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Abstract. We propose a unified framework for representing and pro-
cessing images using a feature space related to local similarity. We choose
the multiscale and versatile local jet feature space to represent the visual
data. This feature space may be reduced by vector quantisation and/or
be represented by data structures enabling efficient nearest neighbours
search (e.g. kd-trees). We show the interest of the local jet feature space
processing through three fundamental low level tasks: noise reduction,
motion estimation and background modelling/subtraction. We also show
the potential of our system in terms of visual representation for higher
level (e.g. object modelling and recognition) tasks.
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1 Introduction

Many problems in image processing and vision relate to visual similarity. Since
the earliest processes of denoising or perceptual grouping, to the higher level
tasks of object recognition, measuring the resemblance, or matching two objects
according to the visual appearance are fundamental functions. In the traditional
space × time representations of video sequences, the canonical distance is not
related to visual similarity, which induces a major computational drawback. In-
deed, similar objects from the video data are expected to interact in the process-
ing, and then should be contiguous in the representation. These general remarks
do not only apply to the current data, image or recent frames history, but also
to the global visual knowledge that the vision system is constructing during its
operating lifetime.

The purpose of this work is to design a global, generic and computation-
ally tractable framework for the representation and the processing of the visual
data, based on: (1) the projection of the space × time image data within a
transformed space whose metrics correspond to visual similarity, (2) a set of
functions operating in the transformed and/or the image domain, for extracting
relevant information from the video, updating the transformed domain structure
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accordingly, and/or modifying the video in the image domain according to some
specific task (filtering, detecting, predicting), and (3) dedicated data structures
for making such framework computationally feasible, in terms of memory and
processing time. In our philosophy, such unified framework should be usable for
the whole vision process, from the lowest level of regularisation and enhance-
ment to the levels of higher semantics related to recognition and understanding.
The framework should also be compliant with real-time video processing, which
implies both dynamical and efficient construction of the visual representation.

The inspiring and related works are presented in Section 2. In our work the
preferred similarity space is made of the collection of spatial derivatives esti-
mated at different scales (the local jet). We present this space and justify its use
in Section 3. Section 4 presents the data structure, based on binary space parti-
tion trees, used to represent the similarity space and discuss some visual models
that can be directly extracted from this data structure. The following sections
present the applications of the framework for different low level visual processing
tasks: non-local means image denoising (Sec. 5), optical flow estimation (Sec. 6)
and background subtraction based motion detection (Sec. 7).

2 Related works

Our work is closely related to Peyré’s manifold models [1]. In this theoretical
framework, the image data is embedded within a higher dimensional feature
space and forms a manifold. It is shown that many inverse problems in low level
computer vision can be expressed by regularising the manifold in the feature
space and then back-projecting the transformed manifold within the image space.
In this sense, the different low level algorithms proposed in this paper can be
seen as instances of the manifold model. Conversely, our work can also be seen
as an extension of the manifold models to higher level representations.

Our framework naturally exploits many ideas from previous works on tex-
tured objects modelling, segmentation and recognition. Filter banks have been
used for a long time as a way to extract meaningful local information on direc-
tion, scale, and frequency [2]. Quantising such information is also a commonplace
in textons [3] or bag of features [4] approaches. Compared with those methods,
one fundamental property of our framework is that the feature is intrinsically
dense in the image space and thus can be computed at any location. Another
particularity of our approach is that reducing the information support to salient
points is done by finding the isolated or clustered points in the feature space,
thus avoiding the classical distinction which is made between detection and de-
scription of the salient points [5, 6].

The importance of the local jet in image representation has been identified
a few decades ago. Koenderink and Van Doorn [7] pointed out the fundamental
role of the first three orders of derivatives in the human visual system. They
also noticed that some Euclidean distance on the local jet vectors could be used
to perform local comparisons. Curiously, this has not been really used in the
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literature. One of our contributions is then to investigate the metrical aspects of
local jet feature space.

Anyway, the local jet has been used much for the construction of invariants,
particularly in image retrieval [8]. It has also been used more recently for the
classification of pixels according to their local geometry, see for example [9]. As
shown later, we can exploit such classification approach to reduce the dimension
of the local jet descriptor.

3 Multiscale Local Jet

3.1 Similarity space

Using the partial derivatives to represent the local similarity within a multidi-
mensional signal is a natural choice since the local behaviour of any differentiable
function f can be predicted from its derivatives. For a function from R2 to R,
at order r, the Taylor expansion provides:

f(x + c) =

r∑
k=0

k∑
i=0

(
k

i

)
ck−i1 ci2

∂kf

∂xk−i1 ∂xi2
(x) + o(||c||r) (1)

with x1 and x2 a basis of R2, in which the components of the residual c are
c1 = c · x1 and c2 = c · x2. To simplify we shall use from now on the notation

fij = ∂i+jf

∂xi1∂x
j
2

. In digital images, the concept of derivative only makes sense up to

a level of regularity corresponding to the scale of estimation [10]. Practically, this
is performed by explicitly smoothing the image before differentiation, or equiva-
lently, convolving the image with the corresponding derivative of the smoothing
operator. In the Gaussian framework:

fσij = f ?
∂i+jGσ

∂xi1∂x
j
2

(2)

where Gσ is the 2d Gaussian function of standard deviation σ. The multiscale
local jet similarity space is then given by the collection {fσij ; i + j ≤ r, σ ∈ S},
where r is the order of derivation, S = {σ1, . . . σq} the selected scales. Figure 1
illustrates the induced representation for a few points taken from a natural im-
age, for one scale σ = 1.0. The image is split into 15 × 15 patches, and the
reconstruction is performed on patches of the same size, using only the local jet
computed at the patch centre.

It can be mentioned that the relevance of the local jet as description vector on
natural images is confirmed by the fact that the first singular (or eigen) vectors
that arise in SVD or PCA based decomposition of natural image patches look
much like the first derivatives of a 2d Gaussian function: see for example Figure 2
taken from [11].
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(1) (2)

(3) (4)

Fig. 1. Local representation by the local jet at fine scale (σ = 1.0), illustrated by
“reconstructing” patches by Taylor expansion at: (2) Order 0 (1d feature) (3) Order 1
(3d feature), (4) Order 2 (6d feature)

3.2 Metrics and invariance

Now the local similarity between 2 points x and y with respect to image f has
to be actually measured using a distance in the similarity space, which naturally
will have an influence on the data structure (see next section).

Considering the Taylor expansion, it can be noticed that the sum of squared
differences (SSD) between image patches, classically used to compute local sim-
ilarity, can be approximated [7, 12] by the squared Euclidean distance between
the local jet vectors. Naturally, for large and complicated patches, the approxi-
mation is very coarse, and the weights attached to every component depends on
the size of the patch. However, a distance between local jet vectors is actually
significant to distinguish similar pixels. So we have:
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Fig. 2. 6 first singular vectors obtained from Lena image in the singular value decom-
position of the 7× 7 patches. (Taken from [11])

df (x,y) =

 ∑
i+j≤r

a(i,j)(fij(x)− fij(y))2

 1
2

(3)

Where a(i,j) is the coefficients attached to every derivative. Practically, those
coefficients will depend on the normalisation which is done on the component of
the local jet. We use the following normalised local jet components, combining
the scale normalisation factor from scale space theory [10], and the number of
(i+ j)-order derivatives:

Fσij =
σi+j

i+ j + 1
fσij (4)

where F (resp. f) is the normalised (resp. non normalised) local jet component
of order (i, j) and scale σ. Figure 3 shows some components of the normalised
local jet.

F 1.0
00 2F 1.0

10 2F 1.0
01 3F 1.0

20 3F 1.0
11 3F 1.0

02

F 4.0
00 2F 4.0

10 2F 4.0
01 3F 4.0

20 3F 4.0
11 3F 4.0

02

Fig. 3. Some components of the canonical local jet, for orders of derivation from 0 to
2, and two scales.

If required, rotation invariant derivatives can be obtained by expressing the
derivatives within the local basis of coordinates (g, t), where g =

∇f
||∇f || is the

gradient component and t is the isophote component orthogonal to g. (See Fig-
ure 4).
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Fig. 4. Rotation invariance is achieved by computing the partial derivative with respect
to the local coordinates (g, t), where g is the normalised gradient and t the isophote
component.

So if ∇f =
( f10
f01

)
and Hf =

( f20 f11
f11 f02

)
the gradient and Hessian matrix in the

canonical basis, the first (resp. second) derivative with respect to any vector u
(resp. any couple of vectors (u,v)) is fu = u · ∇f (resp. fuv = utHfv). Hence
the rotation invariant local jet, at order two:

f = f00 (5)

fg = (f210 + f201)1/2 (6)

ft = 0 (7)

fgg = (f20f
2
10 + 2f11f10f01 + f02f

2
01)f−2g (8)

ftt = (f20f
2
01 − 2f11f10f01 + f02f

2
10)f−2g (9)

fgt = (f10f01(f20 − f02) + f11(f201 − f210))f−2g (10)

Figure 5 shows those components at two different scales.
This representation includes classical invariants: fg is the magnitude of the

gradient, ftt is the curvature of the isophote, fgg+ftt = f20+f02 is the Laplacian,
and the principal curvatures given by the eigen values of the Hessian matrix:

Λf =
f20 + f02 + αf

2
; λf =

f20 + f02 − αf
2

(11)

(12)
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f1.0 f1.0
g f1.0

gg f1.0
gt f1.0

tt

f4.0 f4.0
g f4.0

gg f4.0
gt f4.0

tt

Fig. 5. The components of the rotation invariant local jet, for orders of derivation from
0 to 2, and two scales.

such that Λf < λf , with αf =
√

(f20 − f02)2 + 4f211, and the associated (non
normalised) eigen vectors:

VΛf =

(
2f11

f02 − f20 + αf

)
; Vλf =

(
2f11

f02 − f20 − αf

)
(13)

(14)

The local jet also provides contrast invariant measures: at order 1, the di-
rection of the gradient (orthogonal to the direction of the isophote), is given by
arg∇f = arctan f01

f10
. At order 2, the direction of the eigen vectors arg VΛf and

arg Vλf represent the main directions of curvature. Figure 6 shows two examples
of such contrast invariant measures.

Finally, following [9], we can categorise the local behaviour of every pixel at
every scale according to the dominant order of derivation. The dominant order
0 corresponds to flat or homogeneous zones, the dominant order 1 to straight
contours, the dominant order 2 to elliptic or tubular curvatures depending on
the signs of the eigen values of Hf . Once categorised, the dimensions of the
local jet descriptor can be reduced to significant derivatives (see Figure 7). This
categorisation is clearly visible in the figure 1, showing the representation of
image patches by local jet of different orders.

In terms of metrics, we will typically consider three types of distances in the
applications:

– the single scale distance dσf (x,y), checking whether x and y are similar at a
given scale σ.

– the pan-scalic distance DS
f (x,y), checking whether x and y are similar for

all the scales σ ∈ S.
– the trans-scalic distance δSf (x,y), checking whether there exists a couple of

scales (σ1, σ2) ∈ S2 for which x and y are similar.
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(1) arg∇f (2) arg Vargmaxl∈{Λf ,λf}
|l|

Fig. 6. Contrast invariant local jet based components (σ = 2.0): (1) Gradient direction.
(2) Main absolute curvature direction.

The single scale distance is simply defined as follows:

dσf (x,y) =

 ∑
i+j≤r

(Fσij(x)− Fσij(y))2

 1
2

(15)

The pan-scalic distance can be naturally defined as:

DS
f (x,y) = max

σ∈S

 ∑
i+j≤r

(Fσij(x)− Fσij(y))2

 1
2

(16)

However for representation purposes (one single kd-tree) it can be better to
define it as a Euclidean distance:

DS
f (x,y) =

 ∑
i+j≤r,σ∈S

(Fσij(x)− Fσij(y))2

 1
2

(17)

The purpose of the trans-scalic distance is to provide scale invariance. This
is done by minimising over the scales, which turns the measure to a pseudo-
distance:

δSf (x,y) = min
(σn,σm)∈S2

max
p;(σn+p,σm+p)∈S2

 ∑
i+j≤r

(F
σn+p

ij (x)− Fσm+p

ij (y))2

 1
2

(18)
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Fig. 7. Pixel categorisation for the reduction of the local jet descriptors: at order 2,
pixels can be categorised into 4 categories (7 if the polarity is considered).

Figure 8 shows examples of similarity maps computed using those differ-
ent distances. For a given pixel x0 the similarity map is defined as Md

x0
(x) =

Φ(d(x0,x)), with d the local jet distance, and Φ some real increasing function.

In this figure Φ(z) = 1 − e−
z2

C2 , with C = 10. Those similarity maps show the
properties of the different distances and local jet components in terms of rotation
and scale invariance.

4 Visual representations

4.1 Data structures

The first step of the representation then consists in projecting the image data into
the chosen similarity space. For every pixel, a feature vector is computed, and the
collection of features is kept in adequate data structure for further processing.
If the feature space dimensionality is low, the data structure may be a simple
array, whose coordinates are indexed by each component of the feature space,
which must then be quantised properly. For the purpose of further processing
in the image domain, every feature vector must be attached a pointer to the
original pixel. Depending on the quantisation, several pixels may point on the
same feature vector, the feature array must then be able to code a list rather
than a single element in every bucket. Such data structure finally coincides with
an hash table whose hash function is the quotient of the quantisation.

But whatever the quantisation, the size of the array structure obviously grows
exponentially with the dimension, so the memory cost rapidly becomes red-
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hibitory. For higher dimension, then, one much better solution is to use a binary
space partition tree, which is optimal in terms of memory occupation (its size
is proportional to the number of feature vectors). We use the classical kd-tree
data structure [13], whose general construction principle is recalled thereunder:

Every node of the kd-tree represents a subset of the feature vectors, and
every node (except the leaves) has two successor nodes representing two sets
which form a partition of the set represented by the ancestor node, with respect
to an hyperplane which is orthogonal to one coordinate. More specifically, let F
denote the whole set of features. Let n be a node of the tree, S(n) denote the
subset of F represented by n, SuccL(n) (resp. SuccR(n)) denote the left (resp.
right) successor node of n. If U denotes a feature vector, let Uj denote the j-th
component of U , let d be the dimension of the feature vectors.

1. There exists one node r such that S(r) = F . This corresponds to the root
of the tree.

2. For every node n, if the cardinality of S(n) is greater than one, then there
exist two nodes p and q such that SuccL(n) = p and SuccR(n) = q, and
then: S(p)∪ S(q) = S(n), S(p)∩ S(q) = ∅, and there exists some z ∈ R and
j ∈ {1, . . . , d} such that: ∀U ∈ S(p),∀V ∈ S(q), Uj ≤ z and Vj > z. The
cutting hyperplane is then orthogonal to the j-th component of the basis,
and corresponds to the points whose j-th component has value z (called the
cutting value in the j-th dimension).

The actual implementations of kd-tree vary according to different criteria,
mainly: (1) the choice of the cutting dimension (simply picking one dimension
after the other repeatedly, or cutting first through dimension with maximal
variance), and (2) the choice of the cutting value (can be the middle of the
range that remains to be cut, which leads to a generalisation of octrees to d-
dimension, or can be the median value of the j-th components of the vector
in the subset, which allows to get balanced trees). The figure 9 illustrates the
construction of a kd-tree in dimension 2, by changing the cutting direction at
each level and choosing the median as the cutting value.

The kd-tree is a useful tool for performing nearest neighbours (NN) search in
the feature space. It will be extensively used in the following to perform efficiently
operations based on visual similarity, that are intrinsically non local in the image
space. However, there are many operations where NN search will be needed very
intensively (e.g. for every pixel / feature vector). In that case, the computational
cost will remain too important for real-time video. Two important optimisations
are employed:

– Approximate Nearest Neighbour (ANN) search: If u and v are two
feature vectors, v is said to be an ε-approximate k-th nearest neighbour
of u if the distance between u and v is less than 1 + ε larger than the
distance between u and its actual k-th nearest neighbour. Unlike the exact
NN search, the ANN search provides worst-case lower bounds complexity,
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and significantly diminishes the average complexity [14]. We have used in
our implementations the ANN library developed by Arya and Mount [15].

– Quantisation of the Feature Space: Generally the main term in the
complexity of the (A)NN search comes from the number of feature vectors
(O(log(n)) operations per query in average). So whenever possible we apply
vector quantisation in order to limit the size (number of leaves) of the kd-
tree.

Depending on the available computation resources, different types of vector
quantisation algorithms can be used. For real-time video purposes, the codebook
must be constructed dynamically, however it usually does not need to be updated
every frame. In the following applications, we use an approximation of the K-
means clustering method with linear complexity with respect to the number of
pixels used to update the codebook: only one assignment step is performed using
a constant radius ε as classification criterion (a new feature vector is assigned
to the first word of the codebook which is at distance less than ε if such word
exists, a new word is created otherwise), and the centroid of every cluster is
computed recursively. Figure 10 illustrates the creation and representation of
the codebook.

4.2 Image and object characteristics

The words of the codebook are related to the classical concept of textons, whose
statistics provide relevant information on the visual appearance of objects. The
first useful visual object descriptor that emerges from this representation is the
histogram, or weight vector of the codebook, which is a global descriptor that
can be associated to any set of pixels representing an image, a room, or different
instances of an object.

Such histogram / weight vector is naturally computed during the quantisation
or updating of the codebook, as it takes part of the recursive computation of the
centroid of every cluster. At the same time, the set of indexes corresponding to
the list of pixels assigned to every word of the codebook is kept in memory. Let
x be a pixel from the image space (typically x = (x1, x2)), x̂f be the projection
of x in the feature space of f (i.e. the feature vector associated to x, e.g. x̂f =
(fσij(x))). Let Ff be the set of features of image f . We shall denote dF the

distance in the feature space (see Sec. 3), and dI the distance in the image

space. If u is a feature vector, let ν
Ff
k (u) be its k-th nearest neighbour in the

feature space of f . We denote F−1f (u) the set of pixels which are assigned to the
codebook u in the feature space of f . If there is no quantisation, the notation
remains valid as F−1f (u) = {x} such that x̂f = u.

Figure 11 shows an example of feature quantisation back-projected in the
image space. The detail image (right) illustrates the possible utilisation that can
be made in terms of higher order statistics (i.e. cooccurrence) of visual words
from the codebook.

The nearest neighbour framework also provides an interesting conception of
the notion of salient point. Whereas the classical characterisation of interest
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points is purely geometrical and relatively independent of the image content,
the NN feature based salience is entirely statistical and content-dependent: The
salient points correspond to the isolated points in the feature space. Such char-
acterisation is not new and has been done before in the space of patches by
Kervrann and Boulanger [16].

More formally, the rarest pixels are defined as:

Rm1 = F−1f (arg max
u∈Ff

1

m

m∑
k=1

dF (u, ν
Ff
k (u)) (19)

The rarest pixels are those assigned to the word with maximal average dis-
tance to its m nearest neighbours. Without quantisation, there is only one such
pixel. The second rarest pixels Rm2 are defined similarly by excluding the word
with maximal distance and so on. The only parameter m merely acts as a filtering
value and is of moderate practical importance.

Figure 12 shows three examples of NN based salient points in a single scale
local jet feature space. The difference with a purely geometric approach can be
seen on images with large regular textures, e.g. the centre image.

Finally we propose another descriptor whose purpose is to provide an al-
ternate and intermediate representation between the fully global codebook his-
togram and fully local salient point. It is based on the selection and representa-
tion of the statistical mode in the feature space.

The selection of the mode in multidimensional data is a difficult problem
which has received relatively few attention. Our technique is an adaptation of
the methods proposed by Burman and Polonik in [17], and implemented through
the framework of geodesic reconstruction in the feature space, which implies the
definition of a proper topology.

Suppose that a topology is defined in the feature space, we define a cluster as

follows: Let the centre of the main cluster κ
Ff
1 be defined as the feature vector

with minimal average distance to its m NN. The main cluster K
Ff
1 is then

defined as the connected component of Ff that contains κ
Ff
1 , or equivalently

the geodesic reconstruction of κ
Ff
1 within Ff . The second main cluster K

Ff
2 is

defined the same way on Ff \K
Ff
1 , and so on.

Now we need a topology, i.e. a criterion to decide whether two vectors of the
feature space are connected or not. This is done by distance threshold (2 vectors
are connected if their distance is small enough). However such minimal distance

has to be adapted to the data. It must be significantly smaller than µ
Ff
m =

1

|Ff |
∑
u∈Ff

1

m

m∑
k=1

dF (u, ν
Ff
k (u)), i.e. the average value over Ff (|Ff | denotes the

cardinality of Ff ) of the mean distance to the m nearest neighbours. It must also

be larger than τ
Ff
m = min

u∈Ff

1

m

m∑
k=1

dF (u, ν
Ff
k (u)), the minimal average distance

to the m nearest neighbours, which identifies the cluster centre κ
Ff
1 . We then

dynamically define the topology by using a variable distance threshold defined
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as the geometric mean between µ
Ff
m and τ

Ff
m , i.e. two feature vector u and v are

connected if and only if: dF (u,v) <

√
µ
Ff
m τ

Ff
m .

Figure 13 shows the 12 main modes for 3 images. The modes appear as a
complementary information of singularities shown on Figure 12. They represent
homogeneous zone, simple regular textures, or long straight contours as can be
seen in the centre and right images.

5 Non-local means video filtering

The non-local (NL) means filter, originally proposed by Buades et al in [18]
is a powerful image denoising technique, which can be seen as an extension of
the classical convolution scheme, i.e. every pixel value is replaced by a weighted
average of the other pixels, but here the weights do not depend on the distance
(in the image space) between pixels, but on the local similarity. In our framework,
the NL-means is simply expressed by computing the weights according to the
feature space.

Let u and v be two vectors of the feature space. ω(u,v) the relative (sym-
metric) weight of u with respect to v, is defined as follows:

ω(u,v) = e−
dF (u,v)

h2 (20)

where dF is the distance in the feature space, and h is a decay parameter,
related to the amount of noise to be removed.

Now two variants of the NL means can be considered:

1. Limited range method

fNLLR (x) =
1

ζ(x)

∑
y∈N (x)

f(y)ω(x̂f , ŷf ) (21)

2. Unlimited range method

fNLUR (x) =
1

ξ(x)

∑
u∈W(x̂f )

f̌(u)ω(x̂f ,u) (22)

where N (x) (resp. W(v)) is a neighbourhood of x (resp. v), usually corre-
sponding to the k nearest neighbours of x (resp. v) in the image (resp. feature)
space. Figure 14 illustrates the difference between the limited and unlimited
range methods.

ζ(x) =
∑

y∈N (x)

ω(x̂f , ŷf ) and ξ(x) =
∑

u∈W(x̂f )

ω(x̂f ,u) are the respective nor-

malisation constants. f̌(u) is the value of f corresponding to feature u. It is
defined as:

f̌(u) =
1

|F−1f (u)|

∑
x∈F−1

f (u)

f(x) (23)
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i.e. the average value of f on the pixels corresponding to feature u, this quantity
is recursively calculated - or estimated - during the quantisation.

Figure 15 shows some results on the same noisy image (only the bottom half
diagonal is processed). In all images, the decay parameter was set automatically
by using a fast estimation of the noise variance (see [12] for more details). It
is somewhat surprising that the denoising quality looks better for the limited
range (LR, Fig. 15(1)) than for the unlimited range (UR, Fig. 15(2)). However
this can be explained by the fact that on the one hand, the edge and corner
pixels will be more affected by the UR methods, since the relative weights of
their neighbours will be much higher in the feature space than in the image
space. One the other hand, for large noisy homogeneous regions, the local jet UR
method will be able to find patterns that will tend to exaggerate the texturation
of these regions. Anyway, using kd-trees, the unlimited range method is much
faster than the limited range one when the cardinalities of N (x) and W(x̂f ) are
of the same order. Furthermore, using approximate search significantly lowers the
computation time without affecting the results too much (Fig. 15(3)). Finally,
the most important acceleration is obtained by reducing the size of the search
structure thanks to quantisation. We also expect that quantising the feature
space should compensate the drawbacks of the UR method evoked above, and
then also improve the quality of denoising (Fig. 15(4)), but more quantitative
evaluation is needed.

6 Optical flow estimation

The optical flow, or apparent motion estimation, is one of the most classical
inverse problem in video computing. It consists in estimating, for every pixel x
at frame t the apparent velocity, corresponding to the projection in the focal
plane of the relative velocity of a visible physical point of the scene with respect
to the camera. It is actually estimated using the correspondence of pixels from
one frame to the other.

The optical flow estimation turns out to be - from a conceptual point of
view at least - one of the most straightforward applications of the feature space
based similarity. At frame t, for image ft, and for every pixel x, we compute
u(ft−1, ft,x), the nearest neighbour of the feature vector associated to x, in the
feature space of ft−1:

u(ft−1, ft,x) = arg min
v∈Fft−1

dF (x̂ft ,v) = ν
Fft−1

1 (x̂ft) (24)

Then we can compute y(ft−1, ft,x), the pixel from ft−1 which is the most
similar to x from ft:

y(ft−1, ft,x) = arg min
z∈F−1

ft−1
(u(ft−1,ft,x))

dI(x, z) (25)

If no quantisation is performed, this is simply the pixel corresponding to
feature u in ft−1, otherwise it is the pixel from F−1ft−1

(u(ft−1, ft,x)) (the set of
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pixels associated to feature vector u) which is the closest from x in the image
space. Figure 16 illustrates the principle of the optical flow estimation by nearest
neighbour search in the local jet feature space.

An alternate formulation can also be proposed by following the NL-mean
framework:

y(ft−1, ft,x) =
1

ξF (x)

m∑
k=1

ωF (x̂ft , ν
Fft−1

k (x̂ft))

ξI(x)

∑
z∈F−1

ft−1
(ν
Fft−1
k (x̂ft ))

ωI(x, z)z


(26)

with ωI(x,y) = e−
dI (x,y)

h2 and ωF (u,v) = e−
dF (u,v)

h2 the weight functions in

the image and feature space respectively. ξI(x) =
∑

y∈F−1
ft−1

(ν
Fft−1
k (x̂ft ))

ωI(x,y)

and ξF (x) =

m∑
k=1

ωF (x̂ft , ν
Fft−1

k (x̂ft)) are the two corresponding normalising

functions. This second formulation, more general, allows to perform regularisa-
tion, in the feature space, in the image space, or in both. Obviously, when the
number of NN m is one, and without quantisation, the two formulations are
equivalent.

Finally, the velocity vector is computed as the difference:

c(ft−1, ft,x) = x− y(ft−1, ft,x) (27)

Figure 17 shows examples of optical flow estimation on different images taken
from classical test sequences. In these examples, the number of NN is 1, there is
no quantisation and the local jet is calculated at order 2, for 5 different scales.
It is worth mentioning that no post-processing regularisation is performed; the
regularity of the result depends on the number of scales of the local jet.

7 Background subtraction

Motion detection refers to the binary labelling of every pixel of a video sequence:
0 if it belongs to the static scene (background), 1 if it belongs to a moving object
(foreground). When the camera is stationary, the most popular methods are
based on background modelling and subtraction, which correspond to calculating
locally (say for every pixel or block), a set of parameters representing temporal
statistics of the background, in order to compare every new value with those
parameters, to decide whether this value is typical of the background or not.

This problem can be relatively challenging in many cases, because usually
the background is not completely static, but is evolving because of illumination
changes, and also because parts of the scene are animated by irrelevant motion
(e.g. waving trees, snowfall, air fan, etc), those changes must then be taken into
account in the background model. The precision of modelling of the background



16 Antoine Manzanera

statistics has strong influence on the computational cost, both in terms of mem-
ory and time. One good trade-off in terms of representation is obtained by the
sample and consensus methods [19, 20], which consist in keeping in memory a
limited set of sampled values, and then comparing the current value to those
samples to decide whether the pixel is foreground or not. Vector quantisation
has also been used for background modelling [21] in colour/brightness space.
The algorithm we propose here is a combination of sample/consensus and vector
quantisation in the local jet feature space.

In this application, we use a single codebook Ff of quantised features for the
whole sequence (and not one codebook by frame Fft). However, Ff may evolve
over time, as we shall see later. The basic principle is the following: In every
pixel, the temporal activity is modelled by keeping in memory M prototypes
{mj(f,x)}j∈{1,M}, such that mj(f,x) ∈ Ff . The set of pixel prototypes repre-
sent a sample of its past values in the feature space, and M is a temporal depth
parameter.

Let ρ be a positive number representing the distance threshold in the feature
space; τ an integer such that 1 < τ < N . The foreground label e(f, t,x), indi-
cating whether x in ft belongs to a moving object or not is then calculated as
follows:

e(f, t,x) = 1 if |{j ∈ {1,M}; dF (x̂ft ,mj(f,x)) > ρ}| > τ (28)

= 0 otherwise (29)

Then a pixel whose value in the feature space is at a distance greater than
ρ for more than τ of its M prototypes is considered foreground, elsewhere it is
classified as background. The advantage of using a complex feature space instead
of the mere colour is that we are able to capture more sophisticated image struc-
ture and then make the background modelling more robust. On the other hand,
the vector quantisation dramatically reduces the memory cost, because only the
index of the word from the codebook is used instead of a high dimensional vec-
tor. It is typically observed that a large majority of pixels only have one or two
different indexes within their M background prototypes.

Our practical implementation for coding and updating the prototypes is sim-
ply an adaptation of the state-of-the-art ViBe algorithm [20]:

– Coding: For every pixel x, we code the prototypes P using a matrix with
two rows and a variable number of columns (maximum M). P(i,1) represents
the index of the i-th prototype, and P(i,2) its frequency, such that the sum
of all the P(i,2) is always equal to M .

– Initialisation: At the first frame (t = 0) P(1,1) equals the index of x̂f0 and
P(1,2) = M .

– Updating: At time t, the index of x̂ft replaces one of the prototypes ran-
domly selected: choosing a random value k between 1 and M , we calculate

the smallest index h such that

h∑
i=1

P(i,2) ≥ k, and decrement P(h,2). Then

x̂ft is compared to the existing prototypes represented by P(i,1), until it
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matches one of them, say number h’, and in that case the matched index
frequency P(h’,2) is incremented. If no prototype is matched, a new one is
created by searching the first index h” such that P(h”,2) = 0, which by
construction exists. Then P(h”,2) is set to 1, and P(h”,1) to the index of
x̂ft .

Figure 18 illustrates the principles of the ViBe method applied in the local
jet feature dictionary.

For the creation of the codebook, we use, as in the NL-mean case a very basic
incremental version of the K-means algorithm for real-time video purposes. It
is worth mentioning that the codebook does not need to be updated for every
frame, nor everywhere, for example, it can be updated every 5 frames for the
foreground pixels, and every 100 frames for the whole image.

Figure 19 shows an example of foreground labelling results for three frames
from an outdoor colour sequence. We use a 2 order, 1 scale, and 3 colour local
jet feature space (i.e. 18D vector features), with a codebook limited to 3,000
words, the temporal depth is M = 20, the distance threshold in the feature
space ρ = 30.0, and the consensus threshold is τ = M/2. Note that, unlike [20],
no spatial diffusion is performed, and the update is not strictly conservative, i.e.
the update is made every 4 frames for background pixels, and every 16 frames
for foreground pixels.

8 Conclusion

We have proposed in this report a unified framework based on the representation
of the visual data in the local jet feature space. This framework is devoted to
a universal use, i.e. from the lowest to the highest tasks of artificial vision.
We have shown the relevance of the approach for several low level vision tasks.
This representation also naturally provides image reduction and description tools
that can be used at a higher processing level. We think particularly to object
modelling and recognition, which is part of our ongoing work.

Some of the proposed algorithms, for example local jet based NL-means and
background subtraction based on sample and consensus in the local jet space
are particularly efficient and can be easily adapted to real-time. However, the
computational cost remains an issue for different implementations: the optical
flow by nearest neighbour search in the local jet space and the computation of
the mode of the local jet distribution are two important examples. We are then
investigating new ways to compute the nearest neighbours in the feature space
using parallel implementations.
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Fig. 8. Similarity maps for 3 different pixels: (1), (2) and (3), and 6 different distances:
Single scale: (a) canonical components (CC), (b) rotation invariant components (RIC),
Pan-scalic: (c) CC, (d) RIC, and Trans-scalic: (e) CC, (f) RIC. (Painting by Lowell
Herrero)
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Fig. 9. Pixels from the image space (a) are projected into the feature space (b) and
collected into a kd-tree structure (c).

Fig. 10. Quantisation of the feature space: many pixels from the image space (a) are
associated to the same word of the codebook (quantised feature space) (b) and only
the words of the codebook are coded in the kd-tree (c).

Fig. 11. Quantisation in the local jet space. The feature space is reduced to 506 vectors.
The right image is a detail corresponding to the white rectangle in the left image.
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Fig. 12. Salient points (isolated points in the feature space back-projected in the image
space): The figure displays the pixel corresponding to the 100 feature vectors whose
average distance to their 10 NN is the largest. The feature space is: Local jet of order
2, one single scale σ = 1.5, no quantisation. Here a minimal exclusion distance of 5 in
the image space is used to avoid clustering of the salient pixels.

Fig. 13. First modes of the representation (clusters of the feature space back-projected
in the image space): The figure displays the pixel corresponding to the 12 main clusters
of the feature space (Local Jet of order 2, with 2 scales {σ1 = 1.0, σ2 = 2.0}, no
quantisation). A cluster is the connected component containing the cluster centre,
defined as the point of the feature space with smallest average distance to its 20 NN.
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(a) (b)

Fig. 14. Limited (a) vs Unlimited (b) range approaches in the computation of the NL-
means. N (x) is the set of the nearest neighbours of x in the image space. W̌(x̂) is the
back-projection in the image space of the nearest neighbours of x̂ in the feature space.
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(1) (2)

(3) (4)

Fig. 15. NL-means filtering in the local jet feature space. (1) Limited range (N (x)
is a 17 × 17 square neighbourhood of x in the image domain). (2) Unlimited range,
exact search (W(x̂f ) corresponds to the 30 NN in the local jet domain), (3) Unlimited
range, approximate search (ε = 10.0), (4) Unlimited range, exact search, with quantised
feature space (1938 words in the dictionary).
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Fig. 16. Optical Flow estimation by Nearest Neighbour Search in the Local Jet Feature
Space.
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(1) (2)

(3) (4)

Fig. 17. Optical flow fields estimated by nearest neighbour search in the feature space.
(1) Stationary camera, (2) Horizontal travelling, (3) Forward zooming, (4) Backward
zooming and moving objects.
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Fig. 18. Adaptation of the ViBe algorithm to the local jet feature dictionary. Top,
classification step: The pixel x is classified foreground if the number of prototypes at
distance less than ρ from x̂ft is inferior to a certain threshold. Bottom, update step:
x̂ft replaces one of the prototypes, randomly selected.
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Fig. 19. Background subtraction based on sample and consensus using a codebook of
colour local jet features.


