L Lacassagne

A Manzanera

MOTION DETECTION: FAST AND ROBUST ALGORITHMS FOR EMBEDDED SYSTEMS

Keywords: Motion detection, Sigma-Delta filtering, Embedded systems, Real-Time implementation

This article introduces a new hierarchical version of a set of motion detection algorithms called Σ∆. These new algorithms are designed to preserve as much as possible the computational efficiency of the basical Σ∆ estimation, in order to target real-time implementation for low power consumption processors and embedded systems.

INTRODUCTION

The growing interest for developing fully automatic video surveillance systems has recently renewed the interest for fast and reliable motion detection algorithms. Such algorithms must partition the pixels of every frame of the image sequence into two classes: the background, corresponding to pixels belonging to the static scene (label: 0), and the foreground, corresponding to pixels belonging to a moving object (label: 1).

A motion detection algorithm must discriminate the moving objects from the background as accurately as possible, without being too sensitive to the sizes and velocities of the objects, or to the changing conditions of the static scene. For long autonomy and discretion purposes, the system must not consume too much computational resources (energy and circuit area) [START_REF] Lacassagne | High performance motion detection: Some trends toward new embedded architectures for vision systems[END_REF]. As it involves a great amount of datalike any image processing module -the motion detection is certainly the most computationally demanding function of a video surveillance system.

Background subtraction techniques have been the object of much attention for years [START_REF] Piccardi | Background subtraction techniques: a review[END_REF]. Recently, we have proposed a new type of methods based on Σ∆ estimation [START_REF] Richefeu | robust and computationally efficient motion detection algorithm based on sigma-delta background estimation[END_REF]. These methods are very attractive from a computational point of view since they work on any size fixed-point arithmetic using only comparison, increment and absolute difference, while being as robust as other mono-modal statistical estimation methods (e.g. Gaussian estimation), whose computation is much more costly.

Different modified versions of the basical Σ∆ algorithm have been proposed since then. The purpose of this paper is to review and compare them and also to introduce a new hierarchical version.

Σ∆ BACKGROUND SUBTRACTION

The basic principle of the Σ∆ algorithm is to estimate parameters of the background using Σ∆ modulation, which is a very common tool in analog-to-digital conversion: Considering a time-varying signal f t (continuous or discrete), we estimate a discrete signal d t by quantizing the time indexes {t i } i∈N , and then performing at every time index i the following update formulas:

If

d ti-1 < f ti then d ti = d ti-1 -ε else d ti = d ti-1 + ε where ε is the discretization step (least significant bit) of d t .
In Σ∆ background subtraction, the input signal is the value of every pixel over time I t , from which we compute the first Σ∆ background estimator M t . Then the values of the absolute differences |I t -M t | are used to compute the second Σ∆ background estimator V t , which is a parameter of dispersion.

Basical Σ∆ algorithm

Algorithm 1:

Basical Σ∆ foreach pixel x do [step #1: Mt estimation] 1 if Mt-1(x) < It(x) then Mt(x) ← Mt-1(x) + 1 2 if Mt-1(x) > It(x) then Mt(x) ← Mt-1(x) -1 3 otherwise Mt(x) ← Mt-1(x) 4 foreach pixel x do [step #2: Ot computation] 5 Ot(x) = |Mt(x) -It(x)| 6 foreach pixel x do [step #3: Vt update] 7 if Vt-1(x) < N × Ot(x) then Vt(x) ← Vt-1(x) + 1 8 if Vt-1(x) > N × Ot(x) then Vt(x) ← Vt-1(x) -1 9 otherwise Vt(x) ← Vt-1(x) 10 Vt(x) ← max(min(Vt(x), Vmax), Vmin) foreach pixel x do [step #4: Êt estimation] 11 if Ot(x) < Vt(x) then Êt(x) ← 0 else Êt(x) ← 1 12
In the basical version (Alg. 1), the Σ∆ background M t and Σ∆ variance V t are updated every frame, according to the comparison with the current image I t and current absolute difference O t respectively. N is an amplification factor for V t , allowing then to compute the motion label Êt by simply comparing O t and V t (typical values of N are between 1 and 4). V min and V max are two parameters used to control the overflow of V t that could happens if some pixels are saturated (due to sensor over-exposition). Their typical values are 2 and 2 m -1 respectively (where m is the number of bits of the representation). Note that this clipping is a modification not present in the original version [START_REF] Richefeu | robust and computationally efficient motion detection algorithm based on sigma-delta background estimation[END_REF].

2.2. Improved algorithm: conditional Σ∆ Algorithm 2: Conditional Σ∆ foreach pixel x with do [step #1': conditional Mt update] 1 if Êt-1(x) = 0 then 2 if Mt-1(x) < It(x) then Mt(x) ← Mt-1(x) + 1 3 if Mt-1(x) > It(x) then Mt(x) ← Mt-1(x) -1 4 otherwise Mt(x) ← Mt-1(x) 5 else 6 Mt(x) ← Mt-1(x) 7 foreach pixel x do [step #2: Ot computation] 8 Ot(x) = |Mt(x) -It(x)| 9 foreach pixel x do [step #3: Vt update] 10 if Vt-1(x) < N × Ot(x) then Vt(x) ← Vt-1(x) + 1 11 if Vt-1(x) > N × Ot(x) then Vt(x) ← Vt-1(x) -1 12 otherwise Vt(x) ← Vt-1(x) 13 Vt(x) ← max(min(Vt(x), Vmax), Vmin) 14 foreach pixel x do [step #4: Êt estimation] 15 if Ot(x) < Vt(x) then Êt(x) ← 0 else Êt(x) ← 1 16
The conditional version (Alg. 2 and Fig. 1) uses relevance feedback from the estimated position of the moving objects at the previous frame, given by Êt-1 . It consists in updating the Σ∆ background M t and/or the variance V t only for the pixels x considered background (i.e. where Êt-1 (x) = 0). It prevents moving object from integrating the background and/or modifying the noise variance [START_REF] Denoulet | Implementing motion markov detection on general purpose processor and associative mesh[END_REF].

Σ∆ Êt Êt-1 I t M t V t-1 M t-1 V t Fig. 1. conditional Σ∆

Zipfian estimation

The Zipfian version (Alg. 3) [START_REF] Manzanera | Sigma-delta background subtraction and the zipf law[END_REF] is based on the relation between the Σ∆ estimation and the statistical estimation, using a Zipf-Mandelbrot distribution, which implies that the updating frequency of the background should be proportional to the dispersion of the distribution (variance). In that version, we first compute a threshold which varies according to the frame index t: ρ is the value of the index modulo 2 m (m is the number of bits of the representation). π is the value of the greatest power of 2 which divides ρ. Finally the threshold σ is equal to 2 m divided by π. The result is that pixels x such that V t (x) > 2 m-k will be updated every 2 k-1 frames, for k ∈ {1, m}. To avoid auto-reference, the variance V t is updated using a constant period T V (usually a power of 2 between 1 and 64). T V , like the amplification parameter N , can be automatically adjusted using a simple noise estimation method, which consists in counting the number of isolated pixels in the estimated labels Êt .

4 if Vt-1(x) > σ then 5 if Mt-1(x) < It(x) then Mt(x) ← Mt-1(x) + 1 6 if Mt-1(x) > It(x) then Mt(x) ← Mt-1(x) -1 7 otherwise Mt(x) ← Mt-1(x)
if Vt-1(x) < N × Ot(x) then 15 Vt(x) ← Vt-1(x) + 1 if Vt-1(x) > N × Ot(x) then 16 Vt(x) ← Vt-1(x) -1 otherwise Vt(x) ← Vt-1(x) 17 Vt(x) ← max(min(Vt(x), Vmax), Vmin) 18 foreach pixel x do [step #4: Êt estimation] 19 if Ot(x) < Vt(x) then Êt(x) ← 0 else Êt(x) ← 1 20 2.

New hierarchical algorithm

The hierarchical algorithm (Fig. 2) is a bi-level version of Σ∆ filtering. Each Σ∆ block implements the basic algorithm #1 of the algorithm #3. Both blocks are using conditional update. At the low level it is a conditional temporal update: M 1 t and V 1 t are updated depending on Ê1 t-1 . At the high level, it is a conditional spatial update: M 0 t and V 0 t are updated depending on Ẽ0 t , the oversampling binary mask of Ê1 t . The subsampling factor is in the range [START_REF] Piccardi | Background subtraction techniques: a review[END_REF]10] and is set accordingly to the "size" of the clutter noise. Finally, a morphological post-processing is applied in two steps. The first one In order to evaluate the impact of the modifications on the performance of these algorithms, a RoC analysis has been done with the Hall sequence (Fig. 3) than can be considered as a difficult sequence because of the radial movement of nonrigid objects (people). The Ground Truth has been drawn for 4 images of that sequence. Given T P the True Positive, T N the True Negative, F P the False Positive and F N the False Negative, we compute the Matthews Correlation Coefficient (Eq. 1) instead of accuracy or product of T P ratio by T N ratio because the two classes (motion and background) are of very different size. It returns a value between -1 (perfect inverse segmentation) and +1 (perfect segmentation) while 0 signifies a wrong segmentation.

I t M 0 t-1 V 1 t-1 Ê1 t-1 Ê1 t Σ∆ 1 M 1 t M 1 t-1 I 1 t-1 morpho M 0 t-1 V 0 t-1 M 0 t V 0 t I 0 t Ê0 t E t Ẽ0 t Σ∆ 0
M CC = T P × T N -F P × F N p (T P + F P)(T P + F N)(T N + F P)(T N + F N) (1)
A set of 32 algorithms (combinations of parameters) has been evaluated. Figures (Tab. 1) are provided for only four of them: Σ∆ is the basic algorithm (Fig. 4), Σ∆+Zipf (Fig. 5) is the basic algorithm with Zipfian estimation, Conditional Σ∆ (Fig. 6) is the best mono-level algorithm with conditional update (with or without Zipfian estimation) and Hierarchical Σ∆ (Fig. 7)is the best two-level algorithm with conditional update. For this benchmark, the decimation factor for subsampling and oversampling was set to 8 and the Zipfian V t update period T V was set to 4. Considering first, the results without post morphological processing, each evolution has better results than the previous one. The best conditional version is obtained with Zipfian estimation combined with the conditional update of M t and V t . The best hierarchical version is obtained with the best conditional version combined with a conditional update of M 1 t at low level. Considering then the results with morphological post processing, all results are in progression except for image # 170 that corresponds to radial movement of the first person. Both visual and numerical results enforce the use of morphological post-processing (Fig. 8) to remove remaining noise. Another benchmark, not presented here, has been done on a sequence with cars. The results were better but harder to differentiate, as such a kind of sequence is easier to segment.

CONCLUSION

We have presented a new hierarchical and conditional motion detection algorithm based on an evolution of previous Σ∆ algorithms. Preliminary results show better (visual and

Algorithm 3 :

 3 Zipfian estimation [step #0: variance threshold computation] 1 find the greatest 2 p that divides (t mod 2 m) 2 set σ = 2 m /2 p 3 foreach pixel x do [step #1": conditional Mt estimation]

[

 foreach pixel x do [step #2: Ot computation] 11 Ot(x) = |Mt(x) -It(x)| 12 foreach pixel x do [step #3": update Vt every T V frames] 13 if t mod TV = 0 then 14

Fig. 2 .

 2 Fig. 2. hierarchic Σ∆

Fig. 3 .

 3 Fig. 3. Hall sequence, images 38, 91, 170, 251

Fig. 4 .Fig. 5 .

 45 Fig. 4. basic Σ∆

Fig. 6

 6 Fig. 6. conditional Σ∆

Table 1 .

 1 Results

	algorithm	38	91	170	251	average
	M CC without morphological post processing	
	Σ∆	0.495	0.347	0.169	0.282	0.323
	Σ∆+Zipf	0.676	0.600	0.366	0.308	0.487
	Conditional Σ∆	0.424	0.533	0.555	0.590	0.526
	Hierarchical Σ∆	0.644	0.663	0.468	0.415	0.548
	M CC with morphological post processing	
	Σ∆	0.811	0.657	0.372	0.596	0.609
	Σ∆+Zipf	0.830	0.728	0.547	0.449	0.639
	Conditional Σ∆	0.754	0.764	0.530	0.385	0.608
	Hierarchical Σ∆	0.816	0.827	0.686	0.582	0.728

: M CC scores for 4 Σ∆ algorithms with/without morphological post processing