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ABSTRACT
In this paper we present the Toulouse Vanishing Points
Dataset, a public photographs database of Manhattan scenes
taken with an iPad Air 1 . The purpose of this dataset
is the evaluation of vanishing points estimation algorithms.
Its originality is the addition of Inertial Measurement Unit
(IMU) data synchronized with the camera under the form
of rotation matrices. Moreover, contrary to existing works
which provide vanishing points of reference in the form of
single points, we computed uncertainty regions. The Toulouse
Vanishing Points Dataset is publicly available at
http://ubee.enseeiht.fr/tvpd

Categories and Subject Descriptors
I.4.8.h [ Artificial Intelligence]: Image Processing and
Computer Vision—Sensor fusion; I.2.10.b [ Artificial In-
telligence]: Vision and Scene Understanding—3D/stereo
scene analysis; I.4.1.b [Image Processing and Computer
Vision]: Digitization and Image Capture—Imaging geome-
try

General Terms
Performance
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1. INTRODUCTION
Image understanding requires the analysis of the geomet-

ric properties of the image: since the perspective projection
is a non-invertible mapping between the 3D dimensional
scene and the 2D image plane, the depth information is
lost, thus making image interpretation a challenging task
[5]. Studying and analysing the geometric properties of an
image is thus crucial to recover the spatial layout of the
scene.

A well known geometric entity that can be used as strong
cue for image understanding is the vanishing point. Un-
der the perspective projection, parallel lines in the scene
are mapped to a pencil of lines that intersect in a so-called
vanishing point (VP), an image point that is the projec-
tion of the intersection of the parallel lines at infinity. In a
calibrated camera, a vanishing point gives the 3D direction
of the pencil of lines. Detecting a VP can thus provide a
strong constraint on the scene geometry. For example, most
man-made scenes consist of three orthogonal dominant di-
rections, i.e. there are three main sets of parallel lines; this
is often referred to as the “Manhattan World” [13]. By de-
tecting these three orthogonal VPs associated to the sets of
parallel lines, some information about the camera and the
scene can be inferred: e.g . the camera can be calibrated [9,
39] and its rotation w.r.t. the scene can be estimated [2, 22,
24]. Vanishing points can be used as priors to constrain the
3D reconstruction of such scenes [18]. Recently, vanishing
points have received a lot of interest in many works dealing
with the indoor and outdoor scene understanding and recon-
struction from a single image [21, 25, 28] as a fundamental
cue for recovering the spatial layout of the scene [30, 33].

Another important source of information that can help
the interpretation of a scene is the inertial data. In the last
years we witnessed the development and the large diffusion
of mobile devices equipped with inertial measurement unit
(IMU), such as accelerometers, magnetometers, and gyro-
scopes. Thanks to such sensors, the absolute orientation
and the gravity vector of the camera can be estimated for
each taken picture. Inertial data has been widely used in
robotics in combination with the visual data in order to es-
timate the movement and the pose of the robots [12]. The
recent diffusion of mobile devices has fostered their adoption
in many computer vision and multimedia applications, such
as 3D reconstruction [36], in order to provide better esti-
mation of the camera movement, especially when the visual
data is affected by, e.g ., occlusions and motion blur.

The fusion between inertial and visual data is thus be-
coming an interesting topic because of their complementar-
ity. Inertial data is indeed computationally cheap but suffers
from drift and measurement noise; visual data can provide
more precise and stable measurements but it is computa-
tionally more expensive. In the case of VP detection, the
orientation and gravity vector provided by the IMU sensors
can be used as priors for driving and easing the process of
VP detection. In this paper, we propose a new dataset col-
lecting images of indoor and outdoor “Manhattan” scenes
taken with a modern mobile device equipped with IMU sen-



sors. Each image stores the inertial data (rotation matrix)
of the moment at which it has been captured. The dataset
provides a ground truth for the VPs for each image: instead
of providing a single point for each of the 3 orthogonal di-
rections, we rather supply uncertainty regions in which the
triplet of orthogonal VPs shall lie, according to the manually
extracted segments.

The main contributions of this work are the creation of
a new dataset of photographs associated with the camera
orientation provided by IMU data and a new method to
compute regions of uncertainty for the location of the VPs
using line segments. To the best of our knowledge, there
is no public dataset containing photographs associated with
IMU data. In this paper we present our efforts to create one
such dataset.

The paper is organized as follows: Section 3 describes re-
lated datasets used for the evaluation of VPs algorithms and
their limitations. Section 2 gives some background on VPs
computation from image processing and how to use IMU
data as a prior for estimating the VPs. Section 4 explains
how we computed our reference VPs with the ground truth
segments while Section 5 describes the methodology used to
collect the data. Finally, Section 6 concludes the paper.

2. BACKGROUND
In the following subsections, we provide a short back-

ground on the problem of estimating vanishing points with
a general, non-exaustive overview of the main techniques.
We also present an overview of the IMU sensors that are
typically found on modern mobile devices, the data they
provide and how it can be used to ease the VP detection
and estimation.

2.1 Vanishing point detection
The detection of vanishing points requires the extraction

of geometric features in the image, such as image gradients,
lines or line segments, which can be clustered to estimate the
VPs. Each cluster contains a pencil of lines corresponding
to parallel 3D lines of the scene. This task can be consid-
ered a “chicken-and-egg” problem: if the feature clustering
is known, then the VPs can be easily estimated as the point
that minimizes a certain distance measure w.r.t. the fea-
tures of each cluster. Conversely, if the VPs are given, the
feature clustering is easily solved by assigning each feature
to the “closest” VP (w.r.t. a certain distance measure). For
this reason, a prior knowledge about the scene or the camera
orientation given by the IMU sensor might ease the problem,
as described in the next section.

In this work we focus on the VP detection in “Manhattan
scenes”, in which there exist 3 dominant, mutually orthogo-
nal directions. The above problem is thus constrained to the
retrieval of a triplet of mutually orthogonal VPs. As stated
in Section 1, this problem is crucial for many computer vi-
sion applications dealing with indoor and outdoor scene in
man-made environments.

Generally, most of the proposed methods in the literature
for estimating orthogonal VPs employ line segments as im-
age features, which can be extracted with advanced image
processing techniques [19] based on a-contrario approach.
Other approaches consider image gradients [10], low level
features that provide local orientation information, and that
mostly used to detect a single, dominant VP.

The estimation procedure then follows two main steps: the

clusterization of the line segments and the VP estimation for
each cluster. Various techniques have been suggested in the
literature for the clusterization of the lines: Hough based
methods [5], RANSAC frameworks [1, 31, 40] and J-linkage
algorithm [37]. The second step relies on the estimation of
the VP for each cluster as the point that minimizes an er-
ror function W for each segment line of the cluster. Several
formulations have been proposed for W , such as point-line
distance error functions [3, 31, 37], orientation error func-
tions [15, 29, 32], or probabilistic error functions [11, 41].
The final triplet is then chosen among the possible solutions
or, as in [31] the orthogonality constraint can be enforced
during the VP estimation process.

Some recent methods do not follow a tightly two-step pro-
cess but they rather try to solve the problem globally: [6]
tries to find the rotation (i.e. a triplet of VP) that maxi-
mizes the number of clustered segments. [3] follows a global
approach in which the clusterization and the VP estima-
tion are solved simultaneously as an Uncapacitated Facility
Location problem. Another global approach proposed by
[24] casts the VP detection in an Expectation Maximization
framework.

2.2 Inertial data
In the last decades we witnessed a notable breakthrough

in microelectronics which brought low-cost miniaturized sili-
con sensors to common mobile devices such as smart-phones
and tablets. In particular, Inertial Measurement Unit (IMU)
sensors usually consist of accelerometers measuring the ac-
celeration of the device, and gyroscopes measuring the rate
of change of the device’s orientation. The IMU measure-
ments can provide good accuracy information on the po-
sition, velocity, and attitude over a short period of time.
On the other hand, they are usually corrupted by differ-
ent types of error sources such as sensor noises, scale factor
and temperature dependent bias, which are nonlinear and
difficult to characterize [17]. Moreover, they all provide de-
rived measures (acceleration, angular velocity), which need
to be integrated to compute the current position and atti-
tude, thus causing error accumulation and a significant drift
in the position and the attitude over the course of time.
These problems can be mitigated by employing optimal es-
timation and filtering techniques such as the Kalman filter
[23].

In this work we consider the attitude data provided by
the IMU sensor, which is normally given w.r.t. the direc-
tion of the Earth magnetic North pole. This can be con-
sidered as an estimation of the camera orientation, under
the realistic assumption that the two reference systems are
aligned [12]. Usually the device operating system allows
the developers to retrieve the attitude information in the
form of a rotation matrix R , encoding the yaw, pitch and
roll angles of the device. From this matrix, it is easy to re-
cover the vertical VP (i.e. the zenith) of a Manhattan scene:

vzenith = K R [0 0 1] T, where K is the calibration matrix of
the camera.

The vertical VP is dual to the horizon line, i.e. the pro-
jection of the plane containing the camera center, whose
normal is parallel to the direction of the vertical VP. Since
the two remaining VPs of the Manhattan scene are mutu-
ally orthogonal w.r.t. the detected vertical VP, the detection
problem can be thus reduced to the search of one VP along
the horizon line.



Figure 1: The three VPs form an orthogonal frame.
C is the optical center of the camera. The knowledge
of the zenith enables to reduce the search of the two
VPs orthogonal to the zenith, V Px and V Py on the
horizon.

3. EXISTING DATASETS
There are two main well known datasets that have been

used to compare VP detection methods. The York Urban
Database [15, 16], published in 2008, was the first extensive
dataset for VPs estimation algorithms evaluation in Man-
hattan scenes. It is the most popular dataset used by most of
the works to assess the effectiveness of the proposed method.
This dataset consists of 102 indoor and outdoor images of
Manhattan scenes. Each image is provided with the hand-
made ground truth line segments: an interactive program is
used to select and identify line segments with sub-pixel pre-
cision and assign to each of them the corresponding Manhat-
tan direction, so that 3 clusters of lines are obtained. The
camera is calibrated using a subset of the images: assum-
ing a natural camera (i.e. square pixels), the focal length
and the principal point are estimated in a non linear opti-
mization process by enforcing the mutual orthogonality of
the estimated VP triplets. The VPs are estimated using
the algorithm proposed by [11]. It must be noted that this
algorithm computes VP using a statistical framework from
a given set of line segment clusters, and each VP is thus
estimated separately and no orthogonality constraint is en-
forced. Then an orthogonal frame is fitted to each triplet
to enforce the constraint. This yields to an orthogonal so-
lution which is not necessary optimal given the statistical
distribution of the line intersections used for the estimation.
The resulting Manhattan directions, indeed, can be quite
far from the line segments intersections as it can be seen
in Figure 2. The obtained orthogonal solution might be a
biased solution that may not be suitable to be used as ref-
erence to evaluate and compare VPs estimation algorithms.

Recently, the PKU Campus Database [26, 27] has been
proposed as a VP dataset consisting of 200 indoor and out-
door photographs of Manhattan scenes. The dataset is in-
spired by the York Urban Database and indeed it has been
built in a similar way, except for camera calibration that
has been done off-line using the method proposed by [35]
and [42]. The line segments are detected automatically but
the algorithm is not described. Finally, the VP are com-
puted using the same method as the York Dataset, thus
being affected by the same issues described above.

For the sake of completeness, we also mention the Eurasian

Figure 2: The green square is the estimated VP
by [15] (associated horizon in red). The light green
point (associated horizon dashed) is the VP after
orthogonalization of the Manhattan directions: it
lies far from the common intersection zone of the
associated line segments.

Cities Dataset [4, 38], which collects 103 outdoor urban
images. However, the dataset was built with a different
scope in mind, focusing on the more general scenes that
do not necessarily fit the Manhattan hypothesis. An in-
teresting characteristic is that the authors provide, among
other ground truth data, the horizon for each image, com-
puted using a least square minimization of the horizontal
VPs. Our dataset provides the same information obtained
directly from the IMU data.

Vanishing points algorithms are generally evaluated by
comparing the position of the estimated VP with the refer-
ence VP provided by the dataset. This scheme assumes that
the reference VPs are not biased, which is not the case of
the previously mentioned datasets.

Creating a ground truth for VP detection is a hard and
challenging task, even if the images are manually annotated:
as pointed out in [41], many deviations from a perfect imag-
ing system such as camera noise, camera calibration errors,
line segment extraction error, etc. affect the estimation of
the ground truth orthogonal VPs, and only optimal or sub-
optimal solution can be found for them. The only way to
have real ground truth data for the VP would be the use of
synthetic images, in which all the parameters are known by
design, or using real images and highly accurate and costly
instruments (e.g . electronic theodolites) to measure the ac-
tual attitude of the camera w.r.t. the Manhattan scene.

A more meaningful approach that we are proposing in this
dataset is to provide an uncertainty region for the locations
of the VPs, as opposed to single points. This information
can be used to reject or accept the solution of an algorithm
(the solution is respectively outside or inside the region).

4. GROUND TRUTH CREATION
The construction of a vanishing points dataset requires

two elements: photos and reference vanishing points. We
decided to compute the reference VPs with hand-labeled line
segments which must be accurately drawn. The uncertainty
of a ground truth line segment comes from the selection
of the two extrema, which can be modeled with circular
regions of uncertainty around the extrema (see Figure 3).
Shufelt [34] was the first to introduce the error modeling for
line segment endpoints in a VP detection algorithm. The
true position of a line segment endpoint is assumed to lie
among all the possible locations within its pixel. The lines



Figure 3: The uncertainty of a ground truth line seg-
ment is modeled with circular regions of uncertainty
around the two extrema a and b. The lines con-
necting all these possible endpoints sweep an area
bounded by two lines, called double wedge (the area
in grey), in which the associated VP v should lie.

Figure 4: The intersection of the different double
wedges w1, w2, w3 associated to the image of par-
allel lines of the scene is a convex polygon in which
the VP should lie.

connecting all these possible endpoints sweep an area which
is bounded by two lines, l1 and l2 as in Figure 3. This area
is called a double wedge [7] (the grey area in Figure 3). In
his proposed method the Gaussian sphere [5] is divided into
accumulators, each wedge region is projected on the sphere
and the corresponding accumulators are incremented. The
maxima on the sphere then represent the directions of the
VPs.

More recently, Xu [41] introduced a probabilistic consis-
tency measure, which models the uncertainty of endpoint
locations with a 1D Gaussian which is then used in an EM
framework to estimate the VPs. Contrary to Xu, we followed
a geometrical approach because our objective is to compute
a confidence region for the solution, rather than finding one
VP solution. In the confidence regions, all the possible VPs
are equiprobable since we do not assume it is less unlikely
to commit a two pixels error on an endpoint rather than one
pixel. In this sense, our approach to find the regions is closer
to [34]: we work in the image plane, and instead of using
accumulators, we compute the exact geometric intersection
of the double wedges.

Assuming the real line associated with the annotated line
segment is contained in its double wedge, the intersection of
all the double wedges of a given line segment cluster forms
a region in which the VP should lie (see Figure 4).

Using double wedges to model the uncertainty of the line
segment is interesting as they naturally take into account the
length of the segment. In general, long line segments should
be more robust as they mitigate the annotation error of the
two extrema. A long line segment, indeed, has a thinner
double wedge, and thus it will contribute to narrow down the

Figure 5: The yellow polygon is the intersection of
the green double wedges. The cyan line is the hori-
zon computed from the IMU data.

uncertainty region of the associated VP. Conversely, short
segments have wider wedges which do not help to reduce the
uncertainty region.

We reformulate the double wedge intersection problem in
term of Boolean operations on half-planes. Let l1 and l2 be
the bounding lines (see Figure 3) of a segment [a b]. With-
out loss of generality, consider the half-planes h1 and h2

bounded by l1 and l2 respectively, and both containing a.
The double wedge w associated to [a b] is defined as

w = (h1 ∩ h2) ∪
(
h1 ∩ h2

)
,

where hi denotes the complementary of hi, i.e. the other
half of the plane.

The intersection of the double wedges of all the line seg-
ments thus requires the computation of the intersections and
unions of the half-planes hi of each line segment, which is
a well-known computational geometry problem treated in
[7]. The computation of the intersection is performed in the
projective plane, which is equivalent to performing the com-
putation on the Gaussian sphere: this allows us to compute
the intersection of parallel lines and to handle the case of
VPs at infinity.

5. DATA COLLECTION METHODOLOGY
At the time of writing, the dataset contains 114 pho-

tographs (40 indoor and 74 outdoor). The photos were taken
at different moments of the day and therefore have various
exposures. A majority of the indoor scenes contain low levels
of clutter (chairs, sofas, . . . ). In contrast, a majority of out-
door scenes contain a lot of occluding objects such as trees
and vehicles, making the estimation of VP more challeng-
ing. The photos were taken holding the camera in different
attitudes in order to have a sufficient variety of poses: post-
hoc analysis revealed a mean and maximal absolute angular
value between the camera principal axis and the horizon
of 6.7◦ and 26◦ respectively. Figure 6 shows some selected
photos from the dataset.

We collected the photos using an iPad Air 1 running iOS
8 in landscape mode with a 1920x1080 resolution and using
the following iOS capture presets: automatic white balance,
auto exposition and fixed focus. The auto-focus was disabled
because it can add a significant random lag between the



Figure 6: Some photos of the dataset with their
ground truth line segments (red, green, blue), the
horizon line computed from the IMU data (cyan
line) and the polygon of the uncertainty region com-
puted on the red line segments. On the top row, the
horizon lines computed with the IMU data do not
intersect the yellow polygons because of the bias of
the IMU data.

moment the shutter button is pressed and the effective shot
of the photo.

Instead of using the raw data values of the accelerometers,
gyroscopes and the magnetometer, we used the CMDevice-
Motion class of the iOS SDK which provides high level data
such as the gravity and the attitude of the device through
sensor fusion algorithms not detailed in the official docu-
mentation. A 30Hz sampling rate was set to collect the IMU
data. We developed a specific application for recording the
device orientation provided by the CMDeviceMotion class
along the taken photos. The source code of the application
is available for download at the dataset website.

Camera and IMU calibration.
The camera was calibrated offline using Bouguet camera

calibration toolbox [8] to estimate the intrinsic parameters.
Experiments on the IMU sensors holding the iPad on a try
square shown that in the worst case, we could obtain 2 de-
grees of error on the roll and pitch values. This bias is
visible in the Figure 6, where the horizon lines computed
with the IMU data do not intersect the polygons of the un-
certainty regions associated to the VPs orthogonal to the
zenith. In addition, no calibration of the IMU sensors is
performed since our observations revealed that the flatness
of the ground is less reliable and repeatable than the orien-
tation values returned without setting a reference attitude,
e.g . the ground.

A known issue affecting mobile devices is the synchroniza-
tion between the data provided by the IMU sensors and the
image provided by the camera [20]. Due to the low-cost
design, most devices do not synchronize the IMU and im-
age data using, e.g ., a global common timestamp. In [20] it
is shown that this may be critical when designing methods
that fuse IMU and image data. Our preliminary experiments
demonstrated that for our device the IMU data could be not

Figure 7: The web application used to annotate the
images with line segments.

synchronized w.r.t. the orientation computed using the im-
age. The mean lag between the IMU data and the camera
frames was found to be 16ms with a standard deviation of
140ms. To take into consideration this uncertainty and pro-
vide smoother data, we computed the attitude matrix as the
average rotation [14] over a time window covering the mean
lag measured during the preliminary experiments.

Line segments creation.
In order to generate the ground truth, a web application

has been developed (see Figure 7) to let the users accurately
draw the line segments and to associate them with one of the
three Manhattan directions (as in [15]). A post-hoc analysis
revealed a mean of 16.7 segments per photo. We assumed a
4 pixels accuracy around the endpoints clicked by the users.
This value has been determined experimentally as the av-
erage value that ensured that the intersection of the double
wedges was not empty and contained the VP solution pro-
vided by [3]. We also made comparisons on the York Urban
Database, see Figure 8. As expected, the VP computed with
[11] lie in our uncertainty regions. Since the orthogonaliza-
tion process is independent of the line segments, the orthog-
onalized VP do not always lie in the uncertainty regions (see
Section 3).

The source code of the application is available for down-
load at the dataset web-page.

Data organisation.
All the pictures are in the same folder. The IMU data are

stored in the EXIF UserComment field of the photos. The
data are given in JSON format and they contain the attitude
of the mobile device at the time of the shot, represented as
a change of basis matrix from the world reference frame to
the camera frame.

The line segments ground truth are stored in JSON format
in a separate file in the format imagename.txt. Finally, a
imagename.mat Matlab binary file is also provided to easily
access to the line segments and the mobile device attitudes.

Dataset license.
The source code is distributed under the terms of the BSD

licence and the dataset content under the terms of the Cre-
ative Common by-nc-sa Licence.

6. CONCLUSION
In this paper we presented a new photographs dataset

of indoor and outdoor Manhattan scenes for the evaluation
and comparison of vanishing points estimation algorithms.



Figure 8: Comparison on the York Urban Database.
The red squares (VP provided by the dataset using
[11], associated horizon in red) and the blue circles
(VP computed using [3]) lie in our uncertainty re-
gions. The orthogonalized VP are represented with
pink triangles (associated horizon dashed) are not
in our polygons.

This dataset is the only one to our knowledge to include
IMU data. Instead of providing real ground truth data for
the VPs, we opted for a more meaningful approach con-
sisting in computing uncertainty regions for the location of
the vanishing point. These regions are provided in the form
of polygons and are computed by intersecting the double
edges of the ground truth line segments. We believe that
the use of IMU data, despite their bias, can ease the com-
putation of vanishing points and provide more robust re-
sults with images containing a majority of outlier line seg-
ments. We hope our works will stimulate the design and the
comparison of algorithms using IMU data which are widely
used in robotics and in mobile device applications. The
Toulouse Vanishing Points Dataset is available for download
at http://ubee.enseeiht.fr/tvpd
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[25] J. Košecká and W. Zhang. Extraction, matching, and pose recovery based
on dominant rectangular structures. Computer Vision and Image Understanding,
(February 2005), 2005.

[26] B. Li, K. Peng, X. Ying, and H. Zha. PKU Campus Database.
http://www.cis.pku.edu.cn/vision/vpdetection/, 2012.

[27] B. Li, K. Peng, X. Ying, and H. Zha. Vanishing point detection using
cascaded 1D Hough Transform from single images. Pattern Recognition
Letters, 33(1):1–8, Jan. 2012.

[28] B. Micusik, H. Wildenauer, and J. Kosecka. Detection and matching of
rectilinear structures. In Proceedings of the 2008 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR2008), pages 1–7. IEEE, June 2008.

[29] M. Nieto and L. Salgado. Real-time robust estimation of vanishing points
through nonlinear optimization. In N. Kehtarnavaz and M. F. Carlsohn,
editors, Proceedings of SPIE 7724, Real-Time Image and Video Processing 2010,
pages 772402–772402–14, Apr. 2010.

[30] S. Ramalingam, J. K. Pillai, A. Jain, and Y. Taguchi. Manhattan Junction
Catalogue for Spatial Reasoning of Indoor Scenes. In Proceedings of the 2013
IEEE International Conference on Computer Vision (ICCV2013), pages 3065–3072.
IEEE, June 2013.

[31] C. Rother. A new approach to vanishing point detection in architectural
environments. Image and Vision Computing, 20(9-10):647–655, Aug. 2002.

[32] G. Schindler and F. Dellaert. Atlanta world: an expectation maximization
framework for simultaneous low-level edge grouping and camera
calibration in complex man-made environments. In Proceedings of the 2004
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004),
volume 1, pages 203–209. IEEE, 2004.

[33] A. G. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box in the Box:
Joint 3D Layout and Object Reasoning from Single Images. In Proceedings
of the 2013 IEEE International Conference on Computer Vision (ICCV2013), pages
353–360. IEEE, Dec. 2013.

[34] J. Shufelt. Performance evaluation and analysis of vanishing point
detection techniques. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 21(3):0–6, 1999.

[35] P. Sturm and S. Maybank. On Plane-Based Camera Calibration: A
General Algorithm, Singularities, Applications. In Proceedings of the 1999
IEEE Conference on Computer Vision and Pattern Recognition (CVPR1999),
volume 1, pages 1432–1437, 1999.

[36] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and
M. Pollefeys. Live metric 3d reconstruction on mobile phones. In
Proceedings of the 2013 IEEE International Conference on Computer Vision,
Washington, DC, USA, 2013. IEEE Computer Society.

[37] J.-P. Tardif. Non-iterative approach for fast and accurate vanishing point
detection. In Proceedings of the 2009 IEEE International Conference on Computer
Vision (ICCV2009), pages 1250–1257. IEEE, Sept. 2009.

[38] E. Tretyak, O. Barinova, P. Kohli, and V. Lempitsky. Geometric Image
Parsing in Man-Made Environments. International Journal of Computer Vision,
97(3):305–321, Sept. 2011.

[39] H. Wildenauer and A. Hanbury. Robust camera self-calibration from
monocular images of Manhattan worlds. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR2012), pages
2831–2838. IEEE, June 2012.

[40] H. Wildenauer and M. Vincze. Vanishing Point Detection in Complex
Man-made Worlds. In Proceedings of the 2007 International Conference on Image
Analysis and Processing (ICIAP 2007), pages 615–622. IEEE, Sept. 2007.

[41] Y. Xu, S. Oh, and A. Hoogs. A Minimum Error Vanishing Point Detection
Approach for Uncalibrated Monocular Images of Man-Made Environments.
In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR2013), pages 1376–1383. IEEE, June 2013.

[42] Z. Zhang. A flexible new technique for camera calibration. International
Journal of Computer Vision, 22:1330–1334, 2000.


