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Coercive subtyping: Theory and implementation

Z. Luo a,∗,1, S. Soloviev b, T. Xue a

a Department of Computer Science, Royal Holloway, University of London, Surrey, UK
b IRIT, 118 route de Narbonne, 31062 Toulouse cedex 4, France

a b s t r a c t

Coercive subtyping is a useful and powerful framework of subtyping for type theories.

The key idea of coercive subtyping is subtyping as abbreviation. In this paper, we give

a new and adequate formulation of T [C], the system that extends a type theory T with

coercive subtyping based on a set C of basic subtyping judgements, and show that coercive

subtyping is a conservative extension and, in a more general sense, a definitional extension.

We introduce an intermediate system, the star-calculus T [C]∗ , in which the positions that

require coercion insertions are marked, and show that T [C]∗ is a conservative extension

of T and that T [C]∗ is equivalent to T [C]. This makes clear what we mean by coercive

subtyping being a conservative extension, on the one hand, and amends a technical

problem that has led to a gap in the earlier conservativity proof, on the other. We

also compare coercive subtyping with the ‘ordinary’ notion of subtyping – subsumptive

subtyping, and show that the former is adequate for type theories with canonical objects

while the latter is not. An improved implementation of coercive subtyping is done in the

proof assistant Plastic.

1. Introduction

Coercive subtyping is a useful and powerful framework of subtyping for type theories with canonical objects.2 It extends

such type theories with a suitable notion of subtyping for effective applications such as proof development and dependently-

typed programming.3

The basic idea of coercive subtyping is that subtyping is modelled as an abbreviation mechanism: A is a subtype of B ,

if there is a unique coercion c from A to B , written as A <c B . Then, if a hole in a context requires an object of type B , it

is legal to supply an object a of type A – it is equivalent to supplying the object c(a). This simple idea, when used with

the rich type structures in type theories with inductive types, provides a powerful and general subtyping mechanism. It

subsumes injective subtyping (e.g., those between basic types such as Nat < Int and Man < Human), projective subtyping

(e.g., those between Σ-types or record types induced by their projection operations) and structural subtyping (e.g., those

between inductive types induced by the subtyping relations of their parameters).

* Corresponding author.

E-mail addresses: zhaohui.luo@hotmail.co.uk (Z. Luo), soloviev@irit.fr (S. Soloviev), taoxue@cs.rhul.ac.uk (T. Xue).
1 Partially supported by the Leverhulme research grant F/07-537/AJ.
2 Type theories with canonical objects are sometimes called ‘modern type theories’, examples of which include Martin-Löf’s type theory [24,28], the

Unifying Theory of dependent Types (UTT) [11,6] and the type theory implemented in the Coq proof assistant (pCIC) [5].
3 For instance, coercions have been implemented and used in several proof assistants such as Coq [5,30], Lego [21,3], Matita [25] and Plastic [4].



As an abbreviation mechanism, coercive subtyping extension should be conservative over the original type theory and, in

particular, logical consistency of the original type theory should be preserved.4 However, the coercive subtyping extension

has the same syntax of terms with the original type theory (see Section 2.2 for formal details), the notion of conservative

extension could not be directly applied to them and, as a consequence, in its earlier treatment [31], the notion of conser-

vativity for coercive subtyping was not clearly spelled out and, in particular, it was not explicitly linked to the traditional

studies in logic. In this paper, we give a new and adequate formulation of coercive subtyping and show that it is a conser-

vative extension by introducing an intermediate system, the star-calculus T [C]∗ , in which the positions that require coercion

insertions are marked by the ∗-symbol, and showing that T [C]∗ is a conservative extension of T and that T [C]∗ is equiva-

lent to the coercive subtyping extension T [C]. This makes it clear what we mean by conservativity of the coercive subtyping

extension.

As reported in this paper, the earlier formulation of coercive subtyping by means of the so-called basic subtyping rules

[13] has been found to be unnecessarily general in that it does not exclude certain ‘bad’ subtyping rules which would

destroy the much desired property of conservativity. As a consequence it has led to an incomplete proof of conservativity in

[31]. The formulation of coercive subtyping given in this paper solves this problem and, furthermore, this new formulation

is general enough to encompass the earlier one.

It is also explained that coercive subtyping is not only a conservative extension, but essentially a definitional extension, in

a more general sense. This is reflected in that, as long as the basic coercions are coherent, unique coercions can always be

inserted to obtain the abbreviated expressions correctly. This is closely related to the logical notion of definitional extension,

where a first-order theory is a definitional extension of another if it is not only the case that the former is a conservative

extension of the latter but also the case that any formula in the former is logically equivalent to its translation in the latter

[7]. In the context of coercive subtyping, this second extra requirement is captured by means of a notion of equivalence

between derivations in type theory, as to be explained in the paper.

Besides coercive subtyping, there is a traditional ‘ordinary’ notion of subtyping based on the following subsumption rule:

Γ ⊢ a : A Γ ⊢ A 6 B

Γ ⊢ a : B

Let us call such systems as systems with subsumptive subtyping. As far as we know, in the literature, there are only scattered

remarks to compare these two notions of subtyping (see, for example, §2.1 of [20]). In Section 4, we shall analyse them from

a particular angle, discussing the idea that subsumptive subtyping is suitable for type assignment systems as employed

in functional programming languages, but not suitable for type theories with canonical objects as implemented in proof

assistants, and showing that coercive subtyping provides a very general framework for the latter.

The new theory of coercive subtyping has been implemented in the proof assistant Plastic, based on an earlier implemen-

tation of coercions in the system by Callaghan [4], and used for some case studies. We shall describe the implementation

and illustrate its use with examples in formal semantics of natural languages.

In Section 2, we present the new formulation of coercive subtyping, giving the formal presentations of both T [C] and

T [C]∗ , and briefly explains its adequacy both as a conservative extension of the original type theory and as a theory that

encompasses the seemingly more general earlier formulation by means of rules. The proof that unique coercions can be

correctly inserted, and hence that the coercive subtyping extension is conservative, and definitional in a more general sense,

is given in Section 3. In Section 4, we compare coercive subtyping with subsumptive subtyping and explain that the former

is adequate for type theories with canonical objects while the latter is not. The implementation of coercive subtyping in

Plastic is described in Section 5.

2. Coercive subtyping

Coercive subtyping is based on the idea that subtyping is abbreviation.5 As an abbreviational extension that allows one

to omit certain expressions called coercions, it should intuitively be conservative over the original type theory. However, in

the previous treatments of the notion of conservativity for coercive subtyping [31], it was not explicitly linked to that in the

traditional studies of logic and, as a consequence, it was not as well understood as it should have been.

In this section, for a type theory T and a set of subtyping judgements C , we present the formal system T [C] for the

coercive subtyping extension of T and, at the same time, describe an intermediate system T [C]∗ in which the positions

for coercion insertion are marked. As the proof in the next section shows, T [C]∗ is a conservative extension of T (in the

traditional sense) and equivalent to T [C]. In this way, we make it clear that coercive subtyping is a conservative extension.

Coercive subtyping has the property that, as long as the basic coercions are coherent, coercions can always be correctly

inserted to obtain the abbreviated expressions (see the next section for its formal proof). This has turned out to be closely

related to the notion of definitional extension, in a more general sense. In traditional studies of logic, the notion of definitional

4 A type theory T ′ is a conservative extension of T if T ′ extends T in such a way that every T -judgement is derivable in T ′ if, and only if, it is derivable

in T . This definition follows that of the traditional notion, although derivability of judgements is employed instead of provability (or truth) of formulas.
5 The idea of subtyping as coercions were studied for simpler type systems by many authors including, for example, Mitchell [26,27] for the simply-typed

λ-calculus and Longo et al. [9] about the second-order λ-calculus. There have also been studies of subtyping on dependent types including Aspinall and

Compagnoni [2] and Longo [8]. In this paper, coercive subtyping is studied for modern type theories.



extension was formulated for first-order logical theories [7]: a first-order theory S ′ is a definitional extension over S if S ′

is a conservative extension of S and, in S ′ , any formula in S ′ is logically equivalent to its translation in S . Intuitively, the

extra symbols in a definitional extension can be replaced correctly by their translations in the original theory. In the context

of coercive subtyping, such translations correspond to the abbreviated expressions after coercion insertions and, this is

captured by a notion of equivalence between derivations.6

Our new formulation of coercive subtyping also solves a problem of an earlier one in [13] which has led to a gap in the

conservativity proof in [31]. In fact, the new formulation not only solves it but leads to a theory that is general enough to

encompass the old one.

2.1. An informal account of a problem

The formulation of coercive subtyping in [13] is not quite adequate: it is unnecessarily general and, in particular, does

not exclude certain ‘bad’ coercion rules that destroy the much desired property of conservativity. As a consequence it has led

to an incomplete proof of conservativity in [31]. In this subsection, this is explained. Let us first start with the introduction

of several basic notions.

Basic idea of coercive subtyping. The basic idea of coercive subtyping is that subtyping is modelled as an abbreviation mech-

anism: A is a subtype of B , if there is a unique coercion c from A to B , written as A <c B . Then, if a hole in a context

requires an object of B , it is legal to supply an object a of A – it is equivalent to supplying the object c(a).

The theory of coercive subtyping was first studied in [12] and extended later to a more general setting in [13]. In a

type theory specified in a logical framework such as LF (see Appendix A for formal description), a context with a hole that

requires an object of B can be represented as a functional operation with domain B and the above basic idea of coercive

subtyping can be captured formally by means of the following rules:

(∗)
f : (x:B)C a : A A <c B

f (a) : [c(a)/x]C
(∗∗)

f : (x:B)C a : A A <c B

f (a) = f (c(a)) : [c(a)/x]C

They state that, if A <c B , then f with domain B may be applied to an object a of A, which actually stands for its image

c(a) under the coercion c, to form f (a) and the result is equal to f (c(a)). If one considers f as a context with a ‘hole’ of B ,

then it can be supplied with an object a of A, standing for c(a). These rules are formally called coercive application/definition

rules.

Coherence and conservativity. Intuitively, a system with coercions is coherent if all coercions between any two types are the

same. In other words, c = c′ if A <c B and A <c′ B . However, this notion of coherence cannot be defined formally for the

whole system with coercive subtyping and, in particular, it cannot be defined if the above coercive definition rule (∗∗)

is present, for otherwise, any two coercions between the same types can be proved to be equal.7 Therefore, it has to be

defined by means of a subsystem that does not contain the rule (∗) or (∗∗).

Such a formulation was given in [13] where, given a set R of basic subtyping rules, the coercive subtyping extension

T [R] of a type theory T is defined as an extension of the subsystem T [R]0 , which does not contain the above rule (∗)

or (∗∗). The notion of coherence is defined by means of T [R]0: R is coherent if, for any two coercions c and c′ from

A to B , we can prove in T [R]0 that c = c′ . Based on this formulation, the conservativity theorem (i.e., coherence implies

conservativity of T [R] over T ) was studied in [31]. Unfortunately, as mentioned above, this notion of conservativity is not

well explained and, furthermore, it has become known later that there was a gap in the proof.8 In fact, the formulation of

coercive subtyping in [13] was too general for the result to hold, as explained in more details below.

Problem with the basic subtyping rules. In the formulation of the coercive subtyping extension T [R] in [13], it is only required

that R be a set of rules whose conclusions are subtyping judgements of the form Γ ⊢ A <c B : Type. This is not exclusive

enough: it does not exclude some ‘bad’ rules, for example the rules which are non-applicable in the subsystem T [R]0 but

become applicable in the whole system T [R]. Here is an example that involves such a rule.

Example 2.1. Let A and B be types (e.g., A ≡ Nat is the type of natural numbers and B ≡ Bool the type of booleans) and

c1 and c2 functional operations from A to B such that we cannot prove that they are equal in the original type theory T .

Consider the set R that consists of the following two rules:

(#)
Γ ⊢ valid

Γ ⊢ A <c1 B : Type
(##)

Γ ⊢ a : A Γ ⊢ f : (B)B Γ ⊢ f (a) : B

Γ ⊢ A <c2 B : Type

6 As logical systems, type theories are more complicated than first-order theories. For instance, the well-formedness of expressions is not given syntac-

tically, but governed by judgemental derivability: whether an expression A is a type (which in traditional logics corresponds to the well-formedness of a

formula) is given by the derivability of a judgement of the form A : Type and whether a is of type A by the derivability of a : A.
7 Formally, if A <c B and A <c′ B , then using the rules (∗∗) and the (βηξ)-equality rules in the logical framework (see Appendix A), one can prove that

c = c′ : (A)B .
8 We (the first two authors) realised the problem when discussing a question raised by Robin Adams in 2007.



Note that, without the coercive application rule (∗), the third premise of the above rule (##) can never be derivable; in

other words, in T [R]0 , the rule (##) can never be applied – it is non-applicable in T [R]0 . Therefore, R is coherent with

only one coercion c1 from A to B .

However, in the whole system T [R], where the coercive application rule (∗) is present, the rule (##) does become

applicable – its third premise now becomes derivable since A <c1 B by (#). Therefore, there are two coercions from A

to B: both A <c1 B and A <c2 B are derivable in T [R]. As a consequence, T [R] is not a conservative extension of T : the

T -judgement c1 = c2 : (A)B is derivable in T [R], but not in T . ✷

The above example shows that the formulation in [13] does not exclude the ‘bad’ rules such as (##) above as basic

subtyping rules which, if present, would destroy the key property of conservativity and lead to unreasonable behaviours of

the coercive subtyping extension.

2.2. Coercive subtyping: an adequate formulation

As explained above, there are two problems with the previous treatments of coercive subtyping. One is that the notion

of conservativity is not linked to the traditional notion of conservative extension and the other that the notion of ‘basic

subtyping rule’ is too liberal that has failed to exclude the problematic rules.

To deal with the first problem, we shall introduce below, besides the coercive subtyping calculus T [C], the star-calculus

T [C]∗ that will help make the notion of conservativity clear.

To solve the second problem, it suffices to realise that, if we consider only subtyping judgements, rather than rules, the

problem as demonstrated in Example 2.1 does not occur anymore. In other words, we consider the original formulation of

coercive subtyping in [12] or that in Y. Luo’s PhD thesis [20,10] where the original type theory is extended with a set C

of subtyping judgements to form the coercive subtyping extension T [C]. In such a formulation, the above problem does

not occur and, as we show below, the proof method of [31] can be used (and further improved) to prove that the coercive

subtyping extension is indeed conservative.

This is in fact a very general formulation. We can recast the formulation T [R] by means of a set R of basic subtyping

rules as the system T [CR], where CR is the set of subtyping judgements generated by the R-rules without the coercive ap-

plication/definition rules (∗) and (∗∗). In this way, we can also encompass the generality and flexibility offered by subtyping

rules.

Let’s now proceed with this new formulation. Assume T be a type theory specified in the logical framework LF9 and C

be a (possibly infinite) set of subtyping judgements of the form Γ ⊢ A <c B : Type. The coercive subtyping extension T [C]

and the corresponding star-calculus T [C]∗ are formally introduced as follows.

The system T [C]0 and coherence. The intermediate system T [C]0 is an extension of the original type theory T .

• Syntax: The syntax of T [C]0 is the same as that of T .

• Judgements: T [C]0 is extended with the new judgement form Γ ⊢ A <c B : Type.

• Rules: T [C]0 is extended with the following rule

Γ ⊢ A <c B : Type ∈ C

Γ ⊢ A <c B : Type

and the structural subtyping rules in Fig. 1 which state that the subtyping relation is congruent, transitive, and closed

under substitution, and satisfies the rules of weakening and contextual equality.

It is straightforward to see that T [C]0 is a conservative extension of T because in this system the subtyping judgements

do not contribute to any derivation of a judgement of any other form.

Remark. Compared with the earlier definition of T [R]0 in [13], we have added the weakening and contextual equality

rules. ✷

The notion of coherence is to guarantee that the judgements in C are well-behaved and, in particular, the coercions in

the coercive subtyping extension are unique between any two types. It can now be defined formally as follows.

Definition 2.2 (Coherence). The set C of subtyping judgements is coherent if the following hold for T [C]0:

1. If Γ ⊢ A <c B : Type, then Γ ⊢ A : Type, Γ ⊢ B : Type and Γ ⊢ c : (A)B .

2. Γ 0 A <c A : Type, for any Γ , A and c.

3. If Γ ⊢ A <c B : Type and Γ ⊢ A <c′ B : Type, then Γ ⊢ c = c′ : (A)B .

9 See Appendix A for a brief description of LF [11], the typed version of Martin-Löf’s logical framework [28]. Type theories specified in LF may contain

logical propositions and inductive types, some examples of which are given in Appendix B.



Congruence

Γ ⊢ A <c B : Type Γ ⊢ A = A′ : Type Γ ⊢ B = B ′ : Type Γ ⊢ c = c′ : (A)B

Γ ⊢ A′ <c′ B ′ : Type

Transitivity

Γ ⊢ A <c B : Type Γ ⊢ B <c′ C : Type

Γ ⊢ A <c′◦c C : Type

Substitution

Γ, x:K ,Γ ′ ⊢ A <c B : Type Γ ⊢ k : K

Γ, [k/x]Γ ′ ⊢ [k/x]A <[k/x]c [k/x]B : Type

Weakening

Γ,Γ ′ ⊢ A <c B : Type Γ,Γ ′′ ⊢ valid

Γ,Γ ′′,Γ ′ ⊢ A <c B : Type

Contextual equality

Γ, x : K ,Γ ′ ⊢ A <c B : Type Γ ⊢ K = K ′

Γ, x : K ′,Γ ′ ⊢ A <c B : Type

Fig. 1. The structural subtyping rules of T [C]0 .

Basic subkinding rule

Γ ⊢ A <c B : Type

Γ ⊢ El(A) <c El(B)

Subkinding for dependent product kinds

Γ ⊢ K ′
1 = K1 Γ, x:K ′

1 ⊢ K2 <c K ′
2 Γ, x:K1 ⊢ K2 kind

Γ ⊢ (x:K1)K2 <[ f :(x:K1)K2][x:K ′
1]c( f (x)) (x:K ′

1)K
′
2

Γ ⊢ K ′
1 <c K1 Γ, x:K ′

1 ⊢ [c(x)/x]K2 = K ′
2 Γ, x:K1 ⊢ K2 kind

Γ ⊢ (x:K1)K2 <[ f :(x:K1)K2][x:K ′
1] f (c(x)) (x:K ′

1)K
′
2

Γ ⊢ K ′
1 <c1 K1 Γ, x:K ′

1 ⊢ [c1(x)/x]K2 <c2 K ′
2 Γ, x:K1 ⊢ K2 kind

Γ ⊢ (x:K1)K2 <[ f :(x:K1)K2][x:K ′
1]c2( f (c1(x)))

(x:K ′
1)K

′
2

Structural subkinding rules

Γ ⊢ K1 <c K2 Γ ⊢ K1 = K ′
1 Γ ⊢ K2 = K ′

2 Γ ⊢ c = c′ : (K1)K2

Γ ⊢ K ′
1 <c′ K ′

2

Γ ⊢ K <c K ′ Γ ⊢ K ′ <c′ K ′′

Γ ⊢ K <c′◦c K ′′

Γ, x:K ,Γ ′ ⊢ K1 <c K2 Γ ⊢ k : K

Γ, [k/x]Γ ′ ⊢ [k/x]K1 <[k/x]c [k/x]K2

Γ,Γ ′ ⊢ K1 <c K2 Γ,Γ ′′ ⊢ valid

Γ,Γ ′′,Γ ′ ⊢ K1 <c K2

Γ, x : K ,Γ ′ ⊢ K1 <c K2 Γ ⊢ K = K ′

Γ, x : K ′,Γ ′ ⊢ K1 <c K2

Fig. 2. The subkinding rules in T [C]/T [C]∗ .

The coercive subtyping extension T [C] and the star-calculus T [C]∗ . Let C be any set of subtyping judgements.

• T [C], the extension of T with coercive subtyping with respect to C , is the system obtained from T [C]0 by adding the

subkinding judgements of the new form Γ ⊢ K <c K ′ and the rules in Figs. 2 and 3.

• T [C]∗ , the star-calculus with respect to C , is the system obtained from T [C]0 by extending its syntax with terms of

the form M ∗ N (and, hence, the sets of contexts and judgements are extended accordingly) and adding the subkinding

judgements of the new form Γ ⊢ K <c K ′ and the rules in Figs. 2 and 4.

The rules in Fig. 2 are those concerning the subkinding judgements:



Coercive application rules

(C A1)
Γ ⊢ f : (x:K )K ′ Γ ⊢ k0 : K0 Γ ⊢ K0 <c K

Γ ⊢ f (k0) : [c(k0)/x]K ′

(C A2)
Γ ⊢ f = f ′ : (x:K )K ′ Γ ⊢ k0 = k′

0 : K0 Γ ⊢ K0 <c K

Γ ⊢ f (k0) = f ′(k′
0) : [c(k0)/x]K ′

Coercive definition rule

(C A2)
Γ ⊢ f : (x:K )K ′ Γ ⊢ k0 : K0 Γ ⊢ K0 <c K

Γ ⊢ f (k0) = f (c(k0)) : [c(k0)/x]K ′

Fig. 3. The coercive application/definition rules in T [C].

Coercive application rules in the star-calculus

(C A∗
1)

Γ ⊢ f : (x:K )K ′ Γ ⊢ k0 : K0 Γ ⊢ K0 <c K

Γ ⊢ f ∗ k0 : [c(k0)/x]K ′

(C A∗
2)

Γ ⊢ f = f ′ : (x:K )K ′ Γ ⊢ k0 = k′
0 : K0 Γ ⊢ K0 <c K

Γ ⊢ f ∗ k0 = f ′ ∗ k′
0 : [c(k0)/x]K ′

Coercive definition rule in the star-calculus

(CD∗)
Γ ⊢ f : (x:K )K ′ Γ ⊢ k0 : K0 Γ ⊢ K0 <c K

Γ ⊢ f ∗ k0 = f (c(k0)) : [c(k0)/x]K ′

Fig. 4. The coercive application/definition rules in T [C]∗ .

• The basic subkinding rule lifts subtyping relations to subkinding.

• The three subkinding rules for dependent product kinds propagate the subkinding relations through the dependent

product kinds.

• The structural subkinding rules are the counterpart of those in Fig. 1 for the subtyping relation, stating that the subkind-

ing relation is congruent, transitive, and closed under substitution, and satisfies the rules of weakening and contextual

equality.

The rules in Fig. 3 and 4 are the key rules of coercive application and coercive definition, as explained informally in Sec-

tion 2.1, for T [C] and T [C]∗ , respectively.

Note that, in the star-calculus, coercive applications are of the form f ∗ a, with the positions for coercion insertion

marked by the ∗-symbol.10 This syntactic difference makes it possible for us to link the coercive subtyping extension to the

traditional notion of conservativity: T [C]∗ is a conservative extension of T , as to be summarised in the following subsection

and formally shown in the next section.

Remark. It may be worth remarking that T [C] is the ‘official’ calculus for coercive subtyping, rather than its equivalent

T [C]∗ , although the latter is a conservative extension in the traditional sense. This becomes apparent when we point out

that implicit coercions are supported by the possible omission of coercions in T [C], but not completely by T [C]∗ . In T [C], the

same term f (a) may become well-typed although it is not well-typed in T . This directly reflects the idea of subtyping as

(implicit) coercions. ✷

2.3. Adequacy of the formulation

The above formulation of coercive subtyping is adequate in the sense that it has the following three properties:

1. Coercive subtyping is a conservative extension.

2. Coercive subtyping is also a definitional extension, in a more general sense.

3. The formulation is general enough to encompass the old one by coercion rules.

We shall now give further explanations of each of the above.

10 An explanation of syntax may be necessary. We sometimes use M(N) to stand for the ‘usual’ notation MN for application. M ∗ N obeys the same

conventions as the usual terms for application. For example, M ∗ N ∗ P abbreviates (M ∗ N) ∗ P and, if we want to apply M to N ∗ P in the star-calculus,

we write M ∗ (N ∗ P ).



Coercive subtyping: a conservative extension. The above formulation of coercive subtyping in Section 2.2 does not suffer from

the problem as explicated in Section 2.1. Intuitively, this is because we only allow the basic coercion judgements in C , rather

than coercion rules. This has excluded the ‘bad’ rules such as (##) in Example 2.1.

Assuming that T be the type theory UTT or Martin-Löf’s type theory and C a set of subtyping judgements, we can show

that the coercive subtyping extension is conservative. More precisely, the following hold if C is coherent:

• T [C]∗ is a conservative extension of T ; and

• T [C] and T [C]∗ are equivalent.

This will be proved as Theorem 3.9(2) and Theorem 3.10(3) in Section 3.

Coercive subtyping: a definitional extension. In coercive subtyping, for any T -judgement that is T [C]-derivable, coercions can

always be correctly inserted to obtain an equivalent T -derivable judgement. This intuitively means that coercive subtyping

is not only a conservative extension, but a definitional extension, in a more general sense.11

To make this precise, we need to introduce the intermediate system T [C]0K :

• T [C]0K is the system obtained from extending T [C]0 by the subkinding judgement form Γ ⊢ K <c K ′ and the inference

rules in Fig. 2.

Alternatively, T [C]0K is the system obtained from T [C] by removing the rules in Fig. 3.

It is obvious that T [C]0K is a conservative extension of T and T [C]0 , since the subkinding judgements do not contribute

to the derivation of a judgement of any other form in absence of coercive rules (this is the same reason that T [C]0 is a

conservative extensions of T ).

Now, assuming T be UTT or Martin-Löf’s type theory and C a set of subtyping judgements, the coercive subtyping

extension T [C] is definitional in the following sense: if C is coherent,

• T [C]∗ is a conservative extension over T [C]0K ;

• every T [C]∗-derivation can be transformed into an ‘equivalent’ T [C]0K -derivation; and

• T [C] and T [C]∗ are equivalent.

This will be proved as Theorem 3.9(1), Theorem 3.7(3) and Theorem 3.10(3) in Section 3, where the necessary transforma-

tions of derivations (called Θ , Θ∗ , θ∗ and θ ) and the notion of equivalence between derivations are formally defined.

Generality of the formulation. The above formulation of T [C] is general enough to encompass the old one with coercion rules.

In practice, the set C of coercion judgements can often be described by means of a set of coercion rules. For instance,

besides other basic subtyping judgements in C , one may declare that C is closed under some rules:

Γ ⊢ A <c B : Type

Γ ⊢ List(A) <map(c) List(B) : Type

where map(c) is the usual mapping function that lifts c to the lists. Could such descriptions be accommodated? Remember

that we only allow coercion judgements as basic subtyping axioms, rather than subtyping rules. Is this a limitation? In fact,

it is not: the above formulation T [C] is very general and does lead to an adequate formulation by means of rules, as shown

by the following definition and the remarks below.

Definition 2.3. Let R be a set of subtyping rules (i.e., their conclusions are subtyping judgements).

• CR is defined to be the set of subtyping judgements that can be derived in the system consisting of the rules in T and

R and those in Fig. 1.

• T [R] is defined to be T [CR] (and T [R]∗ to be T [CR]∗).

Note that the non-applicable rules in R do not make any contributions to the formation of CR . For example, if the rule

(##) in Example 2.1 is in R, it does not contribute to CR since it is not applicable when CR is formed. It is straightforward

to conclude that, if R is a set of subtyping rules that is coherent in the sense of [13], CR is coherent and T [R], as defined

to be T [CR], has the nice properties as described above.

11 The notion of definitional extension has been studied for first-order theories: a first-order theory is a definitional extension of another if the former

is a conservative extension of the latter and any formula in the former is logically equivalent to its translation in the latter [7]. The notion of definitional

extension for more general formal systems is worth being explored. We have made some initial attempts to understand the general concept of definitional

extension in the context of type theories [17] and it is clear that the current work has laid a promising basis in this direction.
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Fig. 5. Relationships between T [C], T [C]∗ and T [C]0K .

3. Properties of coercive subtyping: formal proofs

In this section, we give an outline of our proof that the coercive subtyping extension is a conservative extension, and

a definitional extension in a more general sense, of the original type theory under the assumption that the set of basic

coercion judgements be coherent. The proof method is based on (and further improved from) that in [31]. Since the proof

is rather sophisticated, we explain only its key elements. (See [32] for further details.)

3.1. Key ideas

In this section we study the transformations of derivations between the systems T [C], T [C]∗ (as defined in Section 2.2)

and T [C]0K (as defined in Section 2.3) (cf., Fig. 5). The leading idea is to use the properties of these transformations, together

with the fact that T [C]0K is a conservative extension over T , to obtain our final conservativity result.

Insertion algorithms. For two type theories T1 and T2 , we write

f : T1 → T2

if f is a function from the T1-derivations to T2-derivations. We describe four algorithms, to be defined in Section 3.2, which

are such functions.

• Θ : T [C] → T [C]0K and Θ∗ : T [C]∗ → T [C]0K .

The algorithm Θ (Θ∗) replaces the derivations of Γ ⊢ K0 <c K in the premises of the coercive rules (C A1), (C A2) and

(CD) in Fig. 3 ((C A∗
1), (C A∗

2) and (CD∗) in Fig. 4) by derivations of Γ ⊢ c : (K0)K and replaces the coercive applications in

their conclusions by several ordinary applications. (Other rules are not modified.)

More precisely, suppose for example that the derivation in T [C] ends with the coercive application rule (C A1) in Fig. 3:

Γ ⊢ f :(x:K )K ′ Γ ⊢ k0:K0 Γ ⊢ K0 <c K

Γ ⊢ f (k0):[c(k0)/x]K ′

We assume that there are derivations in T which can derive judgements Γ ⊢ f :(x:K )K ′ , Γ ⊢ k:K0 , Γ ⊢ c:(K0)K . Then we

could obtain a derivation in T as follows:

Γ ⊢ f :(x:K )K ′
Γ ⊢ k0:K0 Γ ⊢ c:(K0)K

Γ ⊢ c(k0):K

Γ ⊢ f (c(k0)):[c(k0)/x]K ′

The other coercive application rule (C A2) and the coercive definition rule (CD) can be dealt with in the same way.

The intended result is the insertion of appropriate coercions into the ‘gaps’ so that, if d is a T [C]-derivation (T [C]∗-

derivation) of J , then Θ(d) (Θ∗(d)) is an ‘equivalent’ T [C]0K -derivation (and actually a T -derivation if J is not a subtyping

or subkinding judgement).

Now the question is how to extend the transformation to the whole derivation. It is natural to start from the leaves of

the derivation tree, and move to the root (conclusion). When a coercive application or definition rule is met, the subkinding

judgements are to be replaced by the derivation of the coercion terms and the rules modified as above. To make this plan

work, certain difficulties must be solved. Most importantly, one needs to make sure that, after the insertion transforma-

tions, the premises of the rules that are applied after the transformed judgements will be matching (see below for further

explanations).

• θ : T [C]∗ → T [C] and θ∗ : T [C] → T [C]∗ .

The algorithm θ replaces coercive applications of the form f ∗ a in T [C]∗ by coercive applications f a in T [C], simply

by erasing all occurrences of the ∗-symbol. The algorithm θ∗ replaces coercive applications in T [C]-derivations by coercive

applications in T [C]∗ by inserting ∗ into appropriate places.

Note that, although transforming a T [C]∗-derivation into a T [C]-derivation is straightforward – we obtain θ(d) simply

by erasing all of the ∗-symbol in d, the other direction (in defining θ∗) to insert the ∗-symbol is not: nothing in the syntax

of T [C] permits us to distinguish directly coercive and ordinary applications and to guarantee that in different premises of



every inference inside a T [C]-derivation the ∗-symbol would be inserted at the same places (and hence the premises would

be matching after insertion).

The existence of θ and θ∗ and the fact that they are inverse functions show that T [C] and T [C]∗ are equivalent (see

Theorem 3.10 below).

One would expect also Θ to be the composition of θ∗ and Θ∗ but to assure this both θ∗ and Θ∗ have to be defined.

The difficulty that must be taken into account is that the properties of θ∗ and Θ∗ cannot be established independently of

those of Θ .

Major difficulties and solutions. The “conceptual core” of all difficulties is that the insertion depends on derivations. If an

expression appears in two places, the above process might map it to two expressions of T that are not identical. For

example, consider the rule

Γ
d1
⊢K = K ′ Γ

d2
⊢K ′ = K ′′

Γ ⊢ K = K ′′

Under the transformation Θ , d1 and d2 become derivations Θ(d1) and Θ(d2) of, say, Γ1

Θ(d1)

⊢ K1 = K ′
1 and Γ2

Θ(d2)

⊢ K ′
2 = K ′′

2 .

We need to show that the corresponding kinds in contexts Γ1 and Γ2 are equal in T and that K ′
1 and K ′

2 are equal in Γ1 .

If they are, we can complete the derivation in T :

Γ1

Θ(d1)

⊢ K1 = K ′
1

Γ2

Θ(d2)

⊢ K ′
2 = K ′′

2 ⊢ Γ2 = Γ1

Γ1 ⊢ K ′
2 = K ′′

2
Γ1 ⊢ K ′

2 = K ′
1

Γ1 ⊢ K ′
1 = K ′′

2

Γ1 ⊢ K1 = K ′′
2

If we consider θ∗ and Θ∗ instead of Θ the difficulties will go partly to the verification of correctness of the definition of

Θ∗ and partly to such verification for θ∗ . Indeed, to proceed with θ∗ we need to verify that the ∗-symbol is inserted in the

same places of Γ and K ′ in the left premise and in Γ and K ′ of the right premise. In case of Θ∗ we need not bother about

the places where ∗ is inserted, but we need to verify that the coercion terms that are inserted in left and right premises

are equal.

Coherence, as defined in Definition 2.2, is the key to solving all these problems. Suppose a gap in the same expression is

filled with a coercion c at one point in a derivation, and a coercion d at another point. Then c and d may not be identical,

but coherence is used to ensure that they are judgementally equal in T and that after filling the gaps the expressions are

equal in T . Of course, to implement this, a carefully planned induction is needed.

In fact, another element of coherence, the condition that there is no coercion of the form Q <c Q , plays its role here as

well. This is one of the main reasons why the part of the proof concerning the properties of θ∗ cannot be separated from

the rest. Before we may show that θ∗ (insertion of ∗) is inverse to θ we need to prove that it is defined for all derivations.

This in its turn requires the proof that ∗ is inserted in the same places in the matching parts of different premises. Thus,

we need to show that there is no coercion Q <c Q in T [C], for otherwise it would be possible that an application f (a) is

considered as coercive in one place and as non-coercive in another. (In that case, θ∗ could insert ∗ in one branch, but not

in the other.) This proof uses the fact that Θ is defined for all derivations.

Several technical challenges. Several less conceptual (more technical) challenges concern the organization of the inductive

proof itself.

An important part of the inductive proof includes the lemmas about presupposed judgements.12 The reason is that the

“common part” of the premises of a rule is a presupposed judgement of both. We prove that if Θ (or Θ∗ or θ∗) is defined

for certain derivation d of Γ ⊢ J then it is defined for the derivations of presupposed judgements of Γ ⊢ J even if these

derivations may be longer. (The same for Θ∗ and θ∗ .) The proof of this uses an auxiliary induction on the number of steps

of an extraction algorithm that permits to obtain a derivation of a presupposed judgement.

Another algorithm and lemma take care of the rules for substitution, weakening and contextual equality which make

direct inductive proofs difficult. We define a canonical form of derivations, in which these rules only occur after an intro-

duction of a subtyping judgement (from Γ ⊢ A <c B ∈ C), and an algorithm E that moves these rules up to the “permitted”

position. Then we show that if Θ is defined for d, it is also defined for the derivation E(d) in canonical form (similarly for

Θ∗ and θ∗). The proof uses induction on the number of elimination steps.

In this paper, when proving the properties of the coercive subtyping extension T [C], we have restricted T to be the

known type theories such as UTT and Martin-Löf’s type theory. The reason for this is to guarantee that the rule forms are

12 The meaningfulness of a judgement (not its correctness or derivability) may presuppose the derivability of some other judgements. For example, the

judgemental statement a : A presupposes that the judgement A : Type is derivable. As another example, Γ ⊢ k = k′ : K presupposes the derivability of

Γ ⊢ k : K and Γ ⊢ k′ : K .



preserved by coercion insertions, an aspect that was not sufficiently investigated in [31]. For example, let the derivation d in

T [C] end by some rule r of T (r is not one of coercive rules), d ≡

d1
J1

···
dn
Jn

r( J1, . . . , Jn)
, and Θ(d1), . . .Θ(dn) be defined. If Θ(d)

is defined, it is supposed to end with an application of the same rule r. This assumes that, if J i is a premise of an instance

of r, then the conclusion of Θ(di) may be used as a premise of an instance of r. More precisely, some “adjustment” using

the provable equalities of T may be permitted before r is applied, as we have seen in the previous subsection, but it has to

be proven (by analysis of r) that the form of the conclusion of Θ(di) is appropriate.

Example 3.1. Consider, e.g., the elimination operator for an inductive type in UT T . Let it be, for simplicity, ENat for the type

of natural numbers Nat (see Appendix B, repeated here):

ENat :
(

C :(Nat)Type
)

(

c:C(0)
)(

f :(x:Nat)
(

C(x)
)

C
(

succ(x)
))

(z:Nat)C(z)

To be able to apply the same rules after coercion insertion the structure has to be preserved, in particular no coercion must

be inserted between C and z, between succ and x, etc. Notice that in case of θ∗ , when only ∗ are inserted, the verification

that no ∗ is inserted between C and z is still necessary.

To take care of this and similar cases, the coherence at the kind level (i.e., non-derivability of the statements of the form

Γ ⊢ K <c K ) is used. The lemma with appropriate clause (Lemma 3.21) is used in the proof of the main theorem.13 This is

an illustration of the fact that the proofs are interconnected because this lemma uses the assumption that Θ is defined (to

prove the absence of the judgements Γ ⊢ K <c K in subderivations).

In case of known type theories all rules can be inspected (as we did for UTT and Martin-Löf type theory). For arbitrary

T , a general condition on rule forms has to be elaborated, but we have not yet accomplished this task.

3.2. Main algorithms: definitions

In this subsection, the algorithms Θ , Θ∗ , θ and θ∗ , as discussed in Section 3.1, are formally defined (cf., Fig. 5). Before

doing so, we shall first introduce some preparatory concepts – the notion of equality between judgements and that of

presupposed judgement.

Notation. Let Γ1 ≡ x1:K1, . . . , xn:Kn and Γ2 ≡ x1:K
′
1, . . . , xn:K

′
n . Then,

Γ ⊢ Γ1 = Γ2

stands for the following list of n judgements:

Γ ⊢ K1 = K ′
1

Γ, x1:K1 ⊢ K2 = K ′
2

. . . . . .

Γ, x1:K1 . . . , xn−1:Kn−1 ⊢ Kn = K ′
n

Definition 3.2 (Equality between judgements). Let S be a type theory. The notion of equality between judgements of the same

form in S , notation J1 = J2 (with S omitted), is inductively defined as follows:

1. (Γ1 ⊢ valid) = (Γ2 ⊢ valid) iff ⊢ Γ1 = Γ2 is derivable in S .

2. (Γ1 ⊢ K1 kind) = (Γ2 ⊢ K2 kind) iff ⊢ Γ1 = Γ2 and Γ1 ⊢ K1 = K2 are derivable in S .

3. (Γ1 ⊢ k1 : K1) = (Γ2 ⊢ k2 : K2) iff ⊢ Γ1 = Γ2 , Γ1 ⊢ K1 = K2 and Γ1 ⊢ k1 = k2 : K1 are derivable in S .

4. (Γ1 ⊢ K1 = K ′
1) = (Γ2 ⊢ K2 = K ′

2) iff ⊢ Γ1 = Γ2 , Γ1 ⊢ K1 = K2 and Γ1 ⊢ K ′
1 = K ′

2 are derivable in S .

5. (Γ1 ⊢ k1 = k′
1 : K1) = (Γ2 ⊢ k2 = k′

2 : K2) iff ⊢ Γ1 = Γ2 , Γ1 ⊢ K1 = K2 , Γ1 ⊢ k1 = k2 : K1 and Γ1 ⊢ k′
1 = k′

2 : K1 are

derivable in S .

6. (Γ1 ⊢ A1 <c1 B1 : Type) = (Γ2 ⊢ A2 <c2 B2 : Type) iff ⊢ Γ1 = Γ2 , Γ1 ⊢ A1 = A2 : Type, Γ1 ⊢ B1 = B2 : Type, Γ ⊢ c1 =

c2 : (A1)B1 are derivable in S .

13 This clause was first explicitly formulated by Marie-Magdeleine [23].



7. (Γ1 ⊢ K1 <c1 K ′
1) = (Γ2 ⊢ K2 <c2 K ′

2) iff ⊢ Γ1 = Γ2 , Γ1 ⊢ K1 = K2 , Γ1 ⊢ K ′
1 = K ′

2 and c1 = c2 : (K1)K
′
1 are derivable in S .

Remark. We note that the following inference rule is derivable:

Γ,Γ1 ⊢ J Γ ⊢ Γ1 = Γ2

Γ,Γ2 ⊢ J

Definition 3.3. Let conc(d) denote the conclusion of derivation d. Given two derivations d1 and d2 , we write d1 ∼S d2 iff

conc(d1) = conc(d2) in S . (We often omit the index S when no confusions may occur.)

Lemma 3.4. Relation ∼S is an equivalence relation.

In the following sections, we shall consider only the systems T , T [C]0 , T [C]0K , T [C] and T [C]∗ as S in Definition 3.2.

Notice that, because of the conservativity of T [C]0 and T [C]0K over T , the relation ∼ in these two systems is defined via

the equality in T .

Definition 3.5 (Presupposed judgement). The notion of presupposed judgement is inductively defined as follows.

1. If J ≡ Γ1,Γ2 ⊢ J ′ then Γ1 ⊢ valid is a presupposed judgement of J .

2. If J ≡ Γ1, x : K ,Γ2 ⊢ J ′ then Γ1 ⊢ K kind is a presupposed judgement of J .

3. If J ≡ Γ ⊢ (x : K1)K2 kind then Γ, x : K1 ⊢ K2 kind is a presupposed judgement of J .

4. If J ≡ Γ ⊢ K1 = K2 then Γ ⊢ K1 kind and Γ ⊢ K2 kind are presupposed judgements of J .

5. If J ≡ Γ ⊢ E : K (E denotes here a term or term equality) then Γ ⊢ K kind is a presupposed judgement of J .

6. If J ≡ Γ ⊢ k1 = k2 : K then Γ ⊢ k1 : K and Γ ⊢ k2 : K are presupposed judgements of J .

7. If J ≡ Γ ⊢ A <c B , then Γ ⊢ A : Type, Γ ⊢ B : Type and Γ ⊢ c : (El(A))El(B) are presupposed judgements of J .

8. If J ≡ Γ ⊢ K <c K ′ , then Γ ⊢ K kind, Γ ⊢ K ′ kind and Γ ⊢ c : (K )K ′ are presupposed judgements of J .

Definitions of Θ : T [C] → T [C]0K and Θ∗ : T [C]∗ → T [C]0K . Θ and Θ∗ are defined by induction on derivations d in T [C]

and T [C]∗ , respectively. In the following, we consider the cases in Θ ’s definition; for Θ∗ , it is similar.

1. If d is a derivation in T [C]0K , then Θ(d) ≡ d.

2. If d ends with an instance of introduction of basic coercion in C , then Θ(d) ≡ d.

3. If d ends in an instance of a rule R with only one premise, say d ≡

d1
J

R( J )
where J ≡ conc(d1), then

Θ(d) ≡

Θ(d1)
(conc(Θ(d1)))

R(conc(Θ(d1)))
.

4. Suppose d ends by rule R with more than one premise, but not the coercive application or coercive definition rules. Let

d ≡

d1
J1

. . . dk
Jk

R( Jk)
( J i ≡ conc(di), i = 1, . . . ,k),

Θ(d) ≡

Θ(d1)
conc(Θ(d1))

···
Θdk

conc(Θ(dk))
?T[C]0K-derivations

Equalities
= -transitivity and context replacement

J ′1 · · · · · · J ′k

R( J ′1 · · · · · · J ′k)

Θ(d) is defined only if the ?T [C]0k − derivations for required equalities exist.

5. Suppose d ≡
Γ

d1
⊢ f :(x:M)N Γ

d2
⊢k:K Γ

d3
⊢K <c M

Γ ⊢ f (k):[c(k)/x]N
.

Applying Θ to the derivations d1 , d2 , d3 , we get derivations

Γ1

Θ(d1)

⊢ f1:(x:M1)N1, Γ2

Θ(d2)

⊢ k2:K2 and Γ3

Θ(d3)

⊢ K3 <c3 M3



Then Θ(d) is the derivation:

Θ(d1)
Γ1⊢ f1:(x:M1)N1

co(Θ(d3))
Γ3⊢c3:(K3)M3

?1
⊢Γ1=Γ3

Γ1⊢c3:(K3)M3

Θ(d2)
Γ2⊢k2:K2

?2
⊢Γ2=Γ1

Γ1⊢k2:K2

?3
Γ1⊢K2=K3

Γ1⊢k2:K3
Γ1⊢c3(k2):M3

?4
Γ1⊢M1=M3

Γ1⊢c3(k2):M1

Γ1⊢ f1(c3(k2)):[c3(k2)/x]N1

Here Θ(d) is defined only if derivations ?1 , ?2 , ?3 and ?4 of the required equalities exist.

6. The case where d ends in an instance of coercive application rule for equality and coercive definition rule is handled

similarly.

7. It can be useful to do the “adjustment” of the premises using equalities in a deterministic way, for example, to make

the expressions that occur in the premises more to the right equal to the leftmost occurrence (like Γ2 and Γ3 were

made equal to Γ1 above). We shall assume, for certainty, that this convention is applied to both Θ and Θ∗ in the same

way.

Definitions of θ : T [C]∗ → T [C] and θ∗ : T [C] → T [C]∗ .

The transformation θ erases the ∗-symbol from a derivation in T [C]∗ . Its well-definedness (and hence totality) can be

trivially verified.

The transformation θ∗ that inserts the ∗-symbol into derivations in T [C] has the same cases as the definition of Θ ,

except the following differences: coercion application rules in T [C] are not replaced by ordinary applications but by coercive

applications of the form f ∗ a in T [C]∗ . No contextual equality rules, =-transitivity etc. are inserted.

3.3. Main results

In the following, we summarise the main results about the algorithms and their consequences concerning conservativity.

The key points (the proof structures and key proof methods) have been highlighted in the earlier subsections and their

detailed proofs can be found in [32].

The following two theorems summarise the properties of Θ and Θ∗ , in whose proofs the systems T [C] and T [C]∗ are

treated in similar ways. The ‘backbone’ of each of the theorems is in their first two statements (1) and (2), which are the

core parts of the main inductive hypothesis, as explained in the outline of the proof at the end of this section.

Theorem 3.6 (Properties of Θ).

1. Θ : T [C] → T [C]0K is a total function.

2. If conc(d) ≡ conc(d′) in T [C] then Θ(d) ∼T Θ(d′).

3. For any T [C]-derivation d, Θ(d) ∼T [C] d.

Theorem 3.7 (Properties of Θ∗).

1. Θ∗ : T [C]∗ → T [C]0K is a total function.

2. If conc(d) ≡ conc(d′) in T [C]∗ then Θ∗(d) ∼T Θ∗(d′).

3. For any T [C]∗-derivation d, Θ∗(d) ∼T [C]∗ d.

4. If the judgement J is derivable in T [C]∗ and it does not contain ∗ then it is not changed by Θ∗ , conc(Θ∗( J )) ≡ J .

Note that the third statements of the above two theorems, Theorem 3.6(3) and Theorem 3.7(3), make clear what we

mean by coercive subtyping being a definitional extension (this was discussed in Section 2.3, where the transformational

algorithms Θ and Θ∗ and the ∼-equivalence between derivations were left to be vague). This is reinforced by the following

corollary which shows that Θ and Θ∗ respect the equivalence relation ∼.

Corollary 3.8.

1. If d ∼T [C] d
′ then Θ(d) ∼T Θ(d′).

2. If d ∼T [C]∗ d′ then Θ∗(d) ∼T Θ∗(d′).

The conservativity of the star-calculus is given in the following Theorem 3.9. Note that Theorem 3.7(4) above is necessary

for the proof of conservativity and that Theorem 3.9(2) follows from Theorem 3.9(1) because T [C]0K is a conservative

extension of T .



Theorem 3.9 (Conservativity).

1. T [C]∗ is a conservative extension of T [C]0K .

2. T [C]∗ is a conservative extension of T .

The following theorem shows that T [C] and T [C]∗ are equivalent and its corollary that Θ is indeed the composition of

Θ∗ and θ∗ (cf., the picture in Fig. 5).

Theorem 3.10 (Equivalence between T [C] and T [C]∗).

1. θ∗ : T [C] → T [C]∗ is a well-defined total function.

2. θ : T [C]∗ → T [C] is the inverse of θ∗ (with respect to the identity of derivations).

3. The type theories T [C] and T [C]∗ are equivalent.

Corollary 3.11. The composition Θ∗ ◦ θ∗ is defined and equal to Θ (with respect to the identity of derivations).

3.4. Auxiliary algorithms/lemmas and outline of the main inductive proof

The proofs of the above results proceed by induction on the structure of derivations. The main induction uses several

auxiliary algorithms and lemmas that we present below. The connections between the assertions of the main theorem are

explained within the outline of the proof given at the end of this subsection.

We need to introduce certain canonical form of derivations in T [C] and T [C]∗ by removing, or restricting the uses of,

certain structural rules.

Definition 3.12. We shall say that the derivation d of T [C] or T [C]∗ is in canonical form, if the rules (Weakening), (Contextual

equality) and (Substitution) in Fig. 1 and the substitution rules of LF Appendix A may occur only immediately after the

introduction of the subtyping judgement:

Γ ⊢ A <c B : Type ∈ C

Γ ⊢ A <c B : Type

This definition applies without modification to the derivations in the subsystems of T [C] and T [C]∗ , such as T [C]0K and T .

The auxiliary algorithms/lemmas. Conceptually, to prepare the main induction, we need, on the one hand, to define the

algorithms that will simplify derivations, either reducing them to canonical form (algorithm E) or extracting derivations

with simpler final judgement (presupposition algorithm pre), and establish their properties, and on the other hand to

extend the coherence property from subtyping to subkinding.

Algorithm 3.13. There is an algorithm E that transforms every derivation d in the calculus T [C] (T [C]∗) into a canonical

derivation of the same judgement. If d is in T [C]0K (T [C]0, T ) then E(d) is in T [C]0K (T [C]0, T ).

The algorithm E works by “moving” the rules in question up along the branches of the derivation tree. The only obstacle

is the subtyping introduction rule because its conclusion corresponds to the predefined elements of C and should not

contain coercive applications.

Complete definition and proof of the correctness of this algorithm involves many technical subtleties that we cannot dis-

cuss in detail here. For example, we use certain equivalent formulations of the rules to be moved (with extra premises). We

need to proceed in certain order: we begin always at the topmost rule; weakening has to be moved first, then substitution

rules, and contextual equality the last.

Now we will consider the extraction of derivations of presupposed judgements. The input data of the extraction algorithm

consist of a derivation in canonical form, (i.e., after application of E), and the presupposed judgement whose derivation is to

be obtained. Admitting some redundancy, one may take a “source” judgement, its derivation, and a presupposed judgement

of the former as the arguments of this algorithm.

Algorithm 3.14 (Pre, presupposition algorithm). There exists an algorithm that permits to obtain from canonical derivations

of a judgement J the canonical derivations of all its presupposed judgements described in Definition 3.5. We shall write

pre( J ,d) for the derivation obtained by the algorithm for the presupposed judgement J of d.



The proof of the existence of the presupposition algorithm proceeds by induction on derivations of J (the extraction

algorithm is defined simultaneously by recursion). For example, consider

d =
Γ, x:K1

d1
⊢ K2 = K ′

2 Γ
d2
⊢ K1 = K ′

1

Γ ⊢ (x:K1)K2 = (x:K ′
1)K

′
2

and let

J1 ≡ Γ ⊢ (x:K1)K2 kind, J2 ≡ Γ, x:K1 ⊢ K2 kind

J ′1 ≡ Γ ⊢
(

x:K ′
1

)

K ′
2 kind, J ′2 ≡ Γ, x:K1 ⊢ K ′

2 kind

Then, we have

pre( J1,d) ≡
Γ, x:K1

pre( J2,d1)

⊢ K2 kind

Γ ⊢ (x:K1)K2 kind

and

pre
(

J ′1,d
)

≡

E(
Γ,x:K1

pre( J ′
2
,d1)

⊢ K ′
2 kind Γ

d2
⊢K1=K ′

1

Γ,x:K ′
1⊢K ′

2 kind
)

Γ ⊢ (x:K ′
1)K

′
2 kind

.

Lemma 3.15 (Elimination of transitivity of subkinding in T [C]0K ). There is an algorithm, transforming every canonical derivation of

the judgement Γ ⊢ K <c K ′ in T [C]0K into a canonical derivation of the judgement Γ ⊢ K <c′ K ′ in the same calculus not containing

structural rules for subkinding (in particular, transitivity) such that Γ ⊢ c = c′ : (K )K ′ in T .

To prove this lemma, a rank of dependent product kinds is defined. The proof goes by induction on the rank. (The

algorithm E is needed within.)

Corollary 3.16. If C is coherent, then coherence holds in T [C]0K in the sense that:

1. if Γ ⊢ K = K ′ , then Γ ⊢ K <c K ′ is not derivable;

2. if Γ ⊢ K <c K ′ and Γ ⊢ K <c′ K ′ then Γ ⊢ c = c′ : (K )K ′ .

In all lemmas and theorems below we assume that C is coherent. The formulations are given only for transformation Θ ,

but in fact similar lemmas are proved for Θ∗ and θ∗ (the calculi have to be modified accordingly).

The following lemma is proved by structural induction on derivations.

Lemma 3.17. Let dbe a derivation, and suppose Θ(d) is defined. Then:

1. Θ(d) ends with the same rule with d and the last judgement of Θ(d) and d are of the same form.

2. If d0 is a sub-derivation of d, then Θ(d0) is defined.

3. Let d0 be a sub-derivation of d, d′
0 be another derivation of conc(d0), Θ(d′

0) be defined and Θ(d0) ∼ Θ(d′
0). If d

′ is obtained from

d by replacing d0 with d′
0 then Θ(d′) is defined and Θ(d) ∼T Θ(d′).

The proof of two lemmas below use structural induction and that on the number of steps of the corresponding algorithm

on a given input. The proof of the second lemma uses the first.

Lemma 3.18. Let d be a derivation in T [C] and E the algorithm defined in Algorithm 3.13. If Θ(d) is defined, then Θ(E(d)) is, and

Θ(E(d)) ∼T Θ(d).

Lemma 3.19 (Presupposition lemma). Let d be a derivation in canonical form, and suppose Θ(d) is defined. Let the algorithm pre be

applied to d with presupposed judgement J of conc(d) as second argument. Then Θ(pre(d, J )) is defined and conc(Θ(pre(d, J ))) ∼T

conc(pre(Θ(d),Θd( J ))).

The following Lemma 3.20, which is purely technical and whose proof is done by structural induction on derivations in

canonical form, is mentioned because of its use in the proof of Lemma 3.21 below that plays a crucial role in the main

inductive proof.



Lemma 3.20 (Product equality). In system T [C], the following hold:

1. If Γ ⊢ (x:K1)K2 = M, then there are terms N1,N2 , such that M ≡ (x:N1)N2 .

2. If Γ ⊢ (x:K1)K2 = (x:N1)N2 , then Γ ⊢ K1 = N1 and Γ, x:K1 ⊢ N1 = N2 .

Lemma 3.21. Suppose d1 and d2 are two derivations in canonical form, and Θ(d1) and Θ(d2) are defined.

1. If d1 and d2 are both derivations of Γ ⊢ valid, then

Θ(d1) ∼T Θ(d2).

2. If d1 and d2 are both derivations of Γ ⊢ K kind, then

Θ(d1) ∼T Θ(d2).

3. If d1 is a derivation of Γ ⊢ k:K1 , d2 is a derivation of Γ ⊢ k:K2 , then

Θ(d1) ∼T Θ(d2).

4. If d is a derivation of Γ ⊢ K1 <c K2 and Θ(d) is defined, then the judgement Θd(Γ ) ⊢ Θd(K1) = Θd(K2) is not derivable in T ,

where Θd(Γ ),Θd(K1),Θd(K2) denote the corresponding parts of the judgement conc(Θ(d)).

5. If d1 is a derivation of Γ ⊢ K1 <c1 K2 and d2 is a derivation of Γ ⊢ K1 <c′ K2 in T [C] and Θ(d1), Θ(d2) are defined then the

equality Θdi (Γ ) ⊢ Θd1 (c) = Θd2 (c
′):(Θdi (K1))Θdi (K2) is derivable in T . Here Θdi (i = 1,2) are defined as Θd above.

The proof goes by induction on the sum of the sizes of two derivations. Notice especially the last two statements. To

obtain their proof, the assumption that Θ (or Θ∗) is defined is used together with coherence of T [C]0K established in

Corollary 3.16.

The outline of the main inductive proof. The proof of Theorem 3.6(1,2), that Θ is total and that the final judgement of deriva-

tions obtained by its application to the derivations of the same judgement is defined up to equality of judgements in T ,

proceeds by induction on the size of derivations. The third clause, Theorem 3.6(3), may be included as part of the inductive

hypothesis, but it is not necessary for the proof of the first two clauses Theorem 3.6(1,2).

The proof of Theorem 3.7 concerning Θ∗ is similar and may be done “in parallel” (the proofs do not depend on each

other). In particular, the clauses (3) and (4) may be included as parts of the inductive hypothesis.

The main idea used in the inductive step is to combine the presupposition Lemma 3.19 and Lemma 3.21. We observe,

that matching of the premises (more precisely, certain parts of the premises) after the application of Θ (and similarly Θ∗)

may be viewed as matching of certain presupposed judgements. For example, in case of premises Γ ⊢ K = K ′ and Γ ⊢

K ′ = K ′′ (premises of transitivity of equality rule with derivations d and d′) there is the common presupposed judgement

Γ ⊢ K ′ kind. It may be changed differently by Θ applied to d and d′ but Lemma 3.21 assures that the results are equal in T.

In general the proof of the inductive step (i.e., the proof that if the derivation d ends by some rule r with d1, . . . ,dk being

subderivations of the premises then the assumption that the Θ(d1), . . . ,Θ(dk) are defined implies that Θ(d) is defined) may

be reduced to the question of T -equality between certain presupposed judgements of the premises modified by Θ .

The clauses (4) and (5) of the Lemma 3.21 play the following roles:

• (4) is necessary to assure that there is no coercion insertions that destroy the structure of the premises in a “non-

adjustable” way, as discussed in Example 3.1;

• (5) is necessary to assure that the “adjustment” using T -equalities is possible.

The proofs of Theorem 3.9 to Corollary 3.11 are sketched as follows.

• Theorem 3.9, conservativity of T [C]∗ over T [C]0K and T , is an easy consequence of Theorem 3.7(4). Indeed, let us take

an arbitrary judgement without ∗. If d is its derivation in T [C]∗ then by this clause Θ∗(d) is the derivation of the same

judgement in T [C]0K or in T (depending only on its form). Also, the derivability of J in T [C]0K or in T implies its

derivability in T [C]∗ .

• The proof of Theorem 3.10 follows roughly the same “template” as in Theorems 3.6 and 3.7, with the following differ-

ences to be noted:

– The proof uses Theorem 3.6(1, 2) and Lemma 3.21(4) to verify that the premises will remain matching after the

insertion of ∗.

– Because of this, the insertion of equality rules to “adjust” the premises is not necessary.

• The proof of Theorem 3.10(2, 3) is obtained now from Theorem 3.10(1) and the obvious properties of θ .

• The proof of Corollary 3.11 is obtained by a separate structural induction using all three theorems.



4. Subtyping for type theories with canonical objects

Coercive subtyping is not the first notion one would consider when introducing subtyping into a type theory. Instead,

one usually first considers subsumptive subtyping, the notion of subtyping that corresponds to the notion of inclusion in set

theory and is represented by the subsumption rule. In this section, we analyse these two notions of subtyping and show

that, for the type theories with canonical objects, coercive subtyping provides us an adequate framework, while subsumptive

subtyping does not. In doing this, we shall also illustrate that coercive subtyping is rather general with many interesting

applications.

4.1. Two views on typing and subtyping

What is a type? What is a subtype? In the literature, there are two different views of types which in turn give rise to

two notions of subtyping. One of the views of types, as often found in the study of programming languages, is that of type

assignment (cf., the type assignment systems employed in functional programming languages such as ML and Haskell). Under

this view, objects and types exist independently and types are assigned to objects. Considered in this way, it is natural to

think that an object may have more than one type and a type A is a subtype of type B if all of the objects of A are also

objects of B . In other words, the view of type assignment is typically associated with the notion of subtyping characterised

by means of the so-called subsumption rule:

(SUB)
Γ ⊢ a : A Γ ⊢ A 6 B

Γ ⊢ a : B

Let us call such systems as systems with subsumptive subtyping.

Another view of types considers the relationship between types and objects in a different way; we call this view as

that of canonical objects, which is well accepted in the community of dependent type theories. Under this view, most of

the types are considered as inductive, consisting of their canonical objects, and the objects and their types depend on each

other and do not exist independently. For example, the type Nat of natural numbers consists of the canonical numbers 0

and succ(n) and the natural numbers only exist because they are objects of Nat. This view of canonical objects is the basis

to consider inductive types in dependent type theories, each of which is equipped with an induction principle (elimination

rule) expressing that, in order to prove a property for all objects of the inductive type, one only has to prove it for all of

its canonical objects. We may call such type theories as type theories with canonical objects (cf., footnote 2 in Introduction for

examples of such type theories), which have the following property:

• Canonicity: Any closed object of an inductive type is definitionally equal to a canonical object of that type.

This property of canonicity justifies the induction principles for inductive types in a type theory with canonical objects.

Is it possible to employ subsumptive subtyping for a type theory with canonical objects? Unfortunately, the answer is

no. If a type is considered as consisting of its canonical objects, it is difficult to see how subtyping could be understood or

introduced by means of the subsumption rule (SU B). To do so, one would have to answer the questions like:

1. Would the canonical objects of a subtype be canonical objects of a supertype?

2. How would induction principles be formulated to take care of the objects introduced by subtyping?

Such considerations lead to difficulties: subsumptive subtyping is incompatible with the idea of canonical object in the

sense that it cannot be employed for a type theory with canonical objects without destroying canonicity.14

4.2. Limitation of subsumptive subtyping

The subsumption rule (SU B) says that, if A is a subtype of B , then every object of type A is also of type B . However, if

T is a type theory with canonical objects (e.g., Martin-Löf’s type theory), extending it with the subsumption rule would be

problematic – canonicity would be lost. This is a very unpleasant situation, as illustrated by the following two examples.

Structural subtyping for inductive types. Structural subtyping is a natural subtyping relation for an inductive type and has

been studied for arbitrary inductive types in the framework of coercive subtyping [20,19]. However, it is incompatible with

subsumptive subtyping.

14 In type theory, canonicity is in general expressed by means of the elimination rules for inductive types – see the elimination operators EI for several

inductive types I in Appendix B. However, one might take different forms of elimination operators for some types. For example, in ECC [11], Π -types

employ application as their elimination operator and Σ-types the projection operators (and, similarly for the Π -types in Coq). In such cases, the resulting

system with full cumulativity has expected good properties such as canonicity. However, this is in general not the case, as discussed here.



Consider the example of lists (see Appendix B for the type constructor List(A)). The structural subtyping relationship for

lists is that, if A is a subtype of B , then List(A) is a subtype of List(B). This would be expressed by means of the following

rule:

A < B

List(A) < List(B)

In a framework of subsumptive subtyping, canonicity would be lost with this rule. To see this, let A and B be closed types

such that A < B . Then nil(A) : List(A) would be of type List(B). But nil(A) is not definitionally equal to any canonical object

of List(B), nil(B) or cons(B,b, l).

This has many unpleasant consequences. For example, for a propositional equality Eq(T ) over any type T , we can prove

the following proposition by means of the elimination rule for List(B):

Eq
(

List(B), x,nil(B)
)

∨ ∃b:B∃l:List(B). Eq
(

List(B), x, cons(B,b, l)
)

,

where x is an arbitrary object of type List(B). Taking x to be nil(A), we get

Eq
(

List(B),nil(A),nil(B)
)

∨ ∃b:B∃l:List(B). Eq
(

List(B),nil(A), cons(B,b, l)
)

.

But neither of the disjuncts is the case definitionally. Therefore, the property of equality reflection does not hold: there is a

mismatch between the definitional and propositional equalities (even for closed terms).

Projective subtyping. Projective subtyping is based on ‘projections’, from a type of pairs (or a record type) to a component

type. For example, let P : (Nat)Prop be a predicate over Nat. The Σ-type Σ(Nat, P ) is sometimes used to represent the

subtype of Nat of those natural numbers n such that P (n) holds. (See Appendix B for formal specifications of Nat and

Σ-types.) Now, it would be natural to consider the following subtyping relation:

Σ(Nat, P ) < Nat.

However, considered as subsumptive subtyping, this destroys canonicity. For example, consider the following term:

t ≡ pair(Nat, P ,0, p0) : Σ(Nat, P ).

t is not definitionally equal to either 0 or succ(n) for any n. Furthermore, we can prove from the elimination rule for Nat

that

Eq(Nat, t,0) ∨ ∃x:Nat. Eq
(

Nat, t, succ(x)
)

,

but neither of the disjuncts is true definitionally (as in the above example).

Here is the general situation, summarising the above two examples. Let I and J be closed inductive types which are

different (i.e., I is not definitionally equal to J ) and I < J . Assume that i be a closed object of type I . By the subsumption

rule, i : J . However, i is not definitionally equal to any of the canonical objects of J ! In other words, we would have a

closed object of an ‘inductive’ type which is not equal to any of the canonical objects of the type – canonicity fails to hold.

4.3. Coercive subtyping: adequacy and generality

Coercive subtyping is a suitable subtyping framework for type theories with canonical objects. As compared with sub-

sumptive subtyping, coercive subtyping does not introduce new objects into a type. In the framework of coercive subtyping,

A < B means that there is a (unique) coercion c : (A)B that maps any object of A to an object of B . This is consistent with

the idea of canonical object – if B is an inductive type, we do not need to change its elimination rule, since B will still have

the same objects even if A < B .

Coercive subtyping has been studied for introducing various useful notions of subtyping, including structural subtyping

and projective subtyping, as studied in Section 4.2. For instance, for structural subtyping of lists, we have the following

coercive subtyping rule:

(Lc)
A <c B

List(A) <map(c) List(B)

where map(c) is the ‘usual’ function that intuitively maps a list [a1, . . . ,an] to [c(a1), . . . , c(an)]. In general, structural sub-

typing can be introduced for all of the inductive types covered by the general inductive schemata (all inductive types as in

Martin-Löf’s type theory or as implemented in the proof assistants such as Agda and Coq) and, furthermore, the property

of coherence and that of transitivity elimination hold [20,19]. For projective subtyping for Σ-types (or types of pairs in the

non-dependent case), one may use the first projection π1 or the second projection π2 (but not both, in order to guarantee

coherence [10]) as coercions. For instance, we may have



(Σπ1)
A : Type B : (A)Type

Σ(A, B) <π1(A,B) A

This coercive subtyping relation was heavily used in proof development (see, for example, [3]).

Projective subtyping is an example of non-structural subtyping relations that the framework of coercive subtyping can

accommodate. There are many other interesting ways to introduce non-structural coercions in applications. For instance, we

may introduce the following subtyping relation:

(ξ)
Γ ⊢ A : Type Γ ⊢ a : A

Γ ⊢ 1(A,a) <ξA,a
A : Type

where 1(A,a) is the unit type that has only one object ∗(A,a) and ξA,a(x) = a for any x : 1(A,a). Such a subtyping relation

may look rather strange, but it is very useful. For example, with the help of the above rule (ξ), we can express manifest

fields in a type of modules (a Σ-type or a dependent record type) without the need to employ any extensional features in

type theory [14].

4.4. Coercions in a logical framework

We have studied coercive subtyping in the logical framework LF. Although some proof assistants such as Plastic [4]

implement logical frameworks, most of the proof assistants implement type theories directly, without implementing a logical

framework. For example, in Coq, the Π -types directly implemented: a Π -type (x:A)B in Coq corresponds to Π(A, [x:A]B)

in LF. Because of this difference, the coercion mechanism we have studied (and implemented in Plastic – see the next

section) provides a more general tool than those based on a direct syntax (cf., implementations of coercions in Coq [5,30]

and Lego [21,3]). In particular, several forms of coercions useful in practice, as studied by Bailey in his PhD thesis [3], can

be captured by our coercion mechanism.

Argument coercions. This is the usual form of coercions and it is supported by all of the proof assistants that support coercion

mechanisms. In a direct syntax, where Π -types are of the form Πx:A.B , argument coercions are given by the following

rules:

f : Πx:A.B a : A0 A0 <c A : Type

f a : [c(a)/x]B

and furthermore, f a = f (c a). When Π is specified in LF (see Appendix B), the application operator is defined by means

of the elimination operator:

app
(

A, [x:A]B, f ,a
)

= ElimΠ

(

A, [x:A]B,
[

G:Π
(

A, [x:A]B
)]

B[a],
[

g:(x:A)B
]

g(a), f
)

.

In our system of coercive subtyping, the following is a derivable rule:

f : Π(A, [x:A]B) a : A0 A0 <c A : Type

app(A, [x:A]B, f ,a) : [c(a)/x]B

and we have app(A, [x:A]B, f ,a) = app(A, [x:A]B, f , c(a)).

Type coercions. The so-called type coercions (or ‘kind coercions’) are those converting non-types into types. For instance,

suppose Group is the type of (representations of) groups and G : Group. One often says:

for all groups G and for all elements of G, . . . . . .

Formally, this is represented as

ΠG : Group Πx:G. . . . . . .

But this is ill-typed: G is not a type! For such applications, Bailey [3] has considered the so-called type coercions that

convert non-types (e.g., G) to types (e.g., G ’s carrier type El(G)). In a direct syntax, this has to be introduced separately

from the argument coercion mechanism. However, when we consider coercions based on the logical framework, the above

term is the following in LF:

Π
(

Group, [G:Group]Π(G, . . .)
)

,

which is equal to (by coercive subtyping)

Π
(

Group, [G:Group]Π
(

El(G), . . .
))

,

where Group <El U .15 Therefore, the type coercions are just special cases of argument coercions in the logical framework.

15 U is a type universe. We omit some of the technical details here.



Function coercions. This is another kind of coercions that convert from functions with a type-mismatch to type-matching

ones or even from non-functions into functions. For example, if the application f a is not well-typed and there is no

argument coercion that can be inserted to get it well-typed, we may coerce f into a function whose domain is the type

of a, to get the well-typed term (c f ) a. In an LF-based syntax, this is to coerce

app(A, B, f ,a)

into

app
(

A, B, c( f ),a
)

Such function coercions are special cases of argument coercions in the LF-based coercion mechanism.

Compared with the direct syntax, the coercive subtyping framework in a logical framework provides us a wide range

of coercion mechanisms, some of which have been discussed. In a proof assistant that implements coercions based on a

logical framework (e.g., Plastic – see the next section) these different forms of coercions are supported. In most systems

that implement coercions based on a direct syntax (e.g., Coq and Matita), only argument coercions are supported, not type

coercions or function coercions. However, even for latter systems, the above discussions give one a disciplined approach

how further forms of coercions may be implemented.

5. Implementation of coercive subtyping

Coercive subtyping has been implemented in various degrees in several proof assistants such as Coq [5,30], Lego [21,3],

Matita [25] and Plastic [4]. As mentioned above, in a proof assistant like Coq that implements the direct syntax of a type

theory, only argument coercions are supported, while in a proof assistant like Plastic that implements a logical framework,

the coercion mechanism supports other forms of coercion insertion besides argument coercions (see Section 4.4).

Based on the implementation of coercive subtyping in Plastic, the third author has implemented the newly improved

formulation, as described in Section 2.2, and improved the original implementation. This will be briefly reported below.16

Coercive subtyping has been used in many applications, including its use for notational abbreviation in proof develop-

ment. Recently, the first author has developed the type-theoretical semantics with coercive subtyping [15,16,18]. Based on

the above implementation of coercive subtyping, dot-types have also been implemented [33] and we shall use that to give

examples to illustrate the implementation.

5.1. Implementation of coercive subtyping in Plastic

Plastic implements the logical framework LF and, in particular, the type theory UTT as presented in Chapter 9 of [11]

and coercive subtyping. In Plastic, type-checking a term of the application form f (a), where f is of kind (x:K1)K2 and a of

kind K ′
1 , the following cases are considered:

• if K ′
1 is convertible (i.e., computationally equal) to K1 , then f (a) is well-typed and of kind [a/x]K1;

• if K ′
1 is not convertible to K1 and there is a coercion c such that, in the current context, K ′ <c K and K ′ and K are

convertible to K ′
1 and K1 , respectively, then f (a) is well-typed, of kind [c(a)/x]K1 , and equal to f (c(a));

• otherwise, f (a) is not well-typed.

Remark. Note that the implementation of coercions in Plastic is different from the Coq system in that convertibility is

automatically considered when deciding whether there exists a coercion between two types. ✷

5.1.1. Coercion declarations

The syntax of declaring a coercion in Plastic is as follows:

> Coercion

> Parameters <decls>

> Prerequisites <names>

> = <term> : <type>

where term is for the term of the coercion to be specified with type type, which is optional. Parameters and

Prerequisites are also optional and can be used to define parameterised coercions and coercion rules (see exam-

ples below). The latter one requires some other coercion assumptions as prerequisites. Once a user defines a coercion, the

system will give it a name with cx as a prefix. The names will be cx1, cx2, etc.

16 For the details of the implementation of coercive subtyping and dot-types, see the forthcoming thesis by Xue [32].



In Plastic, users can define coercions to handle any combination of the following cases:

• plain coercions of kind (A)B (i.e., A → B , in Plastic’s notation);

• dependent coercions of kind (x:A)B17;

• parameterised coercions: such coercions are families of coercions parameterised by some variables; and

• coercion rules stating that, if some subtyping premises hold, so does the conclusive subtyping relation.

The following gives an example for each of the above cases.

Example 5.1.

1. Plain coercions. If we want to define a plain coercion c from Man to Human, we could simply write:

> [c : Man -> Human ];

> Coercion = c : Man -> Human;

or simply

> Coercion = c;

2. Dependent coercions. We can define a function lv from List(Nat) to Vec(Nat,n) (n is the length of the vector) as follows:

lv
(

nil(Nat)
)

= vnil(Nat)

lv
(

cons(Nat, x, l)
)

= vcons
(

Nat, len(Nat, l), x, lv(l)
)

where len : (A:Type)(l:(List(A)))Nat gives the length of a list of type List(A):

len
(

A,nil(A)
)

= zero

len
(

A, cons(A, x, l)
)

= succ
(

len(A, l)
)

We can define lv as a coercion:

> Coercion = lv;

3. Parameterised coercions. We can define a function vl from Vec(Nat,n) to List(Nat):

vl
(

vnil(Nat)
)

= nil(Nat)

vl
(

vconst(Nat,n, x, v)
)

= cons
(

Nat, x, vl(v)
)

as a parameterised coercion, with parameter n:Nat.

> Coercion

> Parameters [n:\mathit{Nat}]

> = vl n;

4. Coercion rules. For example, the rule (Lc) in Section 4.3, saying that, if there is a coercion c from A to B , then we

can have a coercion map(c) from List(A) to List(B), where map is the function from (A)B to (List(A))List(B) defined as

follows:

map
(

A, B,nil(A)
)

= nil(B)

map
(

A, B, cons(A, x, l)
)

= cons
(

B, f (x),map(A, B, l)
)

This coercion can be defined as follows:

> Coercion

> Parameters [A,B:\mathit{Type}][f:A->B]

> Prerequisites f

> = map A B f : List A -> List B;

17 Dependent coercions are coercions whose kinds are dependent product kinds. See [22] for further details.



One may consider how the specified coercions would work together, as the following example shows.

Example 5.2. We assume that we have specified the coercion c from Man to Human and the coercion rule for lists, as in 1

and 4 in the above example. Plastic will generate internal names for them, say cx1 for the coercion c and cx2 for the

coercion rule.

With any given types A and B and coercion k from A to B , cx2(A, B,k) is a coercion from List(A) to List(B). So

cx2(Man, Human,cx1) is a coercion from List(Man) to List(Human). Hence, for example, if lm : List(Man) is a list of men,

then len(Human, lm) is still well-typed and equal to len(Human,cx2(Man, Human,cx1)(lm)) – the coercion is inserted as

expected. ✷

5.1.2. Remarks on coherence

In Plastic, as in other systems like Coq, coherence is checked for plain coercions: when a new coercion c from A to B

is introduced, where c is either newly specified or generated by transitivity because of the introduction of other coercions,

it checks whether there is already a coercion from A′ to B ′ which are convertible to A and B , respectively. If no such a

coercion exists, we accept the new coercion. If there exists such a coercion c′ , we check whether the two coercion terms c

and c′ are convertible: if they are, we will do nothing with it18 and, if they are not, the coercion c is rejected.

Remark. If the newly introduced coercion is generated by transitivity, when it is rejected, we will reject the term causing

this transitivity as well. For example, if we have A <c1 B , A <c2 C and we want to introduce B <c3 C . By transitivity,

we could generate a new coercion [x:A]c3(c1x) from A to C , but c2 is already a coercion from A to C and they are not

convertible. We will not only reject [x:A]c3(c1x), but also reject coercion c3 . ✷

When parameterised coercions are specified or when coercion rules are used to introduce coercions, coherence checking

is undecidable in general. Therefore, we need to show that, for example, certain coercion rules are coherent and hence can

be used in practice. Examples include those discussed in Section 4.3 and those about dot-types as discussed below.

5.2. Examples with dot-types

Inductive data types can be specified in Plastic and coercions can be introduced between them. For example, we can

introduce the first projection for Σ-types as a parameterised coercion: Σ(A, B) <π1(A,B) A. In this subsection, rather than

showing how to introduce coercions for these inductive data types, we will informally show our implementation for a new

kind of data type, dot-types, based on the implementation of coercive subtyping.

Dot-types are proposed by Pustejovsky in his Generative Lexicon Theory [29]. It has been found difficult to formalise the

notion of dot-types (see, for example, [1]). A type-theoretic treatment is given in [15] where coercive subtyping is essentially

employed to capture the notion of dot-type. In this subsection, we shall briefly explain how dot-types are implemented in

Plastic based on the implementation of coercive subtyping.

Informally, a dot-type A • B is a type of pairs with the following two attributes:

– A • B can be formed if A and B do not share components, and

– A • B is subtype of both A and B .

According to the first, two types can only form a dot-type if they do not share components. Informally, the notion of

component of a type A is defined as follows: (1) if A is not equal to a dot-type, its components are its supertypes (including

itself), and (2) if A is equal to A1 • A2 , then a component of A is either a component of A1 or a component of A2 . For

example, A • A is not a dot-type, because its constituent types are the same type. A • (A • B) is not a dot-type, because its

constituent types A and A • B share the component A.

The objects of a dot-type A • B are of the form 〈a,b〉, where a : A and b : B . There are associated projection operators p1

and p2 so that p1〈a,b〉 = a and p2〈a,b〉 = b. This makes the dot-type A • B very much like the product type A× B , but with

the difference that A and B cannot share components. An important feature of dot-types (the second attribute in the above)

is that both projections p1 and p2 are coercions; that is A • B <p1 A and A • B <p2 B . Because that the constituent types

of a dot-type do not share components, taking both projections as coercions is coherent.19 The formal details, including the

definition of component and the inference rules for dot-types, can be found in [15].

Dot-types are not ordinary inductive data types. As we have explained above, for A • B to be a dot-type, the constituent

types A and B should not share components. In an implementation of dot-types, this special condition of type formation

must be checked and adhered to. In order to make sure of this, we have to implement the dot-types as special data types,

18 That is, c′ will be taken as the representative coercion. In other words, in Plastic, only the first coercion will be kept and the latter convertible ones

will simply be ignored.
19 This makes the dot-types different from the product types from another angle: if we took both projections π1 and π2 for product types A × B as

coercions, the resulting system would be incoherent, as shown by Y. Luo in his PhD thesis [10].



different from ordinary inductive types. In Plastic, we use A*B for dot-type A • B and dot<a,b> for a dot term 〈a,b〉. Here

are some simple examples of using dot-types in Plastic. Further details of the implementation could be found in [33].

Example 5.3. We can define a dot-type or a dot-term simply in the following way:

1. If we have two types A, B which do not share components, we could simply define a type M to be A • B like this:

> [M = A*B];

The system will generate two coercions from A • B to A and B .

2. We can also define a dot term. If we have two terms a:A and b:B , we can define a dot term 〈a,b〉 like this:

> [m = dot<a,b>];

Now if A and B do not share components (otherwise, an error occurs), m is defined to be a dot term 〈a,b〉 which is of

type A • B . The system will also generate two coercions from A • B to A and B .

Example 5.4. In the following examples, the types share components in different ways and, therefore, none of them could

be defined as a dot-type or dot term: they fail and warnings will be shown in all the following cases.

1. The two constituents are the same:

> [M = A*A];

2. A • C and A • B have the same component A:

> [M = (A*C)*(A*B)];

3. A is a subtype of B , by definition, they share component A:

> [c:A->B];

> Coercion = c;

> [M = A*B];

Appendix A. Judgement forms and inference rules of LF

Kinds in LF. The types in LF are called kinds, including

1. Type – the kind representing the universe of types;

2. El(A) – the kind of objects of type A; and

3. (x:K )K ′ (or simply (K )K ′ when x /∈ F V (K ′)) – the kind of dependent functional operations such as the abstraction

[x:K ]k′ .

Judgement forms of LF-specified type theories. Any type theory specified in LF has the following five forms of judgements:

Γ ⊢ valid, Γ ⊢ K kind, Γ ⊢ K = K ′, Γ ⊢ k:K , Γ ⊢ k = k′:K

Inference rules of LF. The following are the inference rules of LF. Any type theory specified in LF contains these rules.

Contexts, assumptions and weakening

〈〉 ⊢ valid

Γ ⊢ K kind x /∈ F V (Γ )

Γ, x:K ⊢ valid

Γ, x:K ,Γ ′ ⊢ valid

Γ, x:K ,Γ ′ ⊢ x : K

Γ,Γ ′ ⊢ J Γ ⊢ K kind Γ,Γ ′′ ⊢ valid

Γ,Γ ′′,Γ ′ ⊢ J

where J is of the form valid, K ′ kind, K1 = K2 , k : K ′ or k1 = k2 : K ′ . General equality rules

Γ ⊢ K kind

Γ ⊢ K = K

Γ ⊢ K = K ′

Γ ⊢ K ′ = K

Γ ⊢ K = K ′ Γ ⊢ K ′ = K ′′

Γ ⊢ K = K ′′



Γ ⊢ k : K

Γ ⊢ k = k : K Γ ⊢ k′ = k : K

 Γ ⊢ k = k′ : K Γ ⊢ k = k′ : K Γ ⊢ k′ = k′′ : K

Γ ⊢ k = k′′ : K

Equality typing rules

Γ ⊢ k : K Γ ⊢ K = K ′

Γ ⊢ k : K ′

Γ ⊢ k = k′ : K Γ ⊢ K = K ′

Γ ⊢ k = k′ : K ′

Γ, x : K ,Γ ′ ⊢ J Γ ⊢ K = K ′

Γ, x : K ′,Γ ′ ⊢ J

where J is of the form valid, K ′ kind, K1 = K2 , k : K ′ or k1 = k2 : K ′ . Substitution rules

Γ, x:K ,Γ ′ ⊢ valid Γ ⊢ k : K

Γ, [k/x]Γ ′ valid

Γ, x:K ,Γ ′ ⊢ K ′ kind Γ ⊢ k : K

Γ, [k/x]Γ ′ ⊢ [k/x]K ′ kind

Γ, x:K ,Γ ′ ⊢ K ′ kind Γ ⊢ k = k′ : K

Γ, [k/x]Γ ′ ⊢ [k/x]K ′ = [k′/x]K ′

Γ, x:K ,Γ ′ ⊢ k′ : K ′ Γ ⊢ k : K

Γ, [k/x]Γ ′ ⊢ [k/x]k′ : [k/x]K ′

Γ, x:K ,Γ ′ ⊢ k′ : K ′ Γ ⊢ k1 = k2 : K

Γ, [k1/x]Γ ′ ⊢ [k1/x]k′ = [k2/x]k′ : [k1/x]K ′

Γ, x:K ,Γ ′ ⊢ K ′ = K ′′ Γ ⊢ k : K

Γ, [k/x]Γ ′ ⊢ [k/x]K ′ = [k/x]K ′′

Γ, x:K ,Γ ′ ⊢ k′ = k′′ : K ′ Γ ⊢ k : K

Γ, [k/x]Γ ′ ⊢ [k/x]k′ = [k/x]k′′ : [k/x]K ′

The kind Type

Γ ⊢ valid

Γ ⊢ Type kind

Γ ⊢ A : Type

Γ ⊢ El(A) kind

Γ ⊢ A = B : Type

Γ ⊢ El(A) = El(B)

Dependent product kinds

Γ ⊢ K kind Γ, x:K ⊢ K ′ kind

Γ ⊢ (x:K )K ′ kind

Γ ⊢ K1 = K2 Γ, x:K1 ⊢ K ′
1 = K ′

2

Γ ⊢ (x:K1)K
′
1 = (x:K2)K

′
2

Γ, x:K ⊢ k : K ′

Γ ⊢ [x:K ]k : (x:K )K ′
(ξ)

Γ ⊢ K1 = K2 Γ, x:K1 ⊢ k1 = k2 : K

Γ ⊢ [x:K1]k1 = [x:K2]k2 : (x:K1)K

Γ ⊢ f : (x:K )K ′ Γ ⊢ k : K

Γ ⊢ f (k) : [k/x]K ′

Γ ⊢ f = f ′ : (x:K )K ′ Γ ⊢ k1 = k2 : K

Γ ⊢ f (k1) = f ′(k2) : [k1/x]K ′

(β)
Γ, x:K ⊢ k′ : K ′ Γ ⊢ k : K

Γ ⊢ ([x:K ]k′)(k) = [k/x]k′ : [k/x]K ′
(η)

Γ ⊢ f : (x:K )K ′ x /∈ F V ( f )

Γ ⊢ [x:K ] f (x) = f : (x:K )K ′

Appendix B. LF-specifications of some inductive types

The specifications of the inductive types Nat, List(A), Π(A, B) and Σ(A, B) in the logical framework LF are given below.

Nat – the type of natural numbers.

Nat : Type

0 : Nat

succ : (Nat)Nat

ENat :
(

C :(Nat)Type
)

(

c:C(0)
)(

f :(x:Nat)
(

C(x)
)

C
(

succ(x)
))

(z:Nat)C(z)

ENat(C, c, f ,0) = c : C(0)

ENat

(

C, c, f , succ(n)
)

= f
(

n,ENat(C, c, f ,n)
)

: C
(

succ(n)
)



List(A) – the types of lists.

List : (Type)Type

nil : (A:Type)List(A)

cons : (A:Type)(a:A)
(

l:List(A)
)

List(A)

EList : (A:Type)
(

C :
(

List(A)
)

Type
)

(

c:C
(

nil(A)
))(

f :(a:A)
(

l:List(A)
)(

C(l)
)

C
(

cons(A,a, l)
))

(

z:List(A)
)

C(z)

EList

(

A,C, c, f ,nil(A)
)

= c : C
(

nil(A)
)

EList

(

A,C, c, f , cons(A,a, l)
)

= f
(

a, l,EList(A,C, c, f , l)
)

: C
(

cons(A,a, l)
)

Π -types of dependent functions.

Π : (A:Type)
(

(A)Type
)

Type

λ : (A:Type)
(

B:(A)Type
)(

(x:A)B(x)
)

Π(A, B)

EΠ : (A:Type)
(

B:(A)Type
)(

C :
(

Π(A, B)
)

Type
)

((

g:(x:A)B(x)
)

C
(

λ(A, B, g)
))

(

z:Π(A, B)
)

C(z)

EΠ

(

A, B,C, f , λ(A, B, g)
)

= f (g) : C
(

λ(A, B, g)
)

Σ-types of dependent pairs.

Σ : (A:Type)
(

(A)Type
)

Type

pair : (A:Type)
(

B:(A)Type
)(

(x:A)B(x)
)

Π(A, B)

EΣ : (A:Type)
(

B:(A)Type
)(

C :
(

Σ(A, B)
)

Type
)

(

f :(x:A)
(

y:B(x)
)

C
(

pair(A, B, x, y)
))

(

z:Π(A, B)
)

C(z)

EΣ

(

A, B,C, f , pair(A, B,a,b)
)

= f (a,b) : C
(

pair(A, B,a,b)
)
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