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Abstract

In view of the significant impact of thin scale heterogeneities in regards with the macroscopic
response of concrete (and generally speaking of heterogeneous materials), a particular effort
is dedicated to morphological representation and modeling. The development of a model
based on spatially correlated random functions (Random Fields) is proposed in this article.
It is shown how the stationary ergodic property coupled with the spatial structure of corre-
lated Random Fields can efficiently address the problematic when submitted to a threshold
process. Recent mathematical results Adler (2008) give accurate ways to analytically control
the resulting morphology, both geometrically and topologically speaking. The generalized
aspect of this framework has to be seen here as the ability of the model to represent different
kind of morphologies such as matrix/inclusion, opened or closed porosity. With such fea-
tures, heterogeneous material can be represented at different scales. By expanding a rather
abstract formula given by Adler (2008), the authors aim at spreading this point of view with
a “ready for use” framework. Furthermore, by addressing common issues such as, reaching
high volume fraction with disconnected topologies and representing grain size distributions,
solutions to adapt it to cementitious materials are given.

Keywords: Cementitious material, morphological modeling, correlated Random Fields,
excursion sets.

1. Introduction

One of the fundamental task of materials science is to – quantitatively – relate fine
scale information (e.g. microstructure morphology) to macroscopic properties. To this aim
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a huge effort has been paid during the last decade to set up numerical simulations that
are able to take into account for this fine scale information (Zhu et al. (2008); Wriggers and
Moftah (2006); Garboczi and Bentz (1998); Zubelewicz et al. (2014)). Of course this effort is
concomitant with the spread of three-dimensional and non-destructive experiments such as
X-ray microtomography, which provides some of the morphological data that the numerical
simulations require (Rougelot et al. (2010)).

Cement-based materials, whether cement paste, mortar, concrete or high performance
concrete is considered, are heterogeneous materials that exhibit complex and random mor-
phologies over a wide range of length scales. Therefore it is a large and difficult task to try
to link microstructure at a certain scale to properties at the upper one.

(a) Optical photography. (b) X-ray tomography.

Figure 1: Meso-scale point of view for concrete: slices of diameter 8mm from Qier (2014)

Here focus is made on the so-called meso-scale (Fig. (1)) that, basically, is the scale
for which heterogeneities larger than one millimeter can be seen. At such scale concrete
can be seen as aggregates and large sand particles melt into a mortar matrix (cement paste
and sand particles). Indeed, explicitly take into account for these heterogeneities within
numerical simulations offer a wide range of new possibilities such as (i) the introduction
of some specific (e.g. non-linear) behavior for the interfaces, (ii) the computation of some
structural effect due to the gathering of several components with different mechanical (not
only elastic) properties. Recently, it has been shown (Roubin et al. (2015)) that these
new abilities may lead to the emergence, at the macro-scale, of some non-linear mechanical
behavior (e.g. failure in uniaxial or triaxial compression) that were not introduced among
the set of fine scale mechanisms. Indeed the quality of the morphological representation
is the cornerstone of this methodology and our main motivation here is to focus on a very
general and simple way to model concrete at meso-scale.

This “generalized” morphological model relies on the excursion set theory of correlated
Random Fields. Here, the term “generalized” has to be thought as the ability of the
model to represent, with the same theoretical basis, several kinds of morphologies (e.g. ma-
trix/inclusion, porous media, etc) that may turn out to be a handy tool when cementitious
materials are considered for different observation scales. Compared to hard spheres packing’s
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(Bezrukov et al. (2002)), it will be shown that the excursion sets lead to some straightfor-
ward numerical implementations and very low data storage. This point is a major advantage
when dealing with fine — more than one million nodes — grids.

Basically an excursion set is the thresholding process of a random function defined over
a finite space M . For example, if g(x) : M ⊂ R

3 → R is a realization of a random function
(see Fig. (2(a)), then for a given threshold (hereafter called threshold) κ, the excursion set
Es ⊂ R

3 (see Fig. (2(b))) can be defined by the part of M where g is greater than κ,

Es = {x ∈ M | g(x) > κ} .

(a) g(x) — Realization of a correlated Random
Field (Gaussian).

(b) Es — Resulting excursion set for a given
threshold (larger than zero).

Figure 2: Illustration of the excursion set principle.

As shown in Fig. (2), excursion sets can have very different aspects depending on the
chosen threshold and the random function characteristics. Henceforth, it seems relevant to
use them in the context of correlated Random Fields since their intrinsic spatial structure —
through covariance functions — leads to complex shapes and flexible structures that can be
statistically controlled both geometrically and topologically speaking. Indeed, as mentioned
in Serra (1982) and Roberts and Garboczi (1999) for cementitious materials, the strength of
this theory relies in its control of morphologies through global descriptors (volume, surface,
number and size of connected components). Indeed, these quantities are Random Variables.
Here, the morphological model is based on a formula from Adler (2008) that provides the
expectations of these variables, granting a powerful predictive aspect to the model.

Basically this paper attempts to present in detail this theory along with its adaptation to
cementitious materials. For that matter, the first section covers both theoretical and numeri-
cal basis of the excursion sets theory. Then, mathematical tools to characterize morphologies
along with the main results of Adler (2008) are presented. Based on recommendations made
in the latter publication, an helpful extension of the basic result is proposed through a rather
general formula. In the last section, applications related to cementitious materials observed
at the meso-scale are proposed. The main one consists in using the model through union
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of excursion sets in order to represent size distributed aggregates that are included within a
coarse mortar matrix. For that matter, the problematic of reaching high fraction volumes
with disconnected topology is addressed in detail along with the use of the excursion set
theory applied to χ2 distribution.

2. Excursion set as a tool for morphological modeling

The use of correlated Random Fields (hereafter RF) brings a major improvement to mor-
phological modeling. Indeed, in addition to the usual characteristics of Random Variables
such as mean or variance, the correlated aspect gives a spatial structure to the fields which
can be defined by covariance functions1. It is through this statistical control that excursion
sets of certain correlated RFs have interesting properties, such as predictable geometrical
and topological characteristics.

This section first defines the mathematical framework of excursion sets and its scope,
then addresses some remarks regarding covariance functions and finally gives details on the
measures characterizing these excursions.

2.1. General principle of excursion sets

An excursion set is defined as the resulting subset of a thresholding operation of a
correlated RF. Basically, this operation transforms a continuous field (RF) to a binary one
(excursion), creating randomly shaped morphologies. If g : M ⊂ R

N → R is a RF defined
over parameter space M (bounded region of RN ), a subset of its co-domain Hs ⊂ R can be
defined in order to set the thresholding rules. Herein, excursion sets, noted Es, are defined
as the set of points where the RF value is in Hs, hereafter called hitting set. Thus yielding
to:

Es , {x ∈ M | g(x) ∈ Hs} . (1)

The hitting set will often be taken as the open set Hs = [κ,∞), κ working as a threshold.
Each point where the RF value is above κ defines the excursion. Thus Eq. (1) can simply
be written:

Es(κ) , {x ∈ M | g(x) ≥ κ} . (2)

This principle is depicted in Fig. (3) in the one-dimensional case and examples of three-
dimensional excursions are given in Fig. (4) for two different thresholds. In the pre-
sented study, the RF is defined over a three-dimensional space (M ⊂ R

3), creating three-
dimensional excursion sets. The two excursions of Fig. (4) are made from the same re-
alization of a RF with two different thresholds. Threshold value has clearly an important
impact on the resulting morphology. For low values of κ, a major part of the field still
hits Hs, leading to high volume fraction excursion set mainly made of cavities and han-
dles. This sponge-like topology (Fig. (4(a))) can be a suitable representation of porous
media. By comparison, high values of κ lead to meatball-like topology (Fig. (4(b))) where

1For readers not familiar with correlated RFs, it is recommended to read the walk-through details given
in Roubin (2013) or any other book on the topic like Rasmussen and Williams (2006).
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Figure 3: Excursion set of correlated RF in one-dimension.

(a) Porous media (low threshold). (b) Matrix/inclusion media (large threshold).

Figure 4: Two excursion sets of the same realization with different thresholds.

just several connected components remain. These excursions, despite their very low volume
fraction, could represent disconnected media such as aggregates within a matrix. This last
point raises a main issue of excursion set modeling. In this paper, solutions are proposed in
order to yield morphologies with high volume fraction morphologies and still disconnected
topologies.

As the threshold value has an impact on the kind of morphology obtained, both prob-
ability distribution of the RF and its covariance function have a major influence as well.
Among them, the correlation length lc, fixing the length-scale of the excursion set, has a key
role. But before giving details on this latter property, attention is first driven to the scope
of this framework.

2.2. Scope of the theoretical framework

Although throughout this paper, application is mainly be driven with Gaussian and χ2

distributions and Gaussian covariance functions, it is important to remind that this theory
holds for much more general cases.

First, in regards with the distribution, the whole set of Gaussian related RF can be used.
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If gr is such field, it is defined by:

gr : Ω× R
N g→ R

k S→ R, (3)

where g = {gi}, i = [1..k] is a vector valued Gaussian RF (i.e. all gi are independent). For
example, with S(g) = ‖g‖2, χ2

k distribution can be used or with k = 1 and S(g) = exp(g),
log-normal ones. This generalization can be understood, as in Adler (2008), by the following
decomposition showing that the probability of gr to hit Hs falls down to the probability of
g to hit S−1(Hs):

P {gr ∈ Hs} = P {S(g) ∈ Hs} = P
{

g ∈ S−1(Hs)
}

. (4)

Then, in regards with the spatial structure, the only requirement is to use mean-square
differentiable RFs. More details are given in Adler (1981); Rasmussen and Williams (2006)
on this property linked with the covariance function. It is worth noting that finding the
proper RF in order to yield the desired excursion require a functional analysis and not just
a parameter optimization.

For the sake of clarity, it is the authors choice to omit this extended scope. Interested
readers are invited to read Roubin (2013).

2.3. The role of the covariance function

Several properties of the covariance function are worth noticing, the most common being
the correlation length (noted lc). As depicted in Fig. (5), it is a direct way of controlling
the so called spatial structure. It can be seen that it sets a scale factor between the field
structure (distance between local extrema) and the domain size.

(a) Large lc (equal to the domain size). (b) Small lc (one-tenth of the domain size).

Figure 5: Impact of the correlation length lc on two realizations of Gaussian RFs with Gaussian covariance
functions.

Intimately linked with the present framework, another way of understanding the role
of the correlation length is through the number of up-crossings N of a threshold κ. For a
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one-dimensional RF, the expected number of up-crossings E{N (κ)} of the threshold κ can
be determined for a stationary zero mean correlated Gaussian RFs yielded over a segment
of size a. Actually its value only depends on the underlying spectral moments λ0 and λ2

(see Adler et al. (2010)). For a Gaussian covariance function of variance σ2, λ0 = σ2 and
λ2 = 2σ2/l2c and the expected value of the number of up-crossings is computed:

E{N (κ)} =
a

2π

√

λ2

λ0

exp

(

− κ2

2λ0

)

=
a√
2πlc

exp

(

− κ2

2σ2

)

. (5)

Illustrating the length-scale role of lc, it can be seen that it decreases hyperbolically as
the correlation length increases. In addition to its depicting nature, Eq. (5) is actually a
fundamental base of the excursion set theory presented below. It is worth noting that, with
it, the full knowledge of the covariance function is not necessary to predict characteristics
such as the number of up-crossings of thresholds. In fact, it is also the case for other charac-
teristics such as the volume, the surface or the Euler characteristic of complex morphologies
in higher space dimensions.

However, it is well admitted in the morphological community that infinitely smooth RFs
—such as those defined with Gaussian covariance functions— hardly possess any realistic
meaning (Stein (1999)). It is reminded to the reader that the full study can easily be
extended to other cases, such as using the Matérn class. This latter class changes the
modelling at a smaller scale providing the model with a way to represent the roughness of
a surface (Rasmussen and Williams (2006)). Thus, it is omitted for the time being.

Focus is now driven to functionals that measure both geometrical and topological quan-
tities. They provide global descriptors for excursion sets, giving a mathematical basis for
the main results presented in this paper.

2.4. Geometrical and topological characterization

As an inner requirement of any morphological model, the geometrical and topological
characterization of the morphology (excursion) have to be considered. It has been proved
that in a N -dimensional space, N + 1 descriptors are enough to fully describe it (Math-
eron (1975)). Therefore, in the three-dimensional Euclidean space R

3, an excursion is fully
characterized by a set of four descriptors: three geometrical and one topological.

A specification of these descriptors is made here through the Lipschitz-Killing curvatures
(hereafter LKCs) Federer (1959), noted Lj for j = [0..3], that can be interpreted as the jth

measures of the excursion. These descriptors provide the model with physically relevant and
useful control since L3 stands for the volume, L2 half the surface area, L1 a length2 and
L0 the Euler characteristic (topological descriptor).

Though the latter measure can be defined in many ways, focus is made here on the
computation of the Euler characteristic of M as the following alternative sum of number of

2twice the caliper diameter
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topological features:

L0(M) = χ(M) = #{connected component} −#{handles}+#{holes}. (6)

From Eq. (6), the direct link between the Euler characteristic and the description of a
material morphology can be made since each topological feature corresponds to a type of
media. Indeed, connected components stands for matrix/inclusion topology, handles for
open porosity and holes for closed porosity, giving a “universal” aspect to this descriptor.

Morphological models at the meso-scale find there applications in disconnected medias
and thus, the Euler characteristics becomes a measure of the number of inclusions (aggre-
gates). Although, an additional information on phase percolation is used in order to ensure
a topological consistency of the morphology (see section 4 for details).

In order to measure the probability space, another set of functionals referred to as
Minkowski functionals are now presented.

2.5. Statistical characterization

More popular than LKCs, Minkowski functionals are used in many fields in order to
characterize morphologies. Especially in the astrophysics community (see the pioneer work
of Mecke et al. (1994) in which Steiner’s formula is presented with these functionals) leading
to huge amount of literature on the topic Mecke and Wagner (1991); Winitzki and Kosowsky
(1997); Kerscher et al. (2001). However, in contrast to LKCs, the Minkowski functionals are
not intrinsic. Therefore, they depend on the used measure. This can be seen as a foretaste
of how calculating geometrical properties of excursion sets is linked to the probability of a
Gaussian Random Variable to be in the so-called hitting set. Hence, focus is drawn here to
the following measure of a Gaussian distribution:

γk(A) = P {X ∈ A} =
1

σk(2π)k/2

∫

A

e−‖x‖2/2σ2

dx, (7)

where X = {Xi ∼ N (0, σ2)} is a standard Gaussian vector and A ⊂ R
k. Associated to this

measure, the functionals are now called Gaussian Minkowski functionals (hereafter GMFs).
The main results of Taylor (2006) is to yield a Taylor expansion of tube probability3 content
Eq. (8) for small enough ρ. It can be seen as an extension of the Steiner-Weyls formula, in
which γk represents the volume in the sense of Gaussian measure (Gaussian volume).

Taylor expansion of tube Gaussian volume

γk(K(A, ρ)) =
∞
∑

j=0

ρj

j!
M

γk
j (A), (8)

where K(A, ρ) = {x ∈ R
N | min

∀y∈A
(‖x− y‖) ≤ ρ} is the tube of A of radius ρ.

3This results is a major breakthrough in the morpho-mathematical community. Diffusing its spin-offs to
the mechanical community is one of the goal of this article.
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By taking ρ = 0, it can be concluded that the first GMF is the Gaussian volume of A
itself, M

γk
0 (A) = γk(A). Thanks to the uniqueness of Taylor expansion, the other GMFs

can be computed by doing a polynomial coefficients identification between Eq. (8) and a
classical Taylor expansion for small ρ of γk(K(A, ρ)) from Eq. (7).

Two classes of functionals that characterize a morphology have been presented. In the
one hand, the LKCs are used in order to characterize the excursion set geometrical and
topological properties. On the other hand, the GMFs gather the statistical information of
the random distribution. Development and analytical definition are given for hitting set
[κ,∞) ⊂ R for both Gaussian and χ2

k distribution in Roubin (2013) but are not mandatory
for the good understanding of the following. The next section presents the main result of
this paper: a formulae that links the excursion set morphological characteristics (LKCs) to
statistical information of the correlated RF and the hitting set.

3. Expectation formula

The use of correlated RFs and excursion sets in order to represents the heterogeneous as-
pect of a media is far from being an original work and has been used since decades. However,
the originality of this paper resides in this section where a new result from the mathematical
community —way more general than depicted here— enhances these frameworks with an
analytical way of controlling the expected characteristics (LKCs) of the excursion.

The result presented in this section is of fundamental importance in this paper. It is
the basis of the work of Taylor (2001); Taylor and Adler (2003); Taylor (2006). It links
the statistical information of the distribution used, the hitting set (via the GMFs) and the
spatial structure of the correlated RF (via its covariance function second spectral moment)
to the geometrical and topological characteristics of the excursion set (via LKCs). Since
excursion sets are the results of a threshold of RFs realizations, naturally, the LKCs has to
be seen in terms of expected values E (means). Basically, this section defines the F function
of the following equation:

E{Lj(Es)} = F (Hs, C, S), (9)

in which Lj is the jth LKC, Es, the excursion set, Hs, the hitting set, C the covariance
function of the correlated RF (containing information on the distribution and the spatial
structure) and S the function defining Gaussian related distributions.

3.1. A first taste of the formula

It has been seen that the GMFs are measures of the probabilistic space. Furthermore,
the first functional has been identified as the Gaussian measure itself γk. This measure
only provides information on the distribution and not on the spatial structure of correlated
RFs. Nonetheless, the computation of the expectation of the last LKC of an excursion set
(volume) can be done while only knowing this.

If g is a stationary correlated Gaussian RF, at any point x ∈ M , it can be seen as a
Random Variable with the same given marginal distribution. Hence, the probability of this
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point to be part of the excursion set (i.e. that g(x) ∈ Hs) is equal to the Gaussian measure
of the hitting set, thus yielding to:

∀x ∈ M, P{g(x) ∈ Hs} = γk(Hs) = M
γk
0 (Hs). (10)

The first GMF can be seen as a local descriptor of the excursion set volume. Notice that
it does not depend on x, making it trivial to integrate over M . This property can be used
in order to calculate the volume of the corresponding excursion set. Since the marginal
distribution is constant over M it can be yielded by simply multiplying the probability of
each point to be in Hs by the volume of M ; LN(M). It leads, for the more general case of
Gaussian related RF (Eq. (3)), to:

E{LN (Es)} = LN(M)M γk
0 (S−1(Hs)). (11)

Unfortunately, this simplistic vision cannot be extended to more complex measures such
as the other LKCs that require structural information of the covariance function. The
following section presents a fully developed version of Adler (2008) for σ 6= 1.

3.2. General formula

Let gr be a Gaussian related correlated RF defined as in Eq. (3). Since Gaussian RFs
are Gaussian related (S = id), the following result is rather general. Let λ2 be the second
spectral moment of the underlying Gaussian RF, Hs ∈ R the hitting set and ωi the volume
of the unit i-ball. If Es is the resulting excursion set, expectation of the LKCs can be
computed as follows:

Expectation Formula

E{Lj(Es)} =

N−j
∑

i=0

(

i+ j
i

)

ωi+j

ωiωj

(

λ2

2π

)i/2

Li+j(M)M
γk
i (S−1 (Hs)). (12)

It can be sensed that this relationship between, on the one hand the measure of the resulting
excursion set and on the other hand, the hitting set and its probabilist characteristics, is
strongly non linear. Hence, the end of this section focuses on developing it in a special
case and analyzing the curves. Verifications of this theory on actual excursion sets are also
presented and commented on.

Prior to that, it can be quickly checked that, in the one-dimensional case presented above,
the Euler characteristic can be linked to the number of up-crossing levels defined Eq. (5):

E{L0} = M
γk
0 + E{N}. (13)

3.3. Physical interpretation and numerical aspect

In this section, Eq. (12) is developed for g : C ⊂ R
3 → R a correlated Gaussian RF of

zero mean and σ2 variance. Its covariance function is taken to be Gaussian with correlation
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length lc, making the second spectral moment λ2 = 2σ2/l2c . g is defined over a three-
dimensional cube C of size a× a× a. The hitting set is the open subset of R, Hs = [κ,∞)
as above. LKCs of the resulting excursion set in these conditions can now be explicitly
developed, in terms of κ:

Expected LKCs for Gaussian distribution

E{L0(Es)} =

[

1√
2π2

a3

l3c

(

κ2

σ2
− 1

)

+
3√
2π3/2

a2

l2c

κ

σ
+

3√
2π

a

lc

]

e−κ2/2σ2

+Ψ (κ/σ) (14a)

E{L1(Es)} =

[ √
2

π3/2

a3

l2c

κ

σ
+

3

23/2
a2

lc

]

e−κ2/2σ2

+ 3aΨ (κ/σ) (14b)

E{L2(Es)} =

√
2

π

a3

lc
e−κ2/2σ2

+ 3a2Ψ (κ/σ) (14c)

E{L3(Es)} = a3Ψ (κ/σ) (14d)

where Ψ is the complementary cumulative density function (tail distribution) of the
Gaussian distribution.

Fig. (6) represents the volume fraction Φ = L3/a
3 and the Euler characteristic χ = L0

of excursion sets using a Gaussian distribution of zero means, variance σ2 = 25 and Gaussian
covariance of correlation length lc = 10 for a large range of thresholds.
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Figure 6: Gaussian excursion set expected LKCs values for theoretical results ( ) and actual realizations
(+) over a range of thresholds (a = 100, σ2 = 25, lc = 10).

It has been seen in Eq. (14d) that the volume of an excursion is proportional to the tail
probability of the underlying RF. Its constant decreasing shape clearly reflects the threshold
effect on the excursion and its link with Gaussian measure γ1. In other words, the volume
fraction of the excursion is the Gaussian volume. Hence it is rather intuitive that its value
is the tail distribution (see Fig. (7)). Even if more peculiar, the Euler characteristic curve
shape also easily reflects the effect of the threshold on the excursion set’s topology. For
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values of κ lower than the lowest value of g, the Euler characteristic is that of the full cube
C (L0 = 1). By increasing it, a closed porosity is represented (holes) leading to a positive
value of the Euler characteristic (L0 > 1, see Fig. (7(a))). Then, the expansion of the holes
starts to form handles which lead to a open porosity topology (L0 < 0, see Fig. (7(b))). By
increasing κ even more, handles disappear forming a matrix/inclusion topology of connected
components (L0 > 0, see Fig. (7(c))). Finally, the Euler characteristic decreases to L0 = 0
when no more connected components remain.

(a) κ = −10: Closed porosity. (b) κ = 0: Open porosity. (c) κ = 10: Matrix/inclusion.

Figure 7: Illustration of different topologies with three excursions from the same realization and different
thresholds κ (a = 100, σ = 5, lc = 10).

Though it is hard to tell for κ close to 0, L0(κ ≪ 0) and L0(κ ≫ 10) clearly correspond
to the number of holes and the number of connected components, respectively, the other
two topological features of Eq. (6) being absent.

From a numerical point of view, excursion sets are represented by a discretized binary
field defined by 1 if in the excursion and 0 if elsewhere. Based on 100 realizations of
excursions, average values of morphological characteristics are compared to theoretical means
in Fig. (6). In addition to the validation of the theory, this statistical analysis also provides
rather interesting information on the second moment. Herein, the very low variance of
the LKCs insures that the characteristics of the excursions are not too spread around the
expected values. In other words: it is insured that the morphological characteristics of one
realization will be close to these targeted. Hence, the random aspect that the excursion set
brings to any morphological model is only about the spatial repartition of the shapes, not
about their characteristics, a key and necessary property.

A formula that links the probabilistic properties of the underlying RF and the hitting
set with those characteristics has been given in this section. It predicts and controls, sta-
tistically speaking, the excursion set properties. In three dimensions, four measures are
defined. Herein, focus is only made on the volume and the Euler characteristic, giving both
geometrical and topological descriptors.

Attention is now drawn to applying it in order to model heterogeneities of concrete-
like materials. Even though the model can yield morphologies adapted to the micro scale
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(less than the [µm]) (open and closed porosity), only the meso-scale is considered here.
Therefore, the morphology of interest is made of aggregates melt within a mortar matrix.
Topologically speaking, a set of disconnected components needs to be modeled. Furthermore,
this application is an opportunity to raise two main issues: reaching high volume fractions
with a disconnected topology and representing a grain size distribution.

4. Application to meso-scale modeling of concrete

In this section, details on the morphological modeling of concrete-like material hetero-
geneities are given. A scale range has to be determined in order to define which kind of
geometrical information is needed to be represented. Herein, focus is placed on the first
scale below the macroscopic one referred to as the meso-scale. The length range taken into
consideration goes from above the millimeter to hundreds of millimeters. At this scale,
concrete-like material can be represented by two phases (each of them assumed to be homo-
geneous): the aggregates and the mortar. Hence a specific topology is considered in which
disconnected inclusions are embedded within a mortar matrix. Several features of these
morphologies, e.g. high volume fractions or grain size distribution, have to be tackled with
attention, especially within the excursion set framework. Both aspects are now treated.

4.1. Reaching high volume fraction with disconnected topology

In order to understand the problematic of this section, it is recalled that several charac-
teristics have to be taken into account when a morphology is considered (actually four in a
three-dimensional space as seen above). Herein, only two of them are assumed to be relevant.
The first characteristic is the volume fraction Φ and the second is the Euler characteristic
χ. While the first grants a geometrical measure, the latter is used as an indicator of the
topological rendering. The two others (one and two-dimensional measures) are let free. Due
to the length range considered here, volume fractions higher than 30% are targeted. These
values can easily be reached if no topological restrain is set. Actually, by choosing the right
threshold, Eq. (14d) shows that any fraction can be computed from 0% to 100% (corre-
sponding to κ → ∞ and κ → −∞, respectively Fig. (6(a))). It becomes more complicated
whether a second constrain appears, like in our case, the topology. As it has just been said,
a disconnected morphology of inclusions within a matrix is wanted. It corresponds to high
values of the threshold and therefore to low volume fractions. By considering the physical
meaning of Euler characteristic (see Eq. (6)), this topology is quantified by positive values
of χ due to components and not to holes. In Fig. (6(b)), it is located after the second
zero, around the second local maximum. It can be checked in Fig. (6(a)) that indeed, these
thresholds lead to low volume fractions. The quantity of interest is taken to be this second
zero. This point is discussed with details in Roubin (2013), however, it can be admitted
that it corresponds to the percolation of the excursion set. In other words, by taking κ
decreasingly from infinity, it is when χ is first null that a path among the excursion is made
between two faces. If κp+ is this threshold, it is assumed that all values greater than it are
acceptable.
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Before proceeding further, a handful length-scale ratio (α) of an excursion set is defined
Eq. (15) by the ratio between the correlation length lc and the domain size a4:

α =
lc
a
. (15)

The graph in Fig. (8) draws expected values of χ in terms of κ for several ratios α (Euler
characteristics are normalized E{χ}/max(E{χ}) in order to represent them on the same
graph). As mentioned above, attention is focused on κp+ , corresponding to χ = 0 for κ > 0.
Notice that, κp+ decreases along with the ratio α until a certain value where it is not defined
anymore. An analysis of this feature is now proposed.
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Figure 8: Expected values of the Euler characteristics in terms of thresholds for Gaussian excursion sets of
unit variance and several ratios α.

First, notice can be made that the equation of the Euler characteristic Eq. (14a) is made
of order three polynomial in α−1 (with no constant term) multiplied by an exponential to
which the tail function is added. For very small α, only the first term of the polynomial can
be retained, thus leading to a very simple expression of the Euler characteristic Eq. (16).
Actually, this equation was discovered by Robert Adler in 1976 during his Ph.D. thesis. The
other terms have been introduced by the late Keith J. Worsley Worsley (1996) and may be
seen as boundary corrections or boundary effects.

E{χ} ≈ 1√
2π2

a3

l3c

(

κ2

σ2
− 1

)

e−κ2/2σ2

. (16)

Hence, a null value of the Euler characteristic necessarily leads to κp+ = σ. The correspond-
ing volume fraction is then Φ = Ψ(1) ≈ 16%. This case gives an accurate result for suitable
topologies, although it is a lower bound. The graph in Fig. (9) draws the higher volume

4The following reasoning is based the impact of α on topological properties. However, notice that the
resulting equation (Eq. (17)) is rather general and does not depend on the RF parameters (such as σ, lc or
a).
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fractions, Φ(κp+) (plain curve) in terms of the ratio α. The horizontal dashed line corre-
sponds to the latter asymptotic value. It can be seen that by reducing the cube size, this
volume fraction increases until a limit around α ≈ 0.3 depicted by the vertical dashed line
(for a unit correlation length, it corresponds to a cube of size a ≈ 3.4). Beyond this value,
the expected Euler characteristic is always positive (see Fig. (8) for α = 1/2). It can be
understood by considering the other extreme case, for which an excursion set is considered in
a very small cube. Simplification of Eq. (14a) tells that the Euler characteristic equals the
tail probability and then, also equals the volume fraction. It can be interpreted as follows: if
α ≫ 1 then the RF tends to be constant in space. Hence, an excursion is whether the cube
itself or nothing. On an actual realization, χ(κ) would be a step function, getting from 1 to
0 discontinuously. It is the statistical expected value aspect that grants the smooth shape of
E{χ(κ)}. Anyway, no further topological information can be withdrawn from these cases.
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Figure 9: Higher volume fractions for disconnected topology.

Even if the volume fraction between the two extreme cases seems to be high enough on
the graph, experiences have shown that, considering a higher ratio than α ≈ 0.15 leads to
connected topologies even for thresholds slightly higher than κp+. The side effects are too
strong in these length-scales and the statistical meaning of expected percolation does not
stand anymore. Discussion on that matter can be found in Roubin (2013) where these con-
siderations leads to the determination of a Representative Volume Element for percolation.
On the other hand, it is important to be able to represent volume fractions regardless any
heterogeneity sizes. It is for these reasons that the maximal volume fraction is assumed to
be the asymptotic value for infinite domains. Hence, for Gaussian distribution:

Φγ
max = 16%. (17)

In order to increase this value, a solution using χ2
k distribution is now proposed.

First a χ2 distribution with one degree of freedom (k = 1) is considered. If g is a Gaussian
RF then gr = S(g) = g2 follows the χ2

1 distribution. As seen during the presentation of
excursion set theory, dealing with excursion sets of Gaussian related distribution falls down
to a simple hitting set transformation S−1. Herein, if the hitting set of interest is Hs = [κ ∞)
for χ2

1, it becomes S−1(Hs) = (−∞ −√
κ] ∪ [

√
κ ∞) in the Gaussian point of view (notice
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that now κ > 0 since gr takes its value in R+). Basically, due to the symmetrical aspect of
Gaussian distributions, the excursion set volume has doubled. This feature is represented
with two-dimensional excursions in Fig. (10) where both Gaussian and corresponding χ2

1

excursion are represented.

(a) Gaussian distribution: g. (b) χ2
1 distribution: gr = g2.

Figure 10: Comparison between Gaussian and χ2
1 excursion sets using the same underlying RF.

It is then only natural to stipulate that the maximum volume fraction has doubled too
(it can easily be shown the same manner as for Gaussian distribution). Hence:

Φχ2
1

max = 32%. (18)

However, the behavior of excursion when κ → 0 has to be tackled with caution. A topological
discontinuity occurs at zero, corresponding to the transition between S−1(Hs) = R

∗ and
S−1(Hs) = R. In the first case, two completely disconnected parts of the excursion can be
identified; the one from the lower part of S−1(Hs), (−∞ −√

κ] and the one from the upper
part [

√
κ ∞). These two phases connects together only when κ = 0, leading to a jump from

a very low value of the Euler characteristic (χ < 0) to a unit value (χ = 1). It is proved that
a regular behavior is obtained by increasing the number of degrees of freedom (k ≥ 5), thus
avoiding this discontinuity. However, herein, it is not the concern since κ is taken greater
than κp+ (i.e. far from this discontinuity).

By analyzing the maximum volume fraction with several numbers of degrees of freedom
of the χ2

k distribution, it can be directly seen that the best case remains for k = 1. Fig. (11)
shows for α = 0.001: on the left, three curves representing the Euler characteristic with
k = 1, 2 and 5 and their respective κp+ and on the right, the corresponding volume fractions
Φ(κp+) for k = [1..25], showing its decreasing shape. For infinite number of degrees of
freedom, it naturally tends to the Gaussian limit of 16% (central limit theorem). Finally,
a χ2

1 distribution is retained in order to model a disconnected topology. The precaution
consisting in taking a threshold slightly higher than κp+ is taken in order to insure the desired
topology. Determining all parameters of the morphological model can be decomposed in the
following steps:
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Figure 11: Maximum volume fraction in the χ2
k
case for a ratio α = 0.001.

Step 1: Determination of the ratio κ/σ
Thanks to the previous analysis, the maximum volume computable for a suitable
disconnected topology is known. For example let consider a targeted volume fraction
of 20%. As depicted in Fig. (12(a)), Eq. (14d) gives the value of κ/σ. If a unit
variance distribution is considered, then κ20% is explicitly known. Notice that this
step is independent of any length scale.

Now, in order to move on topological considerations, a length-scale has to be fixed. De-
pending on the problematic, Eq. (14a) can be used as described in step 2a or step 2b. It
is recalled that for these disconnected topologies, the Euler characteristic represents the
number of components.

Step 2a: Determination of the correlation length lc
If no length-scale is imposed, a number of inclusions can be targeted. Since κ is
determined during step 1, a simple inversion of Eq. (14a) for a given size a leads to
a value of lc. Note that choosing the volume fraction and the number of components
leads to a single component size.

Step 2b: Determination of the number of inclusions
If a length-scale is imposed by the problem; for example inclusions of size 1 in a cube of
size 1000, as shown in Fig. (12(b)), Eq. (14a) gives the expected number of inclusions
χ ≈ 44873.

Unfortunately, this theoretical case is hardly computable (but not impossible) since the
ratio α = 0.001 implies a generation of heavily discretized correlated RFs. However, three-
dimensional realizations of 200 × 200 × 200 points can be computed in reasonable times
(around a minute), thus representing accurately a length ratio of α = 0.01. Examples in a
cube of size a = 100 with lc = 1 and 10 are shown in Fig. (13).

In this section it has been described how to double the maximum volume fraction of
disconnected morphologies using a χ2 distribution of one degree of freedom instead of a
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Figure 12: Expected LKCs for χ2
1 excursion set of unit variance and α = 0.001. A volume fraction of 20%

is targeted giving a corresponding Euler characteristic of 44873.

(a) a = 100 and lc = 10. (b) a = 100 and lc = 1.

Figure 13: Disconnected excursions with 20% volume fraction using a χ2
1 distribution with two correlation

lengths.

Gaussian one. A criterion independent from the length ratio α based on percolation of the
excursion is used. With a certain margin to insure a suitable topology, it has been seen that
20% of volume fraction can easily be modeled. The following section gives directions on an
additional method that combines several excursion sets with different correlation lengths in
order to, on the one hand, increase the volume fraction even more and, on the other hand,
represent a size distribution of the heterogeneities.

4.2. Modeling of the grain size distribution

Up to this point, only one characteristic length was considered for excursion sets. How-
ever, morphological modeling of aggregates has to be represented by heterogeneities that
follow a given grain size distribution. Henceforth, the challenge is to yield a single excursion
with different characteristic lengths and still to be able to control its geometrical and topolog-
ical properties. The idea is to consider a set of K independent excursions {Ek

s }, k = [1..K]
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with their own characteristics. Among them, the most important characteristic is of course
the correlation length lkc . And finally, the union of every excursions defines a new excursion
which possesses multiple characteristic lengths. These excursions are referred to as:

E∪
s =

K
⋃

k=1

Ek
s . (19)

Along with several hypothesis, the principle of measure of union of sets is used in order to
estimate the different LKCs of the resulting excursion.

To begin with, a simple two-dimensional example is considered. Let E1
s and E2

s be two
excursions of respective LKCs and correlation lengths {L 1

n }, l1c and {L 2
n }, l2c . It is assumed

that l1c > l2c . Fig. (14(a)) represents the two excursions defined on the same domain, E1
s

being in light grey and E2
s in dark grey while Fig. (14(b)) represents the union of both,

i.e. E∪
s .

(a) Two excursion sets. (b) Union of two excursion sets.

Figure 14: Illustration of the use of several excursions — two here.

In a more general case, attention is drawn to the calculation of each LKC Ln, n = [0..N ]
of E∪

s in a N -dimensional space. Following the axiomatic that defines any measure, it can
be yielded by:

Ln(E
∪
s ) = Ln(E

1
s ∪ E2

s ) = Ln(E
1
s ) + Ln(E

2
s )− Ln(E

1
s ∩ E2

s ). (20)

Under hypothesis of sufficient ergodicity for the underlying RFs and statistically represen-
tative volumes (low length ratio α for both excursions) the assumption that the kth measure
of the intersection is approximated by the actual measure of the lower correlation length
excursion pondered by the specific value of the last LKC of the higher one (the specific
surface area in two dimensions or the fraction volume in three dimensions) can be made. It
leads to a completely predictable approximation of each measure of the union:

Ln(E
∪
s ) = Ln(E

1
s ∪ E2

s ) ≈ Ln(E
1
s ) + Ln(E

2
s )
(

1− ΦN (E
1
s )
)

, (21)

ΦN(E
1
s ) = LN(E

1
s )/LN(M) being the specific value.
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Under the same assumptions, the generalization of this principle to the union of more
than two excursions is rather straightforward. If K excursions are considered with different
sorted correlation lengths (l1c > · · · > lkc > · · · > lKc ), using a recursive process on Eq. (20),
the LKCs can be computed:

Ln(E
∪
s ) ≈ Ln(E

1
s ) +

K
∑

k=2

Ln(E
k
s )

(

1−
k−1
⋃

l=1

ΦN(E
l
s)

)

, (22)

in which, thanks to the Poincaré formula and the approximation made in Eq. (21), the
union of ΦN can be computed as follows:

K
⋃

k=1

ΦN (E
k
s ) ≈

K
∑

k=1

(

(−1)k−1
∑

1≤i1<i2<···<ik≤K

ΦN (E
i1
s )ΦN (E

i2
s ) . . .ΦN (E

ik
s )

)

. (23)

Finally, since measures of each excursion set Ek
s are predictable, expected values of the

LKCs, E{Li(E
∪
s )} can now be computed. It is recalled that Eq. (22) is an approximation.

Hence, comparison with experimental results is recommended. Three excursions using a χ2
1

distribution and characteristic lengths lc = 10, 5 and 2 are defined in a three-dimensional
cube of size a = 100. Both Euler characteristic χ = L0 and volume fraction Φ = L3/a

3

of the resulting excursion are compared to the analytical approximation Eq. (22). Results
are drawn in Fig. (15). Notice that, even if not mandatory, for the sake of handful repre-
sentation, the excursion set is the resulting union of excursion sets obtained with the same
threshold.
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It can be seen directly that the approximation for the volume fraction is rather good.
However, the theoretical Euler characteristic is overestimated for low thresholds. It can be
explained by a too coarse spatial discretization in regards with the discontinuous aspect of χ2

1

excursion sets for κ = 0 which is numerically hard to catch. Anyway, regarding disconnected
topology, the maximum number of particles is well estimated, as for the decreasing part of
the curve. Another important feature that unions enable is that the computable volume
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fractions are higher than while using a single excursion. Notice that on the presented
example the volume fraction is around 50% for κp+ . As a precaution, the threshold is
taken so that κ ≫ κp+ , leading to excursion sets of, for example, 40% volume fraction and
disconnected topology5.

The morphological modeling of a set of only one class particles can be made by using
an excursion set with a single correlation length chosen in the range Dmin < lc < Dmax

(Dmin|max being extreme diameters of the class). It is assumed that a distribution of discon-
nected particles which sizes are spread around the correlation length produces an acceptable
representation of one class. Therefore, for now on, lc =

1
2
(Dmax +Dmin). It can be extended

to several classes using unions of excursion sets in which each excursions of the union rep-
resents a single class. To follow a given distribution of sizes (granulometry), the volume
fraction of each excursion has now to be determined.

In order to fit in the numerically computable range of a cube of size a = 100mm,
only medium (Dmax = 16mm), fine (Dmax = 8mm) and very fine gravels (Dmax = 4mm)
are considered and particles lower than 2mm are considered part of the mortar matrix.
For a total volume fraction of Φ = 40% it is assumed that the granulometry gives the
following Volume fractions Φ{1,2,3} = {0.25Φ, 0.5Φ, 0.25Φ}, respectively. The correlation

length of each class is taken to be the average of each class extrema diameters giving l
{1,2,3}
c =

{12mm, 6mm, 3mm}, respectively. With regards to the union set theory, volume fractions
of each excursion set will have to be targeted higher than the wanted value. In this case,
they are computed as follows:

Φ1
target = Φ1 = 0.25Φ (24a)

Φ2
target =

Φ2

1− Φ1
=

0.5Φ

1− 0.25Φ
(24b)

Φ3
target =

Φ3

(1− Φ1 − Φ2)
=

0.25Φ

(1− 0.75Φ)
(24c)

For a qualitative analysis, three realizations of this morphology are shown in Fig. (16)
and a two-dimensional slice in Fig. (17(a)). From these pictures, it can be seen that the
random aspect of excursion sets and the union procedure gives more “realistic” morphologies
than with simple geometrical objects (like a hard sphere representation). More realistic in
the sense that the local curvature can be significantly high (≪ 0) and low (≫ 0) which
lead to locally convex and saddle surface. From a mechanical point of view (especially in
regards to fracture), it is known that these geometrical properties lead to significant stress
localization and therefore represents. Therefore it is a strong asset of this model (see Roubin
et al. (2015)).

5At this stage, it is wise to base any morphological modeling using union of RF on the volume fraction
and consider the percolation aspect more as an indicator than a reliable value. Finally, higher values of the
threshold than those estimated are recommended in order to model disconnected topologies.
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Figure 16: Three realizations of 40% volume fraction excursion sets of correlation lengths {12, 6, 3}.

However, comparing Fig. (17(a)) and (b) it can be observe that some gaps still exist
between the model and the real material (here observed through X-ray tomography). The
first one is the filtering of the smallest aggregates (small sand particles). Clearly this differ-
ence between the two images is linked to the possibility to compute realizations of Random
Fields with very small covariance lengths (compared to the whole domain size), and thus on
very fine grids. The second gap is mainly due to the infinitely derivative aspect of Gaussian
covariance functions, the general aspect of aggregate being unrealistically smooth. On that
matter, possible investigation directions are proposed in the conclusion.

(a) Excursion set extracted from Fig. (16). (b) Segmented X-ray microtomography from
Qier (2014).

Figure 17: Two-dimensional slices of diameter 8mm: Comparison between excursion set and X-ray micro-
tomography.

In order to perform a more qualitative analysis of the excursions obtained, a reconstruc-
tion of the grain size distribution using a morpho-mathematical method (which basically
consists in performing a sequence of morphological opening with increasing size of the struc-
turing element (Klein and Serra (1972)) is shown Fig. (18). Once again it can be seen that
the computational limit leads to an important bias due to the presence of small particles
(D < 2mm). However, considering larger sizes, the proportions of each class of aggregates
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are rather well respected.
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Figure 18: Reconstruction of the grain size distribution of one realization presented Fig. (16).

5. Concluding remarks

A morphological model based on excursion set of correlated RFs that produces complex
randomly shaped morphologies has been presented. Original formulae Adler (2008) that
statistically control the geometrical and topological characteristics of these excursion sets —
volume, surface area, Euler characteristic — in terms of the RF parameters — correlation
length, variance — has been adapted in order to model cementitious material heterogeneities
at meso-scale. It has led to several problematics such as reaching high fraction volumes and
representing a grain size distributions.

The main advantage of this class of morphological model is to allow for very different
shapes (thinking of inclusions melt into a matrix) at once. However, as it has been pointed
out, one of the main issue related to the excursion sets methodology is to reach high volume
fractions while keeping a disconnected topology. Even if the use of another distribution —
χ2 rather than Gaussian — helped double it, the maximal compacity obtained with a single
characteristic length in a representative volume is about 30%. However, it was shown that by
only considering a certain part of a grain size distribution (mainly gravels) and using union
of excursion sets, relevant modeling can be obtained. Nonetheless, as presented during the
introduction of this chapter, this value is lower than what an efficient poly-disperse sphere
packing algorithm can produce. Dealing with that matter, a further work on hitting sets
can be thought. An idea would be to extend the principle of χ2 distribution to higher order,
yielding vectors valued RF. Hitting sets shall be based on spherical harmonics functions,
hence, as transforming the one-dimensional open hitting set [κ,∞) into the complementary
ball of the same dimension double the volume fraction, working with hitting sets in higher
dimensions should increase it as well.

An improvement of the method can also be made by considering all the excursion set
characteristics. In this chapter, attention has mainly be focused on the volume fraction and
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the Euler characteristic, which seem the more relevant characteristics to control first. In or-
der to model the heterogeneities more accurately, it is recalled that in the three-dimensional
space, information on two and one-dimensional measures such as surface area and calliper
diameter, respectively, are also available. An analysis of the link between the latter and the
correlation length could be an interesting research area.

Dealing with cementitious materials, it has been show that meso-scale (aggregates within
a mortar matrix) can efficiently be represented, up to the computational limit associated to
the RF simulation. Some works are now in progress dealing with a finer point of view for
cement paste as a nano-porous material. Here the thresholds associated to the excursions
are negative and, thus providing a “sponge-like” topology. Moreover, the excursion sets
methodology presents major advantages when dealing with evolving microstructure in time.
This is the case when considering cement hydration for which we think that this class of
morphological model is really useful.
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would also like to thanks the École Normale Supérieur de Cachan (FR) for the funding of
one researcher at the early stage of this study.

References

Adler, R., 1981. The geometry of random fields. Classics in applied mathematics. Society for Industrial and
Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104).

Adler, R., 2008. Some new random field tools for spatial analysis. Stochastic Environmental Research and
Risk Assessment 22 (6), 809–822.
URL http://dx.doi.org/10.1007/s00477-008-0242-6

Adler, R. J., Taylor, J. E., Worsley, K. J., 2010. Applications of Random Fields and Geometry: Foundations
and Case Studies.

Bezrukov, A., Bargiel, M., Stoyan, D., May 2002. Statistical analysis of simulated random packings of
spheres. Particle & Particle Systems Characterization 19 (2), 111.

Federer, H., 1959. Curvature measures. Transactions of the American Mathematical Society 93 (3), pp.
418–491.
URL http://www.jstor.org/stable/1993504

Garboczi, E. J., Bentz, D. P., 1998. Multiscale analytical/numerical theory of the diffusivity of concrete.
Advanced Cement Based Materials 8 (2), 77 – 88.
URL http://www.sciencedirect.com/science/article/pii/S1065735598000108

Kerscher, M., Mecke, K., Schuecker, P., Bohringer, H., Guzzo, L., Collins, C. A., Schindler, S., De Grandi,
S., Cruddace, R., Oct. 2001. Non-gaussian morphology on large scales: Minkowski functionals of the
REFLEX cluster catalogue. Astronomy and Astrophysics 377 (1), 1–16.
URL http://dx.doi.org/10.1051/0004-6361:20011063

Klein, J. C., Serra, J., Apr. 1972. The texture analyser. Journal of Microscopy 95 (2), 349–356.
URL http://doi.wiley.com/10.1111/j.1365-2818.1972.tb03734.x

Matheron, G., 1975. Random sets and integral geometry. Wiley series in probability and mathematical
statistics: Probability and mathematical statistics. Wiley.

24



Mecke, K., Wagner, H., 1991. Euler characteristic and related measures for random geometric sets. Journal
of Statistical Physics 64 (3-4), 843–850.
URL http://dx.doi.org/10.1007/BF01048319

Mecke, K. R., Buchert, T., Wagner, H., 1994. Robust morphological measures for large-scale structure in
the universe. Astronomy & Astrophysics 288, 697–704.
URL http://arxiv.org/abs/astro-ph/9312028

Qier, W., 2014. Isothermes de d’adsorption de matériaux cimentaires : tude d’un protocole accéléré et
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