Orange Laurent Reynaud
email: laurent.reynaud@orange.com

This document first presents a series of selected use cases that rely on key mechanisms from the RESCUE project. In a second part, the report provides the specifications of the testbeds which are planned by the involved partners. In particular, we detail a first testbed which consists of an emulation and experimentation environment in the context of airborne communication nodes. The prominent hardware and software details are given, as well as an indication of the intended testbed topology and emulation/experimentation scenarios. Responsible

Introduction

This delivery report D3.1 is part of RESCUE work package 3. This work package is intended to build use cases and to validate the architecture and protocols defined in WP1 and WP2 through in vivo conditions. Substitution networks rely on the concept of controlled mobility, where nodes can move (or their position can be controlled by an external factor) to provide additional resources in the networks. Node mobility may be necessary in different situations, for instance to improve coverage where users provide resources in the networks (such as community or sensor networks), to re-establish connectivity in case of fault or to reinforce resources in case of sudden surge in the demanded network capacity (e.g. flash crowd and more generally event services).

In a first part of D3.1, we describe a series of use cases where reachability and cost are important aspects. This is the case of scenarios related to emerging countries, where some network segments may experience problems on a regular basis. Those problems could be mitigated or avoided in networks with backup equipments and links and with core networks operating in over-provisioning mode. This is generally the case of networks in industrialized countries. However, this strategy of redundancy is not always possible, particularly in access and aggregation networks as a matter of cost and of number of links, and it is questionable in emerging countries where the cost is a critical issue. In this case, controlled mobility, as seen in RESCUE, is not a constraint but is used to help the base network overcome its temporary problems through complementary and alternate routes offered by the substitution network.

But this delivery report also considers other use cases that concern future sensor networks, particularly in areas where the network coverage is incomplete (e.g. white or gray zones), for instance in the case of environmental applications (e.g. airborne sensors, dispersed with aircraft or balloons), sensors used by farmers in order to gather information regarding soil or water quality, to monitor nomadic animal population or wildlife, and so on.

Then, D3.1 describes the first experimentation from RESCUE, prominently relying on aerial equipment, and more precisely on micro-drones. Its general idea is to investigate RESCUE key concepts, and integrate a subset of the devised mechanisms, with the specific Chapter 2

Scenarios

In this chapter, three selected scenarios will be presented, as well as the specific use of controlled mobility, which is applied differently in each use case. Those scenarios are: i) controlled mobility for planned and disaster events (with the cases of emergency communications and event services), ii) aerial substitution networks for networks with limited connectivity and iii) use of controlled mobility in vehicular ad hoc networks.

Controlled mobility for planned and disaster events 2.1.1 The case of emergency communications

In the aftermath of a disaster, whether natural or man-made, it is of the utmost importance that rescue teams and other potentially life-saving response operations can rely on an efficient emergency communications system. Unfortunately, terrestrial networks may be partially or totally compromised, at least during the early stages of the post-disaster period. Similarly, alternative communications systems may prove less than effective. As an illustration, the report of the Select Bipartisan Committee to investigate the response to Hurricane Katrina [17] clearly concluded that massive network failures and severe interoperability issues with the remaining communications systems greatly hindered rescue effort, situational awareness and command and control operations. For the support of reliable emergency communications, recovery solutions relying on satellite communications have long been investigated through multiple research activities including the European projects Real-Time Emergency Management via Satellite (REMSAT) [18] and Emergency Management by Satellite Communications (EMERGSAT) [18].

In this context, mobile communication platforms have also gained momentum in the recent years and are seen as a possible extension or alternative to traditional equipments for emergency communications (e.g. devices able to connect to satellite wireless networks).

Those mobile platforms may be terrestrial, with for instance the use of vehicles to host communication equipment such as a radio transceiver and associated antenna tower. This is the case of Cell sites On Wheels (COWs) and Cell sites On Trucks (COTs). Those mobile 5/32 platforms may also be airborne, hosted on aerial vehicles such as described in subsection 3.1.3. However, it is observed that relief scenarios based on mobile platforms lack a global architecture that can federate and support all the requirements of the multiple actors involved in emergency relief and recovery operations. On the opposite, each service or resource requirement related with an emergency role (e.g. search and rescue personnel also known as first responders, command and control operations and critical infrastructure repair teams) is currently addressed independently, in a standalone fashion.

The mechanisms elaborated in RESCUE, among which the concept of controlled mobility, can greatly help bringing the network coverage and capacity where it is best needed. For instance, an ATN (Aerial-Terrestrial Network) architecture [START_REF] Reynaud | An Integrated Aerial Telecommunications Network that Supports Emergency Traffic[END_REF] as depicted in Fig. 2.1 can be designed to use the concept of controlled mobility.

In essence, a terrestrial base network, experiencing troubles such as communication link instability or congestion, may be temporarily supplemented with additional wireless dirigible nodes (note that the supplementary nodes can also be mobile terrestrial platforms such as COWs/COTs, as previously explained). Moreover, an integrated ATN which federates multiple types of emergency recovery equipment is complex and costly to deploy, with a high demand in term of ground staff dedicated to the network operations. Controlled mobility is intended to alleviate this demand with self organization mechanisms that take benefit of the unique mobility capabilities of aerial platforms. This way, emergency personnel may be partially relieved of some remote topology control and vehicle guidance tasks and be allowed 6/32 RESCUE Deliverable: D3.1

Version: 1.0 Date: 2012-06-27 to concentrate on their respective core rescue and recovery missions. The envisioned way to enforce controlled mobility within the integrated ATN is manifold. Yet, two approaches in particular can be outlined:

• The base network may be made of aerial nodes (each node following a predetermined mobility pattern) and the terrestrial infrastructure equipment left undamaged by the disaster. For instance, controlled mobility can be applied to the high-level aerial platforms, which are moved so that they can provide maximum coverage and bandwidth to terrestrial and low-level aerial equipments.

• This base network may instead consist of the high-level aerial nodes, with quasistationary positions, plus, again, undamaged or repaired terrestrial equipment. Controlled mobility is here applied to the lower-layer aerial nodes. Lower-layer aerial nodes default mobility patterns will thus be altered so that they can extend the base network capacities where it is best needed.

One of the major expected benefits of the controlled mobility and other discussed ATN mechanisms is the ability to meet applicative demands in a given area with a relatively low number of nodes.

The case of event services

In spite of the general increase in fixed and mobile network access observed over the last years in the most densely populated areas, it is also a concern that ubiquitous Internet connectivity is far from being achieved in sparsely populated regions. And in those areas, when a basic connectivity is supported, bandwidth is still likely to be a concern as it is not always viable for mobile network operators to systematically consider suburban or rural zones for permanent high speed mobile coverage. In parallel, mobile Internet usage gained a widespread acceptance among the general public of either established and emerging markets.

As a result, many planned/unplanned events (e.g. conferences, seminars, festivals and film premieres, sport events, road shows, outdoor gatherings and construction sites) with no (or limited) permanent network resource will require adapted and cost-effective solutions to accommodate the different populations, including organizers, attendees, participants and media representatives.

The network requirements for this scenario are close to those seen in the previous subsection for emergency communications. It can also benefit from an aerial-terrestrial network such as depicted in Fig. 2

Aerial substitution networks for networks with limited connectivity

Substitution networks with controlled mobility can also significantly improve network performance in areas where network coverage is limited, for instance in white areas (e.g. with network connectivity) of rural zones. In particular, the mechanisms investigated in RESCUE could be instrumental for the deployment of future large scale sensor networks.

Instead of providing each sensor node access to a data sink, those nodes could be dispersed without garanteed permanent connectivity, at a much lower cost. In order to collect data from the sensors, extra network entities could be brought on a contextual basis thanks to controlled mobility strategies, for a limited period of time.

A simple networking scenario is illustrated by Fig. 2.3, where sensor nodes can't always establish a route to a data sink. One or several mobile platforms, either terrestrial or aerial (in this case, the network scenario is illustrated with a high altitude platform), may be used as substitution relay nodes to establish a multi-hop route to the network segment where the data sink is located. Naturally, this mode of realization supposes that the mobile platform are equipped with adapted communication interfaces to reach the aforementioned network segment (for instance, a dedicated backhauling link to a satellite or terrestrial gateway).

Alternatively, an asynchronous communication model may be preferred, and those mobile platforms may be used as data ferries (or data mules), without the need of permanent dedicated backhaul link. In all cases, controlled mobility can significantly improve the data collection efficiency (according to various performance criteria, such as the time to collect one round of data from all sensors, the energy used from either sensors and mobile platforms, etc.).

In term of applications, the corresponding use cases are manifold, with for instance the case of environmental applications (airborne sensors, dispersed with aircraft or balloons), earth observation and farm sensors (e.g. soil/water quality control, nutrients/bacterial mon-8/32

Vehicular network as a substitution network for cellular networks

The purpose of this use case is to provide a solution to the frequent overloading of 3G/4G cells in urban areas. For example, in case of traffic jams, we obtain a high density of vehicles into a single cell, and this often results in many mobile data connections from the users in the vehicles. Indeed, they may want to check their emails, place a phone call using VoIP, or check a specific website that can give them some information about the traffic jam in which they are. Our scenario takes advantage of this high concentration of vehicles to reduce the load on the concerned cell: it uses either embedded routers in the vehicles or the smartphones of the users to convert a traffic jam into a huge set of mobile routers. These routers, situated in the overloaded cell, uses a Ad-Hoc routing protocol to forward the packets via multi-hop communications, and hence reach another 3G/4G cell that is not overloaded. Obviously, the mobility of the vehicles is not controlled, and we need controlled mobility in a substitution network. In order to emulate a controlled mobility in a network that cannot be mobilitycontrolled, we introduce a "virtual forwarder", i.e. a virtual node that forwards a message, and includes one or several vehicles.

A virtual forwarder is an entity that possesses a given range and a geographic position. 9/32 RESCUE Deliverable: D3.1

Version: 1.0 Date: 2012-06-27 Hence, a virtual forwarder is not intrinsically bound to a specific vehicle, but instead to a geographic area. We can place a virtual forwarder wherever we want, in order to be able to provide a good connectivity, the same way as we will do for any classic substitution network.

It is only after that that we assign vehicles to the virtual nodes.

To assign a vehicle to a virtual node, we take several parameters into consideration: first, the vehicle has to be in the coverage area of the virtual node (the distance between the vehicle and the virtual node has to be smaller than the range of the virtual node). Secondly, the vehicle needs to remain in this area for a reasonable amount of time (more than the refreshing period for the assignment). Thirdly, the vehicle needs to have 3G/4G and WiFi capabilities.

The topology of virtual nodes (the list of virtual nodes and their location and range) could be broadcast by the NodeB/eNodeB once it received it from a distant server dedicated to substitution network deployment, or once it calculated them itself. After all vehicles have received this information, they could determine themselves if they are assigned to a virtual node or not, according to the three parameters listed previously.

To conclude, this use case allows an instant deployment of a substitution network in road traffic jams, through the conversion of vehicles into mobile routers, and the introduction of "virtual forwarders".

Motivations

FT is responsible for one of the experimentations of the project RESCUE, and will prominently rely on aerial equipment, and more precisely on micro-drones (the concept being defined in subsection 3.1.3). In the context of this experimentation, a series of testbeds will be carried out during the second half of RESCUE (i.e. between t0+18 and t0+36) with all the hardware and software required to control and monitor the behavior of each aerial/terrestrial equipment and to evaluate the performance of controlled mobility with adapted performance metrics. This chapter gives a presentation of the aerial communication nodes, and more particularly of the two types of aerial drones (latter dubbed 'type 1' and 'type 2') that were chosen for the experiment. A detailed description of those drones, both in terms of important hardware and software, is followed by presentation of the different deployment variations that will be evaluated along the experiment in section 3.5.

The experimentation with aerial drones will be held at FT in Lannion, under various outdoor conditions. The expected testbed areas will range from 100 m x 100 m to 500 m x 500 m.

The experimental network will consist of both terrestrial and aerial nodes. On the terrestrial segment, 4-6 nodes (laptops) will act as the base network, with established wireless links. A subset of those nodes and links will be under temporary failure, due to several reasons (e.g. interferences, network congestion, power outage, etc.) and will thus justify the introduction of the substitution network made of 6-10 aerial nodes (1-2 type 1 drones and 5-8 type 2 drones). A subset of the various mechanisms designed and developed by the RESCUE partners, including controlled mobility, will be deployed on those aerial nodes. The terrestrial segment will also contain 1-2 nodes dedicated to drone control and telemetry.

Objectives

This experimentation aims to shed a complementary light on the concept of controlled mobility investigated in RESCUE. It is not intended to replace (or overlap with) other experimentations planned in RESCUE by other partners. On the contrary, the general idea is to investigate RESCUE key concepts, and integrate a subset of the RESCUE mechanisms, with the specific constraints of low altitude aerial networks, and also with the benefits of the specific features and mobility patterns of aerial vehicles. More precisely, the main aspects which will be investigated during this experimentation are:

• Evaluating controlled mobility in the context of low altitude aerial networks -Controlled mobility mechanisms will be integrated into the drones, and their performance will be evaluated through the experimentation with adapted metrics such as packet loss and link/network throughput.

• Assessing energy efficiency of controlled mobility -Among the aforementioned performance metrics, energy efficiency (and, in particular, substitution network survivability), will be carefully evaluated, since drone autonomy must obviously be considered as a major constraint in order to obtain realistic deployment scenarios.

In order to be achieved, those objectives raise the issue of specific aspects which will be detailed and addressed in the first phase of the experimentation, between t0+18 and t0+30.

Those points are:

• Realistic aerial mobility patterns suitable for an actual testbed, which include i) autonomous takeoff and landing procedures ii) physical collision avoidance iii) implementation of an adapted on-demand emergency manual drone control.

• Among the received telemetry from the drones, a special care shall be taken to process consistent energy and position measurements, independently of the type of drones.

In particular, this requires to take into account the discharge pattern of the different batteries, as well as the energy consumption of the different drone elements. Also, GPS support (which is not offered by default) shall be secured on type 2 drones.

• An adapted monitoring system will be deployed to allow the centralized logging of important network events (e.g. packet loss and delay, link throughput, etc.) on the considered wireless multi-hop network.

• The evaluation results of controlled mobility in the context of the considered testbed may differ from related simulation performance results, mainly because of significant differences in the starting constraints and hypotheses. As a result, one last point which will be addressed in this experimentation is the means to set up an emulation testbed, 12/32 RESCUE Deliverable: D3.1

Version: 1.0 Date: 2012-06-27 using a network simulator (where the general scenario will be scripted and simulated) which will be interconnected with actual drones to inject realistic physical measurements in the simulation. The details of the chosen emulation solution are presented in section 3.4.

An overview of aerial vehicles, the case of micro-drones

Low and high altitude platforms

Aircraft-based telecommunications have gained momentum in the recent years, with many types of aerial platforms seen as a possible extension or alternative to traditional equipments from terrestrial and satellite wireless networks. Those platforms, either aerostats or aerodynes, evolve at various altitudes and are named Low Altitude Platforms (LAPs) [START_REF] Reynaud | An Integrated Aerial Telecommunications Network that Supports Emergency Traffic[END_REF] or High Altitude Platforms (HAPs) [START_REF] Grace | Broadband Communications via High-Altitude Platforms[END_REF], [START_REF] Reynaud | Competitive Assessments for HAP Delivery of Mobile Services in Emerging Countries[END_REF] whether they fly in the lower troposphere or in the stratosphere.

Depending on multiple factors including their altitude, available power for the payload, the type of antenna and radio technology, an aerial platform can cover areas of up to 300 km radius. Moreover, many aerial vehicles are able to keep a quasi-stationary position. Direct Line Of Sight (LOS) conditions with terrestrial equipments are thus often met. As a consequence, many use cases that take benefit of aerial platforms have been recently envisioned, including scenarios based on substitution mechanisms such as planned temporary events or unplanned emergency communications [START_REF] Reynaud | An Integrated Aerial Telecommunications Network that Supports Emergency Traffic[END_REF]. In fact, due to their payload flexibility, relatively fast deployment times and low altitude (hence allowing reduced radio propagation delays), HAPs and LAPs are increasingly seen as a viable solution to support relief services. They can quickly restore communications or increase capacity in the affected zones without mandatory support of the terrestrial infrastructure. Moreover, the aerial platforms can be effectively deployed together with the existing satellite-terrestrial recovery infrastructure, to provide speedy deployment able to cover larger areas and to maintain effective communication links supporting adequate capacities and bandwidth demands of the end-users.

Micro-drones

Micro-drones are a special type of aerial vehicles. Due to their relatively low resources, both in terms of payload capacity and autonomy, they are generally restricted to low altitudes or even very low altitudes (i.e. within a range of a few meters to a few dozen meters).

Another consequence of their small form factor is that they are necessarily unmanned. As a consequence, they are a subtype of Unmanned Aerial Vehicles (UAV), and are generally named Micro Aerial Vehicles (MAV) Aerodynamics Micro-drones can sustain their altitude through various aerodynamic principles, including fixed-wings (e.g. planes), rotary-wings (e.g. helicopters, quad-rotors, hexarotors and octo-rotors) or flapping-wings (e.g. ornithopter). In the context of this delivery 13/32 Payload Due to their small form factor, micro-drones can lift a very limited weight. Generally, the payload ranges from a few grams to 1-2 kilograms. In our RESCUE experiment, we plan to set up payloads of less than 100 g for type 2 drones and of 100-500 g for type 1 drones.

Autonomy In a similar fashion, micro-drones autonomy is generally very limited. This is in particular verified for rotary-wings vehicles which require a relatively important amount of energy to sustain their altitude, which adds to the fact that those vehicles use small batteries, which only provide a few minutes of autonomy for the whole platform (propulsion, telemetry and payload included). Some techniques could allow much greater autonomy, with for instance the use of energy harvesting techniques [START_REF] Prabhakar | Exploring system parameters for viability of energy harvesting technologies[END_REF]. Another approach would be the use of contact-less mechanisms to recharge the vehicles. However, the expected autonomy of type 1 and type 2 drones is 10 to 30 minutes, depending mainly on the battery capacity, mission mobility pattern and payload weight.

System requirements

For the experimentation with drones, the system requirements, i.e. the set of formal elements that constitute the embodiment of the requirements of the systems defined in the RESCUE architecture, were relatively simple to define. This section provides a brief description of the required components.

Hardware requirements

Each communication node in this experimentation was chosen according to: i) its ability to be run on batteries (in order to easily perform outdoor testbeds) and ii) its core specifications in terms of main board, CPU, RAM, which had to be compatible with the use of a Linux operating system, to allow a consistent development and deployment environment. Additional criteria were used, such as the total acquisition price of the equipment, preferred to be as low as possible (especially for the drones) and the default level of equipment of the nodes (with, for the drones, a near-complete multi-sensor support).

Software requirements

The requested platform consists of the Linux operating system, both on the communication nodes for deployment purpose and on the development environment, able to run simulation and emulation components. Moreover, each specific development environment from each type of communication node, if available, must be made available on the requested platform.

14/32 RESCUE Deliverable: D3.1

Version: 1.0 Date: 2012-06-27

The following section details the hardware and software choices that were made for this experimentation.

Key hardware

This section describes the most important hardware considerations of the projected aerial network experiment held at FT. Most of the discussed equipment was already acquired by the time of writing this report (t0+18), and is currently being investigated and put together. In a nutshell, this equipment is composed of two types of MAV (both types being quad-rotors), the necessary ground station to remotely set up and control the MAV trajectories and the remote control system to manually override the autopilot.

For the needs of the multiples deployment scenarios of the RESCUE experiment discussed in section 3.5, the chosen MAVs needed to be sufficiently open in terms of software (e.g. autopilot, firmware, telemetry and, if possible, development environment with documented APIs) and hardware (e.g. modular additional functions like GPS, sonar, magnetometer, camera, and so on.). Moreover, we also used acquisition price as a primary criterion, and only considered low cost MAVs, with a unitary price lower than 1ke. With these criteria in mind, we selected two different hardware and software platforms:

• Type 1 drone -the ArduCopter architecture. ArduCopter [START_REF]Arduino-based autopilot for mulitrotor craft, Home Page at Google Code[END_REF] is essentially made of a MAV autopilot, extending the ArduPilot Mega (APM) [12], an open source autopilot which includes a large range of UAV features, plus ground station support.

ArduCopter, ArduPilot and related hardware reference designs are supported by an active MAV/UAV amateur developer and user community [13].

• Type 2 drone -the AR.drone product. AR.drone[16], manufactured by Parrot, a French company, is a low-cost drone which is explicitly sold to end-users for recreative purposes, including free flight, remote camera capture and real-time games that take benefit of augmented reality mechanisms. Version 2.0 of this drone was released in endmay 2012, providing many advantages over a type 1 drone: a lower price of acquisition, a relatively powerful mainboard with a Linux distribution and two built-in front and vertical cameras and easier means to pilot the drones with laptops and other devices.

However, compared to a type 1 drone, the AR.drone has almost no lifting capabilities for a communication payload (by all means less than 100 g) and lacks a built-in GPS device.

In the experimentation, we intend to take benefit of both types of drones, and will seek to take benefit of the different features of each type of drone in an heterogeneous scenario.

However, we will generally consider type 1 drones for unitary tests and type 2 drones for experiments with a larger number of aerial nodes.

Type 1 drone -ArduCopter

The MAV structure

The ArduCopter software architecture was adapted and demonstrated on a large range of rotor-based structures: traditional model-making helicopters, quad-rotors, hexa-rotors and octo-rotors, to cite the most common form-factors. We chose to opt-out model-making helicopters, because rotor-based drone offer richer possibilities of flight control and stability. Among those structures, the cheapest structure is logically that which needs less rotors (and thus less hardware, power and batteries), i.e. the quad-rotor form factor. We hence selected the quad-rotor structure. • Plates -3 plastic plates allow mounting the electronic equipment. Those are the battery mounting plate (not visible in Fig. 3.1) and two main plates: the frame and board carrier plates. The arms are attached to the frame plate, as well as the power distribution board. The radio receiver and auto-pilot boards are mounted on the board carrier plate.

• Protective dome -A set of four plastic arches, mounted on the MAV arms. As the name suggests, it is used to alleviate major damages in case of collision. A GPS can be

Motors

The electric motors used for the ArduCopter reference design, and for electric micro-drones in general, are rated in KV. This is not a standard notation and does not designate kV (kilo volts). Instead, it refers to the number of revolutions per minute (RPM) a motor can achieve when 1 V is applied, in absence of any load on the motor (e.g. propellers).

For the ArduCopter, two grades of electric motors are used: 850 KV and 880 KV. Table 3.1 illustrates the performance of both motors in terms of measured current (A), power output (W) and thrust (g). The choice of the adequate motor has obvious impacts on both the possible weight of the payload and energy consumption / overall MAV autonomy.

Propellers On the ArduCopter quad-rotor reference design, 4 propellers are mounted on the motors. Just as two grades of motors are used for the ArduCopter, two types of propellers are also used: 10x45 for the 850 KV motor, and 12x45 for the 880 KV motor. Note that the first number describes the blade length (in inches) and the second number gives a theoretical indication of the distance traveled with each propeller rotation. with higher capacity can be used, often at the expense of increased weight. So here again, the projected power output, MAV autonomy and payload weight must be carefully estimated.

Power distribution and battery

The typical weight of a LiPo battery varies between 100 g and 1500 g, depending on its capacity. The recommended LiPo 3S battery weights about 200 g.

Payload

The payload dimensions, weight and features naturally depends on the platform capacity: with more thrust delivered by the rotors, the vehicle will be able to lift a heavier payload. Likewise, if the main power distribution can deliver energy (and a sufficient amount of it) to the payload, then a secondary battery for the payload itself will not be required, and more weight will be allowed for the payload.

Currently, the maximum weight allowed for the payload (secondary battery included, if required) is about ranging from 100 g to 1 kg, naturally depending on the motor grade and speed (see Table 3.1 corresponding to the output thrust per motor, which depends on the grade -850 KV or 880 KV -and the motor instantaneous speed, in RPM). Stronger motors or higher motor speeds allow more thrust, but require higher-capacity (and heavier) batteries to keep a constant mission autonomy. Another way to allow heavier payloads is to use hexaand octo-rotor MAVs instead of a quad-rotor.

Ground station

The ground station used in the ArduCopter reference design is a multipurpose tool, which allows to complement the autonomous flight capabilities of the considered MAVs, including autopilot firmware upload, embedded sensor calibration, mission planning and telemetry monitoring. GHz band. That is the case of the RC system used for the RESCUE experiments, a Futaba 7C system. Those systems can naturally be source and victims of interferences when other radio technologies using the ISM 2.4 GHz band are also in use (e.g. IEEE 802.11b/g or IEEE 802.15.4). However, several RC systems, including the Futaba 7C, support frequency mitigating techniques, such as fast frequency hopping combined with dual (or multiple) antenna diversity. Those frequency mitigating techniques allow robust RC communications. However, the impact, in term of interferences, from 2.4 GHz RC systems to other 2.4 GHz radio technologies used on the drone (e.g. IEEE 802.15.4 for the telemetry) need to be investigated.

Radio control system

Type 2 drone -AR.Drone

This subsection briefly presents another type of drone chosen for the RESCUE experimentations, the AR.Drone, and focusses on the main features of the AR.Drone, as well as the most significant differences with the type 1 drone (ArduCopter). The following description refers to the last version (2.0) of the AR.Drone, made available to the end-users in May 2012.

The MAV structure

This type 2 drone is also a quad-rotor, with a lightweight structure made of carbon fiber tubes. In terms of both structure and electronic components, this drone is also modular, each part being relatively easily replaceable. Two types of foam-made hulls can be used: either outdoor or indoor (slightly heavier, with additional protections for the propellers).

The four motors are 14.5 W brushless motors which have less lifting power than either 850 KV or 880 KV from the type 1 drone. As a result, the overall lifting power for a payload does not exceed 50-100g, depending on the type of hull which is used.

The electronic equipment

While generally comparable to the specifications of the type 1 drone, it is to be noted that the AR.Drone has a rather complete default equipment, with two vertical and frontal onboard cameras. However, it lacks a GPS, which can be installed later through an available USB connexion.

Moreover, the main board is significantly faster than that of type 1 drone. The AR.Drone main board in fact features a 1GHz ARM A8 Cortex CPU, as well as 1 GB of DDR2 RAM, which are relatively high end specifications, and which allow the drone to run a Linux distribution (busybox). The type 2 drone is also well-equipped with multiple sensors: a 3-axis gyroscope, accelerometer, magnetometer. Also, a pressure sensor and a ultrasound sensor allow ground altitude measurement. Additionally, the vertical camera allows to measure ground-relative speed. The default communication interface is a 802.11b/g/n interface, which is used for multiple communication purposes (including control, telemetry and video streaming). As a consequence, the remote control range is limited, and is about 50 m with line of sight conditions (naturally, this range can be significantly extended with adapted ground equipment).

Key software

The emulation layer: ns-3

The following subsection describes the use of the network simulator ns-3, which we use both as a simulation tool as well as an emulation component. This multi-purpose ability, as well as the open-source nature of this tool and the relatively large support of its developer and user community, was instrumental in our choice.

Principles and history

Network simulation tools may be based on discrete or continuous time principles. ns-3 belongs to a popular subset of the discrete simulation tools, i.e. the discrete event simulation (DES) type [START_REF] Riley | The ns-3 Network Simulator Modeling and Tools for Network Simulation[END_REF]. Compared to continuous time simulators, this type exhibits a tremendously decreased computational complexity by jumping from one time event to another. Naturally, there is generally a causality between consecutive events, i.e. the occurrence of a given event can potentially trigger new events, which will be processed by the simulator in turn. Independently of ns-3 or any other specific DES, this type of tool generally defines and implements a dedicated structure where all future events (when compared to the current simulator event clock) are stored for further processing. This structure is generally called the Future Event List (FEL). In a nutshell, a DES simply runs through the whole list (removing the past events and possibly adding new events) until it reaches the maximum simulation time.

ns-3 was created with the intention to eventually replace ns-2, which was (and still is) very popular in the research and educational field. One major criticism emitted towards ns-2 is that this tool does not inherently favor modularity. As a result, the base code of ns-2 became increasingly complex with time (and allegedly plagued by relentless bugs, because of this complexity). Also, it is also considered difficult to extend this base code, and those extensions are generally incompatible.

So in 2005, ns-3 was announced, and a first version was released in 2006. This version was implemented partly from ns-2 code, partly from the YANS [START_REF] Lacage | Yet another network simulator[END_REF] and GTNetS [START_REF] Riley | The Georgia Tech Network Simulator[END_REF]

Main features

Unlike other simulators, which use their own modeling language, ns-3 relies on either C++ or Python, the latter being used through dedicated C++ wrappers. C++ and Python can also been used simultaneously or in a complementary fashion, depending on the personal development preferences of the end-user.

Core concepts

The four following abstractions play a predominant role when designing any core module or extension:

1. Nodes represent the basic computing device abstraction (which translates, in a more practical context, in network nodes such as desktop computers, laptops, sensors, routers, and so on). This abstraction is represented in C++ by the class Node. There are naturally many other classes, more or less ubiquitously used in the ns-3 code. However, we won't detail any further those classes in the context of this document. The interested reader will find useful additional information in [START_REF]The ns-3 documentation Web page[END_REF]. It is also to be noted that ns-3 features an energy model which takes into account both the principles of energy consumption and energy source modeling, with the support of linear energy sources as well as for non-linear batteries (with rate capacity and recovery effects). This energy model was designed to be extensible and modular, so that it can support various models for energy consumption, realistic battery discharge and energy harvesting. Other features ns-3 exhibits an interesting tracing system, built on the concepts of tracing sources and sinks, and a set of mechanism to connect sources and sinks. Trace sources can signal events that occur in a simulation and can potentially provide access to relevant data, which are selectively consumed by trace sinks. This way, for the same trace source, customizing a trace sink enables the end user to fine-tune the interesting data, in order to trace only the relevant information, according to the user needs. Furthermore, ns-3 supports the packet capture log format (pcap). These pcap traces can then be analyzed through common network trace tools, such as WireShark. Alternately, traces can be obtained as simple text files and can be directly read or parsed by custom scripts, in a somewhat similar fashion as what is commonly done with network simulators such as ns-2.

Core librairies

Emulation principles with ns-3

Besides offering a quickly maturing open-source environment, another primary reason for choosing ns-3 over other simulation tools in the context of RESCUE, is the interesting possibilities in term of integration into testbeds environments. Two prominent emulation principles of ns-3 are presented here: first, the possibility for a ns-3 simulation to send data on a real testbed network. Secondly, the possibility for a network node to interact with simulated lower layers.

The Emu NetDevice mechanism With this mechanism, a simulation node can send and receive packets over a real testbed network. Fig. 3.3 illustrates the interaction made possible between a ns-3 simulation and an actual network, e.g. a testbed. This mechanism can be especially useful to test in a testbed a custom routing protocol that was implemented for ns-3, without the need to rewrite the protocol itself. Instead of using standard NetDevice objects in the simulation such as LteNetDevice, WifiNetDevice, WimaxNetDevice and so on, the simulation is slightly modified by replacing the target sim- by the autopilot itself and that of the ground station. Obviously, in that case, the resources offered by the autopilot greatly depend on the type of drone. Those of type 1 (ArduCopter) are limited: the ATMega2560 autopilot relies on a 16 MHz processor delivering 32 MIPS of onboard power, with 256k Flash Program Memory, 8K SRAM and 4K EEPROM. This is adapted to the autopilot and telemetry requirements, but it will not allow advanced functions offered by a more powerful payload, such as deploying a wireless routing protocol. On the other hand, the autopilot of the type 2 drone (AR.Drone) is hosted on a significantly more powerful motherboard: the CORTEX A8 which is a 32 bits ARM card operating at 1

GHz, delivering about 2000 MIPS of onboard power. The type 2 drone is also equipped with faster and larger DDR2 RAM of 1 GB operating at 200 MHz. As a result, the type 2 drones should be a far better choice to deploy advanced software such as a custom routing protocol implementing controlled mobility.

Still, in this scenario, type 1 drones without payload can offer multiple interesting insights about the user and system requirements related to aerial networks:

• With the equipment required for this scenario, all the common architecture can be tested (unit testing, integration testing). This includes testing the default autonomic features of the MAV (drone configuration and mission planification), telemetry testing (telemetry sent in real-time through the IEEE 802.15.4 link, or buffered on the MAV during the mission for further offline download), mission remote control through the ground station and MAV manual control through the RC system.

• Also, the embbeded MAV firmware, which is based on open-source micro-code, can be rewritten according to our own needs. In particular, this scenario allows the investigation of inter-MAV communications through the IEEE 802.15.4 link. This feature should not require any dedicated payload, since the computational complexity to extend the embedded MAV firmware to allow inter-MAV control messages (e.g. HELLO messages) should not exceed the autopilot hardware capabilities.

• The present scenario allows to partially assess the energy efficiency of the platform (energy requirements for the navigation and propulsion, for the sensors, for the IEEE 802.15.4-based telemetry and for the RC proprietary 2.4 GHz communication link).

• Finally, the ns-3 emulation capabilities based on the Emu NetDevice (see section 3.4.1) allow to perform some interesting simulations without actually deploying the routing protocol code on the micro-drones. This work is thus compatible with this scenario without payload. However, since this study will aim at sending packets from the ns-3 simulation through the testbed composed of actual MAV communication links, a backhaul is required to send data from the ground station (where the ns-3 simulation is run) to the micro-drones, where the packets will be sent through the actual MAV 26/32 wireless communication links. This case is illustrated in Fig. 3.5, where a ns-3 simulation interacts with the communication interfaces of the MAV. However, to to so without disturbing the observed communication interface (e.g. IEEE 802.15.4 on the example of Fig. 3.5), another link, either wired (quite unpractical for a MAV, but still achievable with a tether) or wireless, must be set up and used to relay data to be transmitted through the observed communication interface. This naturally adds some complexity both on the ground station and the MAV. The viability of the use of ns-3 as an emulation platform hosted in the ground segment will thus have to be investigated further.

Implementation 2: payload with limited integration for type 1 drones

This scenario investigates the use of a payload to host functions (e.g. routing protocol or monitoring framework) which exceed the computational capabilities of the default programmable autopilot of a type 1 drone (ArduCopter).

Payload description

Figure 2 . 1 :

 21 Figure 2.1: A 2-level aerial network adapted to disaster relief operations. Aerial vehicles are interconnected through IPL (Inter-Platform Links).

Figure 2 . 3 :

 23 Figure 2.3: Vehicular network as a substitution network for cellular networks -emulation of controlled mobility through virtual forwarders

 focus on rotary-wing equipment, which allows the vehicle to hover and keep a quasi-stationary position.

Figure 3 . 1 :

 31 Figure 3.1: A typical ArduCopter frame

Fig. 3 .

 3 Fig. 3.1 illustrates the main structural components from the 1.0 ArduCopter reference design:

Telemetry

 The telemetry equipment is mainly made of a wireless communication interface and an adapter card, both for the drone and the ground control station. With the ArduCopter solution, the wireless interface is generally an XBee-PRO RF module, either based on a 900 MHz proprietary point-to-multipoint solution (licensed in the USA and Canada), or on a IEEE 802.15.4 standard [14] operating on the 2.4 GHz ISM band (licensed almost worldwide, and in particular in Europe, unlike the 900 MHz proprietary solution). This equipment allows two way communication with the mission waypoint read and write functions in several ground control stations, which allows live telemetry data, new missions and waypoints on the fly, without grounding the UAV and physically connect it to the ground station through a USB cable. The theoretical range of the communication interfaces is respectively 140 m (3000 m in Line of Sight -LOS -situation) and 100 m (1500 m in LOS situation) for the 900 MHz and 2.4 GHz bands. However, practical tests showed a limit of 800 m for LOS communications with acceptable error. Electronic speed controllers Electronic Speed Controllers (ESCs) are electronic circuits which are able to control the MAV motor speed. ESCs are traditionally rated according to the maximum current they allow. Naturally, the trade-off between maximum current and size/weight factor must be carefully weighted. For the quad-rotor version of the ArduCopter, two types of programmable brushless ESCs are available: 20 A and 30 A. They allow the use of different motors.

 Apart from the aforementioned equipment, the microdrone requires a power-distribution board, which distributes the power from the battery to the four ESCs in order to power the MAV motors. The main battery in the ArduCopter reference design is a lithium polymer (LiPo) with 3 cells (graded 3S). The recommended capacity is 2200 mAh with a constant/burst discharge of respectively 30 C and 40 C. However,

 A micro-drone can be flown according to multiple modes. For instance, flight can be autonomous, remotely controled by the ground station, assisted by the ground station, or manual. Although in the context of the ANR RESCUE project we intend to rely on fully or partially autonomic flight modes, manual mode is still a major safety feature to support. In fact, it is important, in case of emergency, (e.g. strong altitude 19/32 RESCUE Deliverable: D3.1 Version: 1.0 Date: 2012-06-27 winds, depleted battery, partial motor failure, ground station communication failure) to be able to manually fly the drone back to its home location. Radio Control (RC) systems are radio control commands which allow an operator to manually pilot the drone, without the mandatory assistance of the autopilot or the ground station. Those RC systems are operated on different frequency bands, but the prominent band used in Europe belongs to the ISM 2.4

 simulators.It is to be noted that the INRIA co-sponsors ns-3 core developments. At the time of writing this delivery report, the most recent version of ns-3 is ns-3.13 and was released in December 21

2 .

 2 Channels represent the media, either wired or wireless, which are used to send the information between Nodes. The C++ counterpart is the class Channel.

3 . 4 .

 34 Network devices represent the communication interface, or physical device, which allow a node to access a Channel. The corresponding C++ class is NetDevice, which provides methods for managing connections to classes Node and Channel. Applications represent user programs. This abstraction is represented in C++ by the class Application. This class provides methods to manage the representation and behavior of the user-level applications.

 The core libraries include models for radio technologies such as IEEE 802.11 (WifiNetDevice, with 802.11 Distributed Coordination function -DCF -in infrastructure and adhoc modes, 802.11a/b/g PHY layer, some 802.11e QoS mechanisms, prominent propagation models and the support of 802.11s), 802.16 (WimaxNetDevice supporting Multicast and Broadcast Service -MBS -) and LTE (LteNetDevice). Furthermore, many routing protocols such as OLSR and AODV are supported by default through core modules.

Figure 3 . 3 :

 33 Figure 3.3: Interaction between a ns-3 simulation using an Emu NetDevice and a real network interface connected to a testbed.

Figure 3 . 5 :

 35 Figure 3.5: Implementation 1 -A ns-3 simulation interacts with the communication interfaces of the MAV.

 In this scenario, the payload is composed of an embedded Computeron-Module (COM), adequate expansion boards (including separated communication interfaces -eg. IEEE 802.11a/b/g -), and dedicated batteries. An example is the Gumstix overo and verdex pro [15] ranges of COM, which are all based on Marvell PXA270 with XScale processors ranging from 400 MHz to 600 MHz, 64 MB to 128 MB RAM and 16 MB

27 Figure 2.2: Self organized sensor network architecture with airborne data collection

	RESCUE	Deliverable: D3.1
		Version: 1.0
		Date: 2012-06-
	.1 where controlled mobility mechanisms can be implemented, in a
	similar fashion.	
		7/32

Table 3 .

 3

	1: Respective performance in measured current (A), power output (W) and thrust (g)
	of ArduCopter motors AC2830-358 (850 KV) and AC2836-358 (880KV). Power output from ESC,
	standard 3S LiPo battery, 10x45 Propeller.

• Legs -four plastic pieces, which are mounted on the MAV arms, and used to stabilize the vehicle on the ground.

The electronic equipment

The electronic equipment in the ArduCopter reference design is composed of several parts: the APM board, the IMU board, the sensors, the power distribution and the batteries.

APM board

The ArduPilot Mega (APM) is an open-source autopilot, physically made of a main processor board and a daughter board, also known as shield, which is used as an Inertial Measurement Unit (IMU). It contains several dedicated sensors (e.g. triple axis angular rotation sensors -gyros -, accelerometer, absolute pressure and temperature sensor, and optionally air speed sensor). GPS A GPS module is mounted on the upper part of the dome and connected to the main APM board. Several GPS models can be used on the ArduCopter, but the most ubiquitous module is the 66 channels MediaTek MT3329 GPS module. This module allows the UAV to hold position or to fly along a predefined set of coordinates. NetDevice. Seen from the upper layers, the simulation is unchanged. According to this principle, a ns-3 simulation can access a real physical hardware, thanks to the use of a real-time scheduler which aligns the simulation and the host clocks. This interaction is made possible thanks to the use of the Emu NetDevice, which basically opens a raw socket an binds to the target communication interface in promiscuous mode. Some of the testbed scenarios described in sections 2 and 3.5 can particularly take benefit from this emulation principle allowed by ns-3.

The Tap NetDevice mechanism With this mechanism, a network node or a VM can interact with a ns-3 simulation. With real upper layers interacting with simulated lower layers, this can be seen as the reverse emulation use-case as seen in section 3.4.1. The Tap NetDevice principle will not be described further into this document, as the testbed scenarios outlined in section 3.5 do not take benefit of Tap NetDevice. The interested reader may however refer to [START_REF] Riley | The ns-3 Network Simulator Modeling and Tools for Network Simulation[END_REF], [START_REF]The ns-3 documentation Web page[END_REF] for a more comprehensive description.

Target deployment cases for the aerial testbed

This section describes the intended deployment scenarios, which will be experimented during the second period of the RESCUE project, between t0+18 and t0+36. We will first describe variations, which we will name embodiments 1, 2 and 3, about how the various functional entities are distributed and communicate within and between the different communication nodes. These variation will allow us to:

• Properly set up the experiment equipment and environment.

• Understand, design and develop specific building blocks.

• Define and configure the monitoring framework.

• Anticipate the practical, regulatory and environmental constraints.

Then, the second half of this section will describe the most practical aspects of the intended experimentation, including the expected topology (number of terrestrial and aerial nodes, types of communication links, etc.). control system (this command system enables to manually operate the drone and act as a safety component). The other segment is the aerial segment, containing the drone itself. While Fig. 3.4 shows two logical radio channels (one used for telemetry, the other for manual remote drone control), in the common functional architecture, the number of physical communication interfaces depends on the type of drone:

Common architecture

• In type 1 drone (ArduCopter), two radio channels are deployed: an IEEE 802.15.4 link between the ground station and the ArduCopter drone for telemetry and remote control, and a proprietary Futaba 7C RC channel operating in the 2.4-2.454 GHz band (more restrictively, this system can -and must -be configured in Europe to operate in the 2.407424-2.450432 GHz, which is compliant with the French regulations). A fast frequency hopping mechanism is implemented in this latter radio technology, to mitigate potential interferences from other radio systems operating in the 2.4 GHz band, which is the case in some of our scenarios.

• In type 2 drone (AR.Drone), by default only one physical radio interface is deployed: an IEEE 802.11b/g/n link which supports both aforementioned logical channels.

Implementation 1: no payload

This scenario supposes no payload is attached to the MAV. As a consequence, the experiments carried out in this context can only rely on the computational complexity offered to 32 MB Flash. Compared to the 16 MHz and 256 KB Flash of the ATMEga2560 autopilot as seen in subsection 3.5.2, the payload is obviously more powerful. However, the payload requires an adaptated power solution, which is an important aspect since we seek to obtain a self-powered unit. A COM payload does not require too much power and several examples of use of AA/AAA Alkaline, AA/AAA NiMH and and LiPo batteries have shown a potential autonomy up to a few hours for the aforementioned Gumstix COM solutions. This aspect will have to be investigated further. Fig. 3.6 illustrates the loose integration between the MAV and the payload: an integration external component is represented in the ground station. This component, which has to be specifically designed and developed for this scenario, acts as a gateway between the autopilot (accessible through the telemetry equipment and the related mission planning software) and the payload, accessible through a dedicated communication interface.

Implementation 3: payload with tight integration for type 1 drones

As in the previous deployment mode, the use of a payload is intended to increase the computational capabilities of the aerial node and is thus intended for type 1 drones (Ar-duCopters). In this scenario, the payload is more tightly integrated with the autopilot, sensors, communication interfaces and, if possible, the power distribution board. As illustrated by Fig. 3.7, the main consequence of this tight integration on the MAV is the simplification on the ground segment: no integration external component (and associated communication link to the MAV) is required anymore on the ground station. A lighter component can be kept on the ground station for specific trace and logs to monitor, if the mission planning and telemetry default module is not sufficient.

However, this tighter integration on the MAV is not straightforward and requires a careful investigation: the autopilot and the payload will need to communicate through a dedicated link (i.e. a RS-232 serial port), both systems have to support this features. Also, the payload should be allowed to either directly access the autopilot sensors, or access those values through a regular reception of the related data on the autopilot-payload dedicated link. This requires development both on the autopilot firmware and payload software component.

Lastly, if the autopilot power distribution allows it, the payload could be fed with the main LiPo battery used for the propulsion and navigation. The impact on overall autonomy and overall weight (if the LiPo battery capacity must be increased) must also be studied further.

Conclusion

In this delivery report D3.1, we first described a set of selected use cases, as well as the specific use of controlled mobility, which is applied differently in each use case. The presented scenarios first investigated controlled mobility for planned and disaster events (with a description of two cases about emergency communications and event services), secondly aerial substitution networks for networks with limited connectivity (and in particular on self organized sensor network architecture with airborne data collection), and finally the use of controlled mobility in vehicular ad hoc networks.

Then, D3.1 described the first experimentation from RESCUE, prominently relying on aerial equipment, and more precisely on micro-drones. After a brief presentation of the hardware and software requirements, we detailed important hardware and software aspects, focusing on aerial communication nodes, and more particularly of the two types of aerial drones that were chosen for the experiment. We then presented the different deployment variations that allow the involved partners of the consortium to schedule a series of important works for a good preparation of the projected ANR RESCUE experiments. Those elements allow us to tackle the testbed and experimentation problems with solid foundations in terms of scenario, hardware and software environments, as well as experimental constraints and dimensioning aspects.