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Hankel low-rank matrix completion:
performance of the nuclear norm relaxation

Konstantin Usevich and Pierre Comon, Fellow, IEEE

Abstract—The completion of matrices with missing values
under the rank constraint is a non-convex optimization problem.
A popular convex relaxation is based on minimization of the
nuclear norm (sum of singular values) of the matrix. For this
relaxation, an important question is whether the two optimization
problems lead to the same solution. This question was addressed
in the literature mostly in the case of random positions of missing
elements and random known elements. In this contribution, we
analyze the case of structured matrices with a fixed pattern of
missing values, namely, the case of Hankel matrix completion.
We extend existing results on completion of rank-one real Hankel
matrices to completion of rank-r complex Hankel matrices.

Index Terms—Hankel; matrix completion; nuclear norm

I. INTRODUCTION

THE problem of completing matrices with missing entries
can be traced back to the works of Prony in 1795,

and has been addressed since in various fields including:
compressed sensing [1], [2], [3], system identification and
control [4], [5], [6], graph theory [7], information theory [8],
chemometrics [9], seismics [10], [11], estimation problems
and sensor networks [12], to cite a few. It also appears as a
subproblem in the computation of symmetric tensor Canonical
Polyadic (CP) decompositions [13].

In the general case, the low-rank matrix completion problem
is NP-hard (see, e.g. [14], [15]), although for some structured
matrices the solution of the exact matrix completion problem
can be found in polynomial time [16], [17], [18], [19], [20].

A popular approach in machine learning [14], [21] is to
build a convex relaxation of the matrix completion problem
by replacing the rank with the nuclear norm (i.e. the sum
of singular values). There is a large body of research that
showed that the nuclear norm relaxation can be successuflly
used both for exact and approximate matrix completion [2],
[21], [3], [12], [1]. However, most of these results were proved
in a random setting: the positions of missing entries are
assumed to be drawn randomly; often the known entries are
also assumed to be random. In addition, mostly unstructured
matrices are considered, or the structured matrices when the
linear constraints are distributed randomly.

In signal processing and system identification, the matrices
under consideration are often structured [22] (the matrix
structures are mostly Hankel/Toeplitz or alike), therefore the
general results on the performance of the nuclear norm cannot
be applied. Although the nuclear norm relaxation started to be
actively used by practitioners, the question on its effectiveness
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for structured problems was mostly unexplored [23]. Up to the
authors’ knowledge, there exists only one result [24], which
treats the case of fixed (Hankel) structure and fixed pattern of
missing values. This paper is a continuation of the work in
that direction.

Notation. To ease the reading, vectors are denoted in
boldface, e.g.p, and matrices in bold capital, e.g.S, or in
calligraphic font when they are structured and parameterized,
e.g. S (p).

A. Problem statement

For a finite sequence h =
[
h0 . . . h2d

]T ∈ C2d+1, we
denote the square Hankel matrix as

Hd(h)
def
= [hk+l]

d,d
k,l=0 =


h0 h1 · · · hd

h1 h2 . .
.
hd+1

... . .
.

. .
. ...

hd hd+1 · · · h2d

 . (1)

Occasionally, h will be provided with a subscript indicating
the index of its last entry; for instance in (1), h = h2d. We
are interested in the low-rank completion of (1), where the
values h0, . . . , hd (highlighted by a gray background above)
are known, and the other values (hd+1, . . . , h2d) are to be
completed.

Such a matrix completion problem appears, for example, in
time series forecasting [25]. An extension of this problem (to
block-Hankel matrices) appears in system and control theory:
system realization [26] and system identification problems
[27]. In this paper, we consider the exact Hankel matrix
completion problem.

Problem 1. Given hd =
[
h0 . . . hd

]T ∈ Cd+1,

minimize
hd+1,...,h2d∈C

rank Hd(h), (2)

where h =
[
h0 . . . h2d

]T
.

The corresponding convex relaxation for Problem 1 is

Problem 2. Given hd =
[
h0 . . . hd

]T ∈ Cd+1,

minimize
hd+1,...,h2d∈C

‖Hd(h)‖∗, (3)

where h =
[
h0 . . . h2d

]T
, and ‖ · ‖∗ denotes the sum of

singular values of a matrix (referred to as its nuclear norm).

Similarly to most of the papers on low-rank matrix recovery,
we are interested in the following question:

(Q) When do the solutions of Problem 1 and Prob-
lem 2 coincide?
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In practice, of course, the approximate case is more interesting
(i.e. when we assume that we know the given values only
approximately). We deliberately restrict ourselves to the exact
matrix completion for two reasons. First, it is a prerequisite
for studying the approximate matrix completion. Second, as it
was shown in [12], a result on exact matrix completion implies
that the nuclear norm can be applied in the approximate case
if the noise is small enough.

B. Previous results and contribution of the paper

Problem 1 is entirely solved [18], but the answer to our main
question (Q) is known only for a class of rank-one cases.

Theorem 1 ([24, Thm. 1] ). Let hd =
[
1 λ · · · λd

]T
,

where λ ∈ (−1; 1). Then the solution of

minimize
hd+1,...,h2d∈R

‖Hd(h)‖∗, (4)

is unique and coincides with the minimal rank (rank-1) com-
pletion, which is given by pk = λd+k.

In this paper we extend the results of [24] to Hankel matri-
ces with arbitrary rank. As in [24], we consider cases when the
solution to Problem 1 is known, and establish conditions on
hd when the solutions of Problem 1 and Problem 2 coincide.

Our results are more general (for example, applicable both
in the real and complex cases), and do not depend on the
results of [24]. However, we believe that our exposition may
also help to understand the complicated logic of the proof
in [24]. Moreover, this approach is also applicable to quasi-
Hankel matrices [28].

In Section II we summarize the solution of Problem 1, and
formally state the main results of the paper. In Section III we
recall optimality conditions for convex optimization problems,
and specialize them to nuclear norm minimization for complex
structured matrices. Section IV contains the main lemmas and
proofs of the paper. The lemmas imply that the optimality
conditions are satisfied if the column space of completed
matrices is not too far from a certain simply structured
subspace. Finally, we illustrate the main results of the paper
with numerical experiments in Section V.

II. HANKEL MATRIX COMPLETION

A. Solution of Hankel low-rank completion

Probably the first complete solution of Problem 1 is con-
tained in [17, Ch. II], where the problem of low-rank matrix
completion is called “singular extension” of Hankel matrices.
In this section, we will use the theory from [18], and we will
provide a summary of results in a simplified form.

For a finite sequence hd =
[
h0 . . . hd

]T ∈ Cd+1, we
denote by hrank (hd) the smallest r such that there exists a
non-zero vector q =

[
q0 q1 . . . qr

]T 6= 0 for which

q0hk + . . .+ qrhk+r = 0, ∀k ∈ {0, . . . , d− r}. (5)

The value hrank (hd) is equal to the maximal rank of the
submatrices of the known triangular part of the Hankel matrix
(1) (or, equivalently to the maximal rank of a Hankel matrix
that can be constructed only from the elements of the vector

hd). In [18, Def. 5.3, page 81], the number hrank (hd) is
called the first characteristic degree of hd. We will also call
the vector q as the characteristic vector1 of hd. Next, we
recall the following basic properties of hd and q.
• For any hd ∈ Cd+1, hrank (hd) ≤ d+2

2 ([18, Prop. 5.4]).
• If hrank (hd) <

d+2
2 , then the characteristic vector q is

unique up to scaling by a constant (see [18, page 84]).
In what follows, we assume that qr 6= 0 (this is a generic
case). The treatment of the case qr = 0 can be found in [18,
page 84]). Then an explicit representation of hd is determined
by the characteristic polynomial

q(z)
def
=

r∑
j=0

qjz
j = qrz

ν0

s∏
k=1

(z − λk)νk , (6)

where λk ∈ C \ {0} are distinct, ν0 ≥ 0, νk ≥ 1 are the
multiplicities of the roots, and r = ν0 + ν1 + · · ·+ νs.

Proposition 2 (A special case of [18, Thm. 8.1, p.124]). If
qr 6= 0, ν0 = 0 and all the roots of q(z) are simple (νk = 1,
s = r), then the sequence hd admits a representation

hk =

r∑
j=1

cjλ
k
j , (7)

where cj ∈ C.

Example 1. For hd =
[
1 λ · · · λd

]T
we have

hrank (hd) = 1 and the characteristic vector can be chosen
as q =

[
−λ 1

]T
.

The representation (7) is called a canonical representa-
tion of hd (or the unique canonical representation in case
hrank (hd) <

d+2
2 ). In the general case (6), there are multiple

roots and the canonical representation has a more complicated
form, as stated by the proposition below.

Proposition 3 (A special case of [18, Thm. 8.1, p.124]). Let
qr 6= 0 and λk, νk are as in (6). Then hd has the form

hk =

s∑
j=1

cj(k)λkj +

ν0−1∑
l=0

c0,lδ(k, l), (8)

where cj(k) are polynomials of degree (νj−1), c0,l ∈ C, and
δ(k, l) is the Kronecker delta.

Remark 4. In the statement of Proposition 3, if ν0 = 0 then
the second term in (8) is absent.

Example 2. In the extreme case q(z) = qrz
r (i.e. r = ν0), the

canonical representation (8) becomes

hd =
[
c0,0 · · · c0,r−1 0 · · · 0

]T
, (9)

Apart from the explicit form of the sequence hd, the char-
acteristic polynomial gives a solution to the rank minimization
problem (2) (for m = 1).

Proposition 5 (A corollary of [18, Thm. 5.14, p.99]). Let
q ∈ Cr+1 be a characteristic vector of hd with qr 6= 0, r =
hrank (hd). Then it holds that

1In [18], q does not have a specific name and is denoted by p.
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(i) The rank of the minimal rank completion in (2) is r.
(ii) A minimum rank completion hd+1, . . . , h2d is given by the
recursive continuation, for k > d− r:

hk+r = − 1

qr
(q0hk + · · ·+ qr−1hk+r−1) (10)

In addition, the values of hk+r for k > d − r can be
obtained by using the corresponding formula of canonical
representation, namely (7) or (8).
(iii) If r < d+2

2 , then the minimum rank completion is unique.

B. Main results

First, we refine Theorem 1.

Theorem 6. Let hd =
[
1 λ · · · λd

]T
, with λ ∈ C.

(i) If |λ| < 1, the solution of (3) is unique and coincides
with the minimal rank (rank-1) completion, which is given by
hd+k = λd+k.
(ii) Let |λ| ≥ 1, with λ = ρeiθ and ρ ∈ R (which implies
hk = ρkeiθk for k ∈ {0, . . . , d}). Then a solution of (3) is
given by hd+k = ρd−keiθ(d+k) = λd/(λ)k.
(iii) If |λ| > 1 the canonical completion hd+k = λd+k is not
a minimizer of (3).
(iv) If λ ∈ R, then the conclusions of (i)–(iii) are valid for the
real nuclear norm minimization problem (4).

Next, we prove a result that generalizes Theorem 1 to rank-r
Hankel matrices.

Theorem 7. For any d, and r < d+2
2 there exists ρd,r > 0 such

that for all hd ∈ Cd+1 with hrank (hd) = r and |λk| ≤ ρd,r
in (6), it holds that:
(i) the solution of (3) is unique and coincides with (10);
(ii) if hd ∈ Rd+1, the solution of (4) is unique and coincides
with (10).

The proofs of both theorems can be found in Section IV.

Remark 8. Theorem 6 proves a special case of Theorem 7
for r = 1 and guarantees that ρd,1 can be chosen slightly less
than 1.

III. OPTIMALITY CONDITIONS OF NUCLEAR NORM
MINIMIZATION

In this section, we recall some definitions and basic results
from the field of convex optimization [29, Chapter D], and
specialize them to our problem.

A. Optimality conditions in convex optimization

For a convex (possibly non-differentiable) function f :
RN → R, the subdifferential [29, Def. 1.2.1] of f is defined
as the set ∂f(x) ⊂ RN

∂f(x)
def
= {d : f(y)− f(x) ≥ 〈d,y − x〉 ∀y ∈ RN}.

In particular, if f is differentiable at a point x, then the sub-
gradient has only one element: the usual gradient, i.e. ∂f(x) =
{∇f(x)}.

For the unconstrained convex optimization problem

min
x∈RN

f(x), (11)

we recall the first-order optimality condition, which is neces-
sary and sufficient in this case.

Lemma 9 (First-order optimality, [29, Thm. 2.2.1]). A point
x is a minimum point of (11) if and only if

0 ∈ ∂f(x). (12)

In particular, for differentiable functions, the condition of
Lemma 9 reduces to ∇f(x) = 0. Next, we use a simple
sufficient condition for uniqueness of the minimizer.

Lemma 10 (Sufficient condition of uniqueness). A point x is
the unique minimizer of (11) if

0 ∈ int (∂f(x)), (13)

where int (·) denotes the interior of a set.

Proof. In this case for any y 6= x there exists δ > 0 such that
δ · (y − x) ∈ ∂f(x). By definition of ∂f(x), we have that
f(y)− f(x) ≥ δ‖y − x‖22 > 0.

B. Subdifferential of the nuclear norm

First, we recall the form of the subdifferential of the nuclear
norm of a matrix. Let X ∈ Rn1×n2 be a matrix of rank r, and
let X = UΣV T be an SVD of X , where U ∈ Rn1×r, V ∈
Rn2×r and Σ ∈ Rr×r is a diagonal matrix of nonzero singular
values. Next, let U⊥ ∈ Rn1×(n1−r), V⊥ ∈ Rn2×(n2−r) be
some orthonormal bases of the left and right nullspaces of X ,
respectively. Then, according to [30, p. 41], the subdifferential
of the nuclear norm at X is equal to ∂‖X‖∗ =

{B + U⊥WV >⊥ : W ∈ R(n1−r)×(n2−r), ‖W ‖2 ≤ 1},

where B is defined as

B
def
= UV T, (14)

and ‖ · ‖2 is the spectral norm (largest singular value).

Remark 11. When the SVD of X is not unique, then the
matrix B from (14) is still defined uniquely. In fact, if X has
multiple singular values, its matrix of left (resp. right) singular
vectors is of the form UΘ (resp. V Θ), where Θ ∈ Rr×r is
an orthogonal matrix which commutes with Σ.

Remark 12. Let X = UΣV T be an SVD of X . When X
is real symmetric, we do not necessarily have that U = V .
In fact, it is only true when X is either positive or negative
semidefinite. That is why B 6= UUT even when X is real
symmetric.

C. Real nuclear norm minimization

In this section, we consider a real nuclear norm minimiza-
tion problem

p̂ = arg min
p∈RN

f(p), f(p)
def
= ‖S (p)‖∗, (15)

where S is an affine map2 RN → Rn1×n2 defined as

S (p) = S0 +

N∑
k=1

pkSk, (16)

2In [22] and other literature, the map S is often called matrix structure.
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and where Sk, k ∈ {0, . . . , N} are known linearly indepen-
dent real n1 × n2 matrices, and p = [p1, . . . , pN ]T.

Next, define Q1 = U⊥U
T
⊥ and Q2 = V⊥V

T
⊥ (the projectors

on the column and row space of X). Then the subdifferential
can be rewritten as

∂‖X‖∗={B+Q1MQ2 : ‖M‖2 ≤ 1,M ∈ Rn1×n2}, (17)

where B is defined as in (14).
Finally, by an analogue of the chain rule [29, Thm. 4.2.1],

we immediately have that

∂f(p) =
{ [
〈S1,H〉F · · · 〈SN ,H〉F

]T
:

H ∈ ∂‖X‖∗,X = S (p)
}
, (18)

where 〈·, ·〉F denotes the Frobenius inner product.

D. Complex nuclear norm minimization: symmetric matrices

Now consider the map S (p) given in (16) but with
S0 ∈ Cn×n, Sk ∈ Rn×n for k ≥ 1 (all Sk are symmetric)
and with a complex parameter p ∈ CN , i.e. (16) defines a
complex-valued map S : CN → Cn×n. We also consider the
corresponding nuclear norm minimization problem

p̂ = arg min
p∈CN

‖S (p)‖∗. (19)

In what follows we derive the optimality conditions for (19)
from Lemmas 9 and 10.

Let S (p) = UΣV H be an SVD of the symmetric rank-r
matrix S (p) (with U ,V ∈ Cn×r) and define

B
def
= UV H, P

def
= UUH = BBH, (20)

where B is analogous to the matrix B in (14), and P is the
orthogonal projector on the column space of S (p).

Remark 13. For a complex symmetric matrix S (p), the
matrix B defined in (20) is also complex symmetric. In
addition, P T = V V H. As in Remark 12, B is not necessarily
equal to P .

Next, we define the matrix

S
def
=
[
vec(S1) . . . vec(SN )

]
, (21)

and for a matrix P ∈ Cn×n we define

A (P )
def
= ST((I − P ) � (I − P )) ∈ CN×n

2

, (22)

where � denotes the Kronecker product.
The following proposition shows that we can write the

optimality conditions (as in Lemmas 9 and 10) for the problem
(19) in a convenient form.

Proposition 14 (Complex optimality conditions). Let P ,B
be as in (20). Then it holds that
(i) The point p is a minimizer of (19) if and only if there exists
M ∈ Cn×n with ‖M‖2 ≤ 1 that satisfies

A (P ) vec(M) = −ST vec(B). (23)

(ii) If, in addition, the matrix M satisfies ‖M‖2 < 1 and
A (P ) is full row rank, then the point p is the unique
minimizer of (19).

Proof. See Appendix A for a proof.

Remark 15. If p ∈ Rn and S0 ∈ Rn×n, for f(p) defined in
(15), the subgradient (18) is equal to

∂f(p) =
{
STvec(B) + A (P ) vec(M) : ‖M‖2 ≤ 1

}
, (24)

with M ∈ Rn×n and I − P = Q1 = Q2. Hence,
Proposition 14 gives optimality conditions also for the problem
(15) (the only difference is that M should be real).

Remark 16. The condition rank A (P ) = N is equivalent to
QHQT 6= 0 for Q = I − P and any H of the form

H =

N∑
k=1

∆pkSk, ∆p ∈ CN \ {0},

which corresponds to [24, Proposition 2]. Next, the condition
(23) is equivalent to

〈Sk,B + QMQT〉F = 0, ∀k ∈ {1, . . . , N}. (25)

Remark 17. Remarks 15 and 16 are related to the optimality
conditions used in [24]. Indeed, the condition QHQT 6= 0
appears in [24, Proposition 2]. The condition (25) corresponds
to the condition in [24, Lemma 2]. The authors of [24],
however, do not make explicit connection with general opti-
mality conditions for convex optimization problems, presented
in Section III-A.

IV. MAIN LEMMAS AND RESULTS

In this section, we derive the proofs of Theorems 6 and 7.
The idea is to start from simple cases where optimality condi-
tions can be easily verified, and then show (in Section IV-C)
that under a sufficiently small perturbation, these optimality
conditions still hold.

A. Hankel matrix completion: basis matrices

First, we put the nuclear norm minimization problem (2) in
the form (19). In order to do this, we explicitly write down
the matrices Sk in (16). The constant part has the form

S0 =


h0 h1 · · · hd

h1 h2 . .
.
0

... . .
.
. .
. ...

hd 0 · · · 0

 .
The matrices Sk, k ∈ {1, . . . , N}, with N = d, n = d+ 1 are
defined as

S1 =


0 0 ··· 0 0

0 0 . .
.

0 1
... . .

.
. .
.
. .
.
0

0 0 . .
. ...

0 1 0 ··· 0

 , . . .

,SN−1 =


0 0 ··· 0 0

0 0 . .
.
. .
. ...

... . .
.
. .
.
. .
.
0

0 . .
.
. .
.

1
0 ··· 0 1 0

 ,SN =


0 0 ··· 0 0

0 0 . .
.

0 0
... . .

.
. .
.
. .
. ...

0 0 . .
.

0
0 0 ··· 0 1

 ,
(26)

such S (p) = Hd(h) for p =
[
hd+1, . . . , h2d

]T
.



USEVICH AND COMON: HANKEL LOW-RANK MATRIX COMPLETION: PERFORMANCE OF THE NUCLEAR NORM RELAXATION 5

B. Simple matrices

Now we show that optimality conditions hold true for simple
matrices.

Lemma 18. Let P0 ∈ Cn×n be a matrix of the form

P0
def
=

[
P ′0 0
0 0

]
, P ′0 ∈ Cr×r, (27)

where r ≤ d+2
2 . Then it holds that

(i) For any k ∈ {1, . . . , N}, P T
0 SkP0 = 0.

(ii) If, in addition, r < d+2
2 , then rank A (P0) = N .

Proof. (i) Since r ≤ d+2
2 , then from (26) we have that for any

k ∈ {1, . . . , N}

Sk =

[
0r×r ∗
∗ ∗

]
. (28)

Therefore, P T
0 SkP0 = 0.

(ii) Now, as in Remark 16, we take H =
N∑
k=1

∆pkSk 6= 0,

define the matrix Q0

Q0
def
= In − P0 =

[
Ir − P ′0 0

0 In−r

]
,

and we need to prove that Q0HQT
0 6= 0.

Since r < d+2
2 , we have that bd2c+1 ≤ n− r, dd2e ≤ n− r,

and therefore

Q0HQT
0 =

[
∗ ∗
∗ F

]
,

where

F =


∆p1 ∆p2 · · · ∆pd d2 e

∆p2 . .
.

. .
.

∆pd d2 e+1

. .
.

. .
.

. .
. ...

∆pb d2 c+1
. .
.

. .
.

∆pd

 .

Hence, for all ∆p 6= 0 we have that Q0HQT
0 6= 0.

From Lemma 18, we can deduce the following corollary,
which answers question (Q) for simple cases.

Corollary 19. In the completion problem (2), let the vector hd
be of the form (9) with r ≤ d+2

2 . Then we have the following.
(i) A solution of the rank minimization problem is given by
hk = 0 for k > d, and coincides with the solution of (3).
(ii) If, in addition, r < d+2

2 , the solution of (3) is unique.

Proof. (i) Let P0 be as in (27), and P ′0 = Ir. Then, the
matrix B defined in (20) (for S (p) = Hd(h)) has the form
B = P0AP T

0 . By Lemma 18, we have that 〈Sk,B〉F =
〈P T

0 SkP0,A〉F = 0. The rest follows from Remark 16.
(ii) Follows from Remark 16.

C. Perturbations of simple projectors

Now we show that the conditions of Proposition 14 hold true
for perturbations of simple matrices. First, we need a simple
inequality on distance between projectors.

Lemma 20. Let U ,V ∈ Cn×r be such that UHU = V HV =
Ir, B and P be defined in (20), and assume that B = BT. Let
P0 ∈ Cn×n be an orthogonal projector with rank(P0) = r.
Then we have that

‖B − P0BP T
0 ‖2F ≤ 2‖(I − P0)U‖2F = ‖P − P0‖2F .

Proof. Since B−P0BP T
0 = B−P0B+P0B−P0BP T

0 ,

‖B−P0BP T
0 ‖2F ≤ ‖(I−P0)B‖2F + ‖P0B(I−P T

0 )‖2F
≤ 2‖(I − P0)B‖2F = 2‖(I − P0)U‖2F

Finally,

‖P − P0‖2F = trace{P 2 + P 2
0 − PP0 − P0P }

= 2 trace{(I − P0)P } = 2‖(I − P0)U‖2F ,
(29)

where the second equality above follows from the identities
trace{P0}=trace{P }=r and trace{PP0} = trace{P0P },
and the last from idempotence of projectors.

Next, we prove a perturbation lemma that uses a bound on
the distance between projectors.

Lemma 21. Let S and A (P ) be defined in (21) and (22).
Let P0 ∈ Cn×n be a rank-r projector matrix such that
rank A (P0) = N , P T

0 SkP0 = 0 for all k ∈ {1, . . . , N}.
Then there exists a constant ε = εd,r such that for any B,P

as in Lemma 20, which satisfy

‖P − P0‖F ≤ εd,r,

it holds that
(i) The matrix A (P ) is full row rank.
(ii) There exists a matrix M ∈ Cn×n, ‖M‖2 < 1, such that
(23) is satisfied.

Proof. (i) Since A (P ) depends polynomially on the entries of
P , and rank A (P0) = N , by lower semicontinuity of matrix
rank, there exists a neighborhood

Vε1
def
= {P ∈ Cn×n : ‖P − P0‖ ≤ ε1},

such that rank A (P ) = N for any P ∈ Vε1 .
(ii) Take ε1 as in (i), and denote

δ1
def
= inf

P∈Vε1
σmin(A (P )).

Since Vε1 is compact, we have δ1 > 0.
In fact, we can constructively find such ε1 and δ1. From the

properties of singular values we have that

σ2
min(A (P )) ≥ σ2

min(A (P0))− ‖A (P )−A (P0)‖2F
≥ 1− ‖S‖22‖(I − P ) � (I − P )− (I − P0) � (I − P0)‖2F
= 1− 2‖S‖22((n− r)2 − (trace{(I − P0)(I − P )})2),

where the last equality is derived similarly to (29) and using
the identity trace{A�A} = (trace{A})2. Next, from (29),

trace{(I − P0)(I − P )} = (n− r)− ‖P − P0‖2F
2

.
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Therefore,

σ2
min(A (P )) ≥ 1− 2(n− r)‖S‖22‖P − P0‖2F ,

and
δ1 ≥ 1−

√
2(n− r)‖S‖2ε1. (30)

Next, in the ε1-neighborhood, a solution of (23) always exists
because A (P ) is full row rank. Consider the minimum
Frobenius norm solution M∗ = M∗(P ) of (23), given by

vec(M∗(P ))) = −A (P )†ST vec(B)

= −A (P )†ST vec(B − P0BP T
0 ),

where the matrix A (P )† is the pseudoinverse of A (P ),
and the last equality holds since P T

0 SkP0 = 0 for all
k ∈ {1, . . . , N}. Then, by Lemma 20,

‖M∗‖2 ≤ ‖M∗‖F = ‖ vec(M∗)‖2 ≤

‖A (P )†‖2‖ST‖2‖B−P0BP T
0 ‖F ≤

‖S‖2
δ1
‖P−P0‖F .

(31)

Finally, define εd,r
def
= min(ε1,

αδ1
‖S‖2 ), where 0 < α < 1. For

such an εd,r, we have ‖M‖∗ < 1 if ‖P −P0‖F ≤ εd,r, which
completes the proof.

D. Proof of Theorem 6

Here we provide a complete picture for rank-one Hankel
matrix completion. First, we need a technical lemma.

Lemma 22. For any complex matrix Y ∈ Cn×n,

‖Y ‖∗ ≥ | trace{Y }|;

Proof. Consider an SVD of Y

Y =

r∑
k=1

σkukv
H
k .

where uk,vk ∈ Cn, and ‖uk‖2 = ‖vk‖2 = 1. Then

| trace{Y }| ≤
r∑

k=1

| trace{σkukvH
k }|

=

r∑
k=1

σk|vH
kuk| ≤

r∑
k=1

σk = ‖Y ‖∗,

which completes the proof.

Proof of Theorem 6. As in Example 1, we denote by hd =[
1 λ · · · λd

]T
. We are looking for minimizers of the

nuclear norm of

S (p) =


1 λ · · · λd

λ λ2 . .
.

p1
... . .

.
. .
. ...

λd p1 · · · pd

 , (32)

where n = d+1 is the number of rows and columns of S (p).
We prove (i), (ii) and (iii) for real nonnegative λ, and

proceed to the complex case (in part (v) of the proof).

(i) We need to show that for λ ∈ R, 0 ≤ λ < 1 the canonical
rank-one completion

pλ =
[
λd+1 · · · λ2d

]T
, (33)

is the unique solution of (19) for S (p) given as (32). We
recall the construction from [24, Lemma 2]. Define the matrix
M0 as follows:

M0
def
=

λn

‖hd‖22



λn λn+1 λn+2 ··· λ2n−2 −s

λn+1 λn+2 . .
.

λ2n−2 −s 1

λn+2 . .
.

λ2n−2 −s 1 λ
... λ2n−2 −s 1 . .

. ...

λ2n−2 −s 1 . .
.

. .
.

λn−3

−s 1 λ ··· λn−3 λn−2

 ,

where s = λ‖hd‖22. As shown in [24, Lemma 2], ‖M0‖2 =
λn, and the matrix M0 satisfies the equalities (25).

Since ‖M0‖2 < 1, we have that the conditions of Re-
mark 16 are satisfied and thus the canonical completion pλ
is the unique minimizer of (19). (Note that Theorem 1 only
proves optimality of pλ for the problem (4).)
(ii) Here we again consider the case λ ∈ R, but with λ ≥ 1.
Since we can scale the matrix without changing the optimality
conditions (up to scaling), we can prove instead that for

F (p) =


λ−d · · · λ−1 1
... . .

.
. .
.

p1

λ−1 . .
.

. .
. ...

1 p1 · · · pd

 ,
the point p0 =

[
λ−1 · · · λ−d

]T
is a minimizer of

‖F (p)‖∗. Define the flipping matrix as

J =

[
1

. .
.

1

]
. (34)

Then, by Lemma 22, for any p ∈ Cd

‖F (p)‖∗ = ‖JF (p)‖∗ ≥ trace{JF (p)} = n.

Next, we consider X = JF (p0) and show that X is positive
semidefinite. For λ = 1 this is obvious, and for λ > 1, as
shown in [18, Example 1.2, page 27]

X−1 = (1− λ−2)−1


1 −λ−1 0 ··· 0

−λ−1 1+λ−2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1+λ−2 −λ−1

0 ··· 0 −λ−1 1

 .
It is easy to see that (1− λ−2)X−1 = LL>, where

L
def
=


1 0 0 ··· 0

−λ−1 1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 0
0 ··· 0 −λ−1

√
1−λ−2

 ∈ Rn×n.

Therefore, X is positive semidefinite, ‖X‖∗ = trace{X} =
n, and p0 is a global minimizer of ‖F (p)‖∗.
(iii) The canonical completion after scaling (in terms of the
matrix F (p)) corresponds to p1 =

[
λ λ2 · · · λd

]T
.
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By Lemma 22, we have that

‖F (p1)‖∗ ≥ trace{F (p)} =

d∑
j=0

λ2j−d > d+ 1 = n,

where the last inequality holds since λ > 1 and d > 1. Hence
p1 cannot be a minimizer.
(iv) The statements (ii) and (iii) are automatically valid for
the real nuclear norm minimization problem (4). The same
conclusion for (i) follows from Remark 15 or Theorem 1.
(v) Finally, we let λ ∈ C. Then λ = ρeiθ, where 0 ≤ ρ and
θ ∈ [0; 2π). Now consider the matrix

G (p′) =

 e0 e−iθ
. . .

e−iθd

S (p)

 e0 e−iθ
. . .

e−iθd

 ,
where

pk = eiθ(d+k)p′k. (35)

It is easy to see that the matrix is equal to

G (p′) =


1 ρ · · · ρd

ρ ρ2 . .
.

p′1
... . .

.
. .
. ...

ρd p′1 · · · p′d

 ,
which is of the form (32), and for which the statements (i),
(ii), (iii) are proved.

The rest follows from the equality ‖G (p′)‖∗ = ‖S (p)‖∗,
invertibility of the transformation (35), and the fact that the
completions pλ,k = λd+k and p0,k = ρd−keiθ(d+k) are
mapped to p′ρ,k = ρd+k and p′0,k = ρd−k respectively.

E. Proof of the main theorem

We now leave simple cases, and go back to the general
formulation stated in Problem 1.

Proof of Theorem 7. (i) We only need to show that for any
εd,r given in Lemma 21, there exists ρd,r such that for all λk
satisfying the statements of the theorem it holds that

‖P − P0‖F ≤ εd,r,

where
P0 =

[
Ir 0
0 0

]
∈ Rn×n.

The distance between projectors can be expressed as

‖P − P0‖2F = 2 trace{P0(I − P )} = 2‖P0U⊥‖2F ,

where U⊥ ∈ Cn×(n−r) is an orthonormal basis of the
nullspace of P (the reasoning is the same as in (29)).

The nullspace of P coincides with the image of the matrix

K =



q0 0 . . . 0
... q0

. . .
...

qr
...

. . . 0

0 qr
. . . q0

...
. . .

. . .
...

0 . . . 0 qr


∈ Cn×(n−r),

where q(z) is the characteristic polynomial (6) (with qr = 1).
Then U⊥ can be found from an SVD K = U⊥ΣV H

⊥ , and, by
submultiplicativity of matrix norms, we have that

‖P − P0‖2F ≤ 2‖P0K‖2F ‖Σ−1‖22
The non-zero entries of the matrix P0K are qj , for j =
{0, . . . , r−1}. By Vieta’s formulae, these qj are homogeneous
polynomials in the roots λk. Therefore, there exist universal
constants Cj (depending only on r), j = 1, . . . , r such that
(n− r)q2r−j ≤ Cjρ2j , where ρ def

= max |λk|. Hence,

‖P0K‖2F ≤
r∑

k=1

(n− r)q2r−j ≤ ρ2A(ρ),

where

A(ρ)
def
= (C1 + C2ρ

2 + · · ·+ Crρ
2(r−1)).

Next, from the well-known bounds on eigenvalues of Toeplitz
matrices [31], we know that if ρ ≤ 1

σ2
min(K) ≥ min

|z|=1,z∈C
|q(z)|2 ≥ (1− ρ)2r.

By combining it all together, we have

‖P − P0‖2F ≤ ρ2
2A(ρ)

(1− ρ)2r
. (36)

Now, we fix an arbitrary 0 < ρ0 < 1 (say ρ0 = 0.5). For
0 < ρ ≤ ρ0, it follows from (36) that

‖P − P0‖2F ≤ ρ2Cρ0,r,

where Cρ0,r (that depends only on ρ0 and r) is defined as

Cρ0,r
def
=

2A(ρ0)

(1− ρ0)2r
.

Finally, we define the constant of Theorem 7 to be

ρd,r
def
= min

(
ρ0,

εd,r√
Cρ0,r

)
, (37)

for which ‖P − P0‖F ≤ εd,r if ρ ≤ ρd,r.
(ii) This part is a direct consequence of Remark 15.

V. NUMERICAL RESULTS

Theorem 7 mainly states the existence of such radius ρd,r.
But the radius that can be deduced from the proofs can be very
small. For example, from (30) it easy to show that εd,r = 1

2d
can be chosen in Lemma 21. Then we can get ρd,r from (37),
which would give a very conservative lower bound on possible
ρd,r. This is the reason why we report numerical experiments
aiming at finding the largest lower bound in this section.

The MATLAB package CVXOPT [32] (with default set-
tings3) is used for nuclear norm minimization. The MAT-
LAB code that reproduces the results will be made avail-
able together the authors’ version of the paper at https://hal.
archives-ouvertes.fr/hal-01130631.

3For solving the complex nuclear norm minimization problem (3), we used
an equivalent real nuclear norm minimization problem (see (38) and (39) in
Appendix A). At the moment of writing this article, the direct minimization of
the nuclear norm of a complex matrix in CVXOPT gave a poor performance.
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A. The case of 1 or 2 exponents

The setup for the following experiments will be similar. We
take a specific hd ∈ Cd+1, find the solution of (2) (or the
solution of (4) if hd ∈ Rd+1), and measure the Frobenius
norm between the solution and the canonical completion (10).

1) The rank-one case: First, we consider the rank-one case.
We take n = 6, and hk = λk, where λ = a + bi, a, b ∈
(−1, 1)2, and plot the results in Fig. 1.
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Fig. 1. Nuclear norm reconstruction (Frobenius distance), hk = λk , λ =
a+ bi. Black area correspond to the values less than 10−6.

The results in Fig. 1 confirm the results of Theorem 6:
the canonical completion for |λ| > 1 is not recovered by the
nuclear norm relaxation.

2) The rank-two case: We consider real sequences hd with
hrank (hd) = 2. The following three situations are possible:

1) λ1, λ2 ∈ R (two simple real roots);
2) λ2 = λ2 6∈ R (two simple complex conjugate roots);
3) λ1 ∈ R, ν1 = 2 (double real root).

The first case is considered in [24, Fig. 1], where it is shown
(numerically) that the radius ρ is less than 1. In this section,
we examine the second and the third cases. We generate the
corresponding hd (in the second case c1 = c2) and compute
the Frobenius distance between the solutions of (2) and (4).

In Fig. 2, we plot the nuclear norm reconstruction errors
for a 6 × 6 matrix and the last two cases. As seen in Fig. 2,
the limiting modulus is also strictly less than 1. The radius is
smaller in the case of a double root and also in the case when
two conjugate roots are close to each other.

B. The case of multiple exponents

In this experiment, we aim at estimating the radius ρ based
on random realizations of λk. We fix n = 9, and for each
r ∈ {1, . . . , 4} and for ρ ∈ (0, 1), we generate {λ1, . . . , λr},
such that |λ1| = ρ and |λk| ≤ ρ. All the ck are equal to 1.

We consider two situations (real and complex roots):
• λk = ρk (in this case ρ1 = ρ, and ρk, k > 1 are

independent and uniformly distributed in [ρ;−ρ])
• λk = ρke

iπφk , where ρk are as in the previous case,
φk are independent, uniformly distributed in [0; 1], and
independent of ρk.
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Fig. 2. Nuclear norm reconstruction (Frobenius distance). Top: for two
complex conjugate roots λ1,2 = ρ · exp(±iπω) (corresponds to the damped
cosine sequence ht = ρt · cos(π(ω + 1)t)). Bottom: for a double root ρ
(corresponds to the damped linear function ht = (t·tan(0.75·π ·ϕ)+1)·ρt).
Black areas correspond to the values less than 10−6.

We repeat the experiment M = 100 times, and select
the maximum Frobenius error across all the realizations. The
results plotted in Fig. 3 confirm the conclusions of Theorem 7.
We see that the nuclear norm heuristic works up to a certain
modulus ρ. Note that the bounds on ρ are similar for the real
and complex cases.

APPENDIX A
Proof of Proposition 14. In order to derive the optimality con-
ditions for the complex-valued case, we construct an extended
real-valued map Sext : R2N → R2n×2n as follows. For
pext =

[
pT
R pT

I
]
, where pR,pI ∈ RN , we define

Sext(pext)
def
=

[
S (pR) −S (pI)
S (pI) S (pR)

]
(38)

From [33], the singular values of Sext(pext) contain two
copies of singular values of S (p) (with p

def
= pR + ipI).

Hence, the problem (19) is equivalent to the real nuclear norm
minimization problem4

p̂ext = arg min
pext∈R2N

‖Sext(pext)‖∗. (39)

Consider an SVD of the complex symmetric matrix S (p),

S (p) = UΣV H, (40)

4In fact, the corresponding rank minimization problems are also equivalent.
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Fig. 3. Nuclear norm reconstruction, n = 9, M = 100 (Frobenius distance).
Top: real roots, bottom: complex roots. Black area corresponds to the values
less than 10−5.

where UHU = V HV = Ir, and Σ ∈ Rr×r is diagonal. Since
S (p) is symmetric, S (p) = V ΣUT is also an SVD.

Next, we have that the matrices B = BR + iBI and P =
PR + iPI have the form

BR = URV
T
R + UIV

T
I , BI = UIV

T
R −URV

T
I ,

PR = URU
T
R + UIU

T
I = VRV

T
R + VIV

T
I ,

PI = UIU
T
R −URU

T
I = VRV

T
I − VIV

T
R .

Since the matrix P is Hermitian and B is complex symmetric,
we have P T

R = PR, P T
I = −PI , BT

R = BR and BT
I = BI .

From [33], the matrix Sext(pext) admits the SVD

Sext(pext) = Uext

[
Σ 0
0 Σ

]
V T
ext, (41)

where for U = UR + iUI and V = VR + iVI

Uext
def
=

[
UR −UI
UI UR

]
,Vext

def
=

[
VR −VI
VI VR

]
.

We can express the matrix Bext for the structure Sext as

Bext
def
= UextV

T
ext =

[
BR −BI
BI BR

]
.

Next, from (38), we have that

Sext(pext) =

[
S0,R −S0,I
S0,I S0,R

]
+

N∑
k=1

pk,R

[
Sk 0
0 Sk

]
+

N∑
k=1

pk,I

[
0 −Sk
Sk 0

]
,

(42)

where S0 = S0,R + iS0,I . In what follows, we prove
statements of the proposition.
(i) From (17) and (18), the subgradient of g(pext)

def
=

‖Sext(pext)‖∗ is equal to{[
a(Mext)
b(Mext)

]
: Mext ∈ R2N×2N , ‖Mext‖2 ≤ 1

}
,

where

ak(Mext) =

〈[
Sk 0
0 Sk

]
,Bext + QextMextQext2

〉
F

,

bk(Mext) =

〈[
0 −Sk
Sk 0

]
,Bext + QextMextQext2

〉
F

,

and for Q = QR + iQI
def
= In − P

Qext =

[
QR −QI
QI QR

]
,Qext2 =

[
QR QI
−QI QR

]
are the projectors on the left and right nullspaces of
Sext(pext). Immediately, we have that

2〈Sk,P 〉F =

〈[
Sk 0
0 Sk

]
,Bext

〉
F

+ i

〈[
0 −Sk
Sk 0

]
,Bext

〉
F

.

Now let us define the matrices

Mext =

[
M1 −M3

M2 M4

]
, MR

def
=

M1 + M4

2
,

MI
def
=

M2 + M3

2
, M

def
= MR + iMI .

(43)

Easy calculations show that the matrix QextMextQext2 can
be expressed as

QextMextQext2 =

[
C1 −C3

C2 C4

]
, (44)

where
C1=QRM1QR+QRM3QI−QIM2QR+QIM4QI ,
C2=QRM2QR−QRM4QI+QIM1QR+QIM3QI ,
C3=QRM3QR−QRM1QI+QIM4QR+QIM2QI ,
C4=QRM4QR+QRM2QI−QIM3QR+QIM1QI ,

and
QMQ> =

C1 + C4

2
+ i

C2 + C3

2
.

Then, immediately,

2〈Sk,B + QMQ〉F

=

〈[
Sk 0
0 Sk

]
,Bext −QextMextQext2

〉
F

+i

〈[
0 −Sk
Sk 0

]
,Bext −QextMextQext2

〉
F

.

Hence, we obtain that

ak(Mext) + ibk(Mext) =
〈
Sk,B + QMQ>

〉
F

Finally, it is easy to see that for M defined as in (43)

‖M‖2 =

∥∥∥∥[MR −MI
MI MR

]∥∥∥∥
2

=

∥∥∥∥∥Mext +
[
0 −I
I 0

]
Mext

[
0 −I
I 0

]
2

∥∥∥∥∥
2

≤ ‖Mext‖2,

(45)



10 XXXX, VOL. XX, NO. XX, XX

where the equality takes place if M1 = M4 and M2 = M3.
Hence, if ‖Mext‖2 < 1 and then ‖M‖2 < 1, according
to (45). Vice versa, if we are given M = MR + iMI
with ‖M‖2 < 1, by taking M1 = M4 = MR and
M2 = M3 = MI , we obtain Mext with ‖Mext‖2 = ‖M‖2,
which completes the proof.
(ii) Let Mext be as in (43), with M1 = M4 = MR, M2 =
M3 = MI . Then, in view of (44), we have that

QMQT = 0 ⇐⇒ QextMextQext2 = 0,

which completes the proof.
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