loosely represented by a blue square. Indeed it would be more relevant to represent this obsel by a blue rectangle to reflect the duration of this action. Also, the obsel 'open other profile' is simply selected and transformed in the obsel of action level 'Be interested in other players'.

In a second step, the obsels 'Propose confrontation' and 'Be interested in other players' are aggregated, if they match the temporal constraint, in order to generate the obsel of activity level 'Develop new social relationship'. We consider the following three cases:

the player opens the profile of another player and then proposes a confrontation to this player the player opens the profile of another player during the confrontation the player opens the profile of the other player just after the confrontation

The following rule enables to address these three cases respectively: In the actual implementation, we defined in D3KODE the whole set of rules that make it possible to generate all the actions underlying the activity 'Develop new social relationship'. We iterated the transformation process to generate all the obsels of highest-level that indicate the presence of the activities reflecting the four engaged-behaviours identified in section 6.3.

Summary of the implementation

This implementation shows the feasibility of our approach. The implementation required several steps. We first set up an architecture that can collect and store the data and to implement our approach. We collected and integrated in our system 12 users' interaction traces (see section 7.2.1 for details on these data). Then we analysed the game in order to characterize four activities reflecting three of the four types of engaged-behaviours identified in section 5.1. The fourth step consisted in determining and implementing in D3KODE the whole set of transformation rules that can reify the relationship between the chain of operations and an action, and between the chain of actions and an activity. Then we applied these transformation rules to the 12 interaction traces that we collected. This implementation shows the feasibility of our approach and its relevance to identifying and qualifying engaged-behaviours in interactive mediated activities. This implementation also highlights some limitations that we discuss in section 8.2.1.

User study

We performed a user study to validate the performance of our approach 1) to distinguish engaged-users from non-engaged ones, and 2) to identify the types of engaged-behaviours for the engaged users. The evaluation of this performance is based on an agreement rate between the results returned by our prototype and the results given by experts on the interaction traces of engaged and non-engaged users.

Experts involved in the validation

This study involved three experts in social gaming. Two experts are Chief Executive O cer (CEO) and one expert is Chief Technology O cer (CTO) in digital game companies since more than five years. They were selected for several reasons:

-They are CEO and CTO of the companies involved in the QUEJANT project but they were not involved in the theoretical and implementation parts of our approach, presented in the previous sections. This ensures that there is no bias in this study. -They have a high level of expertise in social gaming and more precisely in the analysis of players' engagement. So they know how to identify engagement and types of engagement based on the interaction traces of the players.

-They are all currently working on the BodyBoarding game we used for the user study and thus have in-depth knowledge of this game (mechanics, gameplay, data collected) and of the players.

Materials

The experts were provided with two types of materials: interaction traces of players and documents.

Interaction traces of players

We collected the traces of a representative sample of players, according to a selection made by game designers of the BodyBoarding game. These designers are in charge of following the daily activities of hundred of thousands of players and adjust the game based on these observations. They selected traces of players considered as being representative, based on information from their profiles and their activities in the game. 12 raw traces of 12 di↵erent players10 were transmitted by game designers according to two groups: Users Group 1 is composed of six players considered as engaged and Users Group 2 of six non-engaged players. These twelve traces were communicated with these engaged or non-engaged labels and without any other information. Table 2 andTable 3 summarize the descriptive information on the traces for the two groups.

The interaction traces were collected in the period from January to April 2012. A trace may contain up to 89 types of obsels and can be composed of several thousands of obsels (10718 obsels for the most active player). These obsels may give information about the players' routes (which zone, which spot, which specific panel is opened etc.) but also about the players' strategy (visits to the surf school, changes in the equipment etc.). Although these traces are potentially composed of 89 types of obsels (according to the player's actions), 50% to 60% of the primary traces are composed of the four obsels goto map, goto zone, goto spot and play start, which reflect the path followed by the player in the game.

Documents

We communicated to the experts a document stating our position regarding the nature of engagement and describing, through simple examples, the four types of engagement that we have identified (see Appendix A). It was important to give them examples for each type of engaged behaviours so that they understand the distinction we make between each type. However the definition of engagement given to the experts was of secondary importance because the experts were selected according to their expertise in this area. The experts were also provided with an online questionnaire. The experts had three options (Yes, No, Without opinion) in answer to the five following questions (the questions were originally in French so we provide an English translation here):

1. Would you say that the Trace X corresponds to an engaged-player? 2. Would you say that the Trace X corresponds to a social-directed engagement? 3. Would you say that the Trace X corresponds to an action-directed engagement? 4. Would you say that the Trace X corresponds to an environment-directed engagement?

5. Would you say that the Trace X corresponds to a self-directed engagement?

The questionnaire was composed of 12 pages (1 page per trace/player) containing the same five questions.

Procedure

The three experts evaluated the engagement and the type of engagement of players from these interaction traces. We note that the experts felt qualified to make this evaluation from the raw traces. The evaluation followed the following procedure:

-The experts were gathered in one room so that we can answer questions if needed.

-The twelve users' traces were mixed before being communicated to the experts. The experts had no information about the players or the traces. -They read the definition and examples of di↵erent types of engagement presented a document (see Appendix A). We asked them to keep this information on hand while completing the -The 12 log files (referred to Trace A to Trace L) were sent to the three experts by email so that they can read them while they answer the questionnaire.

-We asked them to fill in the five repeated questions of the questionnaire for the 12 log files (i.e. 12 x 5 answers to give). They so indicated via the online questionnaire if, after reading the log file, they thought that the player is engaged and, if so, to precise the type(s) of engagement. -They completed the questionnaire in one time.

The participants asked no questions, neither on the definitions and examples given on engagement, nor on the interaction traces.

We gave the experts simple rules to respect:

-There is no right or wrong answer. Thank you for giving your first opinion simply by selecting your answer. -Answer the questions independently of each other (for example, a player may have several types of engagement). -Do not skip a question and do not come back on a question to change your answer. -Do not discuss this evaluation before having communicated the results.

To extract a meta-expertise from each triplet of experts' answers, we applied the following rules to each question:

1. If the three experts give the same answer (three Yes or three No) then their opinion is retained. 2. If two experts give the same answer (two Yes or two No) and the third expert gives an opposite answer or Without opinion, then the opinion of the majority is retained.

Fig. 6 Agreement rate between our results and the experts' analysis regarding the players' engagement. We consider that our results are validated since at least two experts are in agreement with them. The experts corroborated 11 of our results from 12 players. Thus, the agreement prediction rate of our approach is 91,67%

3. If two experts give a Without opinion answer and the third answers by a Yes or a No, then the significant (the Yes or the no) answer is retained (this case did not occur in this study). 4. If the three experts disagree (one Yes, one No and one Without opinion), then the answers are omitted.

Results

We introduced the user traces into D3KODE in order to analyse them automatically. In order to do this, D3KODE was configured with all the transformation rules (see section 6.4) that enable to detect the four activities mentioned in section 6.3. We considered a player as being engaged if this player expressed at least one engaged-behaviour (i.e. at least one obsel from the activity level occurred in any implemented activity). As explained in section 6.3, we implemented two social-directed activities, one action-directed activity and one environment-directed activity.

We conducted a comparative evaluation based on the data collected. It consisted in measuring engagement, and the engaged-behaviour types, of our representative sample of players from their traces, and then comparing the results obtained with the experts' analysis.

Engagement prediction

Figure 6 presents the agreement between our results and the analysis of the experts regarding player's engagement (experts' answers to question 1). Note that we consider that there is agreement, on a specific trace, since at least two experts are in agreement with our result. In these histograms Neutral means that the expert chooses the "Without opinion" answer. We can observe that the experts' analysis corroborates our results for 11 of the 12 interaction traces. Therefore the engagement prediction rate of our approach is 91,67%.

Regarding Trace 9, this player was identified as non-engaged by the game designers who collected the traces, by our results and by one expert. But 2 experts identified her/him as engaged. We conducted a deeper analysis of this trace in order to understand this disagreement. During the four months of the collection phase, we observe that Trace 9 played during 11 sessions spread from the 3rd January to the 10th April. Compared to the activity of the engagedplayers, Trace 9 is quite low (see Table 2 andTable 3). Indeed this player can stay several weeks without playing. More interestingly, while no obsels from the activity level has arisen, some obsels of the action level (belonging to the activity 'Achieve challenges') were generated during our analysis. This indicates that this player has expressed an interest for this activity but not an engagement (according to our definition). So maybe this relative activity misleads the 2 experts.

Another result is worth discussing. We identified one player of the Users Group 2 (Trace 7) as being engaged while this player belongs to the group of players judged as non-engaged by the game designers who collected the traces. As indicated in Figure 6, the three experts agreed with our analysis. By comparing Table 2 and Table 3 we can observe that Trace 7 has quite a low number of obsels from a low variety compared to the engaged-players of the Users Group 1. This di↵erence may mislead the game designers regarding his/her engagement. We notice that Trace 7 has less number of obsels from the activity level than the other engaged-players. This observation gives rise to a question regarding the level of engagement of the players. We address this question of the level of engagement in the section 9 relative to our future work.

Types of engagement prediction

In this part, we validate our approach regarding the identification of the types of engaged-behaviours (i.e the qualitative dimension of our approach). Based on the engaged players' interaction traces, we identified their types of engagedbehaviours and compared our results with the analysis of the experts. We consider that there is consistency between our prediction and experts' analysis since at least two experts are in agreement with our results.

Figure 7 presents the agreement rate between our results and the analysis of the experts regarding players' social-engagement (experts' answers to question 2). As we implemented two social-directed activities, we consider that a trace reflects a social-engagement if at least one obsel from the level activity occurred in any of these two activities. The cases of Trace 4 and Trace 5 are omitted since the three experts disagreed (rule 4 of the meta-expertise). The experts' analysis corroborate the results obtained with our approach for 4 of the 5 traces of interaction (since Trace 4 and Trace 5 are omitted). Therefore the social-engagement prediction rate of our approach is 80%. Fig. 7 Agreement rate between our results and the experts' analysis regarding the socialengagement. We consider that our results are validated since at least two experts are in agreement with them. Thus, the social-engagement prediction rate of our approach is of 80%

To go deeper into the analysis of this prediction rate we identified three profiles of players:

1. the players engaged in both of the implemented social-activities: Trace 1, Trace 3; 2. the players engaged in only one activity: Trace 4, Trace 5, Trace 6, Trace 7; 3. the players who have manifested no social-engagement: Trace 2.

We can observe that the agreement rate is very high when the players adopt a contrasted behaviour (cases 1 and 3). But in case 2 the judgement of the experts is more di cult (and so this validation step). Among the two implemented social-activities, 'Develop new social relationship' is oriented towards the unknown players while 'Share moments with real friends' is oriented towards the social network of the players. It may be possible that some experts had some preconceptions about the type of social-engagement they were looking for in players' traces (social-engagement oriented towards unknown players vs. towards the players' social network). This may explain the disputed cases of this step.

Figure 8 and Figure 9 present the agreement rate between our results and the analysis of the experts regarding players' action-engagement (experts' answers to question 3) and environment-engagement (experts' answers to question 4) respectively. Regarding the action and environment engagement identified in section 5.1, the experts' analysis in both cases corroborates our results obtained with our approach for the 7 interaction traces. Therefore the action and environment engagement prediction rate is 100%. As for each types of engaged-behaviours we analysed only one activity, the ambiguity that might occur with the social-engagement agreement rate could not occur here.

In summary, considering the three types of engaged behaviours, 21 judgements have been performed (three types of engagement applied to 7 traces of interaction). In accordance with the rule 4 of the meta-expertise presented in section 7.3, the judgements for the traces Trace 4 and Trace 5 were omitted in the analysis of social engagement. Thus the experts corroborate the results Fig. 8 Agreement rate between our results and the experts' analysis regarding the actionengagement. We consider that our results are validated since at least two experts are in agreement with them. Thus, the action-engagement prediction rate of our approach is 100% Fig. 9 Agreement rate between our results and the experts' analysis regarding the environmental-engagement. We consider that our results are validated since at least two experts are in agreement with them. Thus, the environmental-engagement prediction rate of our approach is 100% of our approach for 18 of the 19 retained cases. Regarding the prediction of the type of engaged-behaviours, we obtain the rates of 80% for the socialengagement and 100% for both the action-engagement and the environment engagement.

Discussion and limitations of the study

As the Bodyboarding game was played online with anonymous players from all over the world, we could not contact them to ask them to participate in a study on a large scale. So we decided to set up a validation protocol based on the expertise of experts in this game. As this validation by several experts is long and complex, the number of traces of players analysed was limited. However, we set up a longitudinal study over a long period (4 months), and an evaluation protocol based on the intervention of experts, that ensure the quality of the data analysed (extraction of representative traces) and a qualified expertise to evaluate the results of our approach. It should be noted that this kind of study collects data from a small number of participants because of the labour intensive nature of the data collection and analysis (e.g., analysis of data, identification of low-level transformation rules, analysis of traces by the experts).

This study showed the performance of our approach in the context of a social game, applied to a set of heterogeneous traces that gather engaged and non-engaged players and also several types of engaged-behaviours. In fact, we observed that some engaged-players may express both social and action types of engaged-behaviours (like Trace 1 and Trace 7) while other engagedplayers express a social or an action engaged-behaviour. For example, despite the game used in our study being considered as a social game, Trace 2 shows absolutely no interest in other players (neither confrontation nor consultation of other players' profiles). This last observation highlights the fact that the results may be di↵erent from designers' intuitions.

We also demonstrated that our approach can identify two clearly di↵erentiated types of social engagement : one directed toward players' existed friends (Trace 1), the other directed toward unknown players (Trace 5). Furthermore, 50% to 60% of the primary traces studied are composed of the four obsels goto map, goto zone, goto spot and play start, which reflect the path followed by the player in the game. Notice that these obsels are fully determined by the gameplay and do not reflect a behaviour. Thus, most of the sequences returned by sequence-mining would derive from these 4 obsels. These results show the relevance of a tool that allows for a qualitative analysis of users' engagement.

Summary and discussion

Summary of the contribution

This paper presents a qualitative approach and its implementation with the D3KODE prototype in order to identifying users' engagement and qualifying their engaged-behaviours from their interaction traces in interactive systems. Our approach enables us to detect engaged-behaviours in low-constraint interactive systems, directly, continuously and under ecologically valid conditions and over a long period of time.

To extract valuable and qualitative, rather than quantitative, information from users or system-generated raw data, we adopt a theory-driven approach. This approach establishes a relationship between users' needs, motives, highlevel engaged-behaviours and the actions actually performed during the interactive mediated activity. To this end, it relies on three theories combined through a three-stage process:

1. The Self-Determination Theory to determine high-level engaged-behaviours. 2. The Activity Theory to characterize engaged-behaviours. 3. The Trace Theory to detect and extract engaged-behaviours from the raw data collected and recorded.

We implemented this approach with the D3KODE prototype by providing the following features: loading the data as a primary trace, creating the rules of transformation and visualising the primary and transformed traces. This prototype can detect the operations between the recorded users' interactions and establish the relationship between users' operations, actions and activities. We implemented 4 activities reflecting di↵erent types of engaged-behaviours. This implementation thus demonstrates the feasibility of the process underlying our approach (collecting the events, storing and organising the data and qualifying users' behaviours).

In order to ensure the validity of the engagement and engaged-behaviours identified with our approach, we conducted a user study on a social game. According to a precise protocol, we validated the results obtained with our approach with the results of the three experts' analysis. Regarding the players' engagement prediction, the prediction rate of our approach is 91,67%. Regarding the prediction of the type of engaged-behaviours, we obtain the rates of 80% for the social-engagement and 100% for both the action-engagement and the environment-engagement. These results demonstrate that our approach can be used to identify users' engagement and their type of engaged-behaviours from their interaction traces, with a high prediction rate.

The following examples illustrate how the qualitative analysis provided by our approach may be used by designers within the QUEJANT project. Our results may support the designers in gaining a better understanding of their players. For instance, quantitative methods may simply compute statistics on the waves surfed with the interaction data collected. So, while quantitative methods may only inform about the activity of the players (i.e. the number of waves surfed), our approach allows us to know if a wave was surfed in order to achieve a challenge, to play with friends or to meet other players. This informs about the specific interests of each players. In the present example we can know if a wave is surfed from an action or social perspective. The information returned through our approach may also help designers to implement a strategy of personalisation in order to maintain users' engagement. For instance during our study we observed that Trace 2 is indi↵erent to the social mechanics implemented in the game. This indicates that, in this game, Trace 2 did not express a social engagement. In order to maintain his/her engagement, the designers should focus on the other dimensions of the game (action, environment or self) to fulfill the other needs that this player may have expressed. Also the identification of the type of users' social-engaged behaviours (oriented towards unknown players or towards their social network) may be used by designers and facilitators to adapt and personalise the interactive system regarding the community engagement.

Discussion

Genericity and applicability of our approach

We adopt the Self-Determination Theory to distinguish some engaged-behaviours. Relying on this perspective rather than on empirical observation of users' behaviours, enables one to determine a wide and non-stereotyped range of behaviours. Indeed, since the basic psychological needs are considered as being universal, the behaviours reflecting engagement are not constrained by the "observed" features of the interactive system. For instance, as the game used in our implementation is a social game, we should have only considered some social engaged-behaviours. But through the SDT perspective we have also considered some action and environmental engaged-behaviours. This approach allows one to deal with more varied and particular engaged-behaviours in di↵erent contexts.

Our approach was applied to a social online game in the QUEJANT project. This application context allowed us to compare our proposals with the reality on the ground through experts and real data. But the decomposition of engaged-behaviours into activities and actions can be transferred to other games or interactive systems. Indeed, the activities and actions levels, and the rules that can infer activities from actions are broadly shared by di↵erent types of systems.

The specific part of the approach, which depends on the interactive system used, is the construction of transformation rules to infer the generic actions from the operation level (the obsels of the primary trace dependent on the interactive system). This specific part of the approach requires good knowledge of the actions that users can perform with the interactive system, so as to be able to identify among all the events collected in the primary trace those that make it possible to identify these actions. The construction of the transformation rules may require definition of some time intervals between the input obsels of the rules. This step involves carefully analysing the traces in order to determine the suitable time interval for each rules. This step may appear laborious but is quite straightforward for the designers or the facilitators of the interactive mediated activity as they know their system and how the users use it well.

To identify high-level activities, our approach requires an analysis of the mediated activity from an Activity Theory perspective. Then the Trace Theory can reify the relations previously identified between a chain of operations and an action, and a chain of actions and an activity. The application of the proposed process on interactions traces makes it possible to observe the potential generation of intended high-level obsels. We specify that our approach does not make it possible to discover unexpected high-level obsels. It is focused on the identification of qualitative information that cannot be discovered by classical data mining methods.

From a methodological point of view, the use of our approach involves three steps:

1. Collection of traces: it consists in collecting events generated by user actions and representing them in generic obsels in the primary trace. The adaptability to various interactive systems is fairly simple as a few lines in JavaScript are needed in order to collect an event. 2. Execution of transformation rules: the execution of transformation rules can extract high-level information reflecting the engagement of the user from the primary trace. 3. Visualisation of di↵erent trace levels: it consists in visualizing the three trace levels and the relationships between them. This visualization allows the expert to better understand the origin of the users' engagement or non-engagement.

This methodology has of course some technical limits associated with the collection of traces and scalability. Indeed, our approach based on users' traces requires a collection system for recording users' actions in the system. Thus, in certain applications, this collection could reduce the system performance. In addition, data collection requires a modelling e↵ort and additional development since the designer must a priori define the events to trace, develop tools to record and process the data collected in order to represent them in generic obsels. For instance in a massively multiplayer online game, the storage and processing of the recorded data can pose problems, especially when scaling, such as: the server capacity to support a very large storage capacity and data cleaning. Thus, scaling requires additional processing that we have not discussed in this paper, but that could be the subject of future work. This is part of all the current issues related to big data.

Implications for behaviour change

We discussed in Section 2 the importance of detecting users' specific needs and motivations to being able to personalise the digital intervention accordingly. In this section, we present more specifically the implications of the identification and qualification of the users' engagement for the behaviour change.

We consider users' engagement as a pre-requisite for ensuring the e↵ectiveness of the behaviour change process. The approach proposed in this paper and its implementation are a contribution for this process, as it makes it possible to identifying users' engagement directly and continuously. As our approach can identify the type(s) of users' engaged-behaviour, it is thus possible to personalise the digital intervention according to this information for each user or each type of engaged-behaviour. Furthermore, as this approach is based on the universal Self-Determination Theory, it can also establish a link between users' needs and motivations and users' engagement. So we argue that our approach can be part of the process of digital intervention for behaviour change. Also, since users' needs, expectations and motivations, and thus their engagement and type of engaged-behaviours, may evolve during the activity; our approach may be relevant to conducting longitudinal studies and thus addressing the alternative phases of engagement and disengagement.

According to our contribution, the digital intervention for behaviour change will be based on the information returned by our system: the engaged and nonengaged users, and the type(s) of engaged-behaviours. This information can be communicated to the designer or to the facilitator of the activity in order to personalise its form and its content, or to adapt the persuasive or a↵ective strategies. Let us take an example where the activity uses a social engagement strategy to support behaviour change. If our system indicates that no social activity obsels can be generated from the participants' traces, this may lead to several interpretations. Either the participants show no need or motivation for social interactions, or the activity proposed is lacking in social interaction support or strategy. The designer can so modify the system to add more social interaction possibilities or the facilitator can propose more social interactions between users with the proposed interactive technology.

The information about users' engagement could also be communicated to the users themselves to provoke and support reflexive processes [START_REF] Clauzel | Modelling and visualising traces for reflexivity in synchronous collaborative systems[END_REF]. Reflexivity is defined as the ability to interact with the situation in order to meet its own cognitive and socio-cognitive limitations [START_REF] Schön | The reflective practitioner: How professionals think in action[END_REF]. Through reflexivity, individuals can exercise control over their cognitive activity and actions, which allows individual and collective self-assessment and constructive criticism on oneself. This is particularly interesting in projectbased learning, which aims to help learners acquire various linked skills or develop their behaviours [START_REF] Michel | A dashboard to regulate project-based learning[END_REF]. In this context, learners can regulate their learning by monitoring their own behaviours [START_REF] Zimmerman | Attaining self-regulation: A social cognitive perspective[END_REF][START_REF] Sche↵el | Analyzing contextualized attention metadata with rough set methodologies to support self-regulated learning[END_REF].

In a collaborative mediated activity, this information could be part of the information presented on group awareness tools. Group awareness has been well defined by [START_REF] Buder | Group awareness tools for controversial cscl discussions: Dissociating rating e↵ects and visualized feedback e↵ects[END_REF] as knowledge about the social and collaborative environment in which the person is working (e.g., knowledge about the activities, presence or participation of group members). Group awareness tools supply information to students to facilitate coordination and regulation of activities in the content space or the relational space [START_REF] Janssen | Group awareness tools: It's what you do with it that matters[END_REF]. They were developed in the Computer Supported Collaborative Learning (CSCL) area to foster the acquisition of group awareness, which is helpful for e cient group performance by presenting social comparison and guide for activities [START_REF] Engelmann | Knowledge awareness in cscl: A psychological perspective[END_REF]. Engagement with the mediated activity could be part of the information presented to the group to foster the social comparison and maybe discussions within the group to establish new goals and/or strategies.

Finally, we can imagine that the system itself could use the information about engagement for an automatic adaptation of the mediated activity. For this, the system should be parametrised so as to generate the relevant intervention according to the information about users' engagement. In addition, this requires the system to have information about its own processes, the mediated activity, and adaptation rules. So this could be the last step in an automatic digital intervention process based on our approach. 9 Future work A challenging part of our future work will be to address the group dimension of engagement. At this stage of our works, we analyse individual users' engagement. The group dimension involves two di↵erent issues: 1) the detection of community engagement and 2) obtaining information about a group of users on a same interface. Concerning the first issue, analysing how users interact together during the interactive activity may enable us to identify and qualify community engagement. This analysis can be based on the interaction traces of the community. That first implies to define new high-level activities according to theoretical works on community engagement and then to identify the underlying actions, operations and transformation rules. These rules can then be implemented in the D3KODE system. The second issue concerns the visualization of the engagement and types of engaged-behaviours of several users at the same time. This information could be very useful for the designer or facilitator, so as to adapt the game to collective behaviours. In fact, for an interactive system used by many users, designers need information on all these users on a synthetic view so as to be able to adapt it to the users' behaviours. A synthetic view should present the behaviours of many users at a glance, for instance the number of engaged and non-engaged users or the number of users for each type of engaged-behaviour. These two issues give rise to a problem of scalability (number of users, volume of collected data) referring to the Big Data issue.

Another important part of our future work will be dedicated to the design of interfaces for both designers and users of the interactive system. The analysis of the interaction traces can currently be visualized and understood by analysts that are familiar with the D3KODE tool. As we plan to help designers to adapt the interactive system and to support reflexive processes for the users, we have to design adapted interfaces (i.e. dashboards) that present the engaged (vs non-engaged) users, and the type(s) of engaged-behaviour(s) in a relevant way. So we will have to automatically deduce this synthesis information on engagement from the actual information given by the D3KODE system. According to the functioning of dashboards, we will also have to o↵er the possibility to access analysis views to help designers and users to understand the synthesis information. For instance, they may be interested in visualizing the actions level so as to understand the process of engagement, for example the reasons why the users are identified as being engaged or not. Furthermore, the interfaces have to be di↵erent as the needs of designers and users are di↵erent. So their design will require their participation for a relevant analysis of their needs according to an iterative and participative design approach.

Looking further ahead, we plan to refine our approach to be able to analyse more precise information on users' engagement. On the one hand, we will address the complex issue of the alternative phases of engagement, disengagement and reengagement. For that, we will take into account the distribution (e.g. number, frequency) of the high-level obsels during over the time. On the other hand, we will address the issue of the identification of the level of users' engagement. For example, can we consider that a user that generates ten high-level obsels (activities) and another one that generates only two highlevel obsels have the same level of engagement? To answer this question, it will be necessary to conduct complex user studies by combining di↵erent analysis methods like questionnaires or interviews and experts analysis.

Appendix A Information regarding the nature of engagement communicated to the three experts involved in the user study

We communicated to the experts a document stating our position regarding the nature of engagement and describing, through simple examples, the four types of engagement that we have identified.

Note from the authors: the document was originally in French so we provide an English translation below.

DEFINITION 1: engagement

We consider the engagement of a player as the desire to have emotions, affect and thoughts directed to and determined by the mediated activity. This "engaged" state means in particular that:

-The game arouses emotions (such as joy, pride, accomplishment, enjoyment or frustration) for the player. -The game occupies the thoughts of the player during the gaming sessions but also outside. -The player wishes to continue playing. Thus, the engagement requires an intellectual and emotional investment from the player which goes beyond the discovery phase of the game. Engagement can be considered as a link between gaming sessions and between the sessions and the player.

DEFINITION 2: environment-directed engagement

The player engagement can be directed to the game environment. Such engagement includes two types of behaviours:

-Contemplation: the player attaches importance to the aesthetic of the game (visual, sound), the scenario, the storytelling, the ability to 'walk' in the game, etc.. -Curiosity: the player has fun in the discovery phase of the game, s/he likes configuring the characteristics of the game, s/he wants to understand the game mechanisms, to explore the environment, to discover hidden content, to get further information on the game, etc.. DEFINITION 3: social-directed engagement The player engagement can be directed to the other players of the game. In that case, the player plays for example to:

-Share moments with friends.

-Connect with others players.

-Feel the pleasure of social interactions (competition, cooperation) with other players. -Establish a position in the group.

DEFINITION 4: self-directed engagement The player engagement can be directed to her/his character in the game. In that case, the player has fun in:

-Managing her/his character.

-Customizing and di↵erentiating her/his character (name, gender, appearance, equipment). -Giving life to her/his character, creating a story.

DEFINITION 5: action-directed engagement The player engagement can be directed to the action to carry out in the game. In that case, the player plays to:

-Take up a challenge (set by the game or by him/herself), or to break records. -Feel a sense of accomplishment, skill or excitement.

-Confront the di culties and challenges.

-Develop strategies, improve his/her technique.

Figure 2 ,

 2 Figure2, the highest-transformed trace that corresponds to the activity level has been computed after two transformations. The first transformation has enabled the generation of the intermediate transformed trace (of action level). Let us consider an example illustrated in Figure2. During a session we collect numerous obsels from di↵erent types (i.e. which may correspond to di↵erent specific events that occurred during the activity). In relation to the work conducted during the second stage of our approach, a transformation rule labelled r action 1 is defined in order to aggregate some specific obsels from the primary trace (see section 6.4 for an example of rule). This rule enables us to detect, in the primary trace, the presence of the targeted specific chains of operations according to some temporal constraints determined during the second stage. For instance, if operation 5 and operation 19 occurred within the right time interval then the transformation rule generates a new obsel with higher-level labelled Action 1 in the transformed trace of level Action. The time intervals are defined during a step of analysis of the game that belongs to this third stage. This step involves analysing the traces in order to determine the suitable time interval for each rule. The input data (i.e. the lower-level obsels) and the constraints constitute the signature of a rule. Since this signature is unique, the higher-level obsels generated are from a single type and so with a single purpose.The transformation process has also a rule labelled r action 2 that enables us to aggregate another targeted chain of operations (for instance operation 3, operation 8 and operation 22 ). This transformation rule may generate an obsel labelled Action 2 in the transformed trace of level Action. A third rule labelled r action 4 is defined in order to generate the obsel Action 4 from its own chain of operations (for instance operation 22, operation 9 and operation 10 ). This example highlights that an operation (in this case operation 22 ) may belong to several chains of operations in order to enable the realization of di↵erent actions (Action 2 and Action 4 ).Then in a second transformation process of higher level, a rule labelled r activity A is defined in order to aggregate the three obsels of level Action labelled Action 1, Action 2 and Action 4, according to a specific temporal constraint. If this chain of actions occurred during the right interval time then the obsel Activity A is generated. This obsel belongs to the trace of highestlevel i.e. the activity level. The same process is reiterated in order to define and instantiate the set of rules that enable us to identify each action and each activity identified during the second step.

Fig. 4

 4 Fig.4Example of the deconstruction of a social engaged-behaviour in activity, chain of actions and chain of operations performed during the QUEJANT project. To identify, qualify and detect engaged-behaviours within users' traces of interaction, our qualitative approach combines a theoretical work on engagement and engaged-behaviours, Self-Determination Theory, Activity Theory and Trace Theory.

Fig. 5

 5 Fig. 5 Graphical representation in D3KODE of the transformation process from a primary trace to the highest-level transformed trace. In the primary trace the red, blue and pink squares are representing play start on spot, challenge ( wait, start and stop) and open other profile operations respectively. In the primary transformed trace, the blue and pink squares are representing Propose confrontation and Be interested in other players actions respectively. In the highest level transformed trace the pink squares are representing the activity Develop new social relationship.

{

  ( b e i n t e r e s t e d i n o t h e r p l a y e r s . hasEnd < p r o p o s e c o n f r o n t a t i o n . hasBegin ) AND ( ( p r o p o s e c o n f r o n t a t i o n . hasBegin b e i n t e r e s t e d i n o t h e r p l a y e r s . hasEnd ) <=120) } OR { ( p r o p o s e c o n f r o n t a t i o n . hasBegin < b e i n t e r e s t e d i n o t h e r p l a y e r s . hasBegin ) AND ( b e i n t e r e s t e d i n o t h e r p l a y e r s . hasEnd < p r o p o s e c o n f r o n t a t i o n . hasEnd ) } OR { ( p r o p o s e c o n f r o n t a t i o n . hasEnd < b e i n t e r e s t e d i n o t h e r p l a y e r s . hasBegin ) AND ( ( b e i n t e r e s t e d i n o t h e r p l a y e r s . hasBegin p r o p o s e c o n f r o n t a t i o n . hasEnd ) <= 120) }

Table 1

 1 Categorization of the four types of engaged-behaviours according to the universal and basic needs these engaged-behaviours can fulfill and some emotions associated with need fulfillment. Example of activities users may conduct in an entertainment digital game.

		Environmental	Social		Self		Action
		engagement	engagement		engagement	engagement
	SDT basic	Autonomy		Relatedness		Autonomy	Competence
	psycho-	towards	the			towards	the	Autonomy
	logical	environment				character	or	towards	the
	needs					role		actions
	Elicited	Escapism, Cu-	Pleasure	in	Pleasure	in	Accomplishment,
	emotions	riosity, Surprise,	social connec-	possessing,	Self-esteem,
		Imagination,		tivity, Pleasure	Pleasure	in	Arousal
		Relaxation,		in collaboration	managing	an
		Aestheticism		or competition,	avatar, Pleasure
				Pleasure in so-	in	disguising
				cial recognition	themselves	or
						adopting a role
	Activities	Virtual trip		Expanding so-	Customizing	Mastering the
		Trying to reach	cial network		the character	game
		the limit of the	Livening up the	Developing	a	Completing
		game		group of actual	story	around	challenges
		Discovering		friends		the character	Elaborating a
		extra-content	Enjoyment with			strategy
				others			

Table 2

 2 Statistics of the traces of the Users Group 1 composed of the 6 engaged-players.

			Trace 1	Trace 2	Trace 3	Trace 4	Trace 5	Trace 6
	Period of ac-	01/03	01/08	01/04	01/08	01/06	01/08
	tivity		04/29	04/29	04/24	04/22	04/18	04/27
	Number	of	10718	4075	3137	4658	4874	4846
	obsels							
	Variety of ob-sels (/89)	62	51	53	56	50	58

Table 3

 3 Statistics of the traces of the Users Group 2 composed of the 6 non-engaged players.

			Trace 7	Trace 8	Trace 9	Trace 10	Trace 11	Trace 12
	Period of ac-	01/01	01/02	01/03	01/09	01/30	01/31
	tivity		04/29	02/03	04/10	04/22	04/03	04/03
	Number	of	1757	313	608	103	323	250
	obsels							
	Variety of ob-sels (/89)	48	27	42	25	32	36

see http://www.selfdeterminationtheory.org for a list of practical applications of the SDT.

In digital gaming, gameplay is a blanket term which refers to the structure, the dynamics or the interactive aspects of a game.

Retention rate is the percentage of the people who used a service in month 1 and are still using it in month 2.

kernel for Trace-Based Systems.

http://www.w3.org/RDF/

http://www.w3.org/TR/rdf-sparql-query/

Define, Discover, and Disseminate Knowledge from Observation to Develop Expertise.

When players register for the game, it is stipulated that their activity can be anonymously collected for the purpose of improving the service or the gaming experience.
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