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Stochastic Behavior Analysis of the Gaussian Kernel

Least-Mean-Square Algorithm
Wemerson D. Parreira, José Carlos M. Bermudez, Cédric Richard and Jean-Yves Tourneret

Abstract—The kernel least-mean-square (KLMS) algorithm
is a popular algorithm in nonlinear adaptive Þltering due to its
simplicity and robustness. In kernel adaptive Þlters, the statistics
of the input to the linear Þlter depends on the parameters of the
kernel employed. Moreover, practical implementations require a
Þnite nonlinearity model order. A Gaussian KLMS has two design
parameters, the step size and the Gaussian kernel bandwidth.
Thus, its design requires analytical models for the algorithm
behavior as a function of these two parameters. This paper
studies the steady-state behavior and the transient behavior of the
Gaussian KLMS algorithm for Gaussian inputs and a Þnite order
nonlinearity model. In particular, we derive recursive expressions
for the mean-weight-error vector and the mean-square-error. The
model predictions show excellent agreement with Monte Carlo
simulations in transient and steady state. This allows the explicit
analytical determination of stability limits, and gives opportunity
to choose the algorithm parameters a priori in order to achieve
prescribed convergence speed and quality of the estimate. Design
examples are presented which validate the theoretical analysis and
illustrates its application.

Index Terms—Adaptive Þltering, kernel least-mean-square
(KLMS), convergence analysis, nonlinear system, reproducing
kernel.

I. INTRODUCTION

M ANY practical applications (e.g., in communications

and bioengineering) require nonlinear signal pro-

cessing. Nonlinear systems can be characterized by represen-

tations ranging from higher-order statistics to series expansion

methods [1]. Nonlinear system identiÞcation methods based

on reproducing kernel Hilbert spaces (RKHS) have gained

popularity over the last decades [2], [3]. More recently, kernel

adaptive Þltering has been recognized as an appealing solution

to the nonlinear adaptive Þltering problem, as working in RKHS

allows the use of linear structures to solve nonlinear estimation

problems. See [4] for an overview. The block diagram of a

kernel-based adaptive system identiÞcation problem is shown
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in Fig. 1. Here, is a compact subspace of

is a reproducing kernel, is the induced RKHS

with its inner product and is a zero-mean additive noise

uncorrelated with any other signal. The representer theorem

[2] states that the function which minimizes the squared

estimation error , given input

vectors and desired outputs , can be written as the

kernel expansion . This reduces

the problem to determining that minimizes

, where is the Gram matrix with th entry

, and . Since the order of

the model is equal to the number of available data ,

this approach cannot be considered for online applications. To

overcome this barrier, one can focus on Þnite-order models

(1)

where form a subset of cor-

responding to the time indexes of the input vectors

chosen to build the th-order model (1). The kernel func-

tions form the dictionary. In [4], the authors present

an overview of the existing techniques to select the kernel func-

tions in (1), an example of which is the approximate linear de-

pendence (ALD) criterion [5]. It consists of including a kernel

function in the dictionary if it satisÞes

(2)

where is a parameter determining model sparsity level. To

control themodel order with reduced computational complexity,

the coherence-based sparsiÞcation rule has also been considered

[6], [7]. According to this rule, kernel is inserted into

the dictionary if

(3)

with a parameter determining the dictionary coherence. It

was shown in [7] that the dictionary dimension determined

under rule (3) is Þnite. For the rest of the paper, we shall assume

that the dictionary size is known, Þxed and Þnite.

It is well known that a nonlinear adaptive Þltering problem

with input signal in can be solved using a linear adaptive Þlter

[4]. The linear adaptive Þlter input is a nonlinear mapping of

to an Hilbert space possessing a reproducing kernel. The

theory outlined above shows that the order of the linear adap-

tive Þlter can be Þnite if a proper input sparsiÞcation rule is em-

ployed, even if the dimensionality of the transformed input in



Fig. 1. Kernel-based adaptive system identiÞcation.

is inÞnite as in the case of Gaussian kernel. Algorithms de-

veloped using these ideas include the kernel least-mean-square

(KLMS) algorithm [8], [9], the kernel recursive-least-square

(KRLS) algorithm [5], the kernel-based normalized least-mean-

square (KNLMS) algorithm and the afÞne projection (KAPA)

algorithm [6], [10], [7]. See also the monograph [4]. In addition

to the choice of the usual linear adaptive Þlter parameters, de-

signing kernel adaptive Þlters requires the choice of the kernel

and its parameters. Moreover, using the Þnite order model in (1)

implies that the adaptive algorithm behavior cannot be studied

as the behavior of the algorithm presented in [4, (2.17)], which

is a regular LMS algorithm operating in the RKHS. Choosing

the algorithm and nonlinearity model parameters to achieve a

prescribed performance is still an open issue, and requires an ex-

tensive analysis of the algorithm stochastic behavior. Our work

brings a new contribution to the discussion about kernel-based

adaptive Þltering by providing the Þrst convergence analysis of

the KLMS algorithm with Gaussian kernel.

The paper is structured as follows. In Section II, we derive

recursive expressions for the mean weight error vector and the

mean-square error (MSE) for Gaussian inputs. In Section III,

we deÞne analytical models for the transient behavior of

the Þrst and second-order moments of the adaptive weights.

Section IV studies the algorithm convergence properties. Sta-

bility conditions and a steady-state behavior model are derived

which allow the algorithm design for prescribed convergence

speed and quality of estimate. In Section V, we use the analysis

results to establish design guidelines. Section VI presents

design examples which validate the theoretical analysis and

illustrate its application. The model predictions show excellent

agreement with Monte Carlo simulations both in transient and

steady state.

II. MEAN SQUARE ERROR ANALYSIS

Consider the nonlinear system identiÞcation problem shown

in Fig. 1, and the Þnite-order model (1) based on the Gaussian

kernel

(4)

where is the kernel bandwidth. The environment is assumed

stationary, meaning that is stationary for sta-

tionary. This assumption is satisÞed by several nonlinear

systems used to model practical situations, such as memo-

ryless, Wiener and Hammerstein systems. System inputs are

zero-mean, independent, and identically distributed Gaussian

vectors so that

for . The components of the input vector can,

however, be correlated. Let denote

their autocorrelation matrix.

For a dictionary of size , let be the vector of kernels

at time ,1 that is

(5)

where is the th element of the dictionary, with

for . Here we consider that the vectors

may change at each iteration following some dic-

tionary updating schedule. The only limitation imposed in the

following analysis is that for so

that the dictionary vectors which are arguments of different en-

tries of are statistically independent. To keep the notation

simple, however, we will not show explicitly the dependence of

on and represent as for all .

From Fig. 1 and model (1), the estimated system output is

(6)

with . The corresponding estima-

tion error is deÞned as

(7)

Squaring both sides of (7) and taking the expected value leads

to the MSE

(8)

where is the correlation matrix

of the kernelized input, and is the

cross-correlation vector between and . It is shown

in Appendix A that is positive deÞnite. Thus, the optimum

weight vector is given by

(9)

and the corresponding minimum MSE is

(10)

These are the well-known expressions of the Wiener solution

and minimum MSE, where the input signal vector has been

replaced by the kernelized input vector. Determining the op-

timum requires the determination of the covariance matrix

1If the dictionary size is adapted online, assume that is sufÞciently large
so that the size does not increase anymore.



, given the statistical properties of and the reproducing

kernel.

Before closing this section, let us evaluate the correlation ma-

trix . Its entries are given by

(11)

with . Note that remains time-invariant even

if the dictionary is updated at each iteration, as is stationary

and and are statistically independent for .

Let us introduce the following notations

(12)

where is the norm and

(13)

and

(14)

where is the identity matrix and is the null

matrix. From [11, p. 100], we know that the moment generating

function of a quadratic form , where is a zero-mean

Gaussian vector with covariance matrix , is given by

(15)

Making in (15), we Þnd that the th element

of is given by

(16)

with . The main diagonal entries are all

equal to and the off-diagonal entries are all equal to

because and are i.i.d. In (16), is the

correlation matrix of vector is the identity ma-

trix, and denotes the determinant of a matrix. Finally,

note that matrix is block-diagonal with along its diag-

onal.

III. GAUSSIAN KLMS ALGORITHM: TRANSIENT BEHAVIOR

ANALYSIS

The KLMS weight-update equation for the system presented

in Fig. 1 is [4]

(17)

DeÞning the weight-error vector leads to

the weight-error vector update equation

(18)

From (6) and (7), and the deÞnition of , the error equation

is given by

(19)

and the optimal estimation error is

(20)

Substituting (19) into (18) yields

(21)

A. Simplifying Statistical Assumptions

Simplifying assumptions are required in order to make the

study of the stochastic behavior of mathematically fea-

sible. The statistical assumptions required in different parts of

the analysis are the following:

A1: is statistically independent of .

This assumption is justiÞed in detail in [12] and has

been successfully employed in several adaptive Þlter

analyses. It is called here for further reference “modi-

Þed independence assumption” (MIA). This assump-

tion has been shown in [12] to be less restrictive than

the classical independence assumption [13].

A2: The Þnite-order model provides a close enough

approximation to the inÞnite-order model with min-

imum MSE, so that .

A3: and are uncorrelated. This

assumption is also supported by the arguments sup-

porting the MIA (A1) [12].

B. Mean Weight Behavior

Taking the expected value of both sides of (21) and using the

MIA (A1) yields

(22)

which is the LMS mean weight behavior for an input vector

.

C. Mean-Square Error

Using (19) and the MIA (A1), the second-order moments of

the weights are related to the MSE through [13]

(23)

where is the autocorrelation matrix

of and the minimumMSE. The study of

the MSE behavior (23) requires a model for . This model

is highly affected by the transformation imposed on the input

signal by the kernel. An analytical model for the behavior

of is derived in the next subsection.

D. Second-Order Moment Behavior

Using (20) and (21), the weight-error vector update becomes

(24)



Post-multiplying (24) by its transpose, and taking the expected

value, leads to

(25)

Using the MIA (A1), the Þrst two expected values are given by

(26)

Using assumptions A2 and A3 the third expected value is given

by

(27)

The fourth and the sixth expected values can be approximated

using the MIA (A1), that is,

(28)

since by the orthogonality principle [13].

Evaluation of the Þfth and seventh expected values requires

further simpliÞcations for mathematical tractability. A reason-

able approximation that preserves the effect of up to

its second-order moments is to assume that and

are uncorrelated2. Under both this approximation

and MIA (A1),

(29)

where the equality to zero is due to the orthogonality principle.

Using (26)–(29) in (25) yields

(30a)

with

(30b)

2Using this approximation we are basically neglecting the ßuctuations of
about its mean .

Evaluation of expectation (30b) is an important step in the

analysis. In the classical LMS analysis [14], the input signal

is assumed zero-mean Gaussian. Then the expectation in (30b)

can be approximated using the moment factoring theorem for

Gaussian variates. In the present analysis, as is a non-

linear transformation of a quadratic function of the Gaussian

input vector , it is neither zero-mean nor Gaussian.

Using theMIA (A1) to determine the th element of

in (30b) yields

(31)

where . Each of the moments in (31)

can be determined using (15). Depending on and , we

have Þve different moments to evaluate.

with

.

Denoting , yields

(32)

with

.

Denoting , yields

(33)

where

(34)

with

.

Denoting , yields

(35)

with

.

Denoting , yields

(36)

where

(37)

with

.

Denoting

(38)



where

(39)

Using these moments, the elements of are Þnally given

by

(40)

and, for

(41)

which completes the evaluation of in (30b). Substituting

this result into (30a) yields the following recursive expressions

for the entries of the autocorrelation matrix :

(42)

and, for

(43)

where and with , as deÞned

in (16).

E. Some Useful Inequalities

Before concluding this section, let us derive inequalities re-

lating the fourth-order moments and the entries of the covari-

ancematrix . For real random variables and , remember

that Hölder’s inequality says [15]

(44)

where and are in with . As shown

hereafter, this inequality yields

(45)

Inequality is obtained by using (44) with

, and . In order to prove inequality

, we Þrst need to observe that Hölder’s inequality yields3

(46)

The result directly follows from (46) for and

. The inequality can be proved using (44) with

and

where the equality is due to stationarity of . Now,

for and

, (44) yields

where the equality is again due to stationarity of . This last

relation proves inequality and completes the proof of (45).

Finally, let us state an inequality involving the main diagonal

entry of the covariance matrix . By virtue of Cheby-

shev’s sum inequality, we have

(47)

3Replace with and with in (44) with .



In the next section, we shall use the recursive expressions

(42) and (43) of the autocorrelation matrix , and (45) and

(47) to study the steady-state behavior of the Gaussian KLMS

algorithm.

IV. GAUSSIAN KLMS ALGORITHM: CONVERGENCE ANALYSIS

We now determine convergence conditions for the Gaussian

KLMS algorithm using the analytical model derived in

Section III. Let be the lexicographic representation of

, i.e., the matrix is stacked column-wise into

a single vector . Consider the family of

matrices , whose elements are given by

(48)–(49), shown at the bottom of the page. Finally, we deÞne

the matrix as follows:

(50)

with the lexicographic representation of .

Using these deÞnitions, it can be shown that the lexicographic

representation of the recursion (30a) can be written as

(51)

where is the lexicographic representation of . We

shall use this expression to derive stability conditions for the

Gaussian KLMS algorithm. But before closing this subsection,

let us remark that matrix is symmetric. This can be shown

from (48)–(49), using , and

observing that . This implies that can be

diagonalized by a unitary transformation, and all its eigenvalues

are real-valued.

A. Convergence Conditions

Anecessary and sufÞcient condition for convergence of

in (51) is that all the eigenvalues of lie inside the open interval

([16], Section 5.9). Thus, the stability limit for can

be numerically determined for given values of and . In the

following we derive a set of analytical sufÞcient conditions that

can also be used for design purposes.

It is well known that all the eigenvalues of lie inside the

union of Gerschgorin disks [17]. Each of these disks is centered

at a diagonal element of and has a radius given by the sum of

the absolute values of the remaining elements of the same row.

A sufÞcient condition for stability of (51) is thus given by

(52)

Equations (48)–(50) show that the rows of have only two

distinct forms, in the sense that each row of has the same

entries as one of these two distinct rows, up to a permutation.

This implies that only two distinct Gerschgorin disks can be

deÞned. Also, all the entries of are positive except possibly

for and . See

Appendix B for proof. Expression (52) thus leads to only two

inequalities, deÞned as follows for

(53a)

(53b)

The study of the limiting values of that satisfy both (53a) and

(53b) yields bounds on the maximum step size. The intersection

of these bounds yields the sufÞcient stability limits. In what fol-

lows, we present the analysis for . The results for

and are presented in Appendix C.

To determine the bounds imposed by (53a), we write it for

as

(54)

Thus, the following two conditions must be satisÞed

(55a)

(55b)

otherwise,

(48)

(49)



TABLE I
CONDITIONS ON DERIVED FROM (55B)

Condition (55a) yields (56), shown at the bottom of the page,

because the numerator and denominator of are positive. On

the other hand, (55b) leads us to a condition of the form

with

(57)

(58)

Hereafter, we shall denote by the resulting bound on

. Then, solving (55b) yields the four possible cases shown in

Table I, depending on the signs of and . In case (ii), note

that there exists no that satisÞes (55b) when and

. This situation arises because condition (53a) is a sufÞ-

cient condition imposing that the Gerschgorin disks deÞned by

(52) are completely inside the unit circle in the z-plane. This

condition is obviously not necessary for having all the eigen-

values of inside the unit circle. The lower bound in case (iv)

of Table I is also due to this excessive restriction, as the algo-

rithm is certainly stable for . It is kept here for complete-

ness, but it should be disregarded in practice.

Combining the possible solutions of (55a) and (55b) and dis-

regarding lower bounds yields the following stability bounds

for

for case (i) in Table I

for cases (ii) and in Table I

(59)

If case (iii) happens, which should be tested right away, the sta-

bility conditions should be determined numerically through the

eigenvalues of .

Having determined limits for (53a) such that , and as-

suming that case (iii) in Table I did not happen, we proceed to

determine the extra restrictions imposed on by (53b). First, we

multiply (53b) by and divide by , rewriting it as

(60)

TABLE II
CONDITIONS ON DERIVED FROM (62B)

Now, given that (54) has already been satisÞed, we replace the

left-hand side (LHS) of (60) with the right-hand side (RHS) of

(54). After rearranging the terms, we have the new condition

(61)

which leads to the following two conditions:

(62a)

(62b)

On the one hand, (62a) yields two different conditions deÞned

by

if

if

(63)

where

(64)

On the other hand, (62b) leads us to a condition of the form

, where has already been deÞned in (57)

and

(65)

Solving (62b) thus leaves four possible cases to consider, shown

in Table II, where .

(56)



Combing the possible solutions of (62a) and (62b), and again

disregarding lower bounds, yields the following stability bounds

on [see (66) at the bottom of the page].

Finally, except for cases (iii) in Table I and (vii) in Table II,

which should be tested right away, the sufÞcient stability con-

ditions will be given by the intersection of (59) and (66). These

conditions can be slightly simpliÞed by observing that ,

as can be easily proved using (45).

In the next section, we shall derive the expression of the

weight-error correlation matrix in steady state. This will

allow us to calculate the MSE and the excess MSE.

B. Steady-State Behavior

The closed-form solution of (51) can be written as [16]

(67)

where denotes the vector in steady state, and is

given by

(68)

Assuming convergence, we deÞne the time for convergence as

the number of iterations required for (67) to reach

(69)

where is a design parameter to be chosen by the user.

At this point, it is important to note that is unique if the

system under consideration is stable. Indeed, the matrix

has only nonzero eigenvalues because it satisÞes conditions

(53a)–(53b), and can thus be inverted. Let be the matrix

whose lexicographic representation is . It is also unique

and satisÞes the following expression derived from (30a) for

:

(70)

In (70), denotes the matrix in steady state. It is

interesting to note that (68) is the lexicographic counterpart of

(70), as (51) is the lexicographic representation of (30a).

From (23), the steady-state MSE is given by

(71)

where is the steady-state excess MSE, de-

noted by . To evaluate these quantities, we shall now

compute the entries of . In order to achieve this, we Þrst

justify that is a matrix with the same structural proper-

ties as , namely, all its main diagonal entries are equal to

each other, having a value denoted by , and all its off-diag-

onal entries are also equal to each other, having a value denoted

by . Then, we determine and so that is the

solution to (70), which we know is unique. It is straightforward

to see that the LHS of (70) is also a matrix with the same struc-

tural properties as , as it is equal to .

One way for to have the proposed structure would

be that and all have the

same structure. It is straightforward to show that matrices

and have this structure if, and only

if, has that structure. If this is the case, a direct con-

sequence, through (70), would be that also has this

structure. Using and , respectively, for the main-di-

agonal and off-diagonal entries of in (40) and (41)

yields, for [see (72) at the bottom of the page]. For

. Writing, for ease of notation,

and

for all , and solving (70) for and yields (73)-(74),

shown at the bottom of the page, with and deÞned

in (16).

It can be veriÞed that using (72)–(74) in the LHS of (70)

yields the correct RHS. Also, we know that this solution is

unique since can be inverted. Then, going back to (71),

we obtain the following desired result

(75)

Based on the results presented in the previous sections, we

shall now propose design guidelines to set the parameters of

If
for case in Table II

for cases and in Table II

If
for case in Table II

for cases and in Table II
(66)

(72)

(73)

(74)



the Gaussian KLMS algorithm in order to achieve a prescribed

performance.

V. DESIGN GUIDELINES

The analysis results are now used to establish design guide-

lines. Without limiting generality, the coherence-based sparsiÞ-

cation rule (3) is considered hereafter to design the dictionaries.

It is however implicit that any other existing technique to se-

lect the kernel functions could be used. These de-

sign guidelines assume the availability of multiple realizations

of the sequences and .

Suppose a design goal is to obtain anMSEwhich is less than a

speciÞed value . The following procedure could be applied.

1) Set a coherence threshold and deÞne a set of kernel

bandwidths to be tested. For the following design exam-

ples, a set of values for was chosen as equally spaced

points in (0, 1). Then, was chosen to yield reasonable

values of for the chosen set of values. The value of

is determined for each pair by training the dic-

tionary with the input signal until its size stabilizes.

The training is repeated several times. A value is de-

termined for the th realization. The value of associated

with the pair is the average of the dictionary sizes

for all realizations, rounded to the nearest integer. This is

the value of to be used in the theoretical model.

2) Using the system input , determine the desired output

and estimate and over several runs. In

a practical setting should be measured at the unknown

system output.

3) From (10), determine the minimum MSE for each

set of parameters . If none of the pairs leads

to , return to step 1 to choose a new set of

parameters and .

4) Determine using rules (59) and (66) for each value

of and choose the largest possible value of so that

and (note that is computed

using (75)).

5) Given and determine using (50)

and then from (51).

6) Determine from (73)–(74), and then from

(75).

7) Choose in criterion (69) and Þnd from simulations

using the parameters determined in steps 1 to 8.

Repeat steps 1 to 9 for all kernel parameters in the chosen set

and use the one that leads to the smallest .

VI. SIMULATION RESULTS

This section presents examples to illustrate the proposed de-

sign procedure and to verify the theoretical results. The sim-

ulation conditions which are common to all examples are de-

scribed in Example 1. Only the changes to these conditions are

described in the remaining examples.

A. Example 1

Consider the problem studied in [18] and [19], for which

(76)

TABLE III
STABILITY RESULTS FOR EXAMPLE 1

TABLE IV
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 1

where the output signal was corrupted by a zero-mean

white Gaussian noise with variance . The input

sequence is zero-mean i.i.d. Gaussian with standard devi-

ation .

The proposed method was tested with a maximum MSE

dB, a coherence level and a set of

kernel bandwidths 4. For each

value of , 500 dictionary dimensions , were

determined using 500 realizations of the input process. The

length of each realization was 500 samples. Each was de-

termined as the minimum dictionary length required to achieve

the coherence level . The value was determined as the

average of all , rounded to the nearest integer. The values of

were calculated from (10) for each pair . To this

end, second-order moments and were estimated

by averaging over 500 runs.

Before searching for a value of , such that ,

we have to deÞne . There are two possibilities for deÞning

: 1) use the Gerschgorin disk analysis yielding a value of

denoted as , 2) compute and test the eigenvalues of

yielding a value of denoted as . Table III shows that,

as expected, the condition imposed by the Gerschgorin disks

is more restrictive than that imposed by the eigenvalues of .

However, note that choosing from is simpler

and usually yields good design results.

Table IV presents the obtained results for the chosen values of

. For each pair , the step-size was chosen so that the al-

gorithmwas stable ( less than ) and dB.

The values of and were determined from

(75) and was obtained from (69) for . Note that

dB in all cases. It clearly appears that

is a good design choice, as it

satisÞes all design conditions after only iterations.

Note that the value of chosen is about 1/10 of . This is due

to the small valueof imposedby thedesign.This is the same

phenomenon that happenswhendesigning the regularLMSalgo-

rithm for practical speciÞcations in linear estimation problems.

For each simulation, the order of the dictionary remained

Þxed. It was initialized for each realization by generating input

4These values of are samples within a range of values experimentally ver-
iÞed to be adequate for the application.



Fig. 2. Theoretical model and Monte Carlo simulation of KLMS for different
kernel bandwidths. Ragged curves (blue): simulation results averaged over 500
runs. Continuous curves (red): Theory using (23) and (67). Continuous hori-
zontal lines (blue): Steady-state MSE predicted by theory. Dashed horizontal
lines (red): Steady-state MSE from simulations. (a) and .
(b) and . (c) and . (d) and

.

vectors in and Þlling the positions with vectors that sat-

isfy the desired coherence level. Thus, the initial dictionary is

different for each realization. During each realization, the dic-

tionary elements were updated at each iteration so that the

least recently added element is replaced with .

Figs. 2 and 3 illustrate the accuracy of the analytical model

for the four cases presented in Table IV. Fig. 2 shows an ex-

cellent agreement between Monte Carlo simulations, averaged

Fig. 3. Steady-State results. Dashed horizontal lines: MSE and Excess MSE
averaged over 500 realizations. Continuous horizontal lines (red): Minimum
MSE predicted by theory. Continuous decaying lines: Theoretical MSE (blue)
and Excess MSE (black). (a) and . (b) and

. (c) and . (d) and .

over 500 runs, and the theoretical predictions made by using

(23) and (67). Fig. 3 compares simulated steady-state results

(dashed horizontal lines) with theoretical predictions using

(68). There is again an excellent agreement between theory and

simulations.



TABLE V
STABILITY RESULTS FOR EXAMPLE 2

TABLE VI
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 2

B. Example 2

As a second design example, consider the nonlinear dynamic

system identiÞcation problem studied in [20] where the input

signal was a sequence of statistically independent vectors

(77)

with correlated samples satisfying .

The second component of in (77) is an i.i.d. Gaussian noise

sequence with variance and is a white

Gaussian noise with variance . Consider a linear

system with memory deÞned by

(78)

where and a nonlinear Wiener function

(79)

(80)

where is the output signal, corrupted by a zero-mean white

Gaussian noise with variance . The initial con-

dition was considered in this example.

The proposed method was tested with a maximum MSE

dB, a coherence level and a set of

kernel bandwidths . The other

simulation conditions were similar to the Þrst example.

Table V shows the estimated values of obtained with the

Gerschgorin disk analysis and from the eigenvalues of . The

expression without solution (w.s.) indicates that the intersection

of solutions provided by (59) and (66) is empty. In this case, we

need to use the limit obtained from the eigenvalues of , i.e.,

.

Table VI presents the obtained results for the chosen values

of . For each pair , the step-size was chosen in order

to ensure algorithm stability ( less than ) and

dB. The values of and were deter-

mined from (75) and was obtained from (69) for .

Note that dB in all cases. It clearly appears

Fig. 4. Theoretical model and Monte Carlo simulation of KLMS for different
kernel bandwidths. Ragged curves (blue): simulation results averaged over 500
runs. Continuous curves (red): Theory using (23) and (67). Continuous hori-
zontal lines (blue): Steady-state MSE predicted by theory. Dashed horizontal
lines (red): Steady-state MSE from simulations. (a) and .
(b) and . (c) and . (d) and

.

that is a good design choice as it

satisÞes all design conditions after iterations.



Fig. 5. Steady-State results. Dashed horizontal lines: MSE and Excess MSE
averaged over 500 realizations. Continuous horizontal lines (red): Minimum
MSE predicted by theory. Continuous decaying lines: Theoretical MSE (blue)
and ExcessMSE (black). (a) and . (b) and .
(c) and . (d) and .

Figs. 4 and 5 illustrate the accuracy of the analytical model

for the four cases presented in Table VI. The agreement between

theory and simulations is excellent as in the Þrst example.

TABLE VII
STABILITY RESULTS FOR EXAMPLE 3

TABLE VIII
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 3

C. Example 3

As a third design example, consider the ßuid-ßow control

problem studied in [21] and [22] whose input signal was a se-

quence of statistically independent vectors

(81)

with correlated samples satisfying ,

where is a white Gaussian noise sequence with variance

and is a white Gaussian so that has

variance . Consider a linear system with memory

deÞned by

(82)

with and a nonlinear Wiener function

(83)

where the output signal was corrupted by a zero-mean

white Gaussian noise with variance .

The design paramenters were set to dB

(maximum MSE), (coherence level) and

(set of possible kernel band-

widths).

Table VII shows the values of obtained by testing the

eigenvalues of . Note that the Gerschgorin disk conditions

were too strict for all cases making the computation of

impossible.

Table VIII presents the obtained results for the chosen values

of . For each pair , the step-size was chosen to ensure

stability ( less than ) and dB. The

values of and were determined from (75) and

was obtained from (69) for . Note that

dB in all cases. It clearly appears that

is a good design choice, as it satisÞes the de-

sign conditions after iterations.

Figs. 6 and 7 illustrate the accuracy of the analytical model

for the four cases presented in Table VIII. Again, the results are

very promising for this example.



Fig. 6. Theoretical model and Monte Carlo simulation of KLMS for different
kernel bandwidths. Ragged curves (blue): simulation results averaged over 500
runs. Continuous curves (red): Theory using (23) and (67). Continuous hori-
zontal lines (blue): Steady-state MSE predicted by theory. Dashed horizontal
lines (red): Steady-state MSE from simulations. (a) and . (b)

and . (c) and . (d) and .

VII. CONCLUSION

This paper studied the stochastic behavior of the Gaussian

KLMS adaptive algorithm for Gaussian inputs and nonlin-

earities which preserve the stationarity of their inputs. The

study resulted in analytical models that predict the behavior

Fig. 7. Steady-State results. Dashed horizontal lines: MSE and Excess MSE
averaged over 500 realizations. Continuous horizontal lines (red): Minimum
MSE predicted by theory. Continuous decaying lines: Theoretical MSE (blue)
and ExcessMSE (black). (a) and . (b) and .
(c) and . (d) and .

of the algorithm as a function of the design parameters. In

particular, the new models clarify the joint contribution of

the kernel bandwidth and the step-size for the algorithm

performance, both during the transient adaptation phase and

in steady state. The algorithm convergence was studied and

analytical expressions were derived which provide sufÞcient



stability conditions. Design guidelines were proposed using the

theoretical model. These guidelines were applied to different

nonlinear system identiÞcation problems. Simulation results

have illustrated the accuracy of the theoretical models and their

usefulness for design purposes. The extension of this analysis

to the case of time-varying systems will be the subject of future

investigations.

APPENDIX A

POSITIVE-DEFINITENESS OF

To prove that is positive deÞnite we prove that all its

eigenvalues are positive [17]. Let and

be, respectively, the th eigenvalue and the corresponding eigen-

vector of . Hence,

(84)

From (16), we can write as

(85)

where and is the identity

matrix. Using (85) in (84) yields

(86)

Noting that , with is an eigenvector of

we have

(87)

which yields

(88)

which is positive since ( is real and is the result of

a square root in (16)) and .

The remaining eigenvectors are orthogonal to . Thus,

for all and thus

(89)

which yields

(90)

which are also positive since . This concludes the

proof.

APPENDIX B

SIGN ANALYSIS OF MATRIX ENTRIES

We shall now analyze the sign of the entries of matrix de-

Þned in (48)–(49). On the one hand, we know that

and are strictly positive. On the other hand,

and can be either positive or negative de-

pending on . The analysis of the diagonal entries of needs

more attention.

Consider Þrst . This is a second-degree

polynomial with respect to the parameter whose minimum

value is . Using (45) and (47), we know that .

This implies that for all . Let us focus

now on , whose minimum is equal to

. Similarly as above, we know that , which

means that for all .

As a conclusion, all the diagonal entries of the matrix are

strictly positive, which greatly simpliÞes the analysis of (52) for

stability.

APPENDIX C

STABILITY ANALYSIS IN THE CASES AND

Let us Þrst derive the condition for stability of the system

(51) in the case . The matrix reduces to the entry

. This directly implies that the system (51) is

stable if

(91)

Consider now the case . Expression (52) leads us to

the following two inequalities:

(92a)

(92b)

We observe that the LHS of (92a) is larger than the LHS of (92b)

for all because , as shown by (45). Proceeding the

same way as we did for in Section IV-A, we conclude

that (51) is stable if the following conditions are satisÞed:

(93)
where

(94)
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