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MINIMAL SURFACE SINGULARITIES ARE LIPSCHITZ
NORMALLY EMBEDDED

WALTER D NEUMANN, HELGE MOLLER PEDERSEN, AND ANNE PICHON

ABSTRACT. Any germ of a complex analytic space is equipped with two natu-
ral metrics: the outer metric induced by the hermitian metric of the ambient
space and the inner metric, which is the associated riemannian metric on the
germ. These two metrics are in general nonequivalent up to bilipschitz homeo-
morphism. We show that minimal surface singularities are Lipschitz normally
embedded, i.e., their outer and inner metrics are bilipschitz equivalent, and
that they are the only rational surface singularities with this property. The
proof is based on a preliminary result which gives a general characterization
of Lipschitz normally embedded normal surface singularities.

1. INTRODUCTION

If (X,0) is a germ of an analytic space of pure dimension dim(X,0), we denote
by m(X,0) its multiplicity and by edim(X,0) its embedding dimension.

Minimal singularities were introduced by J. Kollar in [12] as the germs of analytic
spaces (X, 0) of pure dimension which are reduced, Cohen-Macaulay, whose tangent
cone is reduced and whose multiplicity is minimal in the sense that Abhyankar’s
inequality

m(X,0) = edim(X,0) — dim(X,0) + 1

is an equality (see [12], Section 3.4] or |4, Section 5]).

In this paper, we only deal with normal surfaces. In this case, minimality can
be defined as follows ([I2] Remark 3.4.10]): a normal surface singularity (X, 0) is
minimal if it is rational with a reduced minimal (also called fundamental) cycle.

Minimal surface singularities play a key role in resolution theory of normal com-
plex surfaces since they appear as central objects in the two main resolution algo-
rithms: the resolution obtained as a finite sequence of normalized Nash transfor-
mations ([22]), and the one obtained by a sequence of normalized blow-up of points
([25]). The question of the existence of a duality between these two algorithms,
asserted by D. T. Lé in [I4] Section 4.3] (see also [4, Section 8]) remains open, and
the fact that minimal singularities seem to be the common denominator between
them suggests the need of a better understanding of this class of surface germs.

In this paper, we study minimal surface singularities from the point of view of
their Lipschitz geometries, and we show that they are characterized by a remarkable
metric property: they are Lipschitz normally embedded. Let us explain what this
means.
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If (X,0) is a germ of a complex variety, then any embedding ¢: (X,0) — (C",0)
determines two metrics on (X, 0): the outer metric

dout(x1,x2) = ||p(x1) — d(x2)|] (i.e., distance in C™)
and the inner metric
dinn (21, 22) := inf{length(¢p o ) : v is a rectifyable path in X from x; to za},

using the riemannian metric on X ~\ {0} induced by the hermitian metric on C".
For all z,y € X, dinn(2,y) = dout(x,y), and the outer metric determines the inner
metric. Up to bilipschitz equivalence both these metrics are independent of the
choice of complex embedding. We speak of the (inner or outer) Lipschitz geometry
of (X,0) when considering these metrics up to bilipschitz equivalence.

Definition 1.1. A germ of a complex normal variety (X,0) is Lipschitz normally
embedded if inner and outer metrics coincide up to bilipschitz equivalence, i.e., there
exists a neighbourhood U of 0 in X and a constant K > 1 such that for all z,y € U

1
Edznn(xu y) < dout(xu y)

It is a classical fact that the topology of a germ of a complex variety (X,0) c
(C™,0) is locally homeomorphic to the cone over its link X(©) = §2»~1 A X where
S27~1 denotes the sphere with small radius € centered at the origin in C™. If (X, 0)
is a curve germ then it is in fact bilipschitz equivalent to the metric cone over its
link with respect to the inner metric, while the data of its Lipschitz outer geometry
is equivalent to that of the embedded topology of a generic plane projection (see
[21,[@9, 19]). Therefore, an irreducible complex curve is Lipschitz normally embedded
if and only if it is smooth. Our main result shows that this is not true in higher
dimension: any minimal surface singularity is Lipschitz normally embedded. In
section [8 we also prove a converse to this among rational singularities, so:

Theorem 1.2. A rational surface singularity is Lipschitz normally embedded if and
only if is minimal.

The paper is organized as follows. In Section 2] we give basic definitions about
generic projections of a normal surface germ and their polar curves and discrimi-
nants. In Section [3] we recall the geometric decomposition with rates of a normal
surface germ given in [20], which completely describes the inner Lipschitz geometry
and an important part of the outer geometry. The proof of theorem [[.2]is based on
two preliminary results. The first one is a characterization of Lipschitz normally
embedded surface singularities (Theorem [.5]). The second one is a complete de-
scription of the geometric decomposition of a minimal singularity given in Section
by using results of [6] and the explicit description of the polar and discriminant
curves of minimal surface singularities given in [22] and [2[3]. Finally, one direction
of Theorem [[.2] (minimal singularities are normally embedded) is proved in Section
and illustrated through an example in Section[7} and the other direction is proved
in Section [8
Acknowledgments. Neumann was supported by NSF grant DMS-1206760. Pi-
chon was supported by ANR-12-JS01-0002-01 SUSI. We are also grateful for the
hospitality and support of the following institutions: Columbia University, Institut
de Mathématiques de Marseille and Aix Marseille Université, and TAS Princeton.
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2. GENERIC PROJECTIONS

We denote by G(k,n) the grassmannian of k-dimensional subspaces of C™. For
De G(n—2,n) let fp: C* — C? be the linear projection with kernel D.

Definition 2.1. Let (v,0) < (C™,0) be a complex curve germ. Let V < G(n—2,n)
be the open dense subset such that for each D € V', D does not contain any limit
of bisecant lines to . The projection ¢p is generic for (v,0) if D e V. (See [7] for
the definition of the cone of limits of bisecants.)

Definition 2.2. ([16] (2.2.2)] and [23], V. (1.2.2)].) Let (X,0) < (C™,0) be a normal
surface germ. We assume that the restriction ¢p|x is a finite morphism (this is true
for D in an open dense set of G(n —2,n)). Let IIp < X be the polar curve of this
projection, i.e., the closure in (X, 0) of the singular locus of the restriction of ¢p to
X ~ {0}, and let Ap = £p(IIp) be the discriminant curve.

There exists an open dense subset 2 < G(n — 2,n) such that

(1) for each D in , the projection ¢p is generic for its polar curve Ilp;
(2) {(IIp,0) : D € Q} forms an equisingular family of curve germs in terms of
strong simultaneous resolution.

We say the projection ¢p: C* — C2 is generic for (X,0) if D € Q.

Remark 2.3. For each D € Q the restriction ¢p|x: (X,0) — (C2,0) is a finite
cover whose degree equals the multiplicity of (X,0) and D n Cx,o = {0} where
Cx,o denotes the tangent cone to (X,0). In fact, for any D, these two properties
are equivalent ([4, Remarque 2.2]).

3. LIPSCHITZ GEOMETRY AND GEOMETRIC DECOMPOSITION OF A NORMAL
SURFACE SINGULARITY

In this section, we describe the geometric decomposition of (X,0) introduced
in [20], which completely determines the inner geometry and is an invariant of the
outer geometry. We give first the description through resolution as presented in [20,
Section 9] and we give an alternative but equivalent description through carrousel
decomposition at the end of the section. See also [20] for more details.

We need to define the contact exponent between two germs of curves.

Let (C,0) and (D,0) be two irreducible plane curve germs intersecting only
at 0. Let us choose coordinates x and y in C? so that C' and D admit Puiseux
parametrizations respectively

y = ax l/m Zaz /m and y=_0 1/" bej/"

i=m ji=n

where m and n are the multiplicities of C' and D.

Replacing 2 by wz in a (resp. 8) where w™ =1 (resp. w™ = 1), we get all the
Puiseux parametrizations of C' (resp. D).

Denote by {04Z Um)} the set of Puiseux parametrizations of C' and {ﬁ 1/") }?:1
that of D.

Definition 3.1. The contact exponent between C' and D is the rational number
defined by:
gc,p = | _, max {OTd i(x l/m) - ﬁj(fl/n))}

1<is<m,1<j<n



4 WALTER D NEUMANN, HELGE M@LLER PEDERSEN, AND ANNE PICHON

More generally, if C, D are two germs of curves in (C",0) intersecting only at 0,
we define the contact exponent gc,p between C' and D as the contact exponent
between ¢(C) and ¢(D) where £: C* — C? is a generic projection for C' U D.

Notice that gc,p depends neither on the choice of £ nor on that of the coordinates
2 and y. Notice also that the contact exponent between two smooth curves is an
integer. It is in fact the minimal number of blow-ups of points necessary to separate
their strict transforms.
In order to define the geometric decomposition of (X, 0), we consider the minimal
good resolution 7y : ()N(O, E) — (X, 0) with the following two properties:
(1) it resolves the basepoints of a general linear system of hyperplane sections
of (X,0) (i.e., it factors through the normalized blow-up of the maximal
ideal of X);
(2) it resolves the basepoints of the family of polar curves of generic plane
projections (i.e., it factors through the Nash modification of X).

This resolution is obtained from the minimal good resolution of (X,0) by blowing
up further until the basepoints of the two kinds are resolved. We denote by I'y the
dual resolution graph of 7.

Definition 3.2. An L-curve is an exceptional curve in 7, ! (0) which intersects the
strict transform of a generic hyperplane section. The vertex of I'y representing an
L-curve is an L-node.

A P-curve (P for “polar”) will be an exceptional curve in 7, ' (0) which intersects
the strict transform of the polar curve of any generic linear projection. The vertex
of 'y representing this curve is a P-node.

A vertex of T'y is called a node if it is an £- or P-node or has valency > 3 or
represents an exceptional curve of genus > 0.

A string of a resolution graph is a connected subgraph whose vertices have
valency 2 and are not nodes, and a bamboo is a non-node vertex of valency 1 union
a string attached to it.

Now, consider the resolution 7: X — X obtained from )Nfo by blowing up each
intersection point of pairs of curves of 771(0) which correspond to nodes of Ty.
We then obtain a resolution satisfying (1) and (2) and such that there are no
adjacent nodes in its resolution graph. Let I' be the resolution graph of 7. Denote
by Ei,...,E, the exceptional curves in £ = 7~1(0) and by vy the vertex of T
corresponding to Ef.

For each k =1,...,r, let N(E}y) be a small closed tubular neighbourhood of Fj,
and let

N(Ey) = N(Ep) ~ | N(Bw).
k' £k
For any subgraph IV of I define:
N(T):= | N(B) and N('):=NT)~ | N(Ex).

vl v gl

We now describe the geometric decomposition of (X,0). It is a decomposition of
(X,0) as a union of semi-algebraic pieces of three types: B(1), B(q) with ¢ > 1 and
A(q,q') where the ¢ < ¢’ are rational numbers > 1. The pieces B(1) are metrically
conical, i.e., bilipschitz equivalent to a strict metric cone in the inner metric. For
each piece B(q) with ¢ > 1, B(q) ~ {0} fibers over a punctured disk D? \ {0} with



MINIMAL SINGULARITIES ARE LIPSCHITZ NORMALLY EMBEDDED 5

2-manifold fibers having diameter of order O(t9) at distance ¢ from the origin. We
call g the rate of B(q). Each A(q,q’) is an intermediate piece between a B(q) and
a B(q') piece and is topologically the cone on a toral annulus 72 x I. For a more
precise definition of pieces see [20, Section 2].

If v; is a vertex of I', we denote by I'; the subgraph of I' consisting of v; union
any attached bamboos.

Proposition 3.3. [20, Proposition 9.3] The pieces of the geometric decomposition
of (X,0) are as follows:

(1) the B(1)-pieces are the sets m (N (T;)) where v; is an L-node;

(2) each B(q)-piece for ¢ > 1 is a set m(N(L'j)) where v; is a node which is
not an L-node;

(3) the A(q,q')-pieces (which have 1 < q < ¢') are the (N (o)) where o is a
maximal string between two nodes.

In both cases (1) and (2), the rate q is the contact exponent between the w1 -images
of two curvettes of E; meeting E; at distinct points.

If £ is an irreducible component of a normal crossing divisor E in a complex
smooth surface S, we call curvette of E’ a small smooth curve on S transversal to
E’ at a smooth point of E.

Remark 3.4. The geometric decomposition of (X, 0) is a refinement of the thick-
thin decomposition of (X, 0) introduced in [6]. Namely the thick part of (X,0) is
the union of B(1) pieces plus adjacent A(1, q)-pieces.

The geometric decomposition can be encoded in the dual resolution graph I' of
7 decorated with a rate g at each node. See the left graph in Example 5.7

In [20, Definition 8.6], we define an equivalence relation between pieces by saying
that two pieces with same rate ¢ are equivalent, if they can be made equal by
attaching a “g-collar” (a B(q) piece which is topologically the cone on T2 x I)
at each boundary component. Similarly, two A(q, ¢')-pieces are equivalent if they
can be made equal by removing a g-collars at the outer boundaries and removing
q'-collars at the inner boundaries.

Proposition 3.5. [20, Proposition 8.7] The geometric decomposition is unique up
to equivalence of the pieces and it is an invariant of the outer Lipschitz geometry.

Let us now explain how the geometric decomposition is related (and even built)
from the geometry of the discriminant of a generic plane projection.

We first construct a decomposition of the germ (C2,0) into B(q)- and A(q,q')-
pieces based on a resolution of A.

Let p: Y — C? be the minimal sequence of blow-ups starting with the blow-
up of 0 € C? which resolves the basepoints of the family of images ¢(Ilp) by ¢ of
the polar curves of generic plane projections and let A be some ¢(IIp). We set
p~1(0) = Ui, Ck, where Cy is the exceptional curve of the first blow-up.

Denote by R the dual graph of p, so vy is its root vertex. We call a A-curve an
exceptional curve in p~1(0) intersecting the strict transform of A, and a A-node a
vertex of R which represents a A-curve. We call any vertex of R which is either vy
or a A-node or a vertex with valency > 3 a node of R. A string is, as in Definition
B2l a connected subgraph whose vertices have valency 2 and are not nodes, and a
bamboo is again a non-node vertex of valency 1 union a string attached to it.
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If two nodes are adjacent, we blow up the intersection points of the two corre-
sponding curves in order to create a string between them. Denote p’: Y’ — C? the
obtained resolution.

The decomposition of (C2,0) is as follows:

(1) the single B(1)-piece is the set p'(N(Ch));

(2) the B(q)-pieces for ¢ > 1 are the sets p'(N(Ry)) where Ry is a subgraph
of R consisting of a node vy which is not the root v; plus any attached
bamboo. The rate g is the contact exponent between the p’-images of two
curvettes of the exceptional curve corresponding to vy.

(3) the A(q, ¢')-pieces are the sets p'(N (o)) where o is a maximal string between
two nodes.

Definition 3.6. We call this decomposition of (C2,0) into B- and A-pieces the
carrousel decomposition of (C%,0) with respect to A.

The pieces of the carrousel decomposition can also described in terms of trun-
cated Puiseux parametrizations of the components of A. See [6l, Section 12] or [20]
Sections 3, 7] for details.

Let us now describe how the carrousel decomposition of (C2,0) with respect to
A and the geometric decomposition of (X,0) are related.

Definition 3.7. Let £: (X,0) — (C2,0) be a generic plane projection of (X,0) as
defined in Section Let II be its polar curve and IT* its strict transform in the
resolution 7: X — X. A polar wedge about II is a neighborhood of II saturated by
the m-images of neighbouring curvettes of IT*. A A-wedge is the ¢-image of a polar
wedge. (For details see [6]).

According to [0, Proposition 3.4], £ is a Lipschitz map for the inner metric outside
a polar wedge A about II. Moreover, A and the A-wedge ¢(A) are union of B-pieces
with trivial topology, i.e., the fibers are 2-disks (we call D-pieces such trivial B-
pieces). More precisely, if Ay — A is a D(s)-piece, then £(A4y) is also a D(s)-piece
(with same rate s).

As a consequence of this, each piece of the carrousel decomposition of (C2,0)
just constructed lifts to a union of A and B-pieces of the same type in (X,0).
After absorption of the polar-wedges and of the D(q)-pieces which do not contain
components of the polar curve (see [0, section 13]), one obtains the geometric
decomposition of (X,0) previously described. In the case of minimal singularities,
no absorption will be needed so we omit the details of absorption here.

This correspondence between the geometric decomposition of (X,0) and the
carrousel decomposition of (C2,0) can be read through the correspondence between
the resolutions p’ and 7 given by the Hirzebruch-Jung resolution process. This will
be a key argument in the proof of Theorem [[.2in Section[G A full example is given
in Example 5.7

4. CHARACTERIZATION OF LIPSCHITZ NORMALLY EMBEDDED SURFACE
SINGULARITIES

Definition 4.1. Let 0 be a singular plane curve. We say rate of § for any rational
number which is either a characteristic Puiseux exponent of a branch of § or the
contact exponent between two branches of §. If ¢ is smooth its set of rates is empty.

The following easy remark will be useful in the induction of Section
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Remark 4.2. Let e be the blow-up of the origin of C? and let (§,0) < (C?,0)
be a singular plane curve germ. If § is irreducible and its set of rates A consists
of numbers > 2, then the set of rates of (6%,p) is A — 1, where * denotes strict
transform by e. If §; and Jo are two components of A whose strict transforms by
e meet e~1(0) at a single point p, and if ¢ is the contact exponent between §; and
d2, then the contact exponent between d§f and 0% equals ¢ — 1.

Let (X,0) be the germ of a normal complex surface and let £: X — C2? be
a generic plane projection. Let II be the polar curve of £ and A = ¢(II) be its
discriminant curve. Let p: Y — C2 be the resolution of A introduced in Section
and let R be the dual graph of p.

Definition 4.3. A test curve is an irreducible curve (y,0) = (C2,0) which is the
projection by p of a curvette v* of an exceptional curve in p~1(0) represented by a
node of R such that v* and the strict transforms of (A, 0) by p do not intersect.

Definition 4.4. Let (v,0) = (C2,0) be a test curve. Let C be the component of
p~1(0) which intersects the strict transform *. We define the inner rate q, of v
as the contact exponent between the p-images of two generic curvettes of C.

Let : (C™,0) — (C2%,0) be a plane projection which is generic for the curve
(=1(v). We define the outer rates of v as the rates of the plane curve /(£~1(7)).
Notice that the outer rates of v do not depend on the choice of .

Theorem 4.5. (X,0) is Lipschitz normally embedded if and only if for any test
curve (7,0), the outer rates of (v,0) satisfy the following conditions:

(1) Any outer rate of vy which is a characteristic exponent equals g .

(x2) For any pair 81,02 of components of £=(v), let 7'+ X’ — X be m composed
with a sequence of successive blow-ups of points which resolves the curve
01 U 0o. Let Ey and Eo be the components of 7T’_1(O) which intersect the
strict transforms of 61 and 02, and let qo be the maximum among mini-
mum of inner rates of vertices along paths joining the vertices v1 and vy in
the resolution graph of ©'. Then the contact exponent between the generic

projections Z((Sl) and €~(52) equals qg.
Remark 4.6. In fact, an outer rate of v which is a characteristic exponent is always
= ¢,. Indeed, let C), be the exceptional curve of p~1(0) such that v* is a curvette
of C,. Then B = p(N(C,)) is a B(gy)-piece in the sense of [20, Section 2] (see also
[6, Section 11]). Let £: (X,0) — (C2,0) be another generic projection. Note that
E(f_l(B)) is also a B(g,)-piece, so any characteristic exponent of a complex curve
inside it is > g¢5.

Similar arguments show that the contact exponent between £(d1) and £(d2), as
in Condition (%2), is always > qo.

Remark 4.7. Notice that Condition (%2) for v does not depend on the choice of
the resolution 7’. In fact, one could take for 7’ the resolution 7,: X — X of (X,0)
obtained by taking the pull-back of p by ¢, then normalizing and then resolving
the remaining quasi-ordinary singularities. It is easy to prove that m, is a good
resolution for the lifting by £ of any test curve of p.

Proof of Theorem[{.5] The proof will use some arguments already presented in [20],
in particular in the proof of |20 20.1].
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Assume that there exists a test curve (v,0) = (C2,0) which does not satisfy
Condition (x1). Let § be a component of the lifting £~ () such that ¢(5) admits a
characteristic exponent ¢ > ¢ .

Let (z(w),y(w)) = (w™, Y5, biw') be a parametrization of . Fix wo € C* and
consider the algebraic arc p: [0,1) — ~ defined by p(t) = (x(twp), y(twp)). Then
p lifts to two semi-algebraic arcs v1,7v2: [0,1) — § such that for all ¢, £(y1(t)) =
£032(8)) = p(t) and doug (11 (£), 32 () = O(E").

Since 1 (t) and 2(t) belong to different sheets of the cover ¢, then for any path o
between them, the loop ¢(o) will have to travel through the B(g,)-piece containing
the point p(t), so length(¢(c)) = O(t"™47). Since ¢ is Lipschitz for the inner metric
(outside polar-wedges which can be avoided by multiplying the length of (o) by
a factor of ), we also have that the length of ¢ is = O(¢"%). Therefore, we get
dinn (11 (£),32(8)) = O(t"01). So

dout (’71 (t)u Y2 (t)) _
im =0,
=0 dinn (71(1),72(t))
which implies that (X, 0) is not Lipschitz normally embedded.
Assume now that (v,0) < (C2,0) does not satisfy Condition (*2) of Theorem 5]
i.e., there exists two components §; and d3 of the lifting £~ () such that ¢ > qo,
where qq is defined as in Condition (#2) and ¢ equals the contact exponent 4(51),0(62)"

Now lift the arc p defined before to two semi-algebraic arcs 77: [0,1) — §; and
v2: [0,1) — 2. We then have doy:(71(t),¥2(t)) = O(t™?). On the other hand, any
path ¢ in X from ~1(t) to v2(t) corresponds to a path & in the resolution graph
I" joining the vertices v; and ve. By the same argument as before, the length of
a minimal o will be O(t"%) where qo is the minimal rate of the vertices on 4.
Therefore dinn (v1(t), ¥2(t)) = O(t"%) and we conclude as before that (X, 0) is not
Lipschitz normally embedded.

Therefore, if (X, 0) is Lipschitz normally embedded, then any test curve (v, 0)
(C2,0) satisfies conditions (¥1) and (x2).

We now want to prove that, conversely, if any test curve satisfies conditions (*1)
and (#2), then (X, 0) is Lipschitz normally embedded.

Let (1,05 and ¢3: (X,0) — (C2,0) be three distinct generic projections for (X, 0)
and for i = 1,2, 3, let A; be a polar wedge for £; such that A, As and A3 are pairwise
disjoint outside the origin. Then for any pair of points p,q € X ~\ {0} sufficiently
close to 0, p and g are both outside A; for at least one of i € {1,2,3}. Choose such
an i and set {(p q) = {i.

By a straightforward adaptation of the argument in the last page of [20], one
shows that there exist a neighborhood V' of 0 in X and a constant L > 1 such that
for any pair p,qe V,

% (dznn (Qa g./) + dout (g./a g.)) < dout (Ea g.)
where ¢’ is the extremity of the lifting by £ = £p o of the segment [{(p), £(q)] with
origin p. In particular, £(q’) = ¢(q).

Thus the result follows from the following Lemma 8] which is proved later. [

Lemma 4.8. Let {: (X,0) — (C2,0) be a generic projection for (X,0) and let
(A,0) be a polar wedge for L. Assume that any test curve for £ satisfies conditions
(#1) and (%2). Then there exists ¢ > 0 and a constant K = 1 such that for any
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pe B~ {0} and any pair of distinct points py, py € X N A such that £(p;) = £(p,),
we have dinn (1, p2) < Kdout(p1, D2)-

In order to prove Lemma [£.8] we need two preliminary lemmas and .10

Lemma 4.9. Let vy be a test curve. Then Condition (x1) implies that the restriction
of £ to any component & of £=1(v) is an isomorphism.

Proof. Let C, be the irreducible component of p~1(0) such that v* is a generic
curvette of C,. Then B = p(N(C,)) is a B(gy)-piece. Let B be the component of
¢=1(B) which contains ¢ (by a component of a semi-algebraic germ (Z,0), we mean
the closure of a connected component of Z ~ {0}).

Let £': (X,0) — (C2,0) be another generic projection and let A’ be its discrim-
inant curve. Then ¢’ (f?) is up to higher order a B(gy)-piece of a carrousel decom-
position of A’. Choose a generic test curve 4/ in it and let 4’ be the component of
the lifting #'~1(+/) inside B.

Let y = >, -, a;z% be a Puiseux expansion of 7. Since the curve ¢(¢’) is inside
B and since B is a g,-neighbourhood of «, then the Puiseux expansion of £(¢’)
coincides with that of v up to exponent ¢; = ¢,, with a distinct non zero coefficient
for .

Assume £ |5: § — 7y is not an isomorphism, then mult(d) = k mult(y) where k is
an integer > 2. Since the curves ¢ and ¢’ are isomorphic, then mult(d) = mult(d’).
Since ¢ is generic for &', then mult(£(6")) = mult(d’). So we get mult(£(d’)) =
k mult(y). Since g, is the greatest characteristic Puiseux exponent of v and since
the Puiseux expansions of v and £(d") coincide up to exponent g, we then obtain
that ¢(0’) admits a characteristic exponent g > ¢,. Since ¢ and ¢’ are isomorphic,
q is an outer rate of v and Condition (*1) is not satisfied. O

Let 7: X — X be a resolution of (X, 0) described after Definition It factors
through the Nash modification v: X — X and through the blow-up of the origin
and no two nodes of its resolution graph I are adjacent. Let 0: X — G(2,n) be
the map induced by the projection po: X c X x G(2,n) —> G(2,n). The map o is
well defined on E = 771(0) and its restriction to E is constant on any connected
component of the complement of P-curves in E ([10, Section 2], [22, Part III,
Theorem 1.2]). The connected subgraphs of T obtained by removing all P-nodes
and adjacent edges are called P-Tjurina components.

Lemma 4.10. Let vy be a test curve and 61 and 62 two components of £~1(7y) whose
strict transforms meet By and Eo at smooth points p; and py of E.

Assume Ey and Es are not P-curves and that there exists a path in the graph of
T joining v1 to v through vertices with rates = q,. Then Condition (%2) implies
o(p1) # o(pa)-

Proof. Consider a semi-algebraic arc p: [0,1) — v such that ||p(¢)|] = O(t) and two
distinct liftings v1 : [0,1) — d1 and vz : [0,1) — d2 of p by £. Then dopye(71(t), 12(t)) =
O(t7?) where q is an outer rate of 7.

For ¢’ > ¢, sufficiently close to g¢,, there exists an A(gy,¢’)-piece A such that
v is in the outer boundary of A and A n A = ¢J. Let A; and A be the liftings
of A containing respectively d; and d2. A; and As are inside N(T';) and N(T'2)
where I'; and I's are the P-Tjurina components containing v; and vy. Assume
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o(p;) = o(py). Adapting the arguments of the proof of Lemma 11.7 in [20] inside
the pieces A; and Aj, one obtains djny, (71(t), v2(t)) = O(t?) and

t—0 dout (’71 (t)a Y2 (t))

This contradict Condition (+2) (here go = ¢4). O

Remark 4.11. A consequence of Lemmal[£.10lis that for any P-Tjurina component
IV, 7(N(I")) contains at most one component of £=1(7).

Proof of Lemmal[{.8 Consider a B(q)-piece B of the carrousel decomposition of C?
with respect to the discriminant curve A of . Let N1 and Ny be two components
of £~1(B), so N1 and N, are B(q)-pieces, possibly with N; = Ny. Let go be the
maximum among minimum of inner rates of pieces along paths joining N7 \ {0} to
No~ {0} in X ~ {0}, so g0 < g and gp = ¢ if and only if Ny = N3 or N; or Na can
be joined by a path through pieces with higher rates.

Claim 1. There exists K1, K2 > 0 and € > 0 such that for all p € (B2~ {0}) n B
and for all any pair of distinct points p;,p, such that p; € (N1 ~ A) n £~1(B2),
Dy € (N2 N A) n¢~Y(B2) and £(p,) = £(p,) = D, we have

dinn(plvp2) < K1||Q||q07
and
K2||12||q0 < dout(QluBZ)'

A straightforward consequence of Claim 1 is that for all p € (B \ {0}) n B and
D1, Dy as before,

dinn(leQQ) < &
out (917 92) K2

Proof of Claim 1. Choose coordinates (z,y, z,...) in C" such that ¢ = (z,y) and
the piece B is foliated by test-curves v, with Puiseux expansions

k
y = Z a;xP* + axf
i=1
where p; < ps < ... < pr < q and where « is in a compact set W < C.

For any ¢’ > 1, if a projection ¢’ is generic for a curve § then it is generic for
any curve in a ¢’-neighbourhood of §. Since W is compact, one can choose a finite
number of projections /¢4, ...,¢s and a decomposition W = W; u ... u Wy into
compact sets such that for any o € Wj, ¢; is generic for £7!(7,). We will assume
s = 1 since the proof is similar for s > 2 taking minimums of bounds. So we choose
¢1 such that for each ac € W, the projection ¢; is generic for £=!(7y,) and we choose
the coordinates (x,y, z,...) in C™ so that {1 = (z, 2).

Let « € W and let p € v, n (B2~ {0}). By Lemma 9] two distinct points p;
and p, such that ¢(p;) = ¢(p,) = p belong to distinct connected components of the
lifting £71(74)-

Let 5((11) c N; and 5&2) € N3 be two distinct irreducible components of the lifting
0 (v4) such that 657 A A = 62 A A = {0} and 65 » 6 if Ny = No.
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Since /1 is generic for 5 U 62, Condition (#2) implies that the curves 61(5&1))

and {4 ((5((12)) have Puiseux expansions respectively:

z = Z bj(a)x™ + bgi) (a)z? + h.o,
j=1
and .
z = Z bj(a)z™ + b (a)z% + h.o,
j=1
where

o <1ro < ...< Ty < qo,
e bi(a),j=1...,m, bgi) () and bgﬁ)(a) depend continuously on «,
o for all a e W, bgi)(a) # bflﬁ) (@),
and where “+h.0.” means plus higher order terms.
Let p = (z,y) € 74 and p; € 55 and Dy € 52 such that {(p;) = (py) = p.
Since ||p|| = O(|x]|), there exists L > 1 such that:

1
7165 (@) =0 (@)1 12| < [11(21) = £1(22)I] < dour (p1D5)-

Since W is compact, there exists K} > 0 such that for all « € W, K}
%|bg})) (o) — bt(li)(oz)|. Taking the minimum K> of K’ among all pairs 5,682 as
before, there exists € > 0 such that for all p € (B2 \ {0}) n B and for p; and p, as
before,

N

Ko|[p[|* < dout (P15 Do)

Let us now bound dipnn (D1, Do)

We consider the carrousel decomposition of C? with respect the the discriminant
curve A of ¢ and we decompose X into pieces consisting of components of inverse
images by £ of pieces of the decomposition of C? (see also end of Section [J).

Since p; and p, are on different sheets of the cover ¢, a path from p; to p, with
minimal length will have to travel through a B(go)-piece N of (X,0) and it only
travels through pieces with rates > go. Now £(N) is a B(qo)-piece in (C%,0) and
there exists a > 0 such for e > 0 sufficiently small, if (z,y;) and (z,y2) are in
¢(N) n B then |y; — y2| < a|x|®.

Let m = m(X,0) (so m is at most the order of the cover £|y: N — £(N)),
and let x be the local bilipschitz constant of ¢ outside the polar wedge A. Then
dinn (D1, Do) is less than or equal to mk times the diameter of £(N) providing one
avoids the A-wedge £(A). So we obtain

dinn(plapQ) < m(wa)lﬂ |p| |q07

where we use the factor ma instead of a to allow replacing a segment by a path
avoiding ¢(A). Setting K; = m(mwa)x completes the proof of Claim 1. O

Let us now consider an A(q, ¢’)-piece Ao of the carrousel decomposition of C?2
with respect to A with ¢ < ¢/, so Ag n A = &. According to Lemma and Re-
mark EETT] if A’ is a component of £=1(Ay), the restriction £]4:: (A’,0) — (A, 0)
is a homeomorphism and two distinct components of £~1(Ag) have distinct corre-
sponding P-Tjurina components.

Let A; and As be two distinct components of £71(Ay), so A and Ay are A(q, ¢')-
pieces. Let gg be the maximum among minimum of inner rates of pieces along paths
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joining A3 \ {0} to A2\ {0} in X ~ {0}. (So qo < ¢ and g9 = ¢ if and only if 4; or
As can be joined by a path through pieces with rates > ¢q.)

Claim 2. There exists K > 0 and € > 0 such that for all p € (B \ {0}) n 4 and

for all p; € Ay N £71(B2) and p, € A N £~1(B%) such that £(p;) = ¢(p,) = p, we
have

Proof of Claim 2. Let I';y and T'y be the P-Tjurina components such that A; <
w(N(T;)), ¢ = 1,2. Let P, (resp. P») be the values of o on | E; (resp.

U'U]‘ el E])'

In suitable coordinates the semi-algebraic set Ag is defined by inequalities

'UjEFl

k
ale” <y = Y] aia”| < alel?,
i=1
where a>0and 1 <p; <py <...<pg =q.
Let n = lem(denom(q’),denom(p;), @ = 1,...,k). Then Ap is the union of the
images of the maps ¢, ¢,: [0,1] x [0,1) — (C?,0) parametrized by (&1,&2) € St x S
and defined by

V(Sat) € [Oa 1] X [07 1)a ¢§11£2 (Svt) = (I(t)ay(sat))
with

k ’
z(t) = &t" and y(s,t) = Z a;x(t)P + als (sx(t)q +(1- s)x(t)q)

Notice that ||, ¢, (s, t)|| = O@™).

Case 1. Assume first that A; or As can be joined by a path through pieces with
rates > ¢'.

Fix &1,& € St x St and consider two liftings ¢1: [0,1] x [0,1) — A; and
¢2: [0, 1] X [O, 1) - AQ Of¢ by 6, i.e., (bl = (€|A1)710¢)§11£2 and (bg = (€|A2)710¢)§11£2.
Let (Cs,t) be a continuous family of paths in X \ {0} parametrized by (s,t) €
[0,1] x (0,1) such that,

e ¢y, has origin ¢1(s,t) and extremity ¢a(s,t)

e ¢, consists of the path ¢ ([s,1] x {t}) followed by a path ¢} from ¢1(1,t)
to ¢2(1,t) (independent of s) through pieces with rates > ¢’ followed by
the reversed ¢o([s, 1] x {t}).

length(c})

Fix s € [0,1). As t tends to 0, the ratio Tongih(o: (s, 11y tends to zero for

1 = 1,2 and the path ¢, tends to the union of two segments whose angles with the
kernel of £ depends only on P; and P, (see Figure[ll). Since P, # P> (Lemma [£10)
and since the projection ¢ is generic, we obtain that for all s € [0,1)

. length(cs 1)

im = a,

t—0 dout((bl (Su t)7 ¢2(87 t))
where a > 0 just depends on P; and P; (so it is independent of &1, &2 and s). Since
inn (P1(8,t), Pa(s,t)) < length(cs), this proves Claim 2 in that case.
Case 2. Assume now that any path from A; or Ay goes through pieces with rates
< q. Let B (resp. B’) be the B(q)-piece (resp. B(q')-piece) attached to the outer
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(252(0, t)

FIGURE 1.

(resp. inner) boundary of Ag and let €, K7 and K» (resp. K1 and K}) be constants
associated to B (resp. B’) as in Claim 1.

Fix &1, & € S' x S! and consider again ¢; and ¢» as defined in Case 1. We have
for all (s,t) € [0,1] x (0,1),

dinn((bl (87 t)? ¢2(57 t)) < dinn(¢1 (07 t)? ¢2(07 t))+
length(¢1 ([0, s] x {t})) + length(¢2([0, s] x {t}))

Let € > 0 be sufficiently small and let x > 0 be a bound for the local bilipschitz
constant of the restriction £: X n ¢~1(B¢) ~ A — B, where A is a polar wedge
around the polar curve of . We then have for ¢ sufficiently small, i.e., such that

¢E1,§2 (S, t) € B,
dinn (¢1 (87 t)u ¢2 (87 t)) < dinn ((bl (07 t)u ¢2 (0, t)) + 25(18(#“1 — tnq') < Ki/tnqo,
where K = K; + 2ka. Notice that K7 is independent of &1,&; and s. Since

[|fe1.e.(s,)]| = O(t™), we then have proved that there exist a constant C' > 0 and
€ > 0 such that for any p € B, n Ag,

dinn(leQQ) < OHQ”qo

where p; and p, are the liftings of p to A; and As respectively.

Let us now deal with the outer distance. As t tends to 0, the two arcs ¢4 ([0, 1] x
{t}) and ¢2([0,1] x {t}) tend to the union of two coplanar segments which are
opposite sides of a trapezoid (Figure 2]). Then for ¢ > 0 sufficiently small and for
any s € [0,1],

dout (61 (5.1), 62(5,1)) > (1 — ) min (doum(o, 1), 62(0,) dou (61 (1. 1), @(Lt)))

with 7 small (the constant 1 — 7 is for the case when P; = P, in the previous
notation, i.e., the trapezoid is a rectangle).

Applying Claim 1 to the pieces B and B’ adjacent to Ay, there exist K5 > 0 and
K > 0 such that for all ¢ > 0 sufficiently small,

K2| |¢51,52 (07 t)' |q0 < dO’U«t(¢1 (07 t)7 ¢2(07 t))a
and
K3||er e (LN < dour (¢1(1,1), 2(L, 1))
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Since for all s, ||¢¢, ¢, (s,t)|| = O(t™), we then obtain that there exists C’ > 0
and € > 0 such that for any p € B, n Ay,
C'llpl* < dout(p1, B2)-

where p; and p, are the liftings of p to A; and A, respectively. This proves Claim
2 in Case 2. O

¢2 (O’t) ¢2(S,t)

P2(1,1)

: d)l (17 t)
: 01 (S, t)
(bl (Oa t)
FIGURE 2.
Claim 1 and Claim 2 imply Lemma .8 O

5. THE GEOMETRIC DECOMPOSITION OF A MINIMAL SINGULARITY

The aim of this section is to describe the geometric decomposition with rates of a
minimal surface singularity germ (X,0) and its correspondence with the carrousel
decomposition of (C2 0) with respect to the discriminant curve A of a generic
projection of (X, 0) and the resolution p of A (see Section []).

Let us first recall the definition of the minimal (also called fundamental) cycle
Zmin of a normal surface singularity (X,0). We refer to [I8] for details. Let
T ()~(, E) — (X,0) be aresolution and let F1, ..., E, be the irreducible components
of the exceptional divisor E = 7=(0). The minimal cycle Zyipn is the minimal
element of the set of divisors Z = 22:1 m; E; whose coefficients m; are strictly
positive integers and such that Vj = 1,...,r, Z- E; < 0. A reduced minimal cycle
means that Z,., = >, Ej, i.e., m; =1foralli=1,...,r.

If f:(X,0) - (C,0) is an analytic function, then its total transform (f) =
(fom)~1(0) decomposes into (f) = Z(f) + f* where f* is the strict transform and
Z(f) apositive divisor with support on E. Foreachj = 1,...,r, onehas (f)-E; = 0.
Hence Z(f)-E; <Oforall j =1,...,7. If h: (X,0) — (C,0) is a generic linear
form, then Z(h) is the minimal element among divisors Z(f), and Z,:n < Z(h).
For any rational singularity, a fortiori for minimal, the minimal resolution resolves
the basepoints of the family of generic linear forms and Z(h) = Z,p (see [11 [18]).
So, for a rational singularity, the £-nodes in a resolution graph, and then, the
thick-thin decomposition, are topologically determined.

We now restrict to minimal singularities. In order to describe the geometric
decomposition of (X,0), we will use the description by Spivakovsky ([22]) of the
minimal resolution 7 of the pencil of polar curves of generic plane projections
(X,0) — (C?%,0) and the description by Bondil ([2 [3]) of the resolution p of the
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family of projected polars ¢(Ilp), where £: (X,0) — (C?,0) is a generic plane
projection.

In [22], Spivakovsky gives the following combinatorial characterization of the
dual resolution graphs of minimal singularities which immediately furnishes the £-
nodes. Let 7': X’ — X be the the minimal good resolution of (X,0) and let I” be
its dual graph. Denote by V(I'") the set of vertices of I'. If v € V(I''), we denote by
E, the corresponding irreducible component of the exceptional divisor (7/)71(0),
we set w(v) = E2 and we denote by v(v) the valence of v, i.e., the number of edges
adjacent to v.

Proposition 5.1. [22] A surface singularity is minimal if and only if T is a tree
of rational curves and for all vertices v e V(I"), —w(v) = v(v).

Remark 5.2. Since the minimal cycle is reduced, a vertex of I is an £-node if
and only if —w(v) > v(v).

Spivakovsky introduced the function s: V(IY) — N defined as follows: s(v) is
the number of vertices on the shortest path from v to an L-node. So s(v) = 1 if
and only if v is an L£-node.

Since minimal singularities are rational they can be resolved by only blowing up
points, as Tjurina showed in [24], and s(v) is the number of blow-ups it takes before
E, appears in the successive exceptional divisors.

We now state Theorem 5.4 in Chapter IIT of [22] in a formulation inspired by
Bondil in [2].

Theorem 5.3. [22, Chap. ITI, Theorem 5.4] Let (X,0) be a minimal surface singu-
larity. Let £: (X,0) — (C2,0) be a generic linear projection and let 11 be its polar
curve. Let ': (X’,0) — (X,0) be the minimal resolution of (X,0). Consider the
cycle S := Y s(v)E,, where the E, are the irreducible components of (7')~1(0).

Then the strict transform IT* of 11 by 7’ is smooth. It consists of exactly —(S +
E,)-E,—2 curvettes of each E, and one component through each intersection point
E, n Ey for which s(v) = s(w). Moreover, the latter intersection points are the
only basepoints of the family of generic polars Ilp, and they are simple, i.e., they
are resolved by one blow-up.

Following the terminology of [22], an edge of I between two vertices v and w is
central if s(v) = s(w), and a vertex v is central if there are at least two neighboring
vertices w, w’ such that s(v)—1 = s(w) = s(w’). Using this, the above theorem says
that for each central edge there is one component of IT* through the intersection
point of the corresponding curves and that for each central vertex v, there is at
least one component of IT* which is a curvette of F,. Any other components of IT*
go through L£-nodes.

In [2], Bondil shows that the minimal resolution of (X,0) obtained by only
blowing up points is also the minimal resolution of IT just described. Then, blowing
up the points corresponding to central edges, we get the resolution 7y : ()?0, E) —
(X,0) introduced in Section [3] i.e., the minimal resolution which factors through
the blow-up of the origin and through Nash blow-up.

We then know the resolution graph I'g of 7y together with its nodes. So we
topologically know the geometric decomposition of (X, 0) from the resolution graph.
We now need to determine the rate g of each node. In order to do this, we will use a

more precise description of the polar curve and of the discriminant curve presented
by Bondil in [2].
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An A,-curve is a germ of an analytic curve isomorphic to the plane curve 3% +
2"+l = 0. If n is odd, then A, consists of a pair of smooth curves with contact
exponent "TH while if n is even, A, is an irreducible curve

Theorem 5.4 (|2, B]). Let (X,0) be a minimal singularity, and let I1 be the polar
of a generic linear projection. Then

(1) II decomposes as a union of A, -curves II = (J, C; and each C; meet a
single irreducible component E,,, of the exceptional divisor of mg

(2) If EZ = —1 (i.e., E,, comes from blowing up a central edge), then C; is an
(irreducible) Aag(y,)—2-curve. Otherwise C; consists of two smooth curves
forming an Aggy,)—1-curve

(3) The contact exponent between C; and C; equals the minimal value of s(v)
on the shortest path in I'g between the vertices v; and v;.

Using the fact that each branch of II is isomorphic to a plane curve and that the
restriction £|ir: II — A is generic, Bondil deduces from Theorem (.4l the following
description of the discriminant curve:

Proposition 5.5 ([2, B]). The discriminant curve A of a generic projection € of
(X,0) is a union of A,-curves in one-to-one correspondence with the curves C; of
Proposition[5.4), and their pairwise contact exponents equal that of the corresponding
C;’s. Moreover, the minimal resolution of A is the resolution p: Y — C? which
resolves the base points of the family of generic polar curves (¢(Ilp))peq.

We deduce from this the rates of the pieces B(q) of the geometric decomposition
of (X,0):

Corollary 5.6. Let (X,0) be a minimal surface singularity and let Ty be the dual
resolution graph of the resolution my described above. The rate q, of a node v of T’
is given by:

IE if B2 < —1
T Vsw)— 12 i E2 =1,

Proof. The rate ¢, is the contact exponent between the m-images of two generic

curvettes of E,. When v is a node such that E? < —1, the images of two generic

curvettes of £, form a Ayy(,)—1-curve so their contact exponent equals s(v). When

E? = —1 the images of two generic curvettes of E, are Ags(v)—2-curves whose
1

contact exponent equals s(v) — 3. O

Example 5.7. Let (X,0) be a minimal singularity with the following resolution
graph:
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The negative weights are the self-intersections of the exceptional curves. The
L-nodes are the vertices v such that —w(v) > v(v) (Remark [52)). They are in
black in the graph.

The following graph on the left shows two different things. First, the arrows
represent the components of the polar curve of a generic plane projection. The
gray node represents a curve obtained by blowing up the minimal resolution at
the intersection point of two exceptional curves corresponding to a central edge.
There are four pairs Ci,...,Cs of smooth components, and one component Cj
with multiplicity 2. Secondly, it shows the geometric decomposition of (X, 0). The
rational numbers in italics are the rates of the nodes.

The graph on the right is the resolution graph of the discriminant curve A =
¢(IT). The arrows represent the components of A = U?:l where A; = ((II;),
1 =1,...,5. The root-vertex is the black vertex and each vertex is weighted by the
corresponding rate.

Ch

Cy

6. MINIMAL IMPLIES LIPSCHITZ NORMALLY EMBEDDED

The aim of this section is to prove one direction of Theorem any minimal
surface singularity is Lipschitz normally embedded. We first state and prove the
key Proposition [6.11

Let (X,0) be a normal surface germ and let £: (X,0) — (C2,0) be a generic
projection. Let U be an open neighborhood of 0 in (C2 and let e: U’ — U be the
blow-up of the origin. Let X be the pull-back of ¢ and e and let £: X — U’ " and
¢: X — X be the two projections. Let n: X' — X be the normalization of X. By
[4, Prop. 2.15], ¢’ = € on is the normalized blowup of the maximal ideal of (X, 0).
We then have a commutative diagram:

X/
\>\ X — X
ol
U —=U
When (X, 0) is rational, a fortiori when minimal, ¢’ is the blowup of the maximal
ideal; no normalization is needed ([24]).
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Proposition 6.1. Let (X,0) be a minimal surface singularity. Let I1 be the polar
curve of a generic projection ¢: (X,0) — (C2,0) and let E' = €71(0). Choose
p € E' such that if it is a smooth point of X', then it is not on the strict transform
IT* of II. Set q := {¢'(p). Then
(i) the germ (X' p) is a minimal singularity with multiplicity the number of
irreducible components of E' through p;
(ii) the map germ ¢': (X',p) — (U’,q) is a generic projection for (X', p).

Remark 6.2. If (X', p) is smooth and p € IT*, then, according to [2] either (IT*, p)
is the strict transform of a moving polar (i.e., p is not a basepoint of the family of
generic polars) or (X,0) is the singularity Ay : 2% + y? + 22 = 0. In both cases, it is
easy to see that the degree of ¢/ at (X', p) equals 2 while the multiplicity of (X, p’)
is1. So ¢': (X',p) — (U’, q) is not generic.

Remark 6.3. The fact the (X’,p) is minimal is [4, Théoréme 5.9]. The authors
prove it there without using the existence of a resolution of (X,0). We give here a
short proof using this fact.

Proof of Proposition[6.1l Let m: Y — X be the minimal resolution of (X,0) and
let T be its resolution graph. Since (X,0) is rational, then 7 factors through the
blow-up of the maximal ideal ([I]). Assume (X’,p) is not smooth. Then (X’,p)
has minimal resolution graph one of the connected components IV of I" minus the
L-nodes. So I" is a rational graph and (X’,p) is rational. Moreover, since the
minimal cycle of (X, p) is reduced, the minimal cycle of (X’,p) is also reduced and
the multiplicity m’ of (X’, p) equals the number of £-nodes adjacent to I", i.e., the
number of irreducible components of E’ containing p.

Assume now that (X’,p) is smooth. Then by hypothesis, p ¢ IT*. Since there
is a branch of IT* through any singular point of E’, it implies that p is a smooth
point of E’. So the number of branches of E’ through p equals 1. This proves (i).

In order to prove (ii), we have to check that ¢': (X', p) — (U’, q) satisfies Con-
ditions () and (2) of Definition 221

The map ¢': X' — U’ is a branched cover with degree the multiplicity m =
m(X,0) of (X,0). Its discriminant locus is included in the strict transform A*
of A by e union the exceptional curve C' = e~1(0). This divisorial discriminant
is computed in [4, Proposition 6.1] for any normal surface germ (X,0): it equals
A* + (m — r)C where r the number of branches of the generic hyperplane section
of (X,0). In our case, r = m since (X,0) is minimal ([4, Lemma 5.4 and Theorem
5.8 ]). So, the discriminant of ¢ is just the reduced curve A* and the branching
locus of ¢’ is IT*. In particular the polar curve of ¢': (X', p) — (U’,q) is the germ
(IT*, p).

Assume (X', p) is smooth and p ¢ IT*. Then ¢': (X’,p) — (U’, q) has empty polar
curve, so it is an isomorphism and ¢': (X, p) — (U’, q) is a generic projection. This
proves (ii) in that case.

Assume now (X', p) is not smooth. Then p € IT* since (X,0) is resolved by
a sequence of blowing-ups of points on the successive strict transforms of II (|2}
Lemma 3.1]. Since the projection ¢ is generic for its polar curve (Condition ()
of Definition [22]), then the following Lemma (which will be used again later)
implies that ¢': (X', p) — (U’, q) is a generic projection for its polar curve (IT*, p),
i.e., it satisfies Condition () of Definition 221
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Lemma 6.4. Denote by eq: Uy — CN the blow-up of the origin of CN and let
(7,0) = (CN,0) be a curve germ whose strict transform v* by eq intersects ey *(0)
at a unique point p. Let £: CV — C2 be a linear projection which is generic for the
curve germ (7, 0).

We may choose coordinates so that £ is the map (z1,...,2n5) — (z1,22). Denote
by P"=3 the subset of ey (0) given by zy = 2o = 0. Let e: U' — U be the blow-
up of the origin of C%, where U is a neighborhood of 0. Then there is a map
lo: (Ug NP 3) — U’ with eoly = £oey. By genericity of £, the point p is in
Uy ™ Pr—3,

Set ¢ = Lo(p). Then the map germ Lo: (Uy ~P"=3.p) — (U’,q) is generic for
the curve germ (v*,p).

Proof. We will use the criterion of genericity introduced in the proof of Theorem
5.1 in [I9]. Let us first assume that (v,0) is irreducible and that the coordinates
are chosen so that (v, 0) admits a Puiseux parametrization of the form

w (z1(w),. .., 2y (W) = (W™, Z agiw’, ..., Z anjw’)
j=n j=n
Set A := {j : 3i,a;; # 0} and call an exponent j € A \ {n} an essential integer
exponent if
ged{ie {nfuAd:i<j}<gedfie{n}uA:i<j}
Denote by B the set of essential integer exponents of (v, 0).

Genericity criterion ([19, Section 5]) The projection ¢ is generic for the curve
germ (v,0) if and only if B < {j, ag; # 0}.

We can assume our coordinates are chosen so that (v,0) is tangent to the z1-
axis and then A < {j : j > n} We consider for ey and e the chart over z; # 0
so that writing (z1,v2,vs,...,vn) the corresponding local coordinates of Uy and
(21,v2) that of U’, we have: eg(z1,v2,vs,...,09n8) = (21, 2102, 2103, ..., z10N) and
e(z1,v2) = (z1,2102). Then ¢ is the origin of the local coordinates of Uy and the
strict transform v* of v by eg has the following Puiseux parametrization in the
coordinates (21, v, V3, ..., UN):

w— (W", Z ag;w’ ™" ., Z anjwi ™)
j=n j=n

Since B < {ag; # 0}, the set of essential integer exponents of v* is {j—n;j € B}.
Since £y is given by fo(z1,v2,v3,...,un) = (21,v2), then, according to the above
genericity criterion, £y is generic for (v*, q).

The proof when (v, 0) is reducible is essentially the same using the extension of
the genericity criterion in [19, Section 5] taking account of the contact exponents
between branches. (]

Let us now prove that Condition () of Definition 22 is satisfied. Let m: X — X
be the resolution introduced in Section By definition, it factors through the
blow-up €’. Consider the map 7': X — X’ defined by # = ¢’ o 7. According
to Theorem [£.3] its restriction over (X', p) is a resolution of (X', p) which factors
through the normalized Nash transform of (X', p) and the P-curves of (X,0) and
(X’,p) over p coincide.

Now, take any D < 2, where ({p: (X,0) — (C2,0))peq denotes the family of
generic projections of (X,0). Let ¢: (X’,p) — (C?,0) be the projection defined
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by eol, = lp oe’. We know that the polar curve II’, of ¢}, equals the germ
(IT%,p’) where * means strict transform by e’. Therefore the family of polars
(I’ ) peq of projections ¢7, coincide with the family of germs (I, p’) peq, which is
equisingular in terms of strong simultaneous resolution. This shows that Condition
@) of Definition 22 is satisfied for the family (¢%)peq. O

We now prove the “if” direction of Theorem

Let (X,0) be a minimal surface singularity with generic projection ¢: (X,0) —
(C%,0). Let p: Y — C? be the sequence of blow-ups which resolves the base points
of the family of curves ({(Ilp))pen and let R be its resolution graph. We have to
check Conditions (x1) and (%2) of Theorem .5 for any test curve (,0) associated
to a node of R. In fact, we will check these conditions for the p-image of a curvette
of any irreducible curve in p~1(0) (so any vertex of R, not only nodes). In the
proof we say test curve for such a curve even if it correspond to a non node vertex.
By Proposition (.5 the discriminant curve A of ¢ is a union of A,-curves, and
p: Y — C? is the minimal resolution of A. We consider the following two cases:

Case 1. v is the p-image of a curvette of p~1(0) whose inner rate ¢, is an integer n
(in particular, ~ is smooth);

Case 2. v is the p-image of a curvette of p~1(0) such that ¢, =n + 1/2 with n > 1
an integer;

Case 1. We will proceed by induction on g, so assume first ¢, = 1, i.e., v is a
generic line through the origin of C2, so (£~1(v),0) is a generic hyperplane section
of (X,0). Since (X,0) is minimal, the generic hyperplane section (£=1(y),0) also
has a minimal singularity ([I2, Lemma 3.4.3]) so it is a union of m(X,0) smooth
transversal curves, where m(X,0) denotes the multiplicity of (X,0). Therefore ~y
has a single outer rate which equals 1 and Conditions (x1) and (*2) are satisfied.

Let n be an integer > 2. Assume that for any minimal singularity, any test
curve with inner rate n — 1 satisfies Conditions (#1) and (x2). Let v be the p-image
of a curvette with inner rate ¢, = n. We use again the notations ¢, e, ¢’ and ¢’
introduced for Proposition 6.1l and we set C = e~1(0).

Consider the point ¢ = v* n C, where * means strict transform by e. Since
n = 2, the strict transform A* contains ¢. Since £ is generic for its polar curve and
since €’ is the blow-up of the origin, then the fiber #/~1(¢) contains a unique point
p which belongs to the strict transform IT* of II by e’.

Claim 1. -~ satisfies condition (x1).

Proof. Let o be a component of £71(y). We have to prove that (o, 0) is smooth.

Assume first that the strict transform o* of o by ¢/ meets E' = ¢/71(0) at a
point p’ € £/~1(q) distinct from p. Then p’ does not belong to the strict transform
IT* of II by ¢’. Therefore (X', p’) is smooth, p’ is a smooth point of E = ¢/~1(0)
by (i) of Proposition [61] and the map germ ¢': (X', p') — (U’ q) is an isomorphism
by (ii) of Proposition Gl Since v* is a smooth curve transverse to C' at ¢, then
(0= (y*),p') = (0*,p) is a curvette of E’. Since (X,0) is minimal, the multiplicity
of a generic linear form on (X,0) has multiplicity 1 along E’. By [II], 1.1], this
implies that o is a smooth curve of (X, 0).

Assume now that ¥ n E = p. According to Proposition [6.1] the map germ
0 (X', p) —> (U, q) is a generic projection of (X’,p). Moreover, its discriminant
and polar curves are respectively the strict transform (A*, ¢) of (A,0) by e and
the strict transform (IT*, p) of (I1,0) by €. Since « has rate n > 2, then its strict
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transform (v*, g) by the blow-up of 0 is a test curve with inner rate n — 1 (Remark
[42)). Taking (v*,q) as test curve for (X’,p), we apply the induction assumption:
(v*,q) satisfies Condition (x1), i.e., (v*,¢) is a smooth curve on (X’ p'). Let
mo: (X0, E) — (X, 0) be the minimal resolution of (X, 0). It factors through ¢’. Let
7't Xog — X' be the resolution of X’ such that my = ¢’ o 7’. Since o* is a smooth
curve on (X', p’), then by [I1l 1.1], its strict transform ¢” by 7’ is a curvette at a
smooth point of 7/~1(p) (along which the multiplicity of the maximal cycle is 1).
The curve ¢” is also the strict transform of o by 7y, and since the maximal cycle
of (X,0) is reduced, then again by [IT], 1.1] (we use here the converse statement)
then (o,0) is a smooth curve on (X, 0).

Claim 2. -~ satisfies Condition (#2).

Proof. Let us write £71(v) as the union £=1(vy) = 11 U 12 where 7 is the union
of components of £~*(y) whose strict transforms by €’ contain p.

Let o be a component of 77 and let p’ = 6% n E’. The strict transform by ¢’
of another component o7 of £=1(y) meets E’ at a point in #'~!(q) different from
p’. Therefore o and oy have distinct tangent lines so their contact exponent equals
1. This proves that any component of 7; has contact exponent 1 with any other
component of £71(v).

It remains to prove Condition (*2) for two components d; and d2 of n2. Let g

the rate associated to 41 and d2 as in Condition (¥2). The strict transforms 7
and 0% of §; and 2 by €’ are two components of the liftings ¢/~ (7*) of the test
curve (y*,q) for the surface germ (X', p’), and the rate associated to 6F and 0% as
in Condition (x2) for (X', p’) equals gy — 1. We now use the induction assumption:
since v* satisfies Condition (%2) as a test curve of (X', p’) with rate n — 1, then
go—1=mn—1, so qg = n. This proves Claim 2.
Case 2. We now assume 7 is a curvette of p~!(0) with inner rate ¢, = n + 1/2
where n is an integer > 1. Then, in suitable coordinates  and y, v is a curve with
a Puiseux expansion of the form y = az"*z and there is a unique component A’
of A with same type y = a/z""2 + higher order. Let ¢ = v* n C = A”* A C as in
Case 1, and let II' < II such that ((IT') = A’ and p = £'~1(q) n IT'*.

We will proceed again by induction on n, using similar arguments as in Case 1.

Assume first n = 1, i.e., ¢y = 3/2. Then A’ and ~ are 3/2-cusps, i.e., equisingular
to u? —v3 = 0, with contact exponent 3/2. The strict transforms A’* and v* by e
are smooth curves meeting e~1(0) at the same point g.

Let p' € £~%(q) be distinct from p. Then the map germ ¢': (X', p') — (U’,q)
is an isomorphism, so the germ (¢'~1(y*),p’) is a smooth curve tangent to E’.
Therefore, there is a unique component o of £~1(7) whose strict transform by e’
contains p’, and it has multiplicity 2. So ¢ is a plane curve, and since it is smooth
after one blow-up, it is a 3/2-cusp. Moreover, a similar argument as in the proof of
Claim 1 shows that o has contact exponent 1 with any other component of £~1(v).

Let us now deal with (¢/~1(y*),p). According to Theorem 5.4l p is a smooth
point of an exceptional curve obtained by blowing-up the intersection point between
two exceptional curves of ¢~(C) corresponding to a central edge in the resolution
graph, and (¢~1(y*),p) consists of the strict transform of a component of £~1(v)
which is equisingular to II'. So this component is a cusp, i.e., its unique rate is 3/2.
This implies that + satisfies Conditions (x1) and (#2).

The rest of the induction uses the same arguments as in Case 1.

This completes the proof of the “if” direction of Theorem
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7. EXPLICIT EXAMPLE OF LIFTING OF TEST CURVES

The aim of this section is to give in an explicit example a flavor of Conditions
(#1) and (#2) of Theorem [L.5]in the case of a minimal singularity. We return back
to Example 57 and we give for some examples of test curves (v, 0), the resolution
graph of the lifting £=1(y) on the left and the resolution of its generic projection
¢'(6=1(~)) on the right. FigureBlis for the test curve given by a generic line. Figures
[ and [ are for two test curves which are p-images of curvettes of the exceptional
curves corresponding respectively to the vertices v; and wvs.

FIGURE 3.

FIGURE 4.

8. RATIONAL AND LIPSCHITZ NORMALLY EMBEDDED IMPLIES MINIMAL

In this section, we prove the other direction of Theorem[[.2} any rational surface
singularity which is Lipschitz normally embedded is minimal.

Remark 8.1. A Lipschitz normally embedded surface singularity is not necessarily
minimal. A counter-example is given by the (non rational) hypersurface in C* with
equation xy(x + y) + 2* = 0. It is a superisolated singularity. The graph of
its minimal resolution factorizing through Nash has four vertices. It consists of
a central vertex and three bamboos of length one, these three leaves being the
L-nodes, and the central vertex the single P-node.
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V2

FIGURE 5.

Proof. Let (X, E) be the minimal resolution of (X,0), Z the minimal cycle and
E = |JE;. The multiplicity of Z at any L-curve is 1, since (X,0) is Lipschitz
normally embedded. Consider Laufer’s algorithm for finding Z (|13, Proposition
4.1]), and let E; < E be the last curve one adds in the algorithm before one obtains
Z. Assume that E; is not an L-curve, so Z - E; = 0. Let Z’ be the penultimate
cycle obtained by Laufer’s algorithm. Then Z’ = Z — E; and Z' - E; = —E? > 1
which contradicts (X, 0) being rational by Laufer’s criterion [I3, Theorem 4.2]. So
the last curve added by Laufer’s algorithm is always an L-curve.

One can always run Laufer’s algorithm such that each curve is added once, before
any curve is added a second time. So unless Z = >’ E; there would be an L-curve
with multiplicity > 1, which is a contradiction. Thus (X, 0) is minimal. (]
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