Orange Laurent Reynaud
email: laurent.reynaud@orange.com

Deliverable D3.3 reports, in complement of the lab-based validations presented in deliverable D3.2, the in vivo evaluation results of the RESCUE substitution architecture transposed into the specific context of aerial vehicles. In the scope of this deliverable D3.3, a particular care was taken to report the specific implementation elements and deployment aspects required to experiment and validate controlled mobility principles based on a network of aerial vehicles. Moreover, this document details two key demonstration cases that were used to conduct the validation of all adapted code on the development framework, and then presents a series of architectural evaluation results focussing on how an adapted controlled mobility scheme needs to be practically implemented on a network of aerial nodes to efficiently meet the applicative requirements of a substitution network as delineated by the RESCUE project. Responsible

Introduction

This delivery report D3.3 is part of RESCUE work package 3. This work package is intended to build use cases and to validate the architecture and protocols defined in WP1 and WP2 through in vivo conditions. Substitution networks rely on the concept of controlled mobility, where nodes can move (or their position can be controlled by an external factor) to provide additional resources in the networks. Node mobility may be necessary in different situations, for instance to improve coverage where users provide resources in the networks (such as community or sensor networks), to re-establish connectivity in case of fault or to reinforce resources in case of sudden surge in the demanded network capacity (e.g. flash crowd and more generally event services).

Objectives of the deliverable

Deliverable D3.3 is intended to shed light on complementary and practical results compared to the in vitro validations performed by the partners of RESCUE on the basis of the implemented controlled mobility mechanisms notably reported in deliverable D3.2 [START_REF] Razafindralambo | Architecture implementation and integration, Deliverable D3.2, ANR project RESCUE[END_REF]. This document reports the transposition of the substitution architecture into the context of aerial vehicles, and particularly highlights the practical aspects of deploying a substitution network with aerial nodes. As a result, we focused here on the specific implementation elements and deployment aspects required to experiment and validate controlled mobility principles based on a network of aerial vehicles.

Structure of the document

In the rest of this deliverable, we first outline a couple of demonstration cases that were used to conduct the illustration as well as the validation of all adapted code on the development framework. A particular care was taken to write this second section consistently with the main results of deliverables D3.1 [START_REF] Reynaud | Scenario description, functional requirements, and experiment sizing, Deliverable D3.1[END_REF] and D3.2 [START_REF] Razafindralambo | Architecture implementation and integration, Deliverable D3.2, ANR project RESCUE[END_REF]. Furthermore, section 3 details our software development framework which allows integrating and experimenting the desired controlled mobility schemes. This section also reports the various mobility procedures that need 3/37 to be supported by our framework and briefly mentions key configuration aspects required to properly set up a RESCUE UAV testbed. Section 4 then explains how, in order to perform a thorough evaluation of the communication system, the presented results were obtained on the basis of the demonstration cases presented in section 2, in both ideal and non-ideal situations. This validation-oriented section is followed by section 5, in which we present more advanced experimentation results relying on the use of the demonstration framework, related to how efficiently a swarm of aerial mobile nodes is able to self-organize and cover a target area (e.g. a disaster zone). We finally give future directions and the conclusions of deliverable D3.3 in the last section.

Abbreviations

Demonstration cases

In this chapter, we delineate the two main D3.3-related demonstration cases that were used to conduct the illustration as well as the validation of all adapted code on the development framework, the details of which are given in the subsequent chapter. It is also worth noting that this chapter completes the results of RESCUE deliverables D3.1 [START_REF] Reynaud | Scenario description, functional requirements, and experiment sizing, Deliverable D3.1[END_REF] and D3.2 [START_REF] Razafindralambo | Architecture implementation and integration, Deliverable D3.2, ANR project RESCUE[END_REF], notably in terms of applicative scenarios, which were only presented in a high level fashion in [START_REF] Reynaud | Scenario description, functional requirements, and experiment sizing, Deliverable D3.1[END_REF]. Here, we detail, in the context of substitution networks, two demonstration cases through a description of the related objective and overall case flow. Both cases are used as a structuring effort to illustrate how the transposition of the project-wide controlled mobility implementations into the context of aerial networks will eventually allow meeting complex applicative objectives, most particularly in the scope of substitution networks.

The demonstration case of autonomous flight

Objectives

The first scenario uses only one Unmanned Aerial Vehicle (UAV, also indiferently named drone or mobile aerial node in the rest of this document) and its main goal is to test, evaluate and validate the overall software framework, and in particular the use of the autonomous flight procedures in the system. At this phase, the main tasks to be achieved by the drone are: following a predefined flight plan in cooperation with the developed autopilot and be able to send and receive data through Wi-Fi from a remote node. Therefore, this demonstration case will validate our general approach, according to which, rather than controlling the UAV using an external controller, it relies on autonomous procedures directly embedded on the UAV. An illustration of the expected outcome from scenario 1 in practice is shown in Fig.

2.1.

Furthermore, demonstration case 1 opens a wide range of disruptive aerial vehicles applications adopting the autopilot model. It is a necessary step to evaluate the features, capabilities and limitations of aerial nodes with controlled mobility features in the context of substitution networks. On a practical level, the limited equipment involved in this case 5/37 allows quick and easy deployment, thereby resulting into an efficient unitary testing process.

It is also worth noting that, after completing the validation of demonstration case 1, using only one UAV, the validation of advanced cooperative mechanisms and techniques as well as advanced controlled mobility schemes on the basis of multiple UAVs will be significantly facilitated in the context of the second demonstration case.

Flow chart

In order to visualize the algorithm and sequence of events, the process of operations, actions and decisions, is presented in a flow chart, illustrated by Fig. 2.2. A step-by-step explanation and description of this first demonstration case is given as follows:

1. Check that all UAV initialization conditions are satisfactory in order to allow the UAV to take off and begin the flight. These parameters are already set by the manufacturer; nevertheless, they can be modified depending on the application.

2. If the parameters checked in step 1 are not fulfilled, the UAV will not take off (and in the case of this specific equipment, all four motor LEDs will turn red instead of green) and the program will constantly repeat the parameter checking procedure of step 1.

Examples of these situations are: very low battery, reset not properly done after a crash, UAV not located on a flat enough ground, problem with one of the motors or propellers impeding easy spinning or any other hardware issue.

3. If all initialization parameters allow the UAV to take off and the UAV is itself ready to fly, the propellers will start rotating and the node will take off and hover at a predetermined altitude. 4. The UAV will now be subject to controlled mobility procedures. In this first demonstration case, the UAV will autonomously start following a predetermined path. Following a predefined path is the general approach that is commonly chosen for autopilots in order to accomplish tasks efficiently through autonomous flights, and the first demonstration case illustrates this feature.

6/37

5. During the flight, useful data will be recorded. These data can be directly transmitted to a remote node (either directly or through a wireless multi-hop network), which has larger memory capacity, or saved locally on the UAV for further transmission. [START_REF]Arduino-based autopilot for mulitrotor craft, Home Page at Google Code[END_REF]. In this first case, some of the logged data can trigger events on the drone depending on the preassigned limitations on each parameter. For example, battery life time is one of the most crucial parameters when employing rotor-based UAVs (which exhibit relatively low autonomy). If the battery percentage exceeds a certain threshold, we demonstrate how the return procedure will be executed as soon as specific conditions are met. Therefore, the UAV will follow the return flight path and when it reaches the base platform coordinates it will land.

7. If the produced event is "landing", the UAV will first check for landing conditions, since our aerial nodes are here constrained to land on a ground base.

8. If the conditions in step 7 are satisfied, the UAV will successfully land. 9. After landing, the UAV will hold this position waiting to receive an order for another mission. If the order is received, the flow will restart from step 1.

The demonstration case of cooperative flight 2.2.1 Objectives

The second demonstration case is intended to highlight and validate more complex forms of controlled mobility, notably resulting from interaction between a swarm of UAVs, thereby flying in a coordinated pattern and cooperating to meet a common applicative objective. This approach is a key enabler to judge of the ability of UAVs to support the desired features in a substitution network. In this case, more than one UAV will therefore form a wireless multi-hop network. Therefore, inter-vehicle and client-to-server communications are cardinal.

Flow chart

A formalized graphic presentation of the logic operations sequence, to have a clear understanding of demonstration case 2, is presented as a process mapping in Fig. 2.4. Since case 2 deploys a swarm of UAVs to build a network that relies on techniques demonstrated and validated in the first case, they naturally both exhibit some common sequence of steps.

However, the second scenario adds additional operations and functions to allow the experimentation of more complex and complete cooperative techniques. The additional actions and decisions defined in the second scenarios are:

1. If the UAV is unable to take off, it will send a negative acknowledgment, reporting that it is not able to perform the task. This function allows the server to select in the future another drone in reserve to fulfill the demand. The drone will then enter an initialization checking loop until the observed conditions allow exiting this step of the flow.

2. Useful data recorded during the flight will be directly transmitted to a centralized server and broadcast to all devices and nodes in the network.

3. The data will be exchanged between all drones in the surrounding area. Depending on the implementation, the neighboring UAV set may consist of the nodes which are in direct radio range, or in the context of a wireless multi-hop network (i.e. all nodes which are N hops away (N ≥ 1) from the considered UAV).

4. Logged and transmitted information over the network can trigger events on the UAV depending on parameters limitations and required topology. Furthermore, data received from other drones in the network play a crucial role at this stage. Such data may be used in advanced developments to alter the controlled mobility-based flight paths and trajectories to allow the swarm of UAVs to meet a common applicative objective, notably in the context of substitution networks.

5. Before executing a landing process, the UAV will advertise and disseminate its state.

After landing, the drone will still collect information about the network while waiting to receive an order for another mission. 9/37

Implementation choices 3.1 Context

As seen in deliverable D3.1 [START_REF] Reynaud | Scenario description, functional requirements, and experiment sizing, Deliverable D3.1[END_REF], we initially identified two specific development frameworks: one related to the ArduCopter hardware environment [START_REF]Arduino-based autopilot for mulitrotor craft, Home Page at Google Code[END_REF] and one related to the AR.Drone UAV [START_REF] Ar | drone 2.0[END_REF]. In the wake of the publication of D3.1, both types of equipment were tested and, on the basis of all features useful to an experiment in the context of RESCUE, the AR.Drone environment was eventually chosen, because of the cost efficiency, ease of maintenance of the vehicle and versatility of the payload. As a result, a fleet of a dozen AR.Drone 2.0 UAVs was used for the validations and experiments reported in this deliverable. In this chapter, we therefore largely report how the default software development kit proposed by the AR.Drone manufacturer was extended to allow integrating and experimenting the desired controlled mobility schemes. Further, beyond the specific requirements of the software tool chain, we also report the various mobility procedures that need to be supported by our framework, and subsequently describe all prominent procedures to implement, related to controlled mobility, energy management, monitoring, logging and inter-node communications. Finally, we briefly mention the most important configuration aspects required to properly setup a RESCUE UAV testbed.

Identified limitations of the default framework and exten-

limitations and extensions

For our intended deployment of autonomous and cooperative schemes, the considered framework suffers from a major weakness: By default the software development kit does not allow autonomous flights and the code has to be deployed on a remote host; subsequently the drone has to be controlled via this remote host. We therefore modified and extended the framework to allow the deployment of the code (including the AR.Drone libraries and general autopilot procedures) on the drone itself. On this basis, we successfully obtained a practical cross-compilation environment, with multi-threading support (any new thread created hence needs to be added to the thread table structure to be able to send commands to the drone).

All implementations and experiments reported in the rest of the deliverable were supported by this custom software development kit.

UAV mobility procedures

Flight control algorithm is crucial in order to achieve application requirements and UAVs should be able to follow the desired flight paths. Moreover, the positioning of drones and their movements, following the control mobility principles underlying the RESCUE architecture, have to be beneficial for the network and cover the correct areas. A flawless path following flight control allows the accomplishment of complex missions efficiently. During a flight, varied situations and conditions can occur affecting the accuracy and reliability of the drones.

Pursuing this further, our UAV mobility procedures were inspired by the system algorithms and mechanisms presented in [START_REF] Sasongoko | Path Following System of Small Unmaned Autonomous Vehicle for Surveillance Application[END_REF] which are commonly employed in operational airplanes.

12/37

Serret-Frenet frame and Bank-to-Turn maneuvers

The use of those maneuvers (or equivalent) is indispensable in an autonomous flight controller which assists the drone to follow a predefined path in different situations. In other words, they guarantee that the UAV will not deviate from the mission course and the task will be efficiently accomplished. The main reason for cross-track error, in this application program, is the wind effect causing lateral shift of the drone regarding the expected trajectory.

Therefore, performing BTT maneuver and deriving the errors to zero keeps the drone on the desired path. The system generates corrective commands, regarding the errors produced during the flight, and adjusts the heading direction using roll maneuvers. Many aspects were taken into consideration when developing this system; therefore, in case the drone deviates from the predefined path, the program is capable to steer the UAV to proximate positions near the initial flight plan and control its orientation.

• Serret-Frenet Frame: Ideally, the UAV is expected to head in the same direction of the predefined path and follow the planned circuit, however, in some situations errors between the actual position and the desired path can arise. This problem can be defined as the Serret-Frenet frame, where error formulations are illustrated in Fig. 3.1. The coordinate system (x s , y s) attached to the q(s), representing the path, moves along the path S and defines the Serret-Frenet frame. Since x s is tangent to the path at q(s), the desired course directions are represented by its orientation with respect to X, symbolized by χ s . The deviation between the actual and desired position of the drone is represented as the error vector ē = [e s e d] T . The results, after several calculations, generate error equations representing the dynamics of in-track error, cross-track error and course error. The system concept is to derive these errors to zero. In order to adjust the actual drone position and course, the system implements a control vector representing the corrective action required. In case of deviation from the preplanned trajectory, the program computes the closest point to the drone on the target path.

Serret-Frenet Frame uses the defined errors to generate a corrective course that will be followed by the drone to get back on the initial path. Under any circumstances, the drone should be able to execute the task conveniently following mission rules and requirements. Mainly for this reason, the controlled mobility process implemented in the drone system is designed so that it is capable to compensate errors and disorders during the flight by generating commands translated into movement actions.

• Bank-to-Turn Maneuver: The corrective action to align the UAV actual position and circuit to the predefined path can be accomplished by performing Bank-to-Turn maneuver to compute the desired heading angle. BTT allows the manipulation of the drone's heading or course rate of change where the roll degree becomes the control variable. Thus, the system employs a formulation defining the corrective course required 13/37 for the UAV to intercept the desired path with respect to its curvature as shown in Fig.

The angle of a line connecting drone actual position to a point on the path (q c

) is noted by (χ c). Bank-to-Turn maneuver is used to change the yaw and horizontal speeds of the UAV, and convert them into drone orientation and engines speeds on X and Y axis. The program sets an imaginary point on the target path representing approximately where the drone should be. Moreover, it defines the angle to target and the intermediate point. The autopilot uploaded to the drone will perform some calculations depending on the lateral shift (cross track error) of the drone from original path in order to get the UAV back on the expected trajectory. Furthermore, the autopilot component helps the UAV maintain its altitude by regularly checking the parameters provided by the ultrasound sensor. If the current and desired elevation values are not equal, a command will be sent to the drone forcing it to fly at requested altitudes.

Startup and takeoff procedures

After initializing local variables, the program will execute a function for navigation data processing. The main event loop is responsible of auto-piloting the UAV and it is repeated after a predefined interval of time. In the application program, the interval of time set for autopilot commands execution is every 100 milliseconds. Therefore, at the beginning of the The program will display control states and battery level information at startup. Control states determine the flying state including but not limited to: landed, flying and hovering.

If the drone is in landed state and battery percentage is not less than defined threshold, the program will set up a flat trim procedure and keep checking for a request to take off.

The UAV will take off by activating takeoff flag and calling drone control command function provided by the AR.Drone SDK.

After taking off, a UAV needs at least 4 seconds before receiving commands and during this time it calibrates the compass to determine cardinal directions. Application program will request the drone library to send reduced set of navigation data excluding debugging and video information. However, the program can ask for additional and specific navigation data packets that are not available in the demo flight information. Inasmuch as autopilot program aims to compensate atmospheric turbulences, wind estimation parameter offered by AR.Drone library computations will be requested along with accessible default navigation data.

Framework implementation

Autonomous procedures

Controlled mobility

The autopilot component, which is in charge of controlled mobility, is able, in the absence of an accurate positioning system on the equipment used for the demonstrations and evaluations, to determine the current position of the UAV by computing the elapsed time in milliseconds since takeoff and the velocity angles. First, each 100 ms, the program saves the current coordinates as previous positions to be used in the next loop iteration. Secondly, it calculates 15/37 the global velocity (in m/s) of the drone on horizontal and lateral axis using the onboard sensors and built-in compass. Thirdly, knowing the UAV velocity and time taken to reach a point in the map, the component is able to estimate the current position of the drone at specific times by accumulating the additional distance flown by the drone to recorded position coordinates in the previous loop. On this basis, the autopilot component can finally execute controlled mobility procedures and will therefore start imposing the drone to move to a destination. Furthermore, in order to increase the ability and efficiency of the UAV to reach and cover the assigned waypoints in a map, the autopilot system needs more information to track and correct the position of the UAV. Therefore, the application program is able to split the distance between two waypoints into several equidistant points forming a straight line to follow. Moreover, the last waypoint of the outward flight is used to compute and create, automatically, the shape trajectory. Shape waypoints could be generated in a separate structure, as in outward and return flights, but the goal of this part is to fly smoothly following a definite path surrounding the shape instead of reaching specific waypoints. Therefore, numerous points defining the desired shape are considered as input to the autopilot system allowing the drone to hover and follow shape outlines. Different geometrical forms can be produced by changing the formulas in the function filling the shape perimeter on the UAV. are therefore actively investigating the means to increase and improve aerial networks energy efficiency and operation lifetime. Elements of this research domain can be found in [START_REF] Kandeepan | Energy Efficient Cooperative Strategies in Hybrid Aerial-Terrestrial Networks for Emergencies[END_REF], [START_REF] Gomez | Adaptive Energy Efficient Communications for Rapidly Deployable Aerial-Terrestrial Networks[END_REF] and [START_REF] Kandeepan | Aerial-Terrestrial Communications: Terrestrial Cooperation and Energy-Efficient Transmissions to Aerial-Base Stations[END_REF]. In the context of this deliverable and more generally of the RESCUE project, understanding the UAV's battery limitations and behavior is a necessary prerequisite to efficiently developing an adapted autopilot. The next data and numbers regarding AR Drone 2.0 battery are the output results of a set of tests executed before and during development:

• Before the flight, if the battery percentage is equal or less than 20%, the UAV is not allowed to take off.

• During flight, if the battery percentage is equal or less than 15%, the UAV will initiate immediate landing procedures.

• If the drone reaches a critical level (i.e. less than 10% of estimated remaining battery percentage), the complete system is shutdown to avoid any unexpected behavior.

Battery conditions and limitations are introduced in the autopilot program to have a direct impact on controlled mobility procedures. When the component activates, the battery percentage is extracted from the node's navigation data and its value is saved for further use. The battery percentage is checked every main loop iteration, every 100ms, and based on battery level, the UAV will be able to perform different operations. Reactively to battery conditions, various events are triggered under different circumstances:

• Before Takeoff: if the battery percentage is less or equal to a dynamic threshold, the component will not allow takeoff and act accordingly. Moreover, a dedicated message is 17/37 Secondly, taking into consideration the specific equipment battery specifications, we obtain a correspondence between the battery percentage and the overall autonomy of the node. The component is therefore able to conclude if the drone is capable to fulfill the mission requirements and decide to take off or not. Since this estimation is based on initial conditions, subsequent estimations are performed during the rest of the mission.

• Return to ground base: after takeoff and during onward flight, if the battery reaches a static limit (e.g. 25%), the UAV will go back directly to the base station platform and land. When the drone lands, a dedicated message is disseminated into the network.

• Return Flight: the program calculates and stores the consumed battery percentage in the onward flight as the difference between battery percentages at the beginning of the flight and when reaching final waypoint of the onward path. Ideally, the aerial node will cover the same distance in the return flight and it will consume the same power.

However, in practice the UAV may drain more or less energy during the return flight. Therefore, a safety factor is introduced in the estimation defining the battery limit for the UAV to return back to base platform avoiding emergency landing.

Monitoring and logging

Crucial information about the drone and aerial navigation are stored locally on the drone for future dissemination, and eventually analysis as well as a posteriori evaluation of flights. Data streams pertaining to the autopilot component are found in data file formats. In particular, dedicated functions stores important parameters and their values, every 300 ms, with the following information:

• A first data file contains current information about the flight and the UAV during mission. Examples of flight information are: elapsed time, wind speeds and angles, next destination point and wind compensation. UAV data includes, but not limited to: current position, altitude and speeds, orientation angles and position with reference to original path. This file was significantly used during tests, to evaluate the behavior of each in different situations, to be able to modify parameters accordingly and to have a visual presentation of the trajectory followed by each mobile node.

• A second data file contains the initial created trajectory which the drone is expected to follow under ideal circumstances. This file serves as a reference to compare between actual and original courses.

Communication procedures

Substitution networks are envisioned to be deployed with nodes of heterogeneous nature and capabilities. In the context of the demonstrations, such a network is embodied by a swarm of UAVs as well as a set of ground nodes. It is expected that the quality and reliability of communication significantly depends on key factors such as radio propagation conditions, the communication equipment embedded on each node as well as their number and relative position on the substitution network area. All communications previously mentioned between the different nodes of the considered network are supported by a Wi-Fi-based wireless ad hoc network (for the evaluation of both cases, an Optimized Link State Routing Protocol (OLSR) stack was used, but any other multi-hop routing protocol could also be deployed instead).

Further, for all inter-vehicle communications described in both cases, simple broadcast and unicast-based messages were designed and the subsequent communication procedures were implemented and tested.

Configuration aspects

Each UAV is considered a regular mobile ad hoc node, as is configured as such. For the ease of configuration and testing, each node is assigned a unique number depending on the last byte of its IP address. Furthermore, lateral, vertical and spin speeds of UAVs are crucial parameters to achieve uninterrupted autonomous flights. Lateral speed initialization depends on how fast each UAV is required to reach a specific waypoint during planned flights; it also affects the stabilization of the UAV on given coordinates. In other words, if a UAV is flying at high lateral speeds, it may pass the waypoint, obliged to go back and forth trying to stabilize itself and return to the initial course. On the contrary, if lateral speeds are low, the drone will take more time to complete the trajectory and it will accomplish the entire mission in slow pace. Vertical speed mainly defines drone acceleration to reach preassigned altitudes and also in case the drone changed elevation during the flight, due to wind turbulence or ground type, vertical speeds determine how fast it will compensate these errors and return to definite altitudes. In addition, UAV turning maneuvers are dependent on spin speeds to facilitate operations where the UAV have to turn and move to another waypoint or follow a continuous edged/curved trajectory, such as preplanned geometric forms. Moreover, when the program is launched, it checks a created configuration file. The configuration file aims to manage reliable and uncomplicated reconfiguration and it helps to initialize variables values effortlessly.

Figure 2 . 1 :

 21 Figure 2.1: Illustration of the different flight phases validated by demonstration case 1 (autonomous flight).

Figure 2 . 2 :

 22 Figure 2.2: Flow chart of demonstration case 1 (autonomous flight).

Figure 2 . 3 :

 23 Figure 2.3: Illustration of the different flight phases validated by demonstration case 2 (coordinated flight).

Figure 2 . 4 :

 24 Figure 2.4: Flow chart of demonstration case 2 (cooperative flight).

sions 3 . 2 . 1

 321 Features of the default framework Parrot, the manufacturer of the AR.Drone, provided open source libraries to stimulate developers to create their own custom applications to remotely control the drone. The default libraries provide a valuable development base, since they can be used on a large range of platforms and operating systems, including Linux, Windows, IOS and Android. The AR Drone 2.0 libraries are composed of several elements describing data types and functions to communicate with the drone, set of tools to easily manage the drone, functions to receive 11/37 RESCUE Deliverable: D3.3 Version: 1.0 Date: 2014-03-31 and decode video streams and other contents. The default libraries are structured as follows: • The first part implements communication between the drone and client device; it takes charge of collecting and transmitting command sequences from different threads to the UAV. The library is also responsible for the management of navigational data received from different sensors and on-board systems; after decoding, the information is available for client application usage. Navigation data is one of the most important factors in application experiments; therefore controlling, examining and manipulating this information will lead to efficient autonomous flight system development. Furthermore, different threads sending commands to the drones are handled through a control thread provided by AR Drone library. • The other part of AR Drone 2.0 Library is responsible for easy communication and (re)configuration of Parrot AR Drone 2.0. The SDK allows creating and compiling fully functional custom application codes along with the initial library. A set of commands are available for application program to control the drone and Parrot also provides a ready-to-use configuration management tool.

Figure 3 . 1 :

 31 Figure 3.1: Serret-Frenet frame in 2D (OXY) case [8] with P a : UAV actual position, χ: UAV heading course angle and q(s): Point on the path.

Figure 3 . 2 :

 32 Figure 3.2: Corrective Course [8]

Figure 3 . 3 :

 33 Figure 3.3: Rhombus shape example with side = 5m

Figure 3 . 4 :

 34 Figure 3.4: Circle shape example with radius = 5 m

 disseminated into the network, indicating that the drone cannot take off. This threshold is pre-calculated on the basis of the battery percentage that is likely to be consumed, assuming an initial flight plan. First, knowing the total trajectory distance and UAV speed, the program can measure approximately the time needed to complete the flight.

Framework testing

This chapter illustrates the results and subsequent analysis of several tests that were carried out to demonstrate the ability of aerial vehicles like UAVs to be subject to autonomous controlled mobility in the context of substitution networks. All flight tests done in the rest of this chapter, as well as in the next chapter, were performed at Orange Labs site in Lannion, France. The presented results were selected from a group of experiments carried out in 2013 and early 2014, because they provide a valuable description of the system and a clear illustration of the encountered problems and achieved objectives.

Data acquisition from extensive number of tests is important in order to modify parameters, improve system performance and obtain better results. The selected UAV equipment was tested in outdoor environment for multiple purposes. First, the UAVs may be used in both indoor and outdoor networks, thus, overcoming the outdoor environment challenges implies an easy employment for indoor scenarios. Secondly, the implemented controlled mobility and communication system schemes needs to be evaluated when exposed to non-ideal conditions, as close as real-world deployment scenarios. Thirdly, the experiments needed a large empty area for the rotor-based UAVs to fly freely and the opportunity of having a covered hall was not available during the research project duration. Therefore, several challenges aroused regarding the evaluation of the UAVs' behavior and the overall system accuracy. During the considered period, rainy and windy weather significantly limited the opportunities to carry out complete and lengthy experiments. However, through a series of functional breakdown for the validation process (e.g. the communication system model and autopilot components were developed and tested in parallel, UAV takeoff procedures were not necessary to test inter-node communication, etc), the whole system could be validated through several shorter experiments. Tests were divided into two main phases that were combined in multiple tests:

testing phase 1 was devoted to controlled mobility, while phase 2 was more focused on all communication procedures. 20/37 Since our UAVs compute their altitude depending on an onboard altimeter that sends ultrasound waves to the ground and computes the vertical position by calculating the difference between signal transmission and reception, the type of ground texture (e.g. bare soil, asphalt, water, grass, etc.) must be considered when employing the UAVs in large landscapes where it can behave poorly over certain ground textures (e.g. water and grass) in absence of a dedicated geolocation capability. In our tests, UAVs were first required to complete a trajectory composed of three main continuous series of actions to achieve a complete successful flight:

• Onward path: UAVs were required to follow a path of waypoints.

• Shape-based trajectory: UAVs hover in a predefined geometrical shape until specific threshold values are met for specific parameters (in particular, in our tests, the UAVs monitored the remaining battery levels).

• Return path: final phase where UAVs return to a ground base.

The experiments were carried out through a series of test flights analyzing and examining each phase distinctly. This method facilitated and simplified the final development and test of the whole trajectory.

onward flight

When the component is activated, the drone takes off, and hovers in stationary mode before it starts flying to the first waypoint, in order to calibrate its compass and positioning sensors. The positioning system and coordinates according to the drone location is illustrated in Fig. 4.1. It is approved and preferred to set the first waypoint to (0, 0, Z), where Z is the altitude, to avoid inclined elevation of the drone and guarantee a straight vertical takeoff.

The considered UAV modifies its heading angle with respect to the next destination in the path and the corrections required to compensate wind or return to the planned track if any unexpected event occurs. was included into the overall controlled mobility procedures. In this example, the UAV is expected to take off and follow a path of two main waypoints: (X = 0, Y = 0, Z = 3) and (X = -10, Y = -4, Z = 3). Where X is the North-South, Y is the West-East and Z is the altitude.

The UAV was able to accomplish the path and reach the final assigned point in the onward flight. This test was accomplished in moderate wind speeds ranging from 1 to 3 m/s and

Shaped-based trajectory

The main goal of this phase is to allow the controlled UAV to hover in a continuous loop, e.g. following a circular trajectory. It is worth noting that such a trajectory offers valuable characteristics for the controlled mobility component to increase the UAV ability to hover efficiently on its circumference. Given the center and radius of the circle, the component is able to produce the series of points defining the circle perimeter through incrementing the parameter is monitored, as previously described).

Return flight

Validating the communication procedures

The exchange of data in the network is a crucial feature for evaluation and validation of the network performance throughout the entire duration of the mission. The developed communication model allows communication between UAVs to broadcast important information to all nodes in the networks. All data obtained from the tests were analyzed and evaluated to improve the transmission and reception of data. Figure 4.9 illustrates the exchanged data formats in order to understand and have a background about used navigation data.

In order to perform a thorough evaluation of the communication system, the presented results are the outcome of designed scenarios in both ideal and non-ideal situations. The scenarios were created to evaluate the throughput and reliability of the communication channels between different devices of the network. Therefore, the tests were performed using two drones and a ground node (i.e. a laptop, as illustrated in Fig. 4.10) forming a OLSR-based mobile ad hoc network. Two situations may arise:

• The ideal case occurs when all UAVs are in direct radio range with the ground equipment (i.e. they are 1-hop away from the ground node). To demonstrate this case, adapted waypoints were selected to keep obtaining conventional distances between UAV and maintain communication links. The drones are then hovering in the coverage range of the server and neighboring drones, therefore the data transfer rates over the communication channels are high. In other words, the drones and server in the network kept a conventional and steady throughput.

• The non-ideal case occurs when one of the UAVs is not in direct radio range with the ground equipment (and in this case is two-hops away from the ground node). Adapted controlled mobility was also applied to the UAVs to demonstrated this case. In the rest of this subsection, we give an extract of simple performance results which were collected and analyzed to validate the demonstration framework and in particular the efficiency of the controlled mobility scheme when deployed with a specific applicative objective.

Both Fig. 4.11 and Fig. 4.12 illustrate basic throughput observations in the ground node monitoring tool. In the first case, the second UAV is subject to a trajectory that results in link disruptions between both UAVs used for the demo (those link disruptions can be observed in Fig. 4.11 at about t = 48 s and t = 118 s). Moreover, in the case illustrated by Fig. 4.12, link disruptions occur to both the inter-UAV communication link and the link between the second UAV and the ground node, at about t = 20 s.

A similar analysis was performed in a series of demonstration cases highlighting, with different numbers of UAVs, the effects on link disruption caused by the different node mobility patterns chosen by the respective controlled mobility components. Furthermore, simple tests allowed verifying the interest of wireless multi-hop routing protocols (in the context of our demonstration, OLSR) to mitigate the effects of link disruptions in the case of specific applicative objectives (e.g. file transfers between the UAVs and a ground node with stationary mobility, still applicable when there is a high probability of link disruption between the UAVs and the ground node, provided that the UAV swarm density is high enough to allow a sufficient number of multi-hop routes towards the ground node). Experimenting on the framework

context

We place our aerial demonstration framework, as presented in the previous chapters, in the context where rescue teams arrive just after a disaster (e.g. tsunami, earthquake, hurricane, explosion, etc.). We propose that a member of the rescue team launches the deployment of a fleet of drones near the affected area. Then, after being informed of the area to explore, the swarm organizes itself so that it can cover all the area quickly and efficiently with embedded webcams and other types of sensors as well as network resources to be brought on specific spots.

Demonstration framework configuration

We chose to use four UAVs from our demonstration swarm. These UAVs already integrate an algorithm that can detect specific tags (e.g. a black roundel with a black line on a white sheet) on camera images. Thus, we enlarged the provided tag and placed several of them on the ground, so that vertical cameras can detect them. This was meant to emulate an event that has to be detected by the drones (e.g. a person who took refuge on a roof during a flooding). Because these UAVs are smaller than the ones that would be used in real scenarios, we scaled our use case to the size of the drone. Indeed, as our UAVs' cameras coverage area is small (c = 6m, we have to fly close to the ground because of the poor quality of the embedded webcam), we reduced the WiFi range in proportion. Hence, with bigger UAVs we will have a normal WiFi coverage and a larger UAVs' cameras coverage, and the ratio c wrange will stay the same. We assumed that an UAV deployed in a real scenario will cover 50 meters (c = 50m). Then, c wrange = 50 100 = 0.5. Hence, we reduced the WiFi range of our AR.Drones to 12 meters. This scaling also has the great advantage to require a smaller space for testing.

The controlled mobility schemes rely on the framework presented in the previous chapter, and are therefore based on a 2-dimensional representation of the position of the UAV according to the expected trajectory using Serret-Frenet frame and also used the Bank To Turn (BTT) maneuver to our UAVs' mechanical constraints.

Investigated mobility patterns

We investigated two main ways of exploring a rectangular area with a swarm of small UAVs [START_REF] Rémy | Drones: Drones for Advanced Search and Rescue Missions[END_REF]: creating a "squadron" of drones that fly in formation, or dividing the area into rectangular sub-areas, each sub-area being assigned to a UAV.

Squadron exploration

The advantage of the Squadron exploration is that the UAVs fly close to each other, as illustrated in Fig. 5.1. Thus, all UAVs can easily converge to a detected event when one of the drone detects one. However, the drawback of this controlled mobility approach is that the provided substitution network does not cover the whole area to explore: as the drones fly close to each other, they can easily communicate with each other, but the squadron is concentrated in a small area and is isolated from the remainder of the network. In order to determine the maximum area that can be explored with a given number of drones in a given amount of time, we need to evaluate the length of the trajectory for one of the drones.

Before being able to calculate this length, we have to determine the shape of the squadron, i.e. the number of lines we split the drones into (see Fig. 5.1). In order to get a compromise between WiFi coverage and exploration efficiency, we distribute the drones uniformly, trying to equal the number of rows and the number of drones per row (e.g. with 4 drones we split them into 2 rows). Also, the spacing between two rows of drones is put to a maximum, so that a drone flies straight as long as possible, while also keeping the WiFi connection. Hence Figure 5.1 shows the exploration scheme for 6 UAVs (2 rows of 3 drones each). The red path shows the trajectory for UAV 1. Now that we determined the shape of our swarm, we can calculate the length d squadron of the trajectory for one of the UAVs (we assume that the length of the trajectory is the same for all the drones). Hence, we deduced the formula that gives the distance of the path. We also determined the coverage provided by the WiFi ad-hoc network of the UAVs.

Independent exploration

The advantage of the independent exploration is that the substitution network provided by the drones covers a wider surface. Moreover, as for the squadron exploration, this ad hoc network is very stable (the distances between the drones remain constant). However, the drones are farther from each other, and this implies a larger delay when they need to gather at a given location.

The areas covered by the drones with their WiFi interfaces are almost distinct (they overlap only for the drones to be able to communicate with each other). As a consequence, the overall WiFi coverage is linearly linked to the number of drones. Hence, Fig. 5.2 compares the WiFi coverage for squadron and independent explorations, with w range = 100m and c = 20m. We observe that independent exploration provides a far better WiFi coverage.

As a conclusion, regarding the analysis of these two scenarios, it appeared to us that the "Independent exploration" was best suited to our needs: it provides a good WiFi coverage, it explores the area efficiently, and the drawback (the distance between the drones) seems

Future steps and conclusion

In this delivery report D3.3, we detailed two demonstration cases that were used to conduct the validation of all adapted code on the development framework. We then went into the depth of our software development framework which allows integrating and experimenting the desired controlled mobility schemes in the context of aerial networks. We also explained how, in order to perform a thorough evaluation of the communication system, the presented results were obtained on the basis of the demonstration cases. We finally presented more advanced experimentation results relying on the use of the demonstration framework, related to how efficiently a swarm of aerial mobile nodes is able to self-organize and cover a target area (e.g. a disaster zone).

Valuable lessons were gained from the evaluation work presented in this deliverables.

First, the successive experimentations on the context of substitution networks and in particular on controlled mobility schemes led us to believe that the need for ad-hoc provisioning of aerial communication services might occur out of disaster or emergency situations. In the described scenarios of D3.1 [START_REF] Reynaud | Scenario description, functional requirements, and experiment sizing, Deliverable D3.1[END_REF] or the demonstration cases presented in this document, a temporary extension or replacement of the existing communication infrastructure, through exploitation of nearby wireless and wired network equipment, opens up new opportunities. connectivity for the first responders and mainly will provide best effort service to re-establish the limited communications in the affected area and to reactivate existing user terminals.

The choice of the appropriate aerial platform for such missions is heavily dependent on the extent of services to be offered and the expected duration of the service deployment. Aerialbased long endurance platforms (tethered balloons, blimps, etc.) are ideal to be deployed to provision services during such unexpected events. Those platforms are easily deployable, with a significant level of autonomy and stability, and can enable a very rapid network connectivity establishment depending on the aerial network payload. Furthermore, it is expected to provide reliable connectivity and service availability over a good coverage area.

The coverage and capacity planning for rapidly deployable situations is a challenging task and adaptive techniques are currently explored in the research community. Limiting interference with existing terrestrial networks and improving spatial reuse is also another interesting aspect currently explored, also with the possibility of dynamic spectrum management.

Another significant challenge of deploying aerial-based or ground-based [START_REF] Razafindralambo | Architecture implementation and integration, Deliverable D3.2, ANR project RESCUE[END_REF] substitution networks is their capability to ensure energy efficient operation maximizing the overall network lifetime with respect to both the substitution network and the base networks (e.g. in this case ground equipment), where a majority of the network elements are operating autonomously and without always an access to reliable power sources. Although energy savings is not the ultimate objective during servicing of emergency situations, an important measure is to let the devices and in general the energy constrained network elements to be active for the maximum duration of time into the operation before being replaced of supplemented with battery power. The additional challenges need to be addressed with energy aware spectrum management techniques and adaptive communication protocols. Furthermore, energy aware topology management and relaying mechanisms are also currently explored to address the energy efficiency aspects at the network level. Additionally, the degree of autonomy and low power requirements allows for the deployment of the substitution platforms over an extended period of time. Coordinated and phased deployments are effective for innovative rapidly deployable future network architectures which are resilient and capable of providing broadband multi-service, secure and dependable connectivity for medium to large disaster affected coverage areas.

Such substitution equipment as envisioned by the RESCUE project should be equipped for high-capacity and low-latency operation, with awareness of base networks through various techniques (e.g. dynamic spectrum access and management for seamless network reconfigurability and scalability), and should also exhibit other prominent features such as highavailability, robust and secure connectivity, etc. [START_REF] Reynaud | Deployable Aerial Communication Networks: Challenges for Futuristic Applications[END_REF]. Furthermore, studies should progress on incorporating efficient backhaul techniques (e.g. satellite-based, microwave links and freespace optical links) with these substitution networks to ensure connectivity to the global core networks for both voice and data worlds. The number and combination of the cells defines the