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Abstract

Reducing the dimension of local descriptors in im-
ages is useful to perform pixels comparison faster.
We show here that, for enhancing and optimising the
computation of the NL-means denoising filter, image
patches can be favourably replaced by a vector of spa-
tial derivatives (local jet), to compute the similarity be-
tween pixels. First, we present the basic, limited range
implementation, and compare it with the original NL-

means. We use a fast estimation of the noise variance

to automatically adjust the main parameter of the fil-
ter. Next, we present an unlimited range implementation
using nearest neighbours search in the local jet space,
based on a binary search tree representation.

1. Introduction and background

Removing the noise from images while preserving
their significant features is an old and difficult problem
in image processing. The general linear framework can
be expressed as follows:
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wheref is the image to be filtered;, andy are pixels in

72, N'(z) C Z? is a neighbourhood of, w(z,y) € R

is the weight attached tg andZ(z) = > w(x,y)
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is the normalising constant.

In traditional convolutionw(z,y) = g(||lx — yl|),
whereg is a decreasing real function. The advantage
is that\ (z) (referred to as the searching window) can
then be limited to{y € Z?; g(||z — y||) > €}, but be-
cause such filter tends to remove all high frequencies,
it performs poorly in denoising. Many authors have de-
signed other weighting function depending ;) and
f(y). Maybe one of the most extreme, and most suc-
cessful version was proposed by Buadgsal in [3],

wherew(z, y) no longer depends difw — y||, but only
on the local resemblance of the imagearoundx and
e

_dyew)
h2

w(z,y)=e (2)

whereh is a decay parameter, related to the amount of
noise to be removed, antk(z,y) measures the local
similarity of imagef atx andy, defined as follows:

de(z,y) = > k(ID(f(x+i) = fly+1)* (3)

iEW(0)

whereW(0) is a neighbourhood of the origin, defining
the patch, and is a real decreasing function (a Gaus-
sian kernel in [3]).

By making the most of physically meaningful cor-
relations from the periodicity of natural textures, the
so called Non Local Means (NL-means) have demon-
strated impressive results in image denoising. But be-
causeN (x) is no longer bounded, the critical disadvan-
tage of NL-Means is a great computational complexity.

Different optimisations have been proposed in the
literature, using: multi-resolution to reduce the search-
ing window [4], a vector version of equation 1 to restore
the blocks as a whole [4, 5], a certain type of integral
images to reduce the computation cost of equation 3 [6],
a reduction of\/(z) to a subset according to a certain
relevance selection [9, 11, 5], a reduction of dimension
of the appearance descriptors using SVD or PCA [11],
or binary trees for performing efficient nearest neigh-
bours search [1].

The method proposed here is related to dimension
reduction, but it uses one fixed set of appearance fea-
tures: the spatial derivatives. The scale parameter do
not depend on the patch size, but on the standard devia-
tion of the Gaussian kernel used to compute the deriva-
tives. The lower dimension of the local descriptors not
only reduces the computation cost of similarity in lim-
ited range implementation, but also lends itself to effi-
cient nearest neighbours search in unlimited range im-
plementation. It can also be combined with other kind
of optimisation: hierarchical, block-wise or selective.



2. Local jet based similarity

The first justification for using the derivatives as
a compact representation of image patches naturally
comes from the Taylor expansion (here at order 2):
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WhereV; is the gradient vector anél; the Hessian
matrix of f. Figure 1 illustrates on a natural image,
split into 7 x 7 patches, how the local jet of different
order can (or cannot) represent an image patch. The
reconstruction is performed on patches of the same size,
using only the local jet computed at the patch centre.
This experiment is shown to justify the fact that we use
order 2 local jet from now on, as the minimal order to
reasonably discriminate similar pixels in images.
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Figure 1. Reconstructing patches by Tay-
lor expansion using the local jet of the
patch centre at scale o = 2.0. (2) Order O
(1d feature) (3) Order 1 (3d feature), (4) Or-
der 2 (6d feature)

Now our purpose is not to reconstruct patches but to
use the local jet instead of them. By replacing expres-
sion of f(x + ¢) given by equation 4 within equation 3,
supposing thaxV(O) is symmetrical, the local similar-
ity functiond(x, y) turns into a linear combination of
the sum of squared differences of each derivative:

di(z,y) = > cuplfis(x) = f)*  (5)

i+j<2
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using the notatiorf;; = Paionl’

of R2. ¢, the coefficients attached to every deriva-
tive should actually be larger for higher degrees deriva-
tives, when the radius of the patch increases. In fact,
we do not use patches anymore but compute the deriva-
tives in every pixel at a certain scaleby estimating
every derivative using a convolution of the image by the
corresponding derivative of Gaussian:
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whereG,, is the 2d Gaussian function of standard devi-
ationo. We then propose the following coefficients:

oiti
i+j+1
wheres'tJ is the scale normalisation factor from scale
space theory [8] (Histogram based normalisation can be
used as well), anéH-j +1 is the number ofi+ j)-order
derivatives. As in the original NL-means, the decay pa-
rameter has to be adapted to the dynamic range of the
similarity measure. Figure 2 illustrates the application

of the local jet based similarity on a texture image, for
3 different pixels.

with z; andz, a basis

o
ij

:f*

()

C,5) =

! [ L
B a0
| R
)
@) @3)

Figure 2. Similarity map (in reverse video)
using the local jet of order 2, with o = 2.0,
and h = 30 for 3 different pixels.

Another justification of using local jet as description
vector is the fact that the first singular (or eigen) vectors
that arise in SVD or PCA based optimisation on natu-
ral images look much like the first derivatives of a 2d
Gaussian function (see [11] for example).



3. Local jet based NL-means

The main benefit of this method is to reduce the di-
mension of the vectors used in the similarity metrics.
Once computed the local jet, the computation time of
dy(z,y) is then reduced accordingly. Compared to the
original NL-means using x 7 patches, the number of
operations is reduced by approximately 8 for local jet of
order 2. To keep this acceleration significant however,
efficient methods must be used to compute the local jet.
We use the recursive implementation of the Gaussian
and its derivatives proposed in [13], which allows to
compute the 6 components of the local jet in constant
time per pixel, for any.

So the first results we present correspond to the sim-
ple adaptation of the original NL-means, using a limited
searching windowV/ (z). Figure 3 compares the results
with the original NL-means on an image detaN.(z)
is of size13 x 13 for the two methods. For the original
method, the patchV(0) is a7 x 7 square, and the decay
parameter ié = 150. For the local jet method; = 1.5
andh is automatically adjusted as explained below.
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Figure 3.
(1) noisy
(3) local jet method. (4) removed noise

Limited range NL-means:
image (2) original method,

The decay parametérboth depends on the range of
the metrics similarity and on the amount of noise to be

ing [7, 12, 5], we estimate the noise by summing the
local residuals (squared difference between the value
and the local average) over the image, excluding areas
with high regularised contrast, corresponding to pix-
els whose gradient modulus is amongst thhighest

(0 < 7 < 1). However, unlike [12], we exploit the
fact that the gradient modulus of natural images have
Rayleigh shaped distribution, and then thehighest
contrast pixels are theoretically identical to those pxel

whose gradient modulus is beyo?y / —@, where

1 is the measured average value of the gradient modu-
lus. We used- = 0.3 and then3 = 0.25 for all tested
images.

Another advantage of using a low dimension feature
space is the possibility to explicitly embed the image
data so that any pair of pixels that are close in the met-
rics of the feature space could be rapidly retrieved. Us-
ing a multidimensional array whose dimensions corre-
spond to the components of the local jet would result in
huge memory requirement, so one better solution is to
use a dedicated data structure like a binary search tree
(see [2] for details). This representation allows to use
a true non-local, i.e. unlimited range, local jet based
similarity mean filter. Now, instead of computing the
weights of all the neighbours of every pixel within a
limited range, we compute the weights of a given num-
ber of Nearest Neighbours (NN) of the pixel, in the met-
rics of the local jet space, whatever the distanc&%n
space. We have used in our implementation the ANN
library developed by Arya and Mount [10]. Example of
results are shown on Figure 4.

One remarkable property of the NN method is to be
almost insensitive to the choice of the weight function.
Indeed, the variation interval of similarity distances is
much more narrow. However, comparing the quality of
denoising for the limited ranges NN methods is not
obvious: the NN results may seem more natural, but the
removed noise (difference between filtered and original
images) usually show more image structure, while the
unlimited search seems to find patterns in large noisy
homogeneous surfaces, which tends to exaggerate the
texturation of these regions (see Figure 4).

Regarding the computational complexity, the search
tree is constructed i®(dn log(n)), wheren is the num-
ber of pixels andl the dimension of the local jet vector.
For the exact k-NN search, the (worst case) complex-
ity is not much better than the quadratic complexity of
the unlimited range traditional approach. However, ex-
periments show that in practice, k-NN exact search are
still significantly faster than patch-based limited range

removed. We normalise our distance and estimate the method, when the number of neighboudrgquals the

noise variancé in the image, then adjust= (4, with
[ a constant independent of the image content. Follow-

dimension of the searching window. In the case of ap-
proximate k-NN search [2], the query complexity is
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Figure 4. Unlimited range, local jet based
nearest neighbours NL-means: (1) 30 NN,
exact search (2) removed noise (3) 30 NN,
approximate search (e 1.0). (4) Idem,
(e = 6.0).

lowered. Ifx andy are two d-dimensional vectorsg,

is said to be am-approximate k-th nearest neighbour of
x if the distance betweenandy is less thar +¢ larger
than the distance betweenand its actual k-th nearest
neighbour. In that case, the computation of the k-NN for
all the pixels is made 0 (n(c? + kd)log(n)), where

¢ is a constant whose order of magnitude{gs)d. In
practice, increasing may significantly speed up the
computation without affecting too much the results (see
Figure 4).

4. Conclusion and prospective works

We have shown in this paper that the low dimension
local jet vectors could favourably replace the patches
to compute pixel similarity in NL-Means filtering. Ba-
sically, in limited range implementation, it speeds up
the computation by lowering the number of operations
while remaining fully regular, with good filtering qual-
ity. More experiments must be done to better quantify
the difference with the original NL-Means, but more
fundamentally we believe that, by varying the orders
and number of scales, our method can provide relevant
intermediate filters between the bilateral filter and the

original NL-means.

By using a data structure dedicated to NN search, we
have also proposed a true unlimited range, NN based
NL-Means in the local jet basis. Good speed-up can be
obtained, but at the price of an important loss of regu-
larity which makes the true unlimited range still prob-
lematic for embedded implementation. We plan to in-
vestigate new NN search data structures that have been
proposed very recently [1] in the context of local jet de-
scriptors, and develop a sparse, incrementally updated,
model of the similarity features, to adapt our algorithm
to Real-Time video.
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