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MINIMAL SURFACE SINGULARITIES ARE LIPSCHITZ

NORMALLY EMBEDDED

WALTER D NEUMANN, HELGE MØLLER PEDERSEN, AND ANNE PICHON

Abstract. Any germ of a complex analytic space is equipped with two natu-
ral metrics: the outer metric induced by the hermitian metric of the ambient
space and the inner metric, which is the associated riemannian metric on the
germ. These two metrics are in general nonequivalent up to bilipschitz homeo-
morphism. We show that minimal surface singularities are Lipschitz normally
embedded, i.e., their outer and inner metrics are bilipschitz equivalent, and
that they are the only rational surface singularities with this property. The
proof is based on a preliminary result which gives a general characterization
of Lipschitz normally embedded normal surface singularities.

1. Introduction

If pX, 0q is a germ of an analytic space of pure dimension dimpX, 0q, we denote
by mpX, 0q its multiplicity and by edimpX, 0q its embedding dimension.

Minimal singularities were introduced by J. Kollár in [12] as the germs of analytic
spaces pX, 0q of pure dimension which are reduced, Cohen-Macaulay, whose tangent
cone is reduced and whose multiplicity is minimal in the sense that Abhyankar’s
inequality

mpX, 0q ě edimpX, 0q ´ dimpX, 0q ` 1

is an equality (see [12, Section 3.4] or [4, Section 5]).
In this paper, we only deal with normal surfaces. In this case, minimality can

be defined as follows ([12, Remark 3.4.10]): a normal surface singularity pX, 0q is
minimal if it is rational with a reduced minimal (also called fundamental) cycle.

Minimal surface singularities play a key role in resolution theory of normal com-
plex surfaces since they appear as central objects in the two main resolution algo-
rithms: the resolution obtained as a finite sequence of normalized Nash transfor-
mations ([22]), and the one obtained by a sequence of normalized blow-up of points
([25]). The question of the existence of a duality between these two algorithms,
asserted by D. T. Lê in [14, Section 4.3] (see also [4, Section 8]) remains open, and
the fact that minimal singularities seem to be the common denominator between
them suggests the need of a better understanding of this class of surface germs.

In this paper, we study minimal surface singularities from the point of view of
their Lipschitz geometries, and we show that they are characterized by a remarkable
metric property: they are Lipschitz normally embedded. Let us explain what this
means.
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If pX, 0q is a germ of a complex variety, then any embedding φ : pX, 0q ãÑ pCn, 0q
determines two metrics on pX, 0q: the outer metric

doutpx1, x2q :“ ||φpx1q ´ φpx2q|| (i.e., distance in C
n)

and the inner metric

dinnpx1, x2q :“ inftlengthpφ ˝ γq : γ is a rectifyable path in X from x1 to x2u ,

using the riemannian metric on X r t0u induced by the hermitian metric on Cn.
For all x, y P X, dinnpx, yq ě doutpx, yq, and the outer metric determines the inner
metric. Up to bilipschitz equivalence both these metrics are independent of the
choice of complex embedding. We speak of the (inner or outer) Lipschitz geometry
of pX, 0q when considering these metrics up to bilipschitz equivalence.

Definition 1.1. A germ of a complex normal variety pX, 0q is Lipschitz normally
embedded if inner and outer metrics coincide up to bilipschitz equivalence, i.e., there
exists a neighbourhood U of 0 in X and a constant K ě 1 such that for all x, y P U

1

K
dinnpx, yq ď doutpx, yq.

It is a classical fact that the topology of a germ of a complex variety pX, 0q Ă
pCn, 0q is locally homeomorphic to the cone over its link Xpǫq “ S2n´1

ǫ X X , where
S2n´1
ǫ denotes the sphere with small radius ǫ centered at the origin in Cn. If pX, 0q

is a curve germ then it is in fact bilipschitz equivalent to the metric cone over its
link with respect to the inner metric, while the data of its Lipschitz outer geometry
is equivalent to that of the embedded topology of a generic plane projection (see
[21, 9, 19]). Therefore, an irreducible complex curve is Lipschitz normally embedded
if and only if it is smooth. Our main result shows that this is not true in higher
dimension: any minimal surface singularity is Lipschitz normally embedded. In
section 8 we also prove a converse to this among rational singularities, so:

Theorem 1.2. A rational surface singularity is Lipschitz normally embedded if and
only if is minimal.

The paper is organized as follows. In Section 2, we give basic definitions about
generic projections of a normal surface germ and their polar curves and discrimi-
nants. In Section 3, we recall the geometric decomposition with rates of a normal
surface germ given in [20], which completely describes the inner Lipschitz geometry
and an important part of the outer geometry. The proof of theorem 1.2 is based on
two preliminary results. The first one is a characterization of Lipschitz normally
embedded surface singularities (Theorem 4.5). The second one is a complete de-
scription of the geometric decomposition of a minimal singularity given in Section
5 by using results of [6] and the explicit description of the polar and discriminant
curves of minimal surface singularities given in [22] and [2, 3]. Finally, one direction
of Theorem 1.2 (minimal singularities are normally embedded) is proved in Section
6 and illustrated through an example in Section 7, and the other direction is proved
in Section 8.

Acknowledgments. Neumann was supported by NSF grant DMS-1206760. Pi-
chon was supported by ANR-12-JS01-0002-01 SUSI. We are also grateful for the
hospitality and support of the following institutions: Columbia University, Institut
de Mathématiques de Marseille and Aix Marseille Université, and IAS Princeton.
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2. Generic projections

We denote by Gpk, nq the grassmannian of k-dimensional subspaces of Cn. For
D P Gpn ´ 2, nq let ℓD : Cn Ñ C2 be the linear projection with kernel D.

Definition 2.1. Let pγ, 0q Ă pCn, 0q be a complex curve germ. Let V Ă Gpn´2, nq
be the open dense subset such that for each D P V , D does not contain any limit
of bisecant lines to γ. The projection ℓD is generic for pγ, 0q if D P V . (See [7] for
the definition of the cone of limits of bisecants.)

Definition 2.2. ([16, (2.2.2)] and [23, V. (1.2.2)].) Let pX, 0q Ă pCn, 0q be a normal
surface germ. We assume that the restriction ℓD|X is a finite morphism (this is true
for D in an open dense set of Gpn ´ 2, nq). Let ΠD Ă X be the polar curve of this
projection, i.e., the closure in pX, 0q of the singular locus of the restriction of ℓD to
X r t0u, and let ∆D “ ℓDpΠDq be the discriminant curve.

There exists an open dense subset Ω Ă Gpn ´ 2, nq such that

(1) for each D in Ω, the projection ℓD is generic for its polar curve ΠD;
(2) tpΠD, 0q : D P Ωu forms an equisingular family of curve germs in terms of

strong simultaneous resolution.

We say the projection ℓD : Cn Ñ C2 is generic for pX, 0q if D P Ω.

Remark 2.3. For each D P Ω the restriction ℓD|X : pX, 0q Ñ pC2, 0q is a finite
cover whose degree equals the multiplicity of pX, 0q and D X CX,0 “ t0u where
CX,0 denotes the tangent cone to pX, 0q. In fact, for any D, these two properties
are equivalent ([4, Remarque 2.2]).

3. Lipschitz geometry and geometric decomposition of a normal

surface singularity

In this section, we describe the geometric decomposition of pX, 0q introduced
in [20], which completely determines the inner geometry and is an invariant of the
outer geometry. We give first the description through resolution as presented in [20,
Section 9] and we give an alternative but equivalent description through carrousel
decomposition at the end of the section. See also [20] for more details.

We need to define the contact exponent between two germs of curves.
Let pC, 0q and pD, 0q be two irreducible plane curve germs intersecting only

at 0. Let us choose coordinates x and y in C
2 so that C and D admit Puiseux

parametrizations respectively

y “ αpx1{mq “
ÿ

iěm

aix
i{m and y “ βpx1{nq “

ÿ

jěn

bjx
j{n,

where m and n are the multiplicities of C and D.
Replacing x by ωx in α (resp. β) where ωm “ 1 (resp. ωn “ 1), we get all the

Puiseux parametrizations of C (resp. D).

Denote by
 
αipx

1{mq
(m
i“1

the set of Puiseux parametrizations of C and
 
βjpx1{nq

(n
j“1

that of D.

Definition 3.1. The contact exponent between C and D is the rational number
defined by:

qC,D “ max
1ďiďm,1ďjďn

 
ordxpαipx

1{mq ´ βjpx1{nqq
(
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More generally, if C,D are two germs of curves in pCn, 0q intersecting only at 0,
we define the contact exponent qC,D between C and D as the contact exponent
between ℓpCq and ℓpDq where ℓ : Cn Ñ C2 is a generic projection for C Y D.

Notice that qC,D depends neither on the choice of ℓ nor on that of the coordinates
x and y. Notice also that the contact exponent between two smooth curves is an
integer. It is in fact the minimal number of blow-ups of points necessary to separate
their strict transforms.

In order to define the geometric decomposition of pX, 0q, we consider the minimal

good resolution π0 : p rX0, Eq Ñ pX, 0q with the following two properties:

(1) it resolves the basepoints of a general linear system of hyperplane sections
of pX, 0q (i.e., it factors through the normalized blow-up of the maximal
ideal of X);

(2) it resolves the basepoints of the family of polar curves of generic plane
projections (i.e., it factors through the Nash modification of X).

This resolution is obtained from the minimal good resolution of pX, 0q by blowing
up further until the basepoints of the two kinds are resolved. We denote by Γ0 the
dual resolution graph of π0.

Definition 3.2. An L-curve is an exceptional curve in π´1
0 p0q which intersects the

strict transform of a generic hyperplane section. The vertex of Γ0 representing an
L-curve is an L-node.

A P-curve (P for “polar”) will be an exceptional curve in π´1
0 p0q which intersects

the strict transform of the polar curve of any generic linear projection. The vertex
of Γ0 representing this curve is a P-node.

A vertex of Γ0 is called a node if it is an L- or P-node or has valency ě 3 or
represents an exceptional curve of genus ą 0.

A string of a resolution graph is a connected subgraph whose vertices have
valency 2 and are not nodes, and a bamboo is a non-node vertex of valency 1 union
a string attached to it.

Now, consider the resolution π : rX Ñ X obtained from rX0 by blowing up each
intersection point of pairs of curves of π´1p0q which correspond to nodes of Γ0.
We then obtain a resolution satisfying (1) and (2) and such that there are no
adjacent nodes in its resolution graph. Let Γ be the resolution graph of π. Denote
by E1, . . . , Er the exceptional curves in E “ π´1p0q and by vk the vertex of Γ
corresponding to Ek.

For each k “ 1, . . . , r, let NpEkq be a small closed tubular neighbourhood of Ek

and let

N pEkq “ NpEkq r
ď

k1‰k

NpEk1 q.

For any subgraph Γ1 of Γ define:

NpΓ1q :“
ď

vkPΓ1

NpEkq and N pΓ1q :“ NpΓq r
ď

vkRΓ1

NpEkq .

We now describe the geometric decomposition of pX, 0q. It is a decomposition of
pX, 0q as a union of semi-algebraic pieces of three types: Bp1q, Bpqq with q ą 1 and
Apq, q1q where the q ă q1 are rational numbers ě 1. The pieces Bp1q are metrically
conical, i.e., bilipschitz equivalent to a strict metric cone in the inner metric. For
each piece Bpqq with q ą 1, Bpqq r t0u fibers over a punctured disk D2

r t0u with
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2-manifold fibers having diameter of order Optqq at distance t from the origin. We
call q the rate of Bpqq. Each Apq, q1q is an intermediate piece between a Bpqq and
a Bpq1q piece and is topologically the cone on a toral annulus T 2 ˆ I. For a more
precise definition of pieces see [20, Section 2].

If vj is a vertex of Γ, we denote by Γj the subgraph of Γ consisting of vj union
any attached bamboos.

Proposition 3.3. [20, Proposition 9.3] The pieces of the geometric decomposition
of pX, 0q are as follows:

(1) the Bp1q-pieces are the sets π1pN pΓjqq where vj is an L-node;
(2) each Bpqq-piece for q ą 1 is a set π1pN pΓjqq where vj is a node which is

not an L-node;
(3) the Apq, q1q-pieces (which have 1 ď q ă q1) are the π1pNpσqq where σ is a

maximal string between two nodes.

In both cases (1) and (2), the rate q is the contact exponent between the π1-images
of two curvettes of Ej meeting Ej at distinct points.

If E1 is an irreducible component of a normal crossing divisor E in a complex
smooth surface S, we call curvette of E1 a small smooth curve on S transversal to
E1 at a smooth point of E.

Remark 3.4. The geometric decomposition of pX, 0q is a refinement of the thick-
thin decomposition of pX, 0q introduced in [6]. Namely the thick part of pX, 0q is
the union of Bp1q pieces plus adjacent Ap1, qq-pieces.

The geometric decomposition can be encoded in the dual resolution graph Γ of
π decorated with a rate q at each node. See the left graph in Example 5.7.

In [20, Definition 8.6], we define an equivalence relation between pieces by saying
that two pieces with same rate q are equivalent, if they can be made equal by
attaching a “q-collar” (a Bpqq piece which is topologically the cone on T 2 ˆ I)
at each boundary component. Similarly, two Apq, q1q-pieces are equivalent if they
can be made equal by removing a q-collars at the outer boundaries and removing
q1-collars at the inner boundaries.

Proposition 3.5. [20, Proposition 8.7] The geometric decomposition is unique up
to equivalence of the pieces and it is an invariant of the outer Lipschitz geometry.

Let us now explain how the geometric decomposition is related (and even built)
from the geometry of the discriminant of a generic plane projection.

We first construct a decomposition of the germ pC2, 0q into Bpqq- and Apq, q1q-
pieces based on a resolution of ∆.

Let ρ : Y Ñ C2 be the minimal sequence of blow-ups starting with the blow-
up of 0 P C

2 which resolves the basepoints of the family of images ℓpΠDq by ℓ of
the polar curves of generic plane projections and let ∆ be some ℓpΠDq. We set
ρ´1p0q “

Ťm
k“1 Ck, where C1 is the exceptional curve of the first blow-up.

Denote by R the dual graph of ρ, so v1 is its root vertex. We call a ∆-curve an
exceptional curve in ρ´1p0q intersecting the strict transform of ∆, and a ∆-node a
vertex of R which represents a ∆-curve. We call any vertex of R which is either v1
or a ∆-node or a vertex with valency ě 3 a node of R. A string is, as in Definition
3.2, a connected subgraph whose vertices have valency 2 and are not nodes, and a
bamboo is again a non-node vertex of valency 1 union a string attached to it.
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If two nodes are adjacent, we blow up the intersection points of the two corre-
sponding curves in order to create a string between them. Denote ρ1 : Y 1 Ñ C2 the
obtained resolution.

The decomposition of pC2, 0q is as follows:

(1) the single Bp1q-piece is the set ρ1pN pC1qq;
(2) the Bpqq-pieces for q ą 1 are the sets ρ1pN pRkqq where Rk is a subgraph

of R consisting of a node vk which is not the root v1 plus any attached
bamboo. The rate q is the contact exponent between the ρ1-images of two
curvettes of the exceptional curve corresponding to vk.

(3) the Apq, q1q-pieces are the sets ρ1pNpσqq where σ is a maximal string between
two nodes.

Definition 3.6. We call this decomposition of pC2, 0q into B- and A-pieces the
carrousel decomposition of pC2, 0q with respect to ∆.

The pieces of the carrousel decomposition can also described in terms of trun-
cated Puiseux parametrizations of the components of ∆. See [6, Section 12] or [20,
Sections 3, 7] for details.

Let us now describe how the carrousel decomposition of pC2, 0q with respect to
∆ and the geometric decomposition of pX, 0q are related.

Definition 3.7. Let ℓ : pX, 0q Ñ pC2, 0q be a generic plane projection of pX, 0q as
defined in Section 2. Let Π be its polar curve and Π˚ its strict transform in the

resolution π : rX Ñ X . A polar wedge about Π is a neighborhood of Π saturated by
the π-images of neighbouring curvettes of Π˚. A ∆-wedge is the ℓ-image of a polar
wedge. (For details see [6]).

According to [6, Proposition 3.4], ℓ is a Lipschitz map for the inner metric outside
a polar wedge A about Π. Moreover, A and the ∆-wedge ℓpAq are union of B-pieces
with trivial topology, i.e., the fibers are 2-disks (we call D-pieces such trivial B-
pieces). More precisely, if A0 Ă A is a Dpsq-piece, then ℓpA0q is also a Dpsq-piece
(with same rate s).

As a consequence of this, each piece of the carrousel decomposition of pC2, 0q
just constructed lifts to a union of A and B-pieces of the same type in pX, 0q.
After absorption of the polar-wedges and of the Dpqq-pieces which do not contain
components of the polar curve (see [6, section 13]), one obtains the geometric
decomposition of pX, 0q previously described. In the case of minimal singularities,
no absorption will be needed so we omit the details of absorption here.

This correspondence between the geometric decomposition of pX, 0q and the
carrousel decomposition of pC2, 0q can be read through the correspondence between
the resolutions ρ1 and π given by the Hirzebruch-Jung resolution process. This will
be a key argument in the proof of Theorem 1.2 in Section 6. A full example is given
in Example 5.7.

4. Characterization of Lipschitz normally embedded surface

singularities

Definition 4.1. Let δ be a singular plane curve. We say rate of δ for any rational
number which is either a characteristic Puiseux exponent of a branch of δ or the
contact exponent between two branches of δ. If δ is smooth its set of rates is empty.

The following easy remark will be useful in the induction of Section 6.
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Remark 4.2. Let e be the blow-up of the origin of C2 and let pδ, 0q Ă pC2, 0q
be a singular plane curve germ. If δ is irreducible and its set of rates A consists
of numbers ě 2, then the set of rates of pδ˚, pq is A ´ 1, where ˚ denotes strict
transform by e. If δ1 and δ2 are two components of ∆ whose strict transforms by
e meet e´1p0q at a single point p, and if q is the contact exponent between δ1 and
δ2, then the contact exponent between δ˚

1 and δ˚
2 equals q ´ 1.

Let pX, 0q be the germ of a normal complex surface and let ℓ : X Ñ C2 be
a generic plane projection. Let Π be the polar curve of ℓ and ∆ “ ℓpΠq be its
discriminant curve. Let ρ : Y Ñ C2 be the resolution of ∆ introduced in Section 3
and let R be the dual graph of ρ.

Definition 4.3. A test curve is an irreducible curve pγ, 0q Ă pC2, 0q which is the
projection by ρ of a curvette γ˚ of an exceptional curve in ρ´1p0q represented by a
node of R such that γ˚ and the strict transforms of p∆, 0q by ρ do not intersect.

Definition 4.4. Let pγ, 0q Ă pC2, 0q be a test curve. Let C be the component of
ρ´1p0q which intersects the strict transform γ˚. We define the inner rate qγ of γ
as the contact exponent between the ρ-images of two generic curvettes of C.

Let rℓ : pCn, 0q Ñ pC2, 0q be a plane projection which is generic for the curve

ℓ´1pγq. We define the outer rates of γ as the rates of the plane curve rℓpℓ´1pγqq.

Notice that the outer rates of γ do not depend on the choice of rℓ.
Theorem 4.5. pX, 0q is Lipschitz normally embedded if and only if for any test
curve pγ, 0q, the outer rates of pγ, 0q satisfy the following conditions:

p˚1q Any outer rate of γ which is a characteristic exponent equals qγ .
p˚2q For any pair δ1, δ2 of components of ℓ´1pγq, let π1 : X 1 Ñ X be π composed

with a sequence of successive blow-ups of points which resolves the curve
δ1 Y δ2. Let E1 and E2 be the components of π1´1p0q which intersect the
strict transforms of δ1 and δ2, and let q0 be the maximum among mini-
mum of inner rates of vertices along paths joining the vertices v1 and v2 in
the resolution graph of π1. Then the contact exponent between the generic

projections rℓpδ1q and rℓpδ2q equals q0.

Remark 4.6. In fact, an outer rate of γ which is a characteristic exponent is always
ě qγ . Indeed, let Cν be the exceptional curve of ρ´1p0q such that γ˚ is a curvette
of Cν . Then B “ ρpN pCνqq is a Bpqγq-piece in the sense of [20, Section 2] (see also

[6, Section 11]). Let ℓ̃ : pX, 0q Ñ pC2, 0q be another generic projection. Note that

ℓ̃pℓ´1pBqq is also a Bpqγq-piece, so any characteristic exponent of a complex curve
inside it is ě qγ .

Similar arguments show that the contact exponent between rℓpδ1q and rℓpδ2q, as
in Condition (˚2), is always ě q0.

Remark 4.7. Notice that Condition p˚2q for γ does not depend on the choice of

the resolution π1. In fact, one could take for π1 the resolution πρ : X̃ Ñ X of pX, 0q
obtained by taking the pull-back of ρ by ℓ, then normalizing and then resolving
the remaining quasi-ordinary singularities. It is easy to prove that πρ is a good
resolution for the lifting by ℓ of any test curve of ρ.

Proof of Theorem 4.5. The proof will use some arguments already presented in [20],
in particular in the proof of [20, 20.1].
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Assume that there exists a test curve pγ, 0q Ă pC2, 0q which does not satisfy

Condition p˚1q. Let δ be a component of the lifting ℓ´1pγq such that rℓpδq admits a
characteristic exponent q ą qγ .

Let pxpwq, ypwqq “ pwn,
ř

iěn biw
iq be a parametrization of γ. Fix w0 P C˚ and

consider the algebraic arc p : r0, 1q Ñ γ defined by pptq “ pxptw0q, yptw0qq. Then
p lifts to two semi-algebraic arcs γ1, γ2 : r0, 1q Ñ δ such that for all t, ℓpγ1ptqq “
ℓpγ2ptqq “ pptq and doutpγ1ptq, γ2ptqq “ Optnqq.

Since γ1ptq and γ2ptq belong to different sheets of the cover ℓ, then for any path σ

between them, the loop ℓpσq will have to travel through the Bpqγq-piece containing
the point pptq, so lengthpℓpσqq ě Optnqγ q. Since ℓ is Lipschitz for the inner metric
(outside polar-wedges which can be avoided by multiplying the length of ℓpσq by
a factor of π), we also have that the length of σ is ě Optnqγ q. Therefore, we get
dinnpγ1ptq, γ2ptqq ě Optnqγ q. So

lim
tÑ0

doutpγ1ptq, γ2ptqq

dinnpγ1ptq, γ2ptqq
“ 0,

which implies that pX, 0q is not Lipschitz normally embedded.
Assume now that pγ, 0q Ă pC2, 0q does not satisfy Condition p˚2q of Theorem 4.5,

i.e., there exists two components δ1 and δ2 of the lifting ℓ´1pγq such that q ą q0,
where q0 is defined as in Condition (˚2) and q equals the contact exponent qrℓpδ1q,rℓpδ2q.

Now lift the arc p defined before to two semi-algebraic arcs γ1 : r0, 1q Ñ δ1 and
γ2 : r0, 1q Ñ δ2. We then have doutpγ1ptq, γ2ptqq “ Optnqq. On the other hand, any
path σ in X from γ1ptq to γ2ptq corresponds to a path σ̂ in the resolution graph
Γ joining the vertices v1 and v2. By the same argument as before, the length of
a minimal σ will be Optnq0 q where q0 is the minimal rate of the vertices on σ̂.
Therefore dinnpγ1ptq, γ2ptqq “ Optnq0 q and we conclude as before that pX, 0q is not
Lipschitz normally embedded.

Therefore, if pX, 0q is Lipschitz normally embedded, then any test curve pγ, 0q Ă
pC2, 0q satisfies conditions p˚1q and p˚2q.

We now want to prove that, conversely, if any test curve satisfies conditions p˚1q
and p˚2q, then pX, 0q is Lipschitz normally embedded.

Let ℓ1, ℓ2 and ℓ3 : pX, 0q Ñ pC2, 0q be three distinct generic projections for pX, 0q
and for i “ 1, 2, 3, let Ai be a polar wedge for ℓi such that A1, A2 and A3 are pairwise
disjoint outside the origin. Then for any pair of points p, q P X r t0u sufficiently
close to 0, p and q are both outside Ai for at least one of i P t1, 2, 3u. Choose such
an i and set ℓpp,qq “ ℓi.

By a straightforward adaptation of the argument in the last page of [20], one
shows that there exist a neighborhood V of 0 in X and a constant L ě 1 such that
for any pair p, q P V ,

1

L

ˆ
dinnpp, q1q ` doutpq

1, qq

˙
ď doutpp, qq

where q1 is the extremity of the lifting by ℓ “ ℓpp,qq of the segment rℓppq, ℓpqqs with
origin p. In particular, ℓpq1q “ ℓpqq.

Thus the result follows from the following Lemma 4.8, which is proved later. �

Lemma 4.8. Let ℓ : pX, 0q Ñ pC2, 0q be a generic projection for pX, 0q and let
pA, 0q be a polar wedge for ℓ. Assume that any test curve for ℓ satisfies conditions
p˚1q and p˚2q. Then there exists ǫ ą 0 and a constant K ě 1 such that for any
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p P B4
ǫ r t0u and any pair of distinct points p1, p2 P X rA such that ℓpp1q “ ℓpp2q,

we have dinnpp1, p2q ď Kdoutpp1, p2q.

In order to prove Lemma 4.8, we need two preliminary lemmas 4.9 and 4.10.

Lemma 4.9. Let γ be a test curve. Then Condition p˚1q implies that the restriction
of ℓ to any component δ of ℓ´1pγq is an isomorphism.

Proof. Let Cν be the irreducible component of ρ´1p0q such that γ˚ is a generic

curvette of Cν . Then B “ ρpN pCν qq is a Bpqγq-piece. Let rB be the component of
ℓ´1pBq which contains δ (by a component of a semi-algebraic germ pZ, 0q, we mean
the closure of a connected component of Z r t0u).

Let ℓ1 : pX, 0q Ñ pC2, 0q be another generic projection and let ∆1 be its discrim-

inant curve. Then ℓ1p rBq is up to higher order a Bpqγq-piece of a carrousel decom-
position of ∆1. Choose a generic test curve γ1 in it and let δ1 be the component of

the lifting ℓ1´1pγ1q inside rB.
Let y “

ř
qiě1 aix

qi be a Puiseux expansion of γ. Since the curve ℓpδ1q is inside

B and since B is a qγ-neighbourhood of γ, then the Puiseux expansion of ℓpδ1q
coincides with that of γ up to exponent qi “ qγ , with a distinct non zero coefficient
for xqγ .

Assume ℓ |δ : δ Ñ γ is not an isomorphism, then multpδq “ k multpγq where k is
an integer ě 2. Since the curves δ and δ1 are isomorphic, then multpδq “ multpδ1q.
Since ℓ is generic for δ1, then multpℓpδ1qq “ multpδ1q. So we get multpℓpδ1qq “
k multpγq. Since qγ is the greatest characteristic Puiseux exponent of γ and since
the Puiseux expansions of γ and ℓpδ1q coincide up to exponent qγ , we then obtain
that ℓpδ1q admits a characteristic exponent q ą qγ . Since δ and δ1 are isomorphic,
q is an outer rate of γ and Condition p˚1q is not satisfied. �

Let π : rX Ñ X be a resolution of pX, 0q described after Definition 3.2. It factors

through the Nash modification ν : qX Ñ X and through the blow-up of the origin

and no two nodes of its resolution graph Γ are adjacent. Let σ : rX Ñ Gp2, nq be

the map induced by the projection p2 : qX Ă X ˆ Gp2, nq Ñ Gp2, nq. The map σ is
well defined on E “ π´1p0q and its restriction to E is constant on any connected
component of the complement of P-curves in E ([10, Section 2], [22, Part III,
Theorem 1.2]). The connected subgraphs of Γ obtained by removing all P-nodes
and adjacent edges are called P-Tjurina components.

Lemma 4.10. Let γ be a test curve and δ1 and δ2 two components of ℓ´1pγq whose
strict transforms meet E1 and E2 at smooth points p1 and p2 of E.

Assume E1 and E2 are not P-curves and that there exists a path in the graph of
π joining v1 to v2 through vertices with rates ě qγ . Then Condition p˚2q implies
σpp1q ‰ σpp2q.

Proof. Consider a semi-algebraic arc p : r0, 1q Ñ γ such that ||pptq|| “ Optq and two
distinct liftings γ1 : r0, 1q Ñ δ1 and γ2 : r0, 1q Ñ δ2 of p by ℓ. Then doutpγ1ptq, γ2ptqq “
Optqq where q is an outer rate of γ.

For q1 ą qγ sufficiently close to qγ , there exists an Apqγ , q
1q-piece A such that

γ is in the outer boundary of A and A X ∆ “ H. Let A1 and A2 be the liftings
of A containing respectively δ1 and δ2. A1 and A2 are inside NpΓ1q and NpΓ2q
where Γ1 and Γ2 are the P-Tjurina components containing v1 and v2. Assume
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σpp1q “ σpp2q. Adapting the arguments of the proof of Lemma 11.7 in [20] inside
the pieces A1 and A2, one obtains dinnpγ1ptq, γ2ptqq “ Optqγ q and

lim
tÑ0

dinnpγ1ptq, γ2ptqq

doutpγ1ptq, γ2ptqq
“ 8.

This contradict Condition p˚2q (here q0 “ qγ). �

Remark 4.11. A consequence of Lemma 4.10 is that for any P-Tjurina component
Γ1, πpNpΓ1qq contains at most one component of ℓ´1pγq.

Proof of Lemma 4.8. Consider a Bpqq-piece B of the carrousel decomposition of C2

with respect to the discriminant curve ∆ of ℓ. Let N1 and N2 be two components
of ℓ´1pBq, so N1 and N2 are Bpqq-pieces, possibly with N1 “ N2. Let q0 be the
maximum among minimum of inner rates of pieces along paths joining N1 r t0u to
N2 r t0u in X r t0u, so q0 ď q and q0 “ q if and only if N1 “ N2 or N1 or N2 can
be joined by a path through pieces with higher rates.

Claim 1. There exists K1,K2 ą 0 and ǫ ą 0 such that for all p P pB4
ǫ r t0uq X B

and for all any pair of distinct points p1, p2 such that p1 P pN1 r Aq X ℓ´1pB4
ǫ q,

p2 P pN2 rAq X ℓ´1pB4
ǫ q and ℓpp1q “ ℓpp2q “ p, we have

dinnpp1, p2q ď K1||p||q0 ,

and

K2||p||q0 ď doutpp1, p2q.

A straightforward consequence of Claim 1 is that for all p P pB4
ǫ r t0uq X B and

p1, p2 as before,

dinnpp1, p2q

doutpp1, p2q
ď

K1

K2

.

Proof of Claim 1. Choose coordinates px, y, z, . . .q in Cn such that ℓ “ px, yq and
the piece B is foliated by test-curves γα with Puiseux expansions

y “
kÿ

i“1

aix
pk ` αxq

where p1 ă p2 ă . . . ă pk ă q and where α is in a compact set W Ă C.
For any q1 ě 1, if a projection ℓ1 is generic for a curve δ then it is generic for

any curve in a q1-neighbourhood of δ. Since W is compact, one can choose a finite
number of projections ℓ1, . . . , ℓs and a decomposition W “ W1 Y . . . Y Ws into
compact sets such that for any α P Wj , ℓj is generic for ℓ´1pγαq. We will assume
s “ 1 since the proof is similar for s ě 2 taking minimums of bounds. So we choose
ℓ1 such that for each α P W , the projection ℓ1 is generic for ℓ´1pγαq and we choose
the coordinates px, y, z, . . .q in Cn so that ℓ1 “ px, zq.

Let α P W and let p P γα X pB4
ǫ r t0uq. By Lemma 4.9, two distinct points p1

and p2 such that ℓpp1q “ ℓpp2q “ p belong to distinct connected components of the
lifting ℓ´1pγαq.

Let δ
p1q
α Ă N1 and δ

p2q
α P N2 be two distinct irreducible components of the lifting

ℓ´1pγαq such that δ
p1q
α X A “ δ

p2q
α X A “ t0u and δ

p1q
α ‰ δ

p2q
α if N1 “ N2.
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Since ℓ1 is generic for δ
p1q
α Y δ

p2q
α , Condition p˚2q implies that the curves ℓ1pδ

p1q
α q

and ℓ1pδ
p2q
α q have Puiseux expansions respectively:

z “
mÿ

j“1

bjpαqxrj ` bp1q
q0

pαqxq0 ` h.o,

and

z “
mÿ

j“1

bjpαqxrj ` bp2q
q0

pαqxq0 ` h.o,

where

‚ r1 ă r2 ă . . . ă rm ă q0,

‚ bjpαq, j “ 1 . . . ,m, b
p1q
q0 pαq and b

p2q
q0 pαq depend continuously on α,

‚ for all α P W, b
p1q
q0 pαq ‰ b

p2q
q0 pαq,

and where “`h.o.” means plus higher order terms.

Let p “ px, yq P γα and p1 P δ
p1q
α and p2 P δ

p2q
α such that ℓpp1q “ ℓpp2q “ p.

Since ||p|| “ Op|x|q, there exists L ě 1 such that:

1

L
|bp1q

q0
pαq ´ bp2q

q0
pαq| ||p||q0 ď ||ℓ1pp1q ´ ℓ1pp2q|| ď doutpp1, p2q.

Since W is compact, there exists K 1
2 ą 0 such that for all α P W , K 1

2 ď
1
L

|b
p1q
q0 pαq ´ b

p2q
q0 pαq|. Taking the minimum K2 of K 1

2 among all pairs δ
p1q
α , δ

p2q
α as

before, there exists ǫ ą 0 such that for all p P pB4
ǫ r t0uq X B and for p1 and p2 as

before,
K2||p||q0 ď doutpp1, p2q

Let us now bound dinnpp1, p2q
We consider the carrousel decomposition of C2 with respect the the discriminant

curve ∆ of ℓ and we decompose X into pieces consisting of components of inverse
images by ℓ of pieces of the decomposition of C2 (see also end of Section 3).

Since p1 and p2 are on different sheets of the cover ℓ, a path from p1 to p2 with
minimal length will have to travel through a Bpq0q-piece N of pX, 0q and it only
travels through pieces with rates ě q0. Now ℓpNq is a Bpq0q-piece in pC2, 0q and
there exists a ą 0 such for ǫ ą 0 sufficiently small, if px, y1q and px, y2q are in
ℓpNq X B4

ǫ then |y1 ´ y2| ď a|x|q0 .
Let m “ mpX, 0q (so m is at most the order of the cover ℓ|N : N Ñ ℓpNq),

and let κ be the local bilipschitz constant of ℓ outside the polar wedge A. Then
dinnpp1, p2q is less than or equal to mκ times the diameter of ℓpNq providing one
avoids the ∆-wedge ℓpAq. So we obtain

dinnpp1, p2q ď mpπaqκ||p||q0 ,

where we use the factor πa instead of a to allow replacing a segment by a path
avoiding ℓpAq. Setting K1 “ mpπaqκ completes the proof of Claim 1. �

Let us now consider an Apq, q1q-piece A0 of the carrousel decomposition of C2

with respect to ∆ with q ă q1, so A0 X ∆ “ H. According to Lemma 4.9 and Re-
mark 4.11, if A1 is a component of ℓ´1pA0q, the restriction ℓ|A1 : pA1, 0q Ñ pA0, 0q
is a homeomorphism and two distinct components of ℓ´1pA0q have distinct corre-
sponding P-Tjurina components.

Let A1 and A2 be two distinct components of ℓ´1pA0q, so A1 and A2 are Apq, q1q-
pieces. Let q0 be the maximum among minimum of inner rates of pieces along paths
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joining A1 r t0u to A2 r t0u in X r t0u. (So q0 ď q and q0 “ q if and only if A1 or
A2 can be joined by a path through pieces with rates ě q0.)

Claim 2. There exists K ą 0 and ǫ ą 0 such that for all p P pB4
ǫ r t0uq X A0 and

for all p1 P A1 X ℓ´1pB4
ǫ q and p2 P A2 X ℓ´1pB4

ǫ q such that ℓpp1q “ ℓpp2q “ p, we
have

dinnpp1, p2q

doutpp1, p2q
ď K.

Proof of Claim 2. Let Γ1 and Γ2 be the P-Tjurina components such that Ai Ă
πpNpΓiqq, i “ 1, 2. Let P1 (resp. P2) be the values of σ on

Ť
vjPΓ1

Ej (resp.Ť
vjPΓ2

Ej).

In suitable coordinates the semi-algebraic set A0 is defined by inequalities

α|x|q
1

ď |y ´
kÿ

i“1

aix
pi | ď α|x|q ,

where α ą 0 and 1 ď p1 ă p2 ă . . . ă pk “ q.
Let n “ lcmpdenompq1q, denomppiq, i “ 1, . . . , kq. Then A0 is the union of the

images of the maps φξ1,ξ2 : r0, 1sˆr0, 1q Ñ pC2, 0q parametrized by pξ1, ξ2q P S1 ˆS1

and defined by

@ps, tq P r0, 1s ˆ r0, 1q, φξ1,ξ2ps, tq “ pxptq, yps, tqq

with

xptq “ ξ1t
n and yps, tq “

kÿ

i“1

aixptqpi ` αξ2

ˆ
sxptqq

1

` p1 ´ sqxptqq
˙

Notice that ||φξ1,ξ2ps, tq|| “ Optnq.
Case 1. Assume first that A1 or A2 can be joined by a path through pieces with
rates ě q1.

Fix ξ1, ξ2 P S1 ˆ S1 and consider two liftings φ1 : r0, 1s ˆ r0, 1q Ñ A1 and
φ2 : r0, 1sˆr0, 1q Ñ A2 of φ by ℓ, i.e., φ1 “ pℓ|A1

q´1˝φξ1,ξ2 and φ2 “ pℓ|A2
q´1˝φξ1,ξ2 .

Let
`
cs,t

˘
be a continuous family of paths in X r t0u parametrized by ps, tq P

r0, 1s ˆ p0, 1q such that,

‚ cs,t has origin φ1ps, tq and extremity φ2ps, tq
‚ cs,t consists of the path φ1prs, 1s ˆ ttuq followed by a path c1

t from φ1p1, tq
to φ2p1, tq (independent of s) through pieces with rates ą q1 followed by
the reversed φ2prs, 1s ˆ ttuq.

Fix s P r0, 1q. As t tends to 0, the ratio
lengthpc1

tq
lengthpφiprs,1sˆttuqq tends to zero for

i “ 1, 2 and the path cs,t tends to the union of two segments whose angles with the
kernel of ℓ depends only on P1 and P2 (see Figure 1). Since P1 ‰ P2 (Lemma 4.10)
and since the projection ℓ is generic, we obtain that for all s P r0, 1q

lim
tÑ0

lengthpcs,tq

doutpφ1ps, tq, φ2ps, tqq
“ a,

where a ą 0 just depends on P1 and P2 (so it is independent of ξ1, ξ2 and s). Since
dinnpφ1ps, tq, φ2ps, tqq ď lengthpcs,tq, this proves Claim 2 in that case.
Case 2. Assume now that any path from A1 or A2 goes through pieces with rates
ď q. Let B (resp. B1) be the Bpqq-piece (resp. Bpq1q-piece) attached to the outer
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φ2p0, tq

φ1p0, tq

φ2ps, tq

φ1ps, tq

φ2p1, tq

φ1p1, tq

c1
t

cs,t

Figure 1.

(resp. inner) boundary of A0 and let ǫ, K1 and K2 (resp. K 1
1 and K 1

2) be constants
associated to B (resp. B1) as in Claim 1.

Fix ξ1, ξ2 P S1 ˆ S1 and consider again φ1 and φ2 as defined in Case 1. We have
for all ps, tq P r0, 1s ˆ p0, 1q,

dinnpφ1ps, tq, φ2ps, tqq ď dinnpφ1p0, tq, φ2p0, tqq`

lengthpφ1pr0, ss ˆ ttuqq ` lengthpφ2pr0, ss ˆ ttuqq

Let ǫ ą 0 be sufficiently small and let κ ą 0 be a bound for the local bilipschitz
constant of the restriction ℓ : X X ℓ´1pBǫq rA Ñ Bǫ, where A is a polar wedge
around the polar curve of ℓ. We then have for t sufficiently small, i.e., such that
φξ1,ξ2ps, tq P Bǫ,

dinnpφ1ps, tq, φ2ps, tqq ď dinnpφ1p0, tq, φ2p0, tqq ` 2καsptnq ´ tnq
1

q ď K2
1 t

nq0 ,

where K2
1 “ K1 ` 2κα. Notice that K2

1 is independent of ξ1, ξ2 and s. Since
||φξ1,ξ2ps, tq|| “ Optnq, we then have proved that there exist a constant C ą 0 and
ǫ ą 0 such that for any p P Bǫ X A0,

dinnpp1, p2q ď C||p||q0

where p1 and p2 are the liftings of p to A1 and A2 respectively.
Let us now deal with the outer distance. As t tends to 0, the two arcs φ1pr0, 1s ˆ

ttuq and φ2pr0, 1s ˆ ttuq tend to the union of two coplanar segments which are
opposite sides of a trapezoid (Figure 2). Then for t ą 0 sufficiently small and for
any s P r0, 1s,

doutpφ1ps, tq, φ2ps, tqq ě p1 ´ ηqmin

ˆ
doutpφ1p0, tq, φ2p0, tqq, doutpφ1p1, tq, φ2p1, tqq

˙

with η small (the constant 1 ´ η is for the case when P1 “ P2 in the previous
notation, i.e., the trapezoid is a rectangle).

Applying Claim 1 to the pieces B and B1 adjacent to A0, there exist K2 ą 0 and
K 1

2 ą 0 such that for all t ą 0 sufficiently small,

K2||φξ1,ξ2p0, tq||q0 ď doutpφ1p0, tq, φ2p0, tqq,

and

K 1
2||φξ1,ξ2p1, tq||q0 ď doutpφ1p1, tq, φ2p1, tqq.
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Since for all s, ||φξ1,ξ2ps, tq|| “ Optnq, we then obtain that there exists C 1 ą 0
and ǫ ą 0 such that for any p P Bǫ X A0,

C 1||p||q0 ď doutpp1, p2q.

where p1 and p2 are the liftings of p to A1 and A2 respectively. This proves Claim
2 in Case 2. �

φ2p0, tq

φ1p0, tq

φ2ps, tq

φ1ps, tq

φ2p1, tq

φ1p1, tq

Figure 2.

Claim 1 and Claim 2 imply Lemma 4.8. �

5. The geometric decomposition of a minimal singularity

The aim of this section is to describe the geometric decomposition with rates of a
minimal surface singularity germ pX, 0q and its correspondence with the carrousel
decomposition of pC2, 0q with respect to the discriminant curve ∆ of a generic
projection of pX, 0q and the resolution ρ of ∆ (see Section 3).

Let us first recall the definition of the minimal (also called fundamental) cycle
Zmin of a normal surface singularity pX, 0q. We refer to [18] for details. Let

π : p rX,Eq Ñ pX, 0q be a resolution and let E1, . . . , Er be the irreducible components
of the exceptional divisor E “ π´1p0q. The minimal cycle Zmin is the minimal
element of the set of divisors Z “

řr
i“1 miEi whose coefficients mi are strictly

positive integers and such that @j “ 1, . . . , r, Z ¨ Ej ď 0. A reduced minimal cycle
means that Zmin “

řr
i Ei, i.e., mi “ 1 for all i “ 1, . . . , r.

If f : pX, 0q Ñ pC, 0q is an analytic function, then its total transform pfq “
pf ˝ πq´1p0q decomposes into pfq “ Zpfq ` f˚ where f˚ is the strict transform and
Zpfq a positive divisor with support onE. For each j “ 1, . . . , r, one has pfq¨Ej “ 0.
Hence Zpfq ¨ Ej ď 0 for all j “ 1, . . . , r. If h : pX, 0q Ñ pC, 0q is a generic linear
form, then Zphq is the minimal element among divisors Zpfq, and Zmin ď Zphq.
For any rational singularity, a fortiori for minimal, the minimal resolution resolves
the basepoints of the family of generic linear forms and Zphq “ Zmin (see [1, 18]).
So, for a rational singularity, the L-nodes in a resolution graph, and then, the
thick-thin decomposition, are topologically determined.

We now restrict to minimal singularities. In order to describe the geometric
decomposition of pX, 0q, we will use the description by Spivakovsky ([22]) of the
minimal resolution π of the pencil of polar curves of generic plane projections
pX, 0q Ñ pC2, 0q and the description by Bondil ([2, 3]) of the resolution ρ of the
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family of projected polars ℓpΠDq, where ℓ : pX, 0q Ñ pC2, 0q is a generic plane
projection.

In [22], Spivakovsky gives the following combinatorial characterization of the
dual resolution graphs of minimal singularities which immediately furnishes the L-
nodes. Let π1 : X 1 Ñ X be the the minimal good resolution of pX, 0q and let Γ1 be
its dual graph. Denote by V pΓ1q the set of vertices of Γ1. If v P V pΓ1q, we denote by
Ev the corresponding irreducible component of the exceptional divisor pπ1q´1p0q,
we set wpvq “ E2

v and we denote by νpvq the valence of v, i.e., the number of edges
adjacent to v.

Proposition 5.1. [22] A surface singularity is minimal if and only if Γ1 is a tree
of rational curves and for all vertices v P V pΓ1q, ´wpvq ě νpvq.

Remark 5.2. Since the minimal cycle is reduced, a vertex of Γ1 is an L-node if
and only if ´wpvq ą νpvq.

Spivakovsky introduced the function s : V pΓ1q Ñ N defined as follows: spvq is
the number of vertices on the shortest path from v to an L-node. So spvq “ 1 if
and only if v is an L-node.

Since minimal singularities are rational they can be resolved by only blowing up
points, as Tjurina showed in [24], and spvq is the number of blow-ups it takes before
Ev appears in the successive exceptional divisors.

We now state Theorem 5.4 in Chapter III of [22] in a formulation inspired by
Bondil in [2].

Theorem 5.3. [22, Chap. III, Theorem 5.4] Let pX, 0q be a minimal surface singu-
larity. Let ℓ : pX, 0q Ñ pC2, 0q be a generic linear projection and let Π be its polar
curve. Let π1 : pX 1, 0q Ñ pX, 0q be the minimal resolution of pX, 0q. Consider the
cycle S :“

ř
spvqEv , where the Ev are the irreducible components of pπ1q´1p0q.

Then the strict transform Π˚ of Π by π1 is smooth. It consists of exactly ´pS `
Evq¨Ev ´2 curvettes of each Ev and one component through each intersection point
Ev X Ew for which spvq “ spwq. Moreover, the latter intersection points are the
only basepoints of the family of generic polars ΠD, and they are simple, i.e., they
are resolved by one blow-up.

Following the terminology of [22], an edge of Γ1 between two vertices v and w is
central if spvq “ spwq, and a vertex v is central if there are at least two neighboring
vertices w,w1 such that spvq´1 “ spwq “ spw1q. Using this, the above theorem says
that for each central edge there is one component of Π˚ through the intersection
point of the corresponding curves and that for each central vertex v, there is at
least one component of Π˚ which is a curvette of Ev. Any other components of Π˚

go through L-nodes.
In [2], Bondil shows that the minimal resolution of pX, 0q obtained by only

blowing up points is also the minimal resolution of Π just described. Then, blowing

up the points corresponding to central edges, we get the resolution π0 : p rX0, Eq Ñ
pX, 0q introduced in Section 3, i.e., the minimal resolution which factors through
the blow-up of the origin and through Nash blow-up.

We then know the resolution graph Γ0 of π0 together with its nodes. So we
topologically know the geometric decomposition of pX, 0q from the resolution graph.
We now need to determine the rate q of each node. In order to do this, we will use a
more precise description of the polar curve and of the discriminant curve presented
by Bondil in [2].



16 WALTER D NEUMANN, HELGE MØLLER PEDERSEN, AND ANNE PICHON

An An-curve is a germ of an analytic curve isomorphic to the plane curve y2 `
xn`1 “ 0. If n is odd, then An consists of a pair of smooth curves with contact
exponent n`1

2
while if n is even, An is an irreducible curve

Theorem 5.4 ([2, 3]). Let pX, 0q be a minimal singularity, and let Π be the polar
of a generic linear projection. Then

(1) Π decomposes as a union of Ani
-curves Π “

Ť
iCi and each Ci meet a

single irreducible component Evi of the exceptional divisor of π0

(2) If E2
vi

“ ´1 (i.e., Evi comes from blowing up a central edge), then Ci is an
(irreducible) A2spviq´2-curve. Otherwise Ci consists of two smooth curves
forming an A2spviq´1-curve

(3) The contact exponent between Ci and Cj equals the minimal value of spvq
on the shortest path in Γ0 between the vertices vi and vj.

Using the fact that each branch of Π is isomorphic to a plane curve and that the
restriction ℓ|Π : Π Ñ ∆ is generic, Bondil deduces from Theorem 5.4 the following
description of the discriminant curve:

Proposition 5.5 ([2, 3]). The discriminant curve ∆ of a generic projection ℓ of
pX, 0q is a union of An-curves in one-to-one correspondence with the curves Ci of
Proposition 5.4, and their pairwise contact exponents equal that of the corresponding
Ci’s. Moreover, the minimal resolution of ∆ is the resolution ρ : Y Ñ C2 which
resolves the base points of the family of generic polar curves pℓpΠDqqDPΩ.

We deduce from this the rates of the pieces Bpqq of the geometric decomposition
of pX, 0q:

Corollary 5.6. Let pX, 0q be a minimal surface singularity and let Γ0 be the dual
resolution graph of the resolution π0 described above. The rate qv of a node v of Γ
is given by:

qv “

#
spvq if E2

v ă ´1

spvq ´ 1{2 if E2
v “ ´1,

Proof. The rate qv is the contact exponent between the π-images of two generic
curvettes of Ev. When v is a node such that E2

v ă ´1, the images of two generic
curvettes of Ev form a A2spvq´1-curve so their contact exponent equals spvq. When

E2
v “ ´1 the images of two generic curvettes of Ev are A2spvq´2-curves whose

contact exponent equals spvq ´ 1
2
. �

Example 5.7. Let pX, 0q be a minimal singularity with the following resolution
graph:

´4 ´2 ´3 ´3 ´2 ´2

´2

´2

´2
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The negative weights are the self-intersections of the exceptional curves. The
L-nodes are the vertices v such that ´wpvq ą νpvq (Remark 5.2). They are in
black in the graph.

The following graph on the left shows two different things. First, the arrows
represent the components of the polar curve of a generic plane projection. The
gray node represents a curve obtained by blowing up the minimal resolution at
the intersection point of two exceptional curves corresponding to a central edge.
There are four pairs C1, . . . , C4 of smooth components, and one component C5

with multiplicity 2. Secondly, it shows the geometric decomposition of pX, 0q. The
rational numbers in italics are the rates of the nodes.

The graph on the right is the resolution graph of the discriminant curve ∆ “
ℓpΠq. The arrows represent the components of ∆ “

Ť5
i“1 where ∆i “ ℓpΠiq,

i “ 1, . . . , 5. The root-vertex is the black vertex and each vertex is weighted by the
corresponding rate.

C1

C2
C5

C4

C3

1 5{2 2 1 2 1

1

3

∆1

∆2

∆3

∆4 ∆5

3

5{2 3

2

1

2

6. Minimal implies Lipschitz normally embedded

The aim of this section is to prove one direction of Theorem 1.2: any minimal
surface singularity is Lipschitz normally embedded. We first state and prove the
key Proposition 6.1.

Let pX, 0q be a normal surface germ and let ℓ : pX, 0q Ñ pC2, 0q be a generic
projection. Let U be an open neighborhood of 0 in C2 and let e : U 1 Ñ U be the

blow-up of the origin. Let pX be the pull-back of ℓ and e and let pℓ : pX Ñ U 1 and

pe : pX Ñ X be the two projections. Let n : X 1 Ñ pX be the normalization of pX. By
[4, Prop. 2.15], e1 “ pe ˝ n is the normalized blowup of the maximal ideal of pX, 0q.
We then have a commutative diagram:

X 1

e1

''P
P

P

P

P

P

P

P

P

P

P

P

P

P

P

n
  ❆

❆

❆

❆

❆

❆

❆

❆

ℓ1

��
✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

pX
pe

//

pℓ
��

X

ℓ

��

U 1 e
// U

When pX, 0q is rational, a fortiori when minimal, e1 is the blowup of the maximal
ideal; no normalization is needed ([24]).
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Proposition 6.1. Let pX, 0q be a minimal surface singularity. Let Π be the polar
curve of a generic projection ℓ : pX, 0q Ñ pC2, 0q and let E1 “ e1´1p0q. Choose
p P E1 such that if it is a smooth point of X 1, then it is not on the strict transform
Π˚ of Π. Set q :“ ℓ1ppq. Then

(i) the germ pX 1, pq is a minimal singularity with multiplicity the number of
irreducible components of E1 through p;

(ii) the map germ ℓ1 : pX 1, pq Ñ pU 1, qq is a generic projection for pX 1, pq.

Remark 6.2. If pX 1, pq is smooth and p P Π˚, then, according to [2] either pΠ˚, pq
is the strict transform of a moving polar (i.e., p is not a basepoint of the family of
generic polars) or pX, 0q is the singularity A2 : x2 ` y2 ` z3 “ 0. In both cases, it is
easy to see that the degree of ℓ1 at pX 1, pq equals 2 while the multiplicity of pX, p1q
is 1. So ℓ1 : pX 1, pq Ñ pU 1, qq is not generic.

Remark 6.3. The fact the pX 1, pq is minimal is [4, Théorème 5.9]. The authors
prove it there without using the existence of a resolution of pX, 0q. We give here a
short proof using this fact.

Proof of Proposition 6.1. Let π : Y Ñ X be the minimal resolution of pX, 0q and
let Γ be its resolution graph. Since pX, 0q is rational, then π factors through the
blow-up of the maximal ideal ([1]). Assume pX 1, pq is not smooth. Then pX 1, pq
has minimal resolution graph one of the connected components Γ1 of Γ minus the
L-nodes. So Γ1 is a rational graph and pX 1, pq is rational. Moreover, since the
minimal cycle of pX, pq is reduced, the minimal cycle of pX 1, pq is also reduced and
the multiplicity m1 of pX 1, pq equals the number of L-nodes adjacent to Γ1, i.e., the
number of irreducible components of E1 containing p.

Assume now that pX 1, pq is smooth. Then by hypothesis, p R Π˚. Since there
is a branch of Π˚ through any singular point of E1, it implies that p is a smooth
point of E1. So the number of branches of E1 through p equals 1. This proves (i).

In order to prove (ii), we have to check that ℓ1 : pX 1, pq Ñ pU 1, qq satisfies Con-
ditions (1) and (2) of Definition 2.2.

The map ℓ1 : X 1 Ñ U 1 is a branched cover with degree the multiplicity m “
mpX, 0q of pX, 0q. Its discriminant locus is included in the strict transform ∆˚

of ∆ by e union the exceptional curve C “ e´1p0q. This divisorial discriminant
is computed in [4, Proposition 6.1] for any normal surface germ pX, 0q: it equals
∆˚ ` pm ´ rqC where r the number of branches of the generic hyperplane section
of pX, 0q. In our case, r “ m since pX, 0q is minimal ([4, Lemma 5.4 and Theorem
5.8 ]). So, the discriminant of ℓ1 is just the reduced curve ∆˚ and the branching
locus of ℓ1 is Π˚. In particular the polar curve of ℓ1 : pX 1, pq Ñ pU 1, qq is the germ
pΠ˚, pq.

Assume pX 1, pq is smooth and p R Π˚. Then ℓ1 : pX 1, pq Ñ pU 1, qq has empty polar
curve, so it is an isomorphism and ℓ1 : pX 1, pq Ñ pU 1, qq is a generic projection. This
proves (ii) in that case.

Assume now pX 1, pq is not smooth. Then p P Π˚ since pX, 0q is resolved by
a sequence of blowing-ups of points on the successive strict transforms of Π ([2,
Lemma 3.1]. Since the projection ℓ is generic for its polar curve (Condition (1)
of Definition 2.2), then the following Lemma 6.4 (which will be used again later)
implies that ℓ1 : pX 1, pq Ñ pU 1, qq is a generic projection for its polar curve pΠ˚, pq,
i.e., it satisfies Condition (1) of Definition 2.2.
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Lemma 6.4. Denote by e0 : U0 Ñ CN the blow-up of the origin of CN and let
pγ, 0q Ă pCN , 0q be a curve germ whose strict transform γ˚ by e0 intersects e´1

0 p0q
at a unique point p. Let ℓ : CN Ñ C2 be a linear projection which is generic for the
curve germ pγ, 0q.

We may choose coordinates so that ℓ is the map pz1, . . . , zN q ÞÑ pz1, z2q. Denote
by Pn´3 the subset of e´1

0 p0q given by z1 “ z2 “ 0. Let e : U 1 Ñ U be the blow-
up of the origin of C2, where U is a neighborhood of 0. Then there is a map
ℓ0 : pU0 r Pn´3q Ñ U 1 with e ˝ ℓ0 “ ℓ ˝ e0. By genericity of ℓ, the point p is in
U0 r Pn´3.

Set q “ ℓ0ppq. Then the map germ ℓ0 : pU0 r Pn´3, pq Ñ pU 1, qq is generic for
the curve germ pγ˚, pq.

Proof. We will use the criterion of genericity introduced in the proof of Theorem
5.1 in [19]. Let us first assume that pγ, 0q is irreducible and that the coordinates
are chosen so that pγ, 0q admits a Puiseux parametrization of the form

ω ÞÑ pz1pωq, . . . , zNpωqq “ pωn,
ÿ

jěn

a2jω
j , . . . ,

ÿ

jěn

aNjω
jq

Set A :“ tj : Di, aij ‰ 0u and call an exponent j P A r tnu an essential integer
exponent if

gcdti P tnu Y A : i ď ju ă gcdti P tnu Y A : i ă ju.

Denote by B the set of essential integer exponents of pγ, 0q.

Genericity criterion ([19, Section 5]) The projection ℓ is generic for the curve
germ pγ, 0q if and only if B Ă tj, a2j ‰ 0u.

We can assume our coordinates are chosen so that pγ, 0q is tangent to the z1-
axis and then A Ă tj : j ą nu We consider for e0 and e the chart over z1 ‰ 0
so that writing pz1, v2, v3, . . . , vN q the corresponding local coordinates of U0 and
pz1, v2q that of U 1, we have: e0pz1, v2, v3, . . . , vN q “ pz1, z1v2, z1v3, . . . , z1vN q and
epz1, v2q “ pz1, z1v2q. Then q is the origin of the local coordinates of U0 and the
strict transform γ˚ of γ by e0 has the following Puiseux parametrization in the
coordinates pz1, v2, v3, . . . , vN q:

ω ÞÑ pωn,
ÿ

jěn

a2jω
j´n, . . . ,

ÿ

jěn

aNjω
j´nq

Since B Ă ta2,j ‰ 0u, the set of essential integer exponents of γ˚ is tj´n; j P Bu.
Since ℓ0 is given by ℓ0pz1, v2, v3, . . . , vN q “ pz1, v2q, then, according to the above
genericity criterion, ℓ0 is generic for pγ˚, qq.

The proof when pγ, 0q is reducible is essentially the same using the extension of
the genericity criterion in [19, Section 5] taking account of the contact exponents
between branches. �

Let us now prove that Condition (2) of Definition 2.2 is satisfied. Let π : rX Ñ X

be the resolution introduced in Section 3. By definition, it factors through the

blow-up e1. Consider the map π1 : rX Ñ X 1 defined by π “ e1 ˝ π1. According
to Theorem 5.3, its restriction over pX 1, pq is a resolution of pX 1, pq which factors
through the normalized Nash transform of pX 1, pq and the P-curves of pX, 0q and
pX 1, pq over p coincide.

Now, take any D Ă Ω, where pℓD : pX, 0q Ñ pC2, 0qqDPΩ denotes the family of
generic projections of pX, 0q. Let ℓ1

D
: pX 1, pq Ñ pC2, 0q be the projection defined
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by e ˝ ℓ1
D

“ ℓD ˝ e1. We know that the polar curve Π1
D

of ℓ1
D

equals the germ
pΠ˚

D
, p1q where ˚ means strict transform by e1. Therefore the family of polars

pΠ1
D

qDPΩ of projections ℓ1
D

coincide with the family of germs pΠ˚
D
, p1qDPΩ, which is

equisingular in terms of strong simultaneous resolution. This shows that Condition
(2) of Definition 2.2 is satisfied for the family pℓ1

D
qDPΩ. �

We now prove the “if” direction of Theorem 1.2.
Let pX, 0q be a minimal surface singularity with generic projection ℓ : pX, 0q Ñ

pC2, 0q. Let ρ : Y Ñ C
2 be the sequence of blow-ups which resolves the base points

of the family of curves pℓpΠDqqDPΩ and let R be its resolution graph. We have to
check Conditions p˚1q and p˚2q of Theorem 4.5 for any test curve pγ, 0q associated
to a node of R. In fact, we will check these conditions for the ρ-image of a curvette
of any irreducible curve in ρ´1p0q (so any vertex of R, not only nodes). In the
proof we say test curve for such a curve even if it correspond to a non node vertex.
By Proposition 5.5, the discriminant curve ∆ of ℓ is a union of An-curves, and
ρ : Y Ñ C2 is the minimal resolution of ∆. We consider the following two cases:

Case 1. γ is the ρ-image of a curvette of ρ´1p0q whose inner rate qγ is an integer n
(in particular, γ is smooth);

Case 2. γ is the ρ-image of a curvette of ρ´1p0q such that qγ “ n ` 1{2 with n ě 1
an integer;

Case 1. We will proceed by induction on qγ , so assume first qγ “ 1, i.e., γ is a
generic line through the origin of C2, so pℓ´1pγq, 0q is a generic hyperplane section
of pX, 0q. Since pX, 0q is minimal, the generic hyperplane section pℓ´1pγq, 0q also
has a minimal singularity ([12, Lemma 3.4.3]) so it is a union of mpX, 0q smooth
transversal curves, where mpX, 0q denotes the multiplicity of pX, 0q. Therefore γ

has a single outer rate which equals 1 and Conditions p˚1q and p˚2q are satisfied.
Let n be an integer ě 2. Assume that for any minimal singularity, any test

curve with inner rate n´1 satisfies Conditions p˚1q and p˚2q. Let γ be the ρ-image
of a curvette with inner rate qγ “ n. We use again the notations ℓ, e, ℓ1 and e1

introduced for Proposition 6.1 and we set C “ e´1p0q.
Consider the point q “ γ˚ X C, where ˚ means strict transform by e. Since

n ě 2, the strict transform ∆˚ contains q. Since ℓ is generic for its polar curve and
since e1 is the blow-up of the origin, then the fiber ℓ1´1pqq contains a unique point
p which belongs to the strict transform Π˚ of Π by e1.
Claim 1. γ satisfies condition p˚1q.

Proof. Let σ be a component of ℓ´1pγq. We have to prove that pσ, 0q is smooth.
Assume first that the strict transform σ˚ of σ by e1 meets E1 “ e1´1p0q at a

point p1 P ℓ1´1pqq distinct from p. Then p1 does not belong to the strict transform
Π˚ of Π by e1. Therefore pX 1, p1q is smooth, p1 is a smooth point of E1 “ e1´1p0q
by (i) of Proposition 6.1 and the map germ ℓ1 : pX 1, p1q Ñ pU 1, qq is an isomorphism
by (ii) of Proposition 6.1. Since γ˚ is a smooth curve transverse to C at q, then
pℓ1´1pγ˚q, p1q “ pσ˚, p1q is a curvette of E1. Since pX, 0q is minimal, the multiplicity
of a generic linear form on pX, 0q has multiplicity 1 along E1. By [11, 1.1], this
implies that σ is a smooth curve of pX, 0q.

Assume now that σ˚ X E “ p. According to Proposition 6.1, the map germ
ℓ1 : pX 1, pq Ñ pU 1, qq is a generic projection of pX 1, pq. Moreover, its discriminant
and polar curves are respectively the strict transform p∆˚, qq of p∆, 0q by e and
the strict transform pΠ˚, pq of pΠ, 0q by e1. Since γ has rate n ě 2, then its strict
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transform pγ˚, qq by the blow-up of 0 is a test curve with inner rate n´ 1 (Remark
4.2). Taking pγ˚, qq as test curve for pX 1, pq, we apply the induction assumption:
pγ˚, qq satisfies Condition p˚1q, i.e., pγ˚, qq is a smooth curve on pX 1, p1q. Let
π0 : pX0, Eq Ñ pX, 0q be the minimal resolution of pX, 0q. It factors through e1. Let
π1 : X0 Ñ X 1 be the resolution of X 1 such that π0 “ e1 ˝ π1. Since σ˚ is a smooth
curve on pX 1, p1q, then by [11, 1.1], its strict transform σ2 by π1 is a curvette at a
smooth point of π1´1pp1q (along which the multiplicity of the maximal cycle is 1).
The curve σ2 is also the strict transform of σ by π0, and since the maximal cycle
of pX, 0q is reduced, then again by [11, 1.1] (we use here the converse statement)
then pσ, 0q is a smooth curve on pX, 0q.
Claim 2. γ satisfies Condition p˚2q.

Proof. Let us write ℓ´1pγq as the union ℓ´1pγq “ η1 Y η2 where η2 is the union
of components of ℓ´1pγq whose strict transforms by e1 contain p.

Let σ be a component of η1 and let p1 “ σ˚ X E1. The strict transform by e1

of another component σ1 of ℓ´1pγq meets E1 at a point in ℓ1´1pqq different from
p1. Therefore σ and σ1 have distinct tangent lines so their contact exponent equals
1. This proves that any component of η1 has contact exponent 1 with any other
component of ℓ´1pγq.

It remains to prove Condition p˚2q for two components δ1 and δ2 of η2. Let q0
the rate associated to δ1 and δ2 as in Condition p˚2q. The strict transforms δ˚

1

and δ˚
2 of δ1 and δ2 by e1 are two components of the liftings ℓ1´1pγ˚q of the test

curve pγ˚, qq for the surface germ pX 1, p1q, and the rate associated to δ˚
1 and δ˚

2 as
in Condition p˚2q for pX 1, p1q equals q0 ´ 1. We now use the induction assumption:
since γ˚ satisfies Condition p˚2q as a test curve of pX 1, p1q with rate n ´ 1, then
q0 ´ 1 “ n ´ 1, so q0 “ n. This proves Claim 2.
Case 2. We now assume γ is a curvette of ρ´1p0q with inner rate qγ “ n ` 1{2
where n is an integer ě 1. Then, in suitable coordinates x and y, γ is a curve with

a Puiseux expansion of the form y “ axn` 1

2 and there is a unique component ∆1

of ∆ with same type y “ a1xn` 1

2 ` higher order. Let q “ γ˚ X C “ ∆1˚ X C as in
Case 1, and let Π1 Ă Π such that ℓpΠ1q “ ∆1 and p “ ℓ1´1pqq X Π1˚.

We will proceed again by induction on n, using similar arguments as in Case 1.
Assume first n “ 1, i.e., qγ “ 3{2. Then ∆1 and γ are 3{2-cusps, i.e., equisingular

to u2 ´ v3 “ 0, with contact exponent 3{2. The strict transforms ∆1˚ and γ˚ by e

are smooth curves meeting e´1p0q at the same point q.
Let p1 P ℓ1´1pqq be distinct from p. Then the map germ ℓ1 : pX 1, p1q Ñ pU 1, qq

is an isomorphism, so the germ pℓ1´1pγ˚q, p1q is a smooth curve tangent to E1.
Therefore, there is a unique component σ of ℓ´1pγq whose strict transform by e1

contains p1, and it has multiplicity 2. So σ is a plane curve, and since it is smooth
after one blow-up, it is a 3{2-cusp. Moreover, a similar argument as in the proof of
Claim 1 shows that σ has contact exponent 1 with any other component of ℓ´1pγq.

Let us now deal with pℓ1´1pγ˚q, pq. According to Theorem 5.4, p is a smooth
point of an exceptional curve obtained by blowing-up the intersection point between
two exceptional curves of ℓ1´1pCq corresponding to a central edge in the resolution
graph, and pℓ1´1pγ˚q, pq consists of the strict transform of a component of ℓ´1pγq
which is equisingular to Π1. So this component is a cusp, i.e., its unique rate is 3{2.
This implies that γ satisfies Conditions p˚1q and p˚2q.

The rest of the induction uses the same arguments as in Case 1.
This completes the proof of the “if” direction of Theorem 1.2.
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7. Explicit example of lifting of test curves

The aim of this section is to give in an explicit example a flavor of Conditions
p˚1q and p˚2q of Theorem 4.5 in the case of a minimal singularity. We return back
to Example 5.7, and we give for some examples of test curves pγ, 0q, the resolution
graph of the lifting ℓ´1pγq on the left and the resolution of its generic projection
ℓ1pℓ´1pγqq on the right. Figure 3 is for the test curve given by a generic line. Figures
4 and 5 are for two test curves which are ρ-images of curvettes of the exceptional
curves corresponding respectively to the vertices v1 and v2.

1 5{2 2 1 2 1

3

1

3

5{2 3

2

1

2

Figure 3.

v1

Figure 4.

8. Rational and Lipschitz normally embedded implies minimal

In this section, we prove the other direction of Theorem 1.2: any rational surface
singularity which is Lipschitz normally embedded is minimal.

Remark 8.1. A Lipschitz normally embedded surface singularity is not necessarily
minimal. A counter-example is given by the (non rational) hypersurface in C3 with
equation xypx ` yq ` z4 “ 0. It is a superisolated singularity. The graph of
its minimal resolution factorizing through Nash has four vertices. It consists of
a central vertex and three bamboos of length one, these three leaves being the
L-nodes, and the central vertex the single P-node.
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v2

Figure 5.

Proof. Let p rX,Eq be the minimal resolution of pX, 0q, Z the minimal cycle and
E “

Ť
Ei. The multiplicity of Z at any L-curve is 1, since pX, 0q is Lipschitz

normally embedded. Consider Laufer’s algorithm for finding Z ([13, Proposition
4.1]), and let Ej Ă E be the last curve one adds in the algorithm before one obtains
Z. Assume that Ej is not an L-curve, so Z ¨ Ej “ 0. Let Z 1 be the penultimate
cycle obtained by Laufer’s algorithm. Then Z 1 “ Z ´ Ej and Z 1 ¨ Ej “ ´E2

j ą 1
which contradicts pX, 0q being rational by Laufer’s criterion [13, Theorem 4.2]. So
the last curve added by Laufer’s algorithm is always an L-curve.

One can always run Laufer’s algorithm such that each curve is added once, before
any curve is added a second time. So unless Z “

ř
Ei there would be an L-curve

with multiplicity ą 1, which is a contradiction. Thus pX, 0q is minimal. �
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