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Abstract

Segmentation is often required for the analysis of dynamic positron emission

tomography (PET) images. However, noise and low spatial resolution make

it a difficult task and several supervised and unsupervised methods have been

proposed in the literature to perform the segmentation based on semi-automatic

clustering of the time activity curves of voxels. In this paper we propose a new

method based on spectral clustering that does not require any prior information

on the shape of clusters in the space in which they are identified. In our

approach, the p-dimensional data, where p is the number of time frames, is first

mapped into a high dimensional space and then clustering is performed in a

low-dimensional space of the Laplacianmatrix. An estimation of the bounds for

the scale parameter involved in the spectral clustering is derived. The method

is assessed using dynamic brain PET images simulated with GATE and results

on real images are presented. We demonstrate the usefulness of the method

and its superior performance over three other clustering methods from the

literature. The proposed approach appears as a promising pre-processing tool

before parametric map calculation or ROI-based quantification tasks.

(Some figures may appear in colour only in the online journal)

1. Introduction

The estimation of kinetic parameters using compartmental modeling or reference-based

methods generally requires the delineation of regions of interest (ROI) where each region

is supposed to include voxels with the same time-activity curve (TAC). The method used

for ROI definition highly impacts the quantitative results. In clinical practice, segmentation



is generally either performed manually by an expert on the positron emission tomography

(PET) images, or ROIs are identified on anatomical images coregistered with the PET images.

Manually defined ROIs are operator dependent and 3D ROI drawing is both time-consuming

(Krak et al 2005) and challenging due to the noise in PET images. The use of anatomical

images to identify the regions also suffers several shortcomings. Registration is needed to

compensate for motions between or within the acquisitions. Moreover, using anatomical

information is not necessarily relevant to the underlying biochemistry (Maroy et al 2008): the

distribution of molecular targets can be heterogeneous within anatomical brain structures (e.g.

neuroinflammation in neurodegenerative disorders), and functional regions can be different

from anatomical regions.

For these reasons, there has been an increased interest in segmenting dynamic PET

images based on TACs. Currently, the most commonly used approaches for analyzing data

from molecular targets that do not have clearly identified reference regions are supervised

methods that decompose the TACs of voxels into a linear combination of predetermined

classes (Turkheimer et al 2007, Yaqub et al 2012). In this work, we focus on unsupervised

methods that aim at creating clusters of voxels with homogeneous behaviors without

any a priori on the shape of the TACs. The underlying hypothesis is that physiological

similarity of voxels in ROIs can be identified by analyzing the similarity between their

TACs. Clustering methods group similar elements into subsets (or clusters) on the basis of a

similarity criterion. The methods proposed in the literature for dynamic PET segmentation can

currently be divided into two categories depending on the space in which clustering is

performed.

Clustering in data space

In this first category of TAC clustering methods, segmentation is directly performed in the

data space. Wong et al (2002) proposed a K-means (KM) method based on a weighted least-

square distance. They used two criteria based on information theory to estimate the number of

clusters. KM can be interpreted as a non-probabilistic limit of the expectation–maximization

algorithm (EM) applied to a mixture of Gaussian functions. An EM method was proposed by

Ashburner et al (1996), based on the shapes of the TACs rather than their magnitudes. Another

EM method was proposed by Brankov et al (2003) along with a similarity metric measuring

the correlation between TACs. Kamasak (2009) proposed a maximum a posteriori method

that clusters the voxels in the projection domain. A parametric method has also been proposed

by Krestyannikov et al (2006) in which clusters were identified in the projection space with a

least-square method. Hierarchical methods have also been used operating directly in the data

space. Zhou (2000) described a hierarchical average linkage algorithm as a pre-processing

step prior to parametric analysis. Guo et al (2003) proposed a two-stage clustering process

based on histogram thresholding and hierarchical linkage. A method operating in data space

that combines minimal energy path active contours and hierarchical linkage was also reported

by Maroy et al (2008).

Projection in a lower dimensional space

In the second category, the p-dimensional data, where p is the number of time frames, is

projected into a space of dimension less than p where the clusters are identified. Kimura et al

(2002) used a principal component analysis to reduce the dimensionality and a KM algorithm

to identify the clusters. A factor analysis combined with C-means was proposed by Frouin

et al (2001) to segment the heart cavities from perfusion data.



Implicit mapping into high dimensional space

The main limitation of the two previous types of approaches is that some a priori information

regarding the shape of clusters in the space in which they are identified is implicitly used

(Filippone et al 2008). In our work, we thus considered for the segmentation of dynamic

PET images a third category of clustering methods that regroups the kernel (Shawe-Taylor

and Cristianini 2004) and spectral clustering (Shi and Malik 2000) methods. In this category

of methods, the dot product is replaced by a kernel function to map the data into a high

dimensional space called feature space. The strength of these methods lies in their ability

to identify clusters without assuming any specific cluster shape in the feature space. This

implicit mapping into high dimensional space increases the separability between clusters and

a linear partitioning in the feature space produces nonlinear separating hypersurfaces in the

input space.

While a link between kernel and spectral clustering methods has been pointed out (Bengio

et al 2004, Dhillon et al 2007), spectral clustering combines the advantages of the mapping

into a high dimensional space and the clustering in a low-dimensional space. Unlike some

kernel methods that directly analyze the projections into high dimensional space to cluster

the data, spectral clustering uses the spectral elements of the kernel matrix to find a proper

low-dimensional representation of the data in the high dimensional space.

In this paper, we describe an approach based on spectral clustering, called kinetic spectral

clustering (KSC), to segment the dynamic PET images. The proposed approach uses aweighted

Euclidian distance that considers the level of noise contained in each frame and we estime

the bounds of the scale parameter involved in the similarity function of spectral clustering.

Our approach is assessed using GATE Monte Carlo PET simulations of numerical phantoms

and results are compared with three other clustering methods from the literature. Comparative

results are also presented on real dynamic PET images of a rat with [18F]DPA714.

2. Kinetic spectral clustering of dynamic PET data

2.1. Method

Spectral clustering requires the calculation of a weighted graph that represents the similarity

(or affinity) between data points (Ng et al 2001). The nodes of the graph correspond to data

points and the weight of the edge between two nodes is a function of the similarity between

the corresponding two data points. In dynamic PET, we denote the TAC at voxel i by a vector

xi ∈ R
p in which p represents the number of frames of the PET sequence. Let us consider a

data set S = {xi, i = 1 . . . n} ∈ R
p made of n TACs, where n is the number of voxels in the

3D volume corresponding to the field of view of the scanner. Let k be the number of clusters

to identify.

The weighted graph is represented by the affinity matrix W . The wi j entries are the

measures of the affinity between a voxel xi and another voxel x j, defined by an exponentially

decaying function of the distance ρ between their associated TACs:

wi j =

{

exp
(

−
ρ(xi,x j )

2

2σ 2

)

if i 6= j,

0 otherwise,
(1)

where σ is a scale parameter. The computation of the Gaussian affinity measure between TACs

of voxels embeds the data fromR
p into a high dimensional feature space in which clusters can

be separated without constraints on their shape convexity. In the case of a Gaussian kernel the

redescription space is infinite, without having to actually compute the transformation to this



space as it is implicitly done by the use of the kernel. This measure is a Mercer kernel whose

matrix represents a symmetric positive definite function in the theory of integral equations.

We define the distance between two TACs as a weighted L2-norm in R
p:

ρ(xi, x j) =

√

√

√

√

p
∑

γ=1

ωγ

[

x
(γ )

i − x
(γ )

j

]2
(2)

where x
(γ )

i is the value of voxel xi in the γ th frame. The weight ωγ are based on noise level

estimation as proposed by Cheng-Liao and Qi (2010) to weight more heavily the differences

observed in frames having a better signal-to-noise ratio:

ωγ =

∫ δγ

δγ−1
exp (−λδ) dδ

√

Nγ

, (3)

where λ = ln 2/T1
2
and T1

2
is the half-life of the radioisotope (18F was used in this study), δγ

is the elapsed time since injection at the end of frame γ and Nγ is the total number of events

in frame γ . As the overall noise variance in a MAP reconstructed frame is about proportional

to the data variance in the frame (Qi and Leahy 1999), this weight corresponds to the inverse

of the standard deviation of the noise in each frame.

The degree matrixD is defined as a diagonal n×nmatrix with di elements on the diagonal.

The degree di of node i is the sum of all edges weights linked with xi:

di =

n
∑

j=1

wi j (4)

Several Kirchhoff Laplacian matrices can be used. To ensure robustness with respect to

broad degree distributions in the similarity graph,we used a symmetrical undirected normalized

graph Laplacian matrix (Shi and Malik 2000):

L = I − D−1W, (5)

where I is the identity matrix of dimension n × n.

Spectral clustering then consists in calculating the first k eigenvectors of L corresponding

to its smallest eigenvalues (hence to the largest of D−1W ) and projecting the data within this

low-dimensional space. This changes the representation of the data points into axes where the

clusters are best separated. As a last step, any conventional clustering algorithm can be used in

this space where clusters can be more easily identified (Luxburg 2007). In this work we used

the classical KM algorithm as the last step to identify the clusters. To illustrate the principle of

the proposed method, figure 1(a) displays clusters composed of theoretical TACs discretized

over 100 frames with added Gaussian noise. The initial 100-dimensional data (TACs) were

first mapped into high-dimensional feature space and then the distances between the data

were projected into a final low-dimensional space of dimension 6 given that six clusters were

modeled. The representation of the clusters on the space spanned by the first three axes of the

low-dimensional space is shown in figure 1(b), where it can be observed that the embedded

data clusters are well separated and easily identified.

2.2. Scale parameter analysis

Spectral clustering relies on the affinity matrix, and the Gaussian affinity scale parameter

affects the quality of the clustering results because it conditions the separability between

the clusters in the spectral embedding space and controls the affinity between the data (Ng

et al 2001). Several heuristic approaches were suggested to set this scale parameter. Brand and



(a) (b)

Figure 1. Illustration of spectral clustering on TACs affected by Gaussian noise. (a) Noisy TAC

clusters in R
100 (100 time frames); (b) data representation in the first three dimension R

3 of the

spectral space showing the separation in the proposed final low-dimensional space.

Huang (2003) fixed σ as the mean of the distances between each point and its closest neighbor.

Zelnik-Manor and Perona (2004) adopted a local point of view and defined for each point

xi a scale parameter σi as the distance between the point xi and its seventh closest neighbor.

While for some applications these estimations might be correct, they might not always be

optimal.

Rather than trying to automatically estimate the best value of σ , we propose to define an

appropriate interval which the Gaussian scale parameter σ should belong to. This interval can

be used to guide manual parameterization or to set research bounds of optimization methods.

It is generally accepted that σ can be interpreted either as a threshold under which two points

are considered similar or as a neighborhood radius (Luxburg 2007). From this geometrical

point of view, we estimate the upper and lower bounds of σ as some distances based on the

TAC distribution.

We consider a limit case in which either all the points can be considered in the same

cluster or each point in one distinct cluster. In other words, we start by considering an uniform

TAC distribution in which all the TACs have the same neighborhood radius. By assuming that

the p-dimensional data set is isotropic enough, we approximate the volume occupied by the

whole data set S as a p-dimensional box bounded by the largest distance between all pairs of

TAC in S. We then define the reference distance, noted Bmax, which separates all the TACs

with their closest neighbors, as follows:

Bmax =
max16i, j6n ‖xi − x j‖

n
1
p

, (6)

where n and p are respectively the number and the dimension of the TAC.

Equation (6) means that a condition for some clusters to exist is that some TACs must be

at a distance lower than a fraction of Bmax. Therefore we define Bmax as an upper bound of the

interval for the scale parameter.

For the non-zero lower bound estimation, we consider the threshold under which the σ

parameter does not affect the clustering result. This threshold, notedBmin, is the lowest distance

between all pairs of TAC in S, calculated as follows:

Bmin = min
16i, j6n

‖xi − x j‖. (7)



By definition, the distance between all pairs of TACs is largest or equal than Bmin so it does not

condition the separability between the clusters. For values of σ smaller than Bmin (σ < Bmin),

the Gaussian affinity matrix can be ill-conditioned and will not permit the extraction of

dominant eigenvectors. The scale parameter σ should therefore be within this interval:

Bmin 6 σ 6 Bmax. (8)

Note that these Bmin and Bmax bounds could be based on a theoretical study which links

the Gaussian affinity and the discretization of the heat kernel. This theoretical development

shows that the Gaussian scale parameter should be within an appropriate interval in order to

preserve the geometrical properties and thus the clustering quality (Mouysset et al 2013).

3. Validation

3.1. Data simulation

The proposed clustering algorithm was evaluated using realistic PET images obtained from

GATE Monte Carlo simulations (Jan et al 2004, Jan et al 2011).

3.1.1. TAC model. TACs were simulated based on the three compartment model proposed in

(Maroy et al 2008, Kamasak et al 2005). This model assumes homogeneous vascular fraction

in each considered region. The input function, corresponding to the molar concentration of

the tracer in the plasma, is denotedCP and was given by:

CP(t) = α0((α1t − α2 − α3)e
−λ1t + α2e

−λ2t + α3e
−λ3t ). (9)

The kinetics of tissue compartment i, denotedCi were computed as:

Ci(t) =

(

3
∑

w=1

[ai,we
−t/bi,w ]

)

∗ CP(t), (10)

where ∗ denotes the convolution operator. The parameters α0, α1, α2, α3, λ1, λ2, λ3, ai,w and

bi,w were randomly set using the constraints proposed in Maroy et al (2008).

3.1.2. Image simulation. We simulated dynamic PET images of the brain with GATE (Jan

et al 2004, Jan et al 2011), using the Zubal head phantom as a voxelized source (Zubal

et al 1994). We simulated dynamic images as acquired using the Philips Gemini GXL PET

scanner, with 20 frames (5 × 30 s followed by 15 × 60 s). Seven regions of the phantom

were considered for image simulations: cerebellum, frontal lobes, occipital, thalamus, parietal

lobes, remaining parts of the head, and air around the head, as shown in figure 2(b). These

regions were the ground truth for assessing the segmentation accuracy. Activities in all ROIs

were simulated according to (10). Examples of simulated TACs for each ROI are shown in

figure 2(a). List-mode simulations were performed on a bi i7-980x computer with 12 cores

and 48Go RAM. The total number of coincidences for each time frame varied between 8 and

70 millions. Corrections were applied for random and scattered coincidences. Reconstruction

of the dynamic PET images was performed with an ANW-OSEM iterative method, using four

iterations and 16 subsets, into voxels of 2.2 mm× 2.2 mm× 2.8 mm.

3.2. Clustering quality criteria

3.2.1. Quality of clustering. We measured the quality of clustering, denoted by Q, by

estimating the Dice metric, which was calculated for every ROI as follows (Dice 1945):

Q =
2card(Sres ∩ Struth)

card(Sres) + card(Struth)
, (11)



(a) (b)

Figure 2. (a) Example of simulated TACs used for our experiments. (b) ROIs of the Zubal head

phantom used for PET image simulation.

where Sres and Struth are respectively the set of points of the clustering result and of the ground

truth.

3.2.2. TAC error. We calculated the root mean square error (Err) between the average TAC

of identified clusters and the corresponding ground truth TACs used for the simulation:

Err =
1

k

k
∑

c=1

√

∑

xi∈Cc

d(gc, xi)2 (12)

whereCc is the set of voxels clustered in class c, gc is the ground truth TACof the corresponding

ROI, and d(gc, xi) is the distance between gc and a voxel xi ∈ Cc, as defined in (2).

3.3. Comparison with other segmentation methods

3.3.1. K-means. Wong et al (2002) introduced a KM clustering method to classify a number

of tissue TACs as a function of their shape and magnitude into a smaller number of distinct

classes that are mutually exclusive. Themethod is based on the RMSE defined by equation (12)

to minimize the within-cluster sum of squares distances.

3.3.2. Hierarchical method. We used an agglomerative hierarchical clustering (HC)

consisting in merging clusters iteratively as proposed by Guo et al (2003). The average

linkage cluster method is used with a distance defined by:

8(l, m) =
∑

i∈Cl

∑

j∈Cm

‖xi − x j‖
2

NlNm

(13)

where Cl and Cm are the lth and mth clusters respectively, and Nl and Nm are the numbers of

data points in Cl and Cm. To avoid solutions in which a cluster would include a single data

point, k + 10 clusters were calculated (k being the number of clusters in the ground truth),

and the smallest clusters were merged with the other clusters so as to maximize the quality of

clustering Q.

3.3.3. Expectation-maximization. EM is a model-based approach in which clusters are

represented as a parametric Gaussian distribution. The method consists in finding the

parameters such as the fit between the data and the model is optimized. We used the maximum

log-likelihood model proposed by Ashburner et al (1996).



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3. Clustering results on axial and sagittal slices from simulated images. First row : axial

slice. (a) Ground truth. (b) Sample frame of the simulated image. (c) KM. (d) HC. (e) EM clustering.

(f) KSC. Second row: sagittal slice. (g) Ground truth. (h) Sample frame of the simulated image.

(i) KM. (j) HC. (k) EM clustering. (l) KSC.

3.4. Demonstration of KSC on real dynamic PET images

We performed intrastriatal injections of quinolinic acid to achieve unilateral lesions of the left

striatum of an adult Wistar rat. The injection of such exitotoxins into the brain causes marked

gliosis and severe inflammation around the injection site (Isacson et al 1987). The rat underwent

dymanic microPET acquisitions with [18F]DPA-714, a radiotracer of the translocator protein

(TSPO) which constitutes a biomarker for brain neuroinflammation. The dynamic acquisition

consisted in a series of 27 frames of the following durations: 4× 10, 4× 20, 6× 60, 10× 80

and 3× 600 s on a GE Explore Vista microPET/CT scanner. Images were reconstructed using

a FORE+AWOSEMmethod (ten iterations, 16 subsets) with a voxel size of 0.39×0.39×0.78

mm3. Images of the brain were registrated into Paxinos coordinates in which an atlas can be

used to indicate the expected localization of the lesion. The atlas was merged and regularized,

and then used as a mask to consider only the voxels inside the brain. We performed clustering

of these registered dynamic scans into four ROIs with all the studied methods, expecting

to find blood, specific uptake and non-specific gray matter and white matter uptakes. The

segmentation results were visually analyzed for consistency as no gold standard was available.

4. Results

4.1. Clustering of realistic dynamic PET image simulations

Figure 3 displays representative results of the clustering obtained from the simulated dynamic

PET images. In both rows, the first column contains the ground truth regions, the second

column shows a simulated frame, and the last four columns show the results obtained with the

four segmentation methods. All methods recovered most of the simulated regions. However,

regions were more precisely delineated when using KSC compared to KM, HC and EM. In all

cases the regions delineated by KSC were close to the corresponding ground truth, while this

was not the case for other methods which yielded spurious regions. In particular, parietal and

occipital regions of the sagittal slice (second row) were merged in the results obtained with

KM and EM, and consequently the background was split in two regions. In the result obtained



(a) (b)

Figure 4. Affinity parameter bounds. (a) Percentage of clustering error against σ (semi-log scale).

(b) Condition number ofW against σ (log–log scale).

Table 1. Figures of merit characterizing the segmentation accuracy.

Zubal head

Method Q: axial(%) Err: axial Q: sagittal(%) Err: sagittal

KM 75± 18 0.21± 0.24 65± 20 0.41± 0.34
HC 68± 16 0.46± 0.34 66± 28 0.48± 0.47
EM 68± 18 0.34± 0.31 52± 23 0.80± 0.73
KSC 80± 9 0.16± 0.20 78± 14 0.28± 0.25

with HC the parietal region and background are merged, while all regions were correctly

identified using KSC. It can also be noticed in the sagittal view that KSC is less sensitive to the

variations in noise statistics along the axis of the scanner (top and bottom parts of the slice).

While all methods were affected by PVE, KSC was less prone to create spurious regions in

between two actual regions, except for the thalamus in figure 3(l), which is surrounded by

voxels associated to the frontal region.

Table 1 summarizes the quantitative results averaged over all ROIs and all slices of the

simulated images. For each dynamic simulation, eight slices (four transverse and four sagittal

slices) were individually processed. The quality of clustering measured by Q score (11) was

significantly increased by KSC compared to the other methods, with global averaged scores

of KSC of respectively 80% and 78% in axial and sagittal slices, with an increase between 6%

and 33% compared to the three other methods. Such scores indicate accurate identification of

the ROIs as the spatial resolution of the numerical phantom was intrinsically better than the

one in the reconstructed PET images, leading to an expected loss of details in the reconstructed

images. The error on TAC estimation was lower using KSC compared to KM, HC and EM,

with a global reduction factor comprised between 1.3 and 2.8.

4.2. Scaling parameter bounds

To assess the bounds derived for the scale parameter σ , we measured two criteria against

the value of σ used in KSC for the clustering of the noisy TACs presented in figure 1(a).

The supervised criterion Perror is the percentage of mis-clustered TACs. Figure 4(a) displays

Perror for a representative case with k = 6 clusters, for values of σ ∈ [1e2 . . . 1e11] on a

semi-logarithmic scale. The values of the estimated lower bound Bmin and upper bound Bmax



(a) (b) (c) (d) (e) (f)

(g) (h)

(i) (j)

Figure 5. Clustering results on a real dynamic PET scan of a rat brain. First row: representative

registered transverse slice. (a) Schiffer atlas. (b) Sample frame of the real image series. (c) KM

(d) HC. (e) EM clustering. (f) KSC. Second and third rows: average TACs of the clustered ROIs.

(g) KM. (h) HC. (i) EM clustering. (j) KSC.

are shown using dashed lines. For values of σ outside the proposed bounds, clustering errors

occur, which was consistent with the theoretical bound estimates.

The second criterion is unsupervised, it is defined as the condition number of the affinity

matrix W displayed in figure 4(b). The values of the estimated lower bound Bmin and upper

bound Bmax are shown in dashed lines. It can be observed that for values smaller than Bmin,

the normalized affinity matrix is ill-conditioned. With such high condition number, classical

algorithms for estimating dominant eigenvectors of the affinity matrix cannot converge. These

results explain the Perror of 100% found for low values of σ in figure 4(a).

4.3. Real dynamic PET data

Figure 5 displays representative results obtained with the four segmentation approaches.

Figures 5(a) and 5(b) respectively present the Schiffer atlas (Schiffer et al 2006) illustrating

the expected location of the lesion and a representative frame (late frame with the highest

SNR among the frames). Figures 5(c)–(f) display the results obtained with KM, HC, EM

and KSC approaches. All methods except HC produced relatively large ROIs with one that

could correspond to the region with specific uptake. The corresponding TACs of the four

ROIs obtained with each method are presented in figures 5(g)–(j). In the case of KSC, and to

a lesser degree EM and KM, the four TACs could possibly correspond to an input function

(ROI 2), brain with non-specific uptake merging white and grey matter (ROI 1), specific uptake

(ROI 3) and a delayed input function (ROI 4). Identification of the corresponding physiological

behaviors was more difficult for the TACs obtained with the HC method.



5. Discussion

We have described a new dynamic segmentation method, called KEC, to identify functional

regionswith similar TACs. The proposedmethod aims at overcoming some inherent limitations

of conventional dynamic PET clustering. It is able to nonlinearly separate physiologically

meaningful clusters in the time domain by mapping the data into a high dimensional space

and then identifying the clusters in a low-dimensional space. KSC was compared to three

other methods and presented improved segmentation performances. The method was shown

to detect different kinetic behaviors and their associated ROIs. In the simulated brain data, no

assumption was made on the anatomical structures nor on the pharmacokinetics of the tracer.

No statistical model was needed as in the case of probabilistic methods like EM. The only

pre-processing step consisted in simple thresholding to exclude voxels outside the head using

the summed image over the entire acquisition.

In the experiments, the methods were applied on 2D+t slices because of the computational

complexity of the matrix calculation involved in KSC. The computational cost of KSC is

higher than other methods such as KM, as eigenvalues and eigenvectors of large matrix

(size> 20 k × 20 k) have to be calculated. In this paper, all methods were implemented in

MATLAB on a four cores, 12 Go RAM computer. Clustering of the entire volume was not

possible with such implementation as it would require the storage and eigendecomposition of

matrices of size larger than 5M× 5M. The specific mathematical approaches needed for such

decompositions were not investigated in this work. For such 3D+t clustering, specific methods

like Lanczos or Arnoldi algorithms can be implemented to handle the very large matrix

computations. A fully 3D processing is expected to increase the robustness and facilitate

the interpretation of the segmentation results. Alternative approaches include slice-by-slice

clustering followed by cluster merging, or pre-clustering the data with fast linear methods (e.g.

KM) to reduce the size of the data, followed by KSC segmentation. This was however not in

the scope of the proposed paper.

The results presented in real microPET dynamic PET images are only qualitative as no

ground truth was available. Future experimentations with arterial blood sampling are required

to objectively assess the quality of real dynamic image clustering with KSC. The images were

registered into Paxinos coordinates before the segmentation, which introduced an implicit

regularization of the data that reduced the influence of noise in all methods. Three of the

four methods produced an ROI that could correspond to the lesioned area. However, the

lesion ROI obtained using KSC yielded a TAC that was more consistent with the expected

kinetic in the lesion than the corresponding lesion TACs obtained using the EM or KM

segmentation.

In this study, a weighting scheme proposed by Cheng-Liao and Qi (2010) was used to

favor the influence of frames with reduced noise and better SNR. While it provided promising

results, alternative weights can also be considered. Depending on the studied application and

on the a priori knowledge available, it could improve the performance of KSC. For instance in

some applications where a contrast between grey and white matter is normally expected (e.g.

beta amyloid plaques in Alzheimer disease) it could be worth favoring the earliest and latest

frames to benefit both from the difference between gray matter and white matter perfusion

and from the specific uptake information, reducing the influence of middle frames where the

TACs of grey and white matter cross.

The final step of the spectral clustering process involves a KM algorithm to cluster the

data, but there is nothing principled about using the KM algorithm in this step (von Luxburg

2007). While initialization should be considered cautiously when KM is used directly on the

data in their original Rp space, the data resulting from the spectral clustering process should



contain well-distinct clusters. We project the data on the unity sphere on which the KM is

initialized using the most distant centroids.

The number of clusters is generally unknown and is currently an input parameter of KSC.

In this study, the correct number of clusters was systematically used, for the KM, EM and

KSC methods. A higher number of clusters (k+10) was used for the hierarchical method

as it tends to produce classes consisting of isolated points, and the classes were manually

merged into the correct number of classes so as to maximize the quality of clustering. The

estimation of the number of clusters is a general problem for all clustering algorithms and

somemethods have been designed that can be used with spectral clustering (Fraley and Raftery

2002, Still and Bialek 2004, Luxburg 2007). While this problem was not considered in this

work, we are currently exploring the use of a specific matrix norm as an ad hoc indicator of

both within-cluster and between-cluster similarities to automatically estimate the number of

classes.

In dynamic PET images, the TACs of voxels within a functional ROI are not exactly

behaving the same and a variety of TACs can be observed within a functional ROI. These

differences in TAC come from several factors among which the local variations in the

radiotracer target density, the PVE that produces a mixture of kinetics on the borders of

adjacent ROIs, and the level of noise. In the R
p space of TACs, such factors spread the

clusters away from their centroids. In KSC, as in the other three segmentation methods,

there is no implicit assumption regarding the presence or absence of such spreading. These

methods aim at generating the clusters that are as much different to each other as possible,

and as homogeneous as possible within a cluster, implicitly allowing for some spreading.

However, the TAC behavior affects the quality of clustering when kinetic profiles overlap too

much between functional ROIs. The reconstruction parameters that have an influence on this

spreading (number of iterations, corrections, voxel size, frame durations, regularization to

cite a few) should be optimized if KSC is used in clinical applications. While the PVE issue

could be reduced by PVE correction methods, we did not use any in this study. The relatively

good behavior of KSC can be explained by the fact that it makes no assumption regarding the

shape of the clusters in the projection space. Among other undesirable artifacts that can alter

the segmentation process, physiological motions can severely impact the kinetics measured

in each voxel. In this study we focused on brain imaging for which motion artifacts are less

frequent, but when applicable, movement correction methods should be used.

The proposed algorithm does not account for the spatial coordinates of the voxels, as none

of the three compared methods. The comparative evaluation of the methods therefore tested

their effectiveness in the feature selection process. Incorporating spatial information would

likely reduce the sensitivity of the method to noise and increase its robustness (Chen et al

2001). In KSC, it can be performed by adding a spatial distance term within the Gaussian

kernel (Shi andMalik 2000), or by including the coordinate information as part of the features.

However, in both cases it would introduce an additional parameter (or equivalently a choice in

the coordinate system) to control the tradeoff between the terms related to the distance between

kinetics and the term describing the spatial distance between voxels. In brain imaging, some

disconnected regions can have the same kinetics hence spatial constraints might be difficult to

optimize. Further developments are required to include a spatial term in KSC.

KSC can be used as a pre-processing step before kinetic analysis to increase the signal-

to-noise ratio. It is based on the differences in the voxel kinetics, which is the same

type of information used to calculate parameters of compartmental models. These models

produce parametric images, like binding potential maps. KSC could increase the robustness

of quantification by providing a reliable segmentation yielding ROIs with similar TACs that

can then be averaged or further manipulated. Supervised approaches have been proposed and



successfully applied to the study of neuroinflammation where no reference region is devoid

of the TSPO, using [11C]PK1195 (Turkheimer et al 2007, Yaqub et al 2012). They consist in

predetermining kinetic classes that correspond to the expected TACs behavior and to estimate

in each voxel the contribution of each of these classes. The definition of the kinetic classes

currently relies on MRI segmentation and could benefit from KSC to define ROIs with distinct

kinetic profiles without anatomical priors.

6. Conclusion

We have proposed an approach based on spectral clustering for the segmentation of dynamic

PET images. In KSC, the kinetic data is mapped into a high dimensional space and then

embedded into a low-dimensional space which increases the separability of the clusters

and makes KSC able to handle clusters that have arbitrary shapes in the feature space. We

proposed an estimation of the bounds of the scale parameter involved in the clustering process.

We showed experimental results on GATE Monte Carlo simulations and real dynamic PET

images which confirmed the improvement obtained in ROI delineation compared to three other

segmentation methods. As a result, KSC appears as a promising pre-processing tool before

parametric map calculation or ROI-based quantification tasks.
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