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Quasi-Hankel low-rank matrix completion:
a convex relaxation

Konstantin Usevich and Pierre Comon, Fellow, IEEE

Abstract—The completion of matrices with missing
values under the rank constraint is a non-convex opti-
mization problem. A popular convex relaxation is based
on minimization of the nuclear norm (sum of singular
values) of the matrix. For this relaxation, an important
question is whether the two optimization problems lead
to the same solution. This question was addressed in
the literature mostly in the case of random positions of
missing elements and random known elements. In this
contribution, we analyze the case of structured matrices
with fixed pattern of missing values, in particular, the
case of Hankel and quasi-Hankel matrix completion,
which appears as a subproblem in the computation of
symmetric tensor canonical polyadic decomposition. We
extend existing results on completion of rank-one real
Hankel matrices to completion of rank-r complex Hankel
and quasi-Hankel matrices.

Index Terms—Hankel; quasi-Hankel; matrix comple-
tion; nuclear norm; tensor CP decomposition

I. INTRODUCTION

The problem of completing matrices with missing
entries can be traced back to the works of Prony in
1795, and has been addressed since in various fields
including: compressed sensing [1], [2], [3], system
identification and control [4], [5], [6], graph theory
[7], collaborative filtering [8], information theory [9],
chemometrics [10], seismics [11], [12], estimation
problems and sensor networks [8], to cite a few. It also
appears as a subproblem in the computation of sym-
metric tensor Canonical Polyadic (CP) decompositions
[13].

A. Structured matrix completion

We are interested in structured matrices of the form

S (p) = S0 +

N∑
k=1

pkSk, (1)

where Sk, k ∈ {0, . . . , N} are known linearly in-
dependent n × n matrices, and p = [p1, . . . , pN ]T.
Without loss of generality, we assume that the matrices
Sk ∈ Cn×n are symmetric (a nonsymmetric ma-
trix completion problem can be always symmetrized).
Thus, S is an injective map CN → Cn×n, called

K. Usevich and P. Comon are with CNRS, GIPSA-Lab, F-38000
Grenoble, France. E-mail: firstname.lastname@gipsa-lab.fr.

affine matrix structure. The Structured Low-Rank Ma-
trix Completion (SLRMC) for complex affine matrix
structures is then stated formally as

p̃ = arg min
p∈CN

rank{S (p)}. (2)

In the literature on matrix completion, the problem (2)
is often formulated in dual form, i.e., as rank minimiza-
tion subject to linear constraints, and is called affine
rank minimization [14]. In this paper we prefer the
formulation (2), which seems to be more suitable for
completion of structured (e.g., Hankel-like) matrices.

There are special cases when the solution to SLRMC
can be found in polynomial time: partially known
block-triangular matrices [15], Hankel/Toeplitz matri-
ces [16], [17], block-Hankel matrices [18] and some
cases of quasi-Hankel matrices [19]. In the general
case, the low-rank matrix completion is NP-hard (see,
e.g., [20]).

SLRMC can be also considered as an extreme case
of Structured Low-rank matrix Approximation (SLRA)
problem with missing data [21]. The latter problem is
more relevant in practice, where we may have noise in
addition to missing data.

B. A convex relaxation

A popular approach in machine learning [20], [14]
is to build a relaxation of LRMC, by replacing the rank
with the nuclear norm (i.e. the sum of singular values):

p̂ = arg min
p∈CN

‖S (p)‖∗. (3)

Now (3) is a convex optimization problem, and a
variety of convex optimization methods can be used to
find its global minimum. A central question is when do
the solutions of (3) and (2) coincide (i.e., the conditions
on low-rank matrix recovery with the nuclear norm).

A special case of SLRMC is when each matrix
Sk contains only one nonzero element. This is the
most common unstructured matrix completion: S0 is
the known part of the matrix and the positions of
nonzero elements in Sk indicate the values to be
completed. There is a vast literature on the subject
on low-rank matrix recovery, where mainly the case
of unstructured matrix completion is treated. Most
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of the results are proved in a random setting [2],
[14], [3]: the positions of missing entries (non-zero
elements of Sk, k ∈ {1, . . . , N}) are assumed to
be drawn randomly; often the known entries are also
assumed to be random. There are also results on the
general affine rank minimization (which is equivalent
to SLRMC), but the linear constraints are also assumed
to be drawn randomly according to a certain probability
distribution.

Up to the authors’ knowledge, there exists only one
result [22], which treats the case of fixed structure, in
a very simple case.

Theorem 1 ([22, Thm. 1] ). Let S be a Hankel matrix

S (p) =


1 λ · · · λn

λ λ2 . .
.

p1
... . .

.
. .
. ...

λn p1 · · · pn−1

 ,
where λ ∈ (−1; 1). Then the solution of (3), with p ∈
Rn−1, is unique and coincides with the minimal rank
(rank-1) completion, which is given by pk = λn+k.

In this paper we extend the results of [22] in two
directions: (i) to Hankel matrices with arbitrary rank,
and (ii) to quasi-Hankel matrices, which are partic-
ularly interesting in the context of symmetric tensor
CP decomposition [13]. As in [22], we consider cases
when the solution to SLRMC is known, and establish
conditions on S when the solution of (2) and (3)
coincide.

Our results are more general (for example, applica-
ble both in the real and complex cases), and do not
depend on the results of [22]. However, we believe
that our exposition may also help to understand the
complicated logic of the proof in [22].

In Section II we introduce the main notation, in
particular quasi-Hankel matrices, which are generaliza-
tions of Hankel matrices. In Section III we formally
state the considered quasi-Hankel matrix completion
problem, and summarize some known results (this
summary is needed for stating the main results of the
paper in Section VI). In Section IV we recall opti-
mality conditions for convex optimization problems,
and specialize them to nuclear norm minimization for
structured matrices.

Section V contains the main lemmas needed for
proofs of the results of the paper. The lemmas im-
ply that the optimality conditions are satisfied if the
column space of completed matrices is not too far
from a certain simply structured subspace. Finally, in
Section VI, we prove the main results of the paper,
and illustrate them with numerical experiments in
Section VII.

II. BACKGROUND AND MAIN NOTATION

A. Sets of multi-indices

We denote by N the set of nonnegative integers.
First, for a multi-index α = (α1, α2, · · · , αm) ∈ Nm,
the monomial xα1

1 xα2
2 · · ·xαm

m will be denoted as xα,
and its total degree is |α| def=

∑
` α`.

For ordering the multi-indices, we use in this paper
an ordering denoted by ≺. It is defined recusively on
the size of vectors α and β as:

α ≺ β ⇔

⇔

 |α| < |β|or
|α| = |β| and (α2, . . . , αm) ≺ (β2, . . . , βm)

Next, we shall denote by N(m,d) the set of multi-
indices {α ∈ Nm : |α| ≤ d}. By 4(m,d) we denote
the set {α ∈ Nm : |α| = d}. It is easy to see that

N(m,d) = 4(m,0) ∪4(m,1) ∪ · · · ∪ 4(m,d).

Example 1. Take m = 2 and d = 3. Then

N(2,3) ={(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2),

(3, 0), (2, 1), (1, 2), (0, 3)},
4(2,0) ={(0, 0)}, 4(2,1) = {(1, 0), (0, 1)},
4(2,2) ={(2, 0), (1, 1), (0, 2)},
4(2,3) ={(3, 0), (2, 1), (1, 2), (0, 3)}.

The multi-indices are ordered according to ≺ in the
sets defined above. In fact, when the total degrees are
the same, terms are sorted only by increasing degrees
in the second variable.

For sets A,B ⊂ Nm, we define their Minkowski
sum as A + B def

= {α + β : α ∈ A,β ∈ B}, with
a shorthand notation 2A def

= A + A. It is easy to see
that 4(m,d1) +4(m,d2) = 4(m,d1+d2) and N(m,d1) +
N(m,d2) = N(m,d1+d2).

For m = 1, we have that N(1,d) = {0, . . . , d} and
{0, . . . , d1}+{0, . . . , d2} = {0, . . . , d1+d2}. For m =
2, an example is shown in Fig. 1 (the multi-indices are
depicted as black dots).

3
α2

1 20

1
2

3α1

+ =

3
α2

1 20

1
2

3α1

α2

1 2 3 4 5 60

1
2
3
4
5
6

α1

Fig. 1. Minkowski sum: N(2,3) + N(2,3) = N(2,6).
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Finally, for A ∈ Nm, we define its extension1 as

A+ def
= A ∪ (A+ {e1}) ∪ · · · ∪ (A+ {em}),

where ek, 1 ≤ k ≤ m, denotes the vector of Nm
having a 1 in the k-th entry and zeros elsewhere. The
exterior boundary of A is defined as

δA = A+ \ A.

For example, for A = N(m,d) we have that

A+ = N(m,d+1), δA = 4(m,d+1).

B. Quasi-Hankel and quasi-Vandermonde matrices

Let A be a multi-index set ordered according to ≺:

A = {α1, . . . ,αM}, αk ∈ Nm (4)

and h = {hα}α∈D ⊂ C be an array of numbers, where
2A ⊂ D ⊂ Nm. Then the symmetric quasi-Hankel [23]
matrix is defined as

HA(h)
def
= [hαi+αj

]M,M
i,j=1

Example 2. For A = N(1,d) = {0, . . . , d}, M = d+1,
the quasi-Hankel matrix is the ordinary Hankel matrix

HA(h) = [hk+l]
d,d
k,l=0 =


h0 h1 · · · hd

h1 h2 . .
.
hd+1

... . .
.
. .
. ...

hd hd+1 · · · h2d

 . (5)

Example 3. In case m > 1, for example A = N(2,3)

(as in Fig. 1) the matrix HA(h) has the form
h0,0 h1,0 h0,1 h2,0 h1,1 h0,2 h3,0 h2,1 h1,2 h0,3
h1,0 h2,0 h1,1 h3,0 h2,1 h1,2 h4,0 h3,1 h2,2 h1,3
h0,1 h1,1 h0,2 h2,1 h1,2 h0,3 h3,1 h2,2 h1,3 h0,4
h2,0 h3,0 h2,1 h4,0 h3,1 h2,2 h5,0 h4,1 h3,2 h2,3
h1,1 h2,1 h1,2 h3,1 h2,2 h1,3 h4,0 h3,2 h2,3 h1,4
h0,2 h1,2 h0,3 h2,2 h1,3 h0,4 h3,2 h2,3 h1,4 h0,5
h3,0 h4,0 h3,1 h5,0 h4,1 h3,2 h6,0 h5,1 h4,2 h3,3
h2,1 h3,1 h2,2 h4,1 h3,2 h2,3 h5,1 h4,2 h3,3 h2,4
h1,2 h2,2 h1,3 h3,2 h2,3 h1,4 h4,2 h3,3 h2,4 h1,5
h0,3 h1,3 h0,4 h2,3 h1,4 h0,5 h3,3 h2,4 h1,5 h0,6

 , (6)

where we omitted parentheses in subscripts for con-
ciseness. Note that in (6), each block corresponds to a
subset 4(2,k), 0 ≤ k ≤ 6.

Let A ⊂ Nm be the ordered multi-index set defined
in (4), and z1, . . . ,zr ∈ Cm be a set of points. Then
the quasi-Vandermonde matrix is defined as

VA(z1, . . . ,zr)
def
=
[
(zj)

αi
]N,r
i,j=1

.

In particular, for m = 1, A = N(1,d) = {0, . . . , d}, it
is just an ordinary rectangular Vandermonde matrix.

1In the papers [13], [19] and others this notation was used for the
set of monomials.

Example 4. For A = N(2,3), r = 3 and zk =
[
λk
µk

]
,

k ∈ {1, 2, 3}, we have that VA(z1, z2, z3) = 1 λ1 µ1 λ2
1 λ1µ1 µ

2
1 λ3

1 λ
2
1µ1 λ1µ

2
1 µ

3
1

1 λ2 µ2 λ2
2 λ2µ2 µ

2
2 λ3

2 λ
2
2µ2 λ2µ

2
2 µ

3
2

1 λ3 µ3 λ2
3 λ3µ3 µ

2
3 λ3

3 λ
2
3µ3 λ3µ

2
3 µ

3
3

T

. (7)

Finally, we will use the following definition.

Definition 2. The points z1, . . . ,zr ∈ Cm are called
A-independent if

rank VA(z1, . . . ,zr) = r.

The notion of A-independence is equivalent to the
fact the monomials {xα}α∈A taken on the grid of
points {z1, . . . ,zr} form a set of #A vectors spanning
a linear space of dimension r. Hence, these monomials
can interpolate any function on this grid.

If m = 1, the points are always A-independent for
any A with r ≤ #A. Although for m > 1 this is no
longer the case, the following remark holds true.

Remark 3. A-independence is a generic property,
i.e., points {zj}rj=1 randomly drawn according to an
absolutely continuous distribution are A-independent
if r ≤ #A. This follows from the fact that the set of
A-independent points is open in the Zariski topology.

III. (QUASI-)HANKEL MATRIX COMPLETION

In this paper, we consider the following problem.

Problem 1. Given A = N(m,d), and {hα}α∈A,

minimize
hα,α∈2A\A

rank HA(h), (8)

where h = {hα}α∈2A.

If m = 1, we have A = {0, . . . , d} (the matrix
HA(h) shown in (5)); in this case, only the values
h0, . . . , hd are known (shown in gray in (5)) and
hd+1, . . . , h2d are to be completed. The matrix com-
pletion for Hankel matrices is entirely solved [17], and
its solution is related to the Sylvester’s algorithm for
CP decomposition of 2×· · ·×2 tensors [24]. We recall
the Hankel case in Section III-A.

In the general case (m > 1), the upper block-
triangular part of the quasi-Hankel matrix is known
(e.g., in (6) it is shown in gray). As it was shown in
[13], symmetric CP decomposition can be reduced to
solving Problem 1. The general quasi-Hankel matrix
completion problem (8) can be solved in some cases
when the rank is sufficiently small (this is exactly the
case when the CP tensor decomposition can be solved
without considering incomplete quasi-Hankel matrices,
e.g., using the Catalecticant algorithm [24], [25]). We
recall these cases in Section III-B.
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A. Solution of Hankel low-rank completion

Probably the first complete solution of Problem 1 for
m = 1 is contained in [16, Ch. II], where the problem
of matrix completion is called “singular extension” of
Hankel matrices. In this section, we will use the theory
from [17], and we will provide a summary of results
in a simplified form.

For a finite sequence hd =
[
h0 . . . hd

]T ∈
Cd+1, we denote by hrank (hd) the smallest num-
ber r such that there exists a non-zero vector q =[
q0 q1 . . . qr

]T 6= 0 for which

q0hk + . . .+ qrhk+r = 0, ∀k ∈ {0, . . . , d− r}. (9)

The value hrank (hd) is equal to the maximal rank
of the submatrices of the known triangular part of the
Hankel matrix (5) (or, equivalently to the maximal rank
of a Hankel matrix that can be constructed only from
the elements of the vector hd). The number hrank (hd)
is called the first characteristic degree of hd [17,
Def. 5.3, page 81]. We will also call the vector q as
the characteristic vector2 of hd. Next, we recall the
following basic properties of hd and q.
• For any hd ∈ Cd+1, hrank (hd) ≤ d+2

2 (see [17,
Prop. 5.4]).

• If, in addition, hrank (hd) < d+2
2 , then the

characteristic vector q is unique up to scaling by
a constant (see [17, page 84]).

In what follows, we assume that qr 6= 0 (this is a
generic case). The treatment of the case qr = 0 can be
found in [17, page 84]). Then an explicit representation
of hd is determined by the characteristic polynomial

q(z) =

r∑
j=0

qjz
j = qr

s∑
k=1

(z − λk)νk , (10)

where λk ∈ C are distinct, νk are the multiplicities of
the roots, and r = ν1 + · · ·+ νs.

Proposition 4 (A special case of [17, Thm 8.1]). If
qr 6= 0 and all the roots of q(z) are simple (νk = 1,
s = r), then the sequence hd admits a representation

hk =

r∑
j=1

cjλ
k
j . (11)

Example 5. For hd =
[
1 λ · · · λd

]T
(see Theo-

rem 1), we have hrank (hd) = 1 and the characteristic
vector can be chosen as q =

[
−λ 1

]T
.

The representation (11) is called a canonical repre-
sentation of hd (or the unique canonical representation
in case hrank (hd) <

d+2
2 ). In the general case (10),

2In [17], q does not have a specific name and is denoted by p.

there are multiple roots and the canonical representa-
tion has a more complicated form, as stated by the
proposition below.

Proposition 5 (A special case of [17, Thm 8.1]). Let
qr 6= 0, λ1 = 0 and λk 6= 0, and the multiplicities
νk of the roots λk in (10) are such that ν1 ≥ 0 and
νk > 1 for k ≥ 2. Then the sequence hd has the form

hk =

s∑
j=2

cj(k)λkj +

ν1−1∑
l=0

c1,lδ(k, l), (12)

where cj(k) are polynomials of degree (νk − 1) and
δ(k, l) is the Kronecker symbol.

Remark 6. In the statement of Proposition 5, if ν1 = 0
then the second term in (12) is absent.

Example 6. In the extreme case q(z) = qrz
r (i.e.,

r = ν1), the canonical representation (12) becomes

hd =
[
c1,0 · · · c1,r−1 0 · · · 0

]T
, (13)

Apart from the explicit form of the sequence hd, the
characteristic polynomial gives a solution to the rank
minimization problem (8) (for m = 1).

Proposition 7 (A corollary of [17, Thm. 5.14]). Let
q ∈ Cr+1 be a characteristic vector of hd with qr 6= 0,
r = hrank (hd). Then it holds that (i) The rank of the
minimal rank completion of HA(h) in (5) is r. (ii) A
minimum rank completion hd+1, . . . , h2d is given by
the recursive continuation, for k > d− r:

hk+r = − 1

qr
(q0hk + · · ·+ qr−1hk+r−1) (14)

In addition, the values of hk+r for k > d − r can
be obtained by using the corresponding formula of
canonical representation, namely (11) or (12). (iii) If
r < d+2

2 , then the minimum rank completion is unique.

B. Solution of quasi-Hankel low-rank completion

Unlike Hankel matrices, for m > 1 the quasi-
Hankel completion problem does not have a closed
form solution. The simplest case when the solution can
be easily found is given by a flat extension theorem
[19, Thm. 1.4].

Proposition 8 (Corollary of [19, Thm. 1.4]). Let A =
N(m,d), and the values {hα}α∈A be given. Moreover,
let d′ def= bd2c, B

def
= N(m,d′−1), and it holds that

rank{HB(h)} = rank{HB+(h)} = r.

Then the unique solution of Problem 1 has rank r.

Proposition 8 induces bounds on rank that are too
restrictive. For example, for A = N(2,3), d′ = 1 and
only rank-one cases can be treated. In what follows,
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we consider arrays of special form, for which Propo-
sition 8 can be extended.

Let C ⊂ Nm be arbitrary, z1, . . . ,zr ∈ Cm,
c1, . . . , cr ∈ C be some coefficients, and the array of
coefficients h = {hα}α∈2C be defined as

hα =

r∑
k=1

ckz
α
k . (15)

It is easy to see that the following lemma holds true

Lemma 9. For h defined as in (15), the quasi-Hankel
matrix admits the factorization HC(h) =

VC(z1, ..,zr) diag{c1, . . . , cr}(VC(z1, ..,zr))> (16)

and rank{HC(h)} ≤ r. If, in addition, ck 6= 0 for all
k, and z1, . . . ,zr are C-independent, then

rank{HC(h)} = r.

Next, we describe an easy improvement of Proposi-
tion 8 for arrays of form (15).

Proposition 10. Let A = N(m,d), d′ def
= bd2c, B

def
=

N(m,d′) (it is easy to see that 2B ⊂ A). Assume that
the coefficients {hα}α∈A have the form (15), where the
points z1, . . . ,zr are B-independent and c1, . . . , cr are
nonzero. Then, the following hold true (i) The rank of
the minimal completion in Problem 1 is r. A minimal
rank completion is obtained by defining {hα}α∈2A
using the same formula (15) (called canonical com-
pletion). (ii) If d is odd, the canonical completion is
unique. (iii) If d is even, and z1, . . . ,zr are N(m,d′−1)-
independent, then the completion is unique (the canon-
ical completion of Eq. (15) is the only possible).

Proof. See the extended version of the paper [26].

For example, for the completion of structure shown
in (6) (m = 2 and d = 3), Proposition 10 covers cases
up to rank 3. Indeed, let zk =

[
λk
µk

]
, k ∈ {1, 2, 3}, we

have that if the Vandermonde matrix has full rank (7),
then the matrix completion is unique and is given by
the canonical completion.

Remark 11. If the points z1, . . . ,zr are generic, due
to Remark 3, we can replace the B-independence and
N(m,d′−1)-independence by the bounds r ≤

(
d′+m
m

)
and r ≤

(
d′+m−1

m

)
respectively.

Finally, we note that for generic cases, the rank
bound in Remark 11 can be further improved by
using results of [25, Theorem 2.4] (since uniqueness
of matrix completion is related to uniqueness of tensor
decomposition). For our purposes, however, Proposi-
tion 10 will be sufficient.

IV. OPTIMALITY CONDITIONS OF NUCLEAR NORM
MINIMIZATION

A. Optimality conditions in convex optimization

We recall some definitions from the field of convex
optimization [27, Chapter D]. For a convex (possibly
non-differentiable) function f : RN → R, the subd-
ifferential [27, Def. 1.2.1] of f is defined as the set
∂f(x) ⊂ RN

∂f(x)
def
= {d : f(y)−f(x) ≥ 〈d,y−x〉 ∀y ∈ RN}.

In particular, if f is differentiable at a point x, then the
subgradient has only one element: the usual gradient,
i.e., ∂f(x) = {∇f(x)}.

For the unconstrained convex optimization problem

min
x∈RN

f(x), (17)

we recall the first-order optimality condition, which is
necessary and sufficient in this case.

Lemma 12 (First-order optimality, [27, Thm. 2.2.1]).
A point x is a minimum point of (17) if and only if

0 ∈ ∂f(x). (18)

In particular, for differentiable functions, the condi-
tion of Lemma 12 reduces to ∇f(x) = 0. Next, we
use a simple uniqueness condition for the minimizer.

Lemma 13 (Sufficient condition of uniqueness). A
point x is the unique minimizer of (17) if

0 ∈ int (∂f(x)), (19)

where int (·) denotes the interior of a set.

Proof. In this case for any y 6= x there exists δ > 0
such that δ · (y−x) ∈ ∂f(x). By definition of ∂f(x),
we have that f(y)− f(x) ≥ δ‖y − x‖22 > 0.

B. Subdifferential of the nuclear norm

First, we recall the form of the subdifferential of
the nuclear norm of a matrix. Let X ∈ Rn1×n2 be a
matrix of rank r, and let X = UΣV T be an SVD of
X , where U ∈ Rn1×r, V ∈ Rn2×r and Σ ∈ Rr×r is
a diagonal matrix of nonzero singular values. Next, let
U⊥ ∈ Rn1×(n1−r), V⊥ ∈ Rn2×(n2−r) be the bases
of the left and right nullspaces of X , respectively.
Then, according to [28, p. 41], the subdifferential of
the nuclear norm at X is equal to ∂‖X‖∗ =

{B+U⊥WV >⊥ : W ∈ R(n1−r)×(n2−r), ‖W ‖2 ≤ 1},

where B is defined as

B
def
= UV T, (20)

and ‖ · ‖2 is the spectral norm (largest singular value).
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Remark 14. When the SVD of X is not unique, then
the matrix B from (20) is still defined uniquely. In
fact, if X has multiple singular values, its matrix of
left (resp. right) singular vectors is of the form UΘ
(resp. VΘ), where Θ is an orthonormal matrix which
commutes with Σ.

Next we consider a real nuclear norm minimization
problem

p̂ = arg min
p∈RN

f(p), f(p)
def
= ‖S (p)‖∗, (21)

where S is defined in (1). By an analogue of chain
rule [27, Thm. 4.2.1], we immediately have that

∂f(p) =
{ [
〈S1,H〉F · · · 〈SN ,H〉F

]T
:

H ∈ ∂‖X‖∗,X = S (p)
}
, (22)

where 〈·, ·〉F denotes the Frobenius inner product. In
the following section, we will give a more compact
form or subdifferentials and optimality conditions.

C. Real nuclear norm minimization

First, we assume that X is symmetric and n1 =
n2 = n, then we have that U⊥U>⊥ = V⊥V

>
⊥ = Q,

where Q is the projector on the nullspace of X . Then
the subdifferential can be rewritten as

∂‖X‖∗ = {B +QMQ : ‖M‖2 ≤ 1}, (23)

whereB is defined as in (20). We note thatQ = I−P ,
where P is the orthogonal projector on the column
space of X , which can be obtained as

P
def
= UUT = BBT. (24)

Next, we define the matrix

S
def
=
[
vec(S1) . . . vec(SN )

]
, (25)

and for a matrix P ∈ Rn×n we define

A (P )
def
= ST((I − P )⊗ (I − P )) ∈ RN×n

2

, (26)

where ⊗ denotes the Kronecker product. Then, by (22),
the subgradient of f can be rewritten as ∂f(p) ={

STvec(B) + A (P ) vec(M) : ‖M‖2 ≤ 1
}
. (27)

with M ∈ Rn×n. Using (27), we can rewrite
Lemma 12 and Lemma 13 as follows.

Lemma 15 (First-order optimality conditions for real
nuclear norm minimization). A point p∗ is a minimizer
of (21) if and only if there exists a matrix M ∈ Rn×n
with ‖M‖2 ≤ 1 such that

A (P ) vec(M) = −ST vec(B). (28)

whereB is as in (20), P is as in (24), andQ def
= I−P .

Proof. Follows from (27) and Lemma 12.

Lemma 16 (Sufficient condition of uniqueness). A
point p is the unique minimizer of (3) if there exists
M ∈ Rn×n with ‖M‖2 < 1 such that (28) holds and
the matrix A (P ) is full row rank (i.e., is of rank N ).

Proof. Follows from (27) and Lemma 13.

D. Complex nuclear norm minimization

Now let S (p) be the matrix structure given in (1),
but now S0 ∈ Cn×n, Sk ∈ Rn×n for k ≥ 1, and
the parameter is complex pC ∈ CN , i.e., (1) defines a
complex-valued map S : CN → Cn×n.

In order to derive the optimality conditions for the
complex-valued case, we construct an extended real-
valued structure Sext : R2N → R2n×2n as follows.

For pext =

[
pR
pI

]
, where pR,pI ∈ RN , we define an

equivalent (non-symmetric) matrix structure:

Sext(pext)
def
=

[
S (pR) −S (pI)
S (pI) S (pR)

]
(29)

From [29], the singular values of Sext(pext) contain
two copies of singular values of S (pC). Hence,

rank{Sext(pext)} = 2 rank{S (pC)},

and the complex rank minimization problem (2) is
equivalent to real rank minimization

p̃ext = arg min
pext∈R2N

rank Sext(pext). (30)

Moreover, the problem (3), is equivalent to the real
nuclear norm minimization problem

p̂ext = arg min
pext∈R2N

‖Sext(pext)‖∗. (31)

The following proposition shows that we can rewrite
the optimality conditions for the problem (31) in a
convenient form, as in Lemmae 15 and 16.

Proposition 17 (Complex optimality conditions). Let
pC = pR+ ipI ∈ CN , S (pC) = UCΣV H

C be an SVD
of the symmetric matrix S (pC), and define BC :=
UCV

H
C , PC = UCU

H
C , and QC = In − PC. Then it

holds that:
(i) The point pC is a minimizer of (31) if and only if
there exists M ∈ Cn×n with ‖M‖2 ≤ 1 that satisfies
(28).
(ii) The point pext is the unique minimizer of (31) if
there exists M ∈ Cn×n with ‖M‖2 < 1 that satisfies
(28), and A (P ) is full row rank.

Proof. See the extended version of the paper [26].

Remark 18. Lemmae 15, 16, and Proposition 17 are
related to optimality conditions used in [22]. Indeed,
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the rank condition on rank{A (P )} = N is equivalent
to QHQT 6= 0 for all H of the form

∀H =

N∑
k=1

∆pkSk, ∆p ∈ CN \ {0},

which corresponds to [22, Proposition 2]. Next, the
condition (28) can be rewritten as

〈Sk,B +QMQT〉F = 0, ∀k ∈ {1, . . . , N},

which corresponds to the condition in [22, Lemma 2].
The authors of [22], however, do not make explicit con-
nection with general optimality conditions for convex
optimization problems, presented in Section IV-A.

V. MAIN LEMMAS: OPTIMALITY CONDITIONS AND
SIMPLE PROJECTORS

A. Quasi-Hankel completion: basis matrices

First, we put the rank minimization problem (8)
in the (standard) form (2). In order to do this, we
explicitly write down the matrices Sk in (1). The
constant part has the form

S0
def
= HA(c),

where c = {cα}α∈2A is defined as

cα
def
=

{
hα, α ∈ A,
0, α ∈ 2A \ A.

Example 7. In the case of A = N(2,3) (depicted in
(6)), we have that S0 = HA(c) =

h0,0 h1,0 h0,1 h2,0 h1,1 h0,2 h3,0 h2,1 h1,2 h0,3

h1,0 h2,0 h1,1 h3,0 h2,1 h1,2 0 0 0 0
h0,1 h1,1 h0,2 h2,1 h1,2 h0,3 0 0 0 0
h2,0 h3,0 h2,1 0 0 0 0 0 0 0
h1,1 h2,1 h1,2 0 0 0 0 0 0 0
h0,2 h1,2 h0,3 0 0 0 0 0 0 0
h3,0 0 0 0 0 0 0 0 0 0
h2,1 0 0 0 0 0 0 0 0 0
h1,2 0 0 0 0 0 0 0 0 0
h0,3 0 0 0 0 0 0 0 0 0


.

In the case of Hankel matrices (A = N(1,d), see (5)),
we have that n = d+ 1, and S0 is given by

S0 =



h0 h1 · · · hd−1 hd

h1 h2 . .
.

hd 0
... . .

.
. .
.

. .
. ...

hd−1 hd . .
.

0
hd 0 · · · 0 0


(32)

The number of free parameters in (1) is N =
#(2A) − #(A) (i.e., the number of unknowns in
(8)). The corresponding set of multi-indices can be
represented as

2A \ A = {β1, . . . ,βN}, β1 ≺ · · · ≺ βN . (33)

Next, we define basis arrays eβ
def
= {eβ}α∈Nm as

eβα
def
=

{
1, α = β,

0, α 6= β,

and Sk as
Sk := HA(eβk). (34)

Finally, it is easy to see that

HA(h) = S (p),

if p is defined as pk = hβk
.

Example 8. For A = N(2,3), shown in (6), we have

S1 =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 ,S2 =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 ,

S3 =


0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 , . . .

For Hankel structure, (A = N(1,d), shown in (5)), we
have that N = d, and the matrices Sk, k ∈ {1, . . . , N}
are defined as

S1 =


0 0 ··· 0 0

0 0 . .
.

0 1
... . .

.
. .
.
. .
.
0

0 0 . .
. ...

0 1 0 ··· 0

 , · · · , SN−1 =


0 0 ··· 0 0

0 0 . .
.
. .
. ...

... . .
.
. .
.
. .
.
0

0 . .
.
. .
.

1
0 ··· 0 1 0

 ,

SN =


0 0 ··· 0 0

0 0 . .
.

0 0
... . .

.
. .
.
. .
. ...

0 0 . .
.

0
0 0 ··· 0 1

 .
(35)

B. Simple matrices

Now we show that optimality conditions hold true
for simple matrices. We take A = N(m,d), and consider
the matrix completion problem (8), where Sk are
defined in Section V-A.

Lemma 19. Let d′ def
= bd2c, P0 ∈ Cn×n be a matrix

of the form

P0
def
=

[
P ′0 0
0 0

]
, P ′0 ∈ Cs×s, (36)

where s ≤
(
m+d′

m

)
. Then it holds that (i) For any

k ∈ {1, . . . , N}, P T
0 SkP0 = 0. (ii) If, in addition,

s ≤ n′′ :=
(
d′′+m
m

)
, where d′′ := bd−12 c, then

rank{A (P0)} = N .
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Proof. See the extended version of the paper [26].

Example 9. In the case of Hankel matrices (A =
N(1,d)) the first bound is s ≤ bd+2

2 c, and the first state-
ment of Lemma 19 is evident from (35). The second
bound is s ≤ bd+1

2 c, and a right lower block of the
matrix Q0HQ

>
0 (where H is defined in Remark 18)

has the form

0 · · · 0 ∆p1 · · · ∆pr
... . .

.
. .
.

. .
.

. .
.

∆pr+1

0 . .
.

. .
.

. .
.

. .
. ...

∆p1 . .
.

. .
.

. .
.

. .
.

∆pN−2
... . .

.
. .
.

. .
.

∆pN−2 ∆pN−1
∆pr ∆pr+1 · · · ∆pN−2 ∆pN−1 ∆pN


,

and hence all ∆pk are present in this block.

Lemma 19 immediately proves that the SLRMC is
solved by nuclear norm minimization in very simple
cases.

Corollary 20. In the completion problem (8) for the
structure (5), let the vector hd be of the form (13),
with r ≤ d+2

2 . Then we have the following.
(i) A solution of the rank minimization problem is

given by hk = 0 for k > d, and coincides with
the solution of (3). (ii) If, in addition, r < d+2

2 , the
solution of (3) is unique.

Proof. (i) Let P0 be as in (36), with s = r, and
P ′0 = Is. Then, the matrix BC in (20) has the
form BC = P0AP

T
0 . By Lemma 19, we have that

〈Sk,BC〉F = 〈P T
0 SkP0,A〉F = 0. The rest follows

from Remark 18. (ii) Follows from Remark 18.

C. Perturbations of simple projectors

Now we show that the conditions of Proposition 17
hold true for perturbations of simple matrices. First,
we need a simple inequality on distance between
projectors.

Lemma 21. Let B = BT = UV H, where U ,V ∈
Cn×r such that UHU = V HV = Ir. Let P0 be an
orthogonal projector on a subspace of Cn, such that
rank(P0) = r. Then we have that

‖B − P0BP
T
0 ‖2F ≤ 2‖(I − P0)U‖2F = ‖P − P0‖2F ,

where P = BBH = UUH.

Proof. SinceB−P0BP
T
0 = B−P0B+P0B−P0BP

T
0 ,

‖B−P0BP
T
0 ‖2F ≤ ‖(I−P0)B‖2F + ‖P0B(I−P T

0 )‖2F
≤ 2‖(I − P0)B‖2F = 2‖(I − P0)U‖2F

Finally,

‖P − P0‖2F = trace{P 2 + P 2
0 − PP0 − P0P }

= 2 trace{2(I − P0)P } = 2‖(I − P0)U‖2F ,
(37)

which completes the proof.

Remark 22. For a symmetric matrix S (p), the matrix
BC defined in Proposition 17 is also symmetric.

Next, we prove a perturbation lemma that uses a
bound on the distance between projectors.

Lemma 23. Let S and A (P ) be defined in (25) and
(26). Let P0 ∈ Cn×n be a rank-r projector matrix
such that rank{A (P0)} = N , P T

0 SkP0 = 0 for all
k ∈ {1, . . . , N}, and let Q0

def
= I − P0.

Then there exists a constant ε such that for any B
as in Lemma 21 satisfying

‖P − P0‖F < ε,

where P = BBH, it holds that (i) The matrix A (P )
is full row rank. (ii) There exists a matrix M ∈ Cn×n,
‖M‖2 < 1, such that (28) is satisfied.

Proof. (i) Since A (P ) depends polynomially on the
entries of P , and rank A (P0) = N , the rank is pre-
served in a neighborhood of P0. Thus rank A (P ) = N
in a neighbourhood of P0.
(ii) Let ε1 > 0 be a number such that for any P ,
‖P − P0‖F ≤ ε1 we have A (P ) = N and 0 < δ0 <
σmin(A (P )) for some number δ0. (We can choose
such ε1 by continuity of the smallest singular value.)
Then, in the ε1-neighborhood, a solution of (28) always
exists. Next, we consider the minimum Frobenius norm
solution M∗ = M∗(P ) of (28), which is given by

vec(M∗(P ))) = −A (P )†ST vec(B)

= −A (P )†ST vec(B − P0BP
T
0 ),

where the matrix A (P )† is the pseudoinverse of
A (P ), and the last equality holds since P T

0 SkP0 = 0
for all k ∈ {1, . . . , N}. Then, by Lemma 21,

‖M∗‖2 ≤ ‖ vec(M∗(P ))‖2 ≤

‖A (P )†‖2‖ST‖2‖B−P0BP
T
0 ‖F <

‖S‖2
δ0
‖P−P0‖F .

(38)

Finally, define ε def
= min(ε1,

δ0
‖S‖2 ). For such an ε, the

right hand side of (38) is less than or equal to 1 if
‖P − P0‖F < ε, which completes the proof.
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VI. MAIN RESULTS

A. Hankel case

First, we prove a result that generalizes Theorem 1.

Theorem 24. For any d, n = d + 1, and r < d+2
2

there exists ρ = ρ(d, r) > 0 such that for all hd with
hrank (hd) = r and |λk| < ρ in (10), the solution of
(3) is unique and coincides with (14).

Proof. See the extended version of the paper [26].

Remark 25. Theorem 1 proves a special case of
Theorem 24 and tells that ρ(d, 1) = 1 (for hd ∈ Rd+1).

B. Quasi-Hankel case

We first prove a lemma on the limits of projectors
on column spaces of quasi-Hankel matrices of the form
(16) (for z1, . . . ,zr in general position).

Lemma 26. Let A = N(m,d), r ≤
(
m+d−1
m

)
, and

{y1, . . . ,yr} ⊂ Cm be some points. Furthermore,
assume that there exists a set D, N(m,d0−1) ⊂ D ⊆
N(m,d0) (for some d0, 0 ≤ d0 ≤ d − 1) such that the
points y1, . . . ,yr are D-independent.

Let P (ρ) denote the projector on the column space
of VA(ρy1, . . . , ρyr). Then we have that
• if r =

(
m+d0
m

)
(i.e., D = N(m,d0)), then

lim
ρ→0

P (ρ) =

[
Ir 0
0 0

]
, (39)

• if r <
(
m+d0
m

)
(i.e., D ⊂ N(m,d0)), then

lim
ρ→0

P (ρ) =

IK 0 0
0 P2 0
0 0 0

 , (40)

where P2 ∈ CL×L, with L =
(
m+d0
m

)
− K,

rank{P2} = r −K, and K def
=
(
m+d0−1

m

)
.

Proof. See the extended version of the paper [26].

Remark 27. Generic points {y1, . . . ,yr} with r ≤(
m+d−1
m

)
satisfy conditions of Lemma 26. Indeed, the

condition of D-independence is equivalent to

det VD(y1, . . . ,yr) 6= 0,

which holds for generic {y1, . . . ,yr}.

By combining Lemma 23 and Lemma 26 we obtain
the following theorem.

Theorem 28. Let d′′ := bd−12 c and r ≤ N ′′ :=(
m+d′′

m

)
. Furthermore, let {y1, . . . ,yr} ⊂ Cm satisfy

the conditions of Lemma 26. Then there exist a constant
ρ0 = ρ0(y1, . . . ,yr) > 0 such that for any ρ:
0 < ρ < ρ0 and points zk defined as zk = ρyk,
the following holds true.

For any nonzero coefficients c1, . . . , cr and the ini-
tial array defined as (15), the canonical completion
(15) (in the problem (8)) is also the unique solution of
the nuclear norm minimization problem (3).

Proof. By Lemma 26 and Lemma 19, the matrix
P0

def
= limρ→0P (ρ) satisfies the conditions of

Lemma 23. Next, take ε as in Lemma 23. Then, by
Lemma 26, there exists ρ0, such that

‖P (ρ)− P0‖F < ε,

which completes the proof.

Note in the case m = 1, Theorem 28 is a weak
version of Theorem 24. However, for m > 1, in Theo-
rem 24, it is impossible to give a uniform bound on the
size of exponents (elements of zk) due to fundamental
issues in multivariate polynomial interpolation.

VII. NUMERICAL RESULTS

A. Hankel case

In this case we illustrate on the examples Theo-
rem 24. Theorem 24 only states the existence of such
radius ρ, and a lower bound for ρ may be obtained
along the lines of the proof of the theorem. However,
this bound may be to small, and in this section we aim
at showing on numerical experiments what would be
the largest lower bound.

All the numerical experiments are reproducible and
available on request. The MATLAB package CVXOPT
[30] with default settings is used for nuclear norm
minimization.

The setup for the following experiments will be
similar. We take a specific hd, compute the solution
of (8), and measure the Frobenius norm between the
computed solution and the canonical completion (14).

1) The rank-one case: First, we consider the rank-
one case. We take n = 6, and a rank-one exponential
sequence hd, i.e. hk = λk, where λ = a + bi, a, b ∈
(−1, 1)2, and plot the results in Fig. 2.

In Fig. 2, we see that the largest lower bound for ρ
is very close to 1. This coincides with the bound for
real λ given by Theorem 1.

2) The rank-two case: We consider real sequences
hd with hrank (hd) = 2. In this case the following
three situations are possible:

1) λ1, λ2 ∈ R (two simple real roots);
2) λ2 = λ2 6∈ R (two simple complex conjugate

roots);
3) λ1 ∈ R, ν1 = 2 (double real root).

The first case is considered in [22, Fig. 1], where it is
shown (numerically) that the radius ρ is less than 1.
In this section, we examine the second and the third
cases. We generate the corresponding hd and compute
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Fig. 2. Nuclear norm reconstruction (Frobenius distance), hk = λk ,
λ = a+ bi. Black area correspond to the values less than 10−6.

the Frobenius distance between the solutions of (2) and
(3), i.e., we compute ‖S (p̃)−S (p̂)‖F .

In Fig. 3, we plot the nuclear norm reconstructions
for a 6 × 6 matrix and the last two cases. As seen in
Fig. 3, the radius is also strictly less than 1. The radius
is smaller in the case of a double root and also in the
case when two conjugate roots are close to each other.

B. Multiple exponents

In this experiment, we aim at estimating the radius ρ
based on random realizations of λk. We fix n = 9, and
for each r ∈ {1, . . . , 4} and for ρ ∈ (0, 1), we generate
randomly the set {λ1, . . . , λr}, such that |λ1| = ρ and
|λk| ≤ ρ.

We consider two situations:
• real roots λk = ρk (in this case ρ1 = ρ, and ρk,
k > 1 are independent and uniformly distributed
in [ρ;−ρ])

• complex roots λk = ρke
iπφk , where ρk are as

in the previous example, φk are independent,
uniformly distributed in [0; 1], and independent of
ρk.

We repeat the experiment M = 100 times, and
select the maximum Frobenius error across all the
realizations. The results are plotted in Fig. 4.

The results in Fig. 4 confirm the conclusions of
Theorem 24. We see that the nuclear norm heuristic
works up to a certain ρ. Note that the bounds are
similar for the real and complex cases.

C. Quasi-Hankel case

1) Random exponents: In this section, we demon-
strate Theorem 28. In the experiments, we fix m = 2,
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Fig. 3. Nuclear norm reconstruction (Frobenius distance). Top: for
two complex conjugate roots λ1,2 = ρ · exp(±iπω) (corresponds
to the damped cosine sequence ht = ρt · cos(π(ω+1)t)). Bottom:
for a double root ρ (corresponds to the damped linear function ht =
(t · tan(0.75 ·π ·ϕ)+1) ·ρt). Black areas correspond to the values
less than 10−6.

d = 3 and r = 3 (thus we are dealing with the
completion of the structure (6)). We generate random
y1,y2,y3 ∈ Cm, such that

yk =

[
ak + ibk
ek + ifk

]
,

and ak, bk, ek, fk are independent identically dis-
tributed on [−0.5; 0.5].

For ρ ∈ (0; 1], we define zk as in Theorem 28, and
consider the matrix completion with nuclear norm for
the array (15), where ck are chosen to be c1 = c2 =
c3 = 1. We numerically compute the solution p̂ of the
nuclear norm minimization (3), and compare it with
the solution p̃ of the rank minimization (2) (which is
known from Proposition 10). We repeat the experiment
M = 10 times, and plot in Fig. 5 the dependence of
‖p̂− p̃‖2.

In Fig. 5, we see that for each realization of yk-s,
there exists a radius ρ0 predicted by Theorem 28.
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2) Beyond the theoretical results: nonunique decom-
positions: As in the previous section, we consider the

case m = 2, d = 3. But we choose the rank r = 4, for
which the conditions of Theorem 28 no longer hold
true. For 3 × 3 × 3 symmetric tensors, this is exactly
the value of generic rank [24].

The construction of the example is based on the
correspondence with symmetric tensors. We take d
linearly independent vectors in Rd, i.e.,

v1, . . . ,vd ∈ Rd.

Next, we consider the symmetric tensor obtained by
symmetrization of a non-symmetric rank-one tensor:

T = Sym(v1 ⊗ · · · ⊗ vd).

By [31], the rank of the tensor T is equal to 2d−1, and
the tensor admits an infinite family of decompositions,
parameterized by

T =
1

2d−1d!

1∑
ε2,...,εd=0

(−1)ε2+···+εd ⊗d bε2,...,εd ,

where

bε2,...,εd
def
= (γ1v1 +γ2(−1)ε2v2 + · · ·+ (−1)εdγdvd),

and γ1, . . . , γd ∈ R satisfy γ1 · · · γd = 1.
In order to set up the matrix completion prob-

lem, for given γ1, . . . , γd, we first construct the array
{hα}α∈Nm (which is equivalent to the specific tensor
decomposition), where m def

= d− 1, as follows:

hα =

1∑
ε2,...,εd=0

cε2,...,εdλ
α
ε2,...,εd

, (41)

where

cε2,...,εd
def
=

1

2d−1d!
(−1)ε2+···+εd(bε2,...,εd,1)d,

λε2,...,εd
def
= b−1ε2,...,εd,1

bε2,...,εd,2...
bε2,...,εd,d

 ,
bε2,...,εd =

bε2,...,εd,1...
bε2,...,εd,d

 .
Finally, we solve the nuclear norm minimization prob-
lem (3), for the structure defined as in (6).

Assume for instance (d,m) = (3, 2) and consider

v1 =

4
1
1

 ,v2 =

1
4
1

 ,v3 =

1
1
4

 .
For this case, the nuclear norm minimization yields
a 4-rank matrix completion, which corresponds to
the minimal rank. However, the obtained completion
differs from the initial completion (41), which indi-
cates that the nuclear norm minimization resulted in
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a different decomposition from the infinite family of
decompositions.

We repeat the experiment for random vk, generated
as [

v1 v2 v3
]

= A+ E,

where the elements of E are i.i.d. uniform on [−1; 1],
and A is one of the two matrices:

A = 3

1 1 1
1 1 1
1 1 1

 , or A = 3

1 0 0
0 1 0
0 0 1

 .
By drawing M = 100 random realizations, we check
when the Euclidean norm of the vector of the last
singular values (σ5, . . . , σ10) is less than 10−4 (we say
that the nuclear norm heuristics succeeds in this case).
We observed that in the first scenario, the nuclear norm
heuristic always failed, but for the second scenario in
77 cases the nuclear norm heuristic succeeded.
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