N
N

N

HAL

open science

Keepalive service for VANET applications
Farah El Ali, Bertrand Ducourthial

» To cite this version:

Farah El Ali, Bertrand Ducourthial. Keepalive service for VANET applications. IEEE Wireless Com-
munication and Networking Conference (WCNC 2014), Apr 2014, Istanbul, Turkey. hal-01130421

HAL Id: hal-01130421
https://hal.science/hal-01130421
Submitted on 27 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01130421
https://hal.archives-ouvertes.fr

Keepalive service for VANET applications

Farah El Ali and Bertrand Ducourthial

Abstract—Many applications are designed for vehicular net-
works, like chat, dynamic map update or touristic information.
The need of services used as building blocks for these applications
is then emerging: localization, map matching, data collect, and
so on. When a unicast communication is required, applications
rely generally on naming, localization and routing services.
This approach consumes many network resources and leads
to poor performances when the network dynamic is high. We
then propose an efficient service, named keepalive, to ensure
the continuity of a communication that began between two
mobile neighbors. The major strengths of our proposal are that
it relies only on local exchanges of identifiers and it is less
resource consuming than usual networking services. Moreover, it
is beneficial for a large set of applications, including download
from road side units or follow me application for instance.
Road tests and performance study confirm the efficiency of the
keepalive service.

Index Terms—vehicular networks, applications, services

I. INTRODUCTION

PPLICATIONS for vehicular networks in particular, and

dynamic networks in general, are expanding widely.
These applications are designed for costumer services, road
safety issues or traffic management. We can name the follow
me application that helps the exchange of information between
two cars moving towards the same destination, or the RSU-
download application that ensures the data transfer between a
road side unit and a car, in order to receive information.

All these applications rely on underlying services to be
able to function properly and satisfy the needs of the users.
Some of them need to retrieve information from the Controller
Area Network (CAN) bus of the vehicle through a gateway to
receive data from embedded sensors and calculators. Other
applications require a map matching service to localize the
vehicle on a map with a confidence indication. Others need to
periodically collect data from the environment, and so on.

Usual networking services have been proposed too, such as
naming, localization services, routing, and so on. However
some of these services may consume resources when the
network is highly dynamic. In some situations, the traffic
road admits a reasonable dynamic (e.g., highways or country
roads). This is not the case in a city with dense traffic, cross-
roads, traffic lights and so on. In such a situation, when two
vehicles wish to maintain a communication (as in the follow
me application), many networking resources will be used. It is
the same with the RSU-download application when the vehicle
cannot stay enough time in the range of the RSU. In these
cases, an efficient dedicated services would be preferable.

The above mentioned applications — follow me and RSU-
download — need to maintain the started communication

Laboratory Heudiasyc UMR CNRS UTC 7253, Université de Technologies
de Compiegne, 60200 Compiegne France.
Labex MS2T Maitrise des Systemes de Systemes Technologiques

between the source (first vehicle or RSU) and its destination. A
keepalive service is then essential when the entities are mobile,
to prevent the communication from being broken.

When applications rely on usual networking services, many
control messages are generated. Let take the example of the
follow me application and consider two instances A and B
of this application running on two different vehicles. These
instances are known to each other by their identifiers defined
at the application level. To establish and maintain the commu-
nication, the routing layer requires network addresses. Thus,
another service is called, a naming service or a localization
service depending on the kind of addressing scheme. However,
these addresses will change because of the mobility of the cars
running A and B, and then the naming/localization service
requires regular updates of its data structures (local caches
or remote database). Generally such services need broadcast
communications and consume bandwidth [2].

Suppose now that the address resolution is solved. The
problem is then to route messages between two nodes known
by their network addresses. In a dynamic network, this task is
not simple and, in some situations, can generate many control
messages. For instance, broadcast are generally used to repair
a route or when the destination is not known precisely [17].

Hence, when an application requires to establish a route
between two moving vehicles, naming/localization and routing
services may lead to a large control overhead. However,
some applications could perform better when relying on new
services. In this paper, we propose a keepalive service that
replaces the naming/localization and routing services for a
large set of applications with the particularity to establish the
communication while the nodes are neighbors. We believe that
this will be the case for most of the unicast communications
in dynamic networks. Therefore, our service will be beneficial
for a large set of applications.

The keepalive service relies on cars identifiers to manage
the communication and proceeds only to local exchanges
of messages in the neighborhood of the concerned vehicles.
Therefore, remote information and broadcast communications
are not needed and applications’ performances increase.

In the next section, we show that in most applications
some optimizations are possible by replacing usual networking
service with our keepalive service. Then in Section III, we
detail our protocol. We show its interest using road tests and
performance studies in Section IV. Comparison with related
work and concluding remarks end the paper.

II. KEEPALIVE SERVICE DEFINITION
A. Applications needs

As explained in the previous section, initiating a commu-
nication with a remote node at the application level solicits

services such as naming or localizing that consumes resources
when running in dynamic networks. Moreover, routing can
overload the network in some situations.

However, vehicular networks are not a general purpose
network. Applications requiring to establish a communication
with a remote node will certainly use an operated network, as
provided by 4G for instance. Many applications designed for
the ad hoc vehicular networks will be specific. We believe that
most of them will initiate unicast communication by evidence
and naturally when the two protagonists are neighbors. In that
case, they share a common interest, such as traffic information,
touristic information, and so on.

For instance, when the follow me application starts, the
vehicles are supposed to be neighbors, one behind the other at
the beginning of the trip. In the same way, the RSU-download
application will certainly starts when the vehicle requests it
while it is in the range of the road side unit (illustrated in
Figure 2). Similarly, chats (illustrated in Figure 1), images or
video transfers will certain be done while the users are in
interaction due to the proximity.

Fig. 1. Convoy of vehicles in Compiegne. The chat application starts a
communication between two cars in the convoy and uses the keepalive service.

Fig. 2. An RSU built at UTC and used to exchange information with passing
vehicles. The RSU-download application allows for instance to update maps.

Hence, it is possible to exploit this specificity to design
an efficient keepalive service, offering the continuity of the
unicast communication to the application layer. Such a service
could only rely on identifiers exchanged in the neighborhoods
instead of network addresses. Identifiers remain stable during
the application (to the contrary of network addresses) and can
be managed at the application layer easily.

B. Principle

The keepalive service is illustrated in Figure 3. The first
step is to initiate a communication between two neighbor

O O O O o O
O o O O o 0 O o 0

Iooo QJOO Q—Q/IO
O O O

Fig. 3. When a link breaks, a neighbor is inserted to prevent the communi-
cation from being broken. Only local adjustments are required.

nodes. This can be done for instance using a local broadcast
at the network layer followed by a pseudonym filter at the
application layer. For some applications, cryptographic keys
or peering codes can be exchanged using another channel,
as it is used for peering Bluetooth devices. For instance,
codes could be exchanged before starting the vehicles in the
follow me application for securing the communication. In
other applications, the license plate number could be entered
after having been seen by the close users. In case the IEEE
WAVE stack is used, the communication could be set using
the Wave Short Message Protocol (WSMP) and a Provider
Service Identifier (PSID) identifying the application [21].

Then messages can be exchanged between two instances of
the service, running on neighbor nodes (Figure 3-left). If the
distance between the nodes increases up to the communication
range, other instances of the service running in close vehicles
will propose to become relay. Note that in case there is no such
nodes, then either the ad hoc network is disconnected or there
is a longer path that should be discovered. In the first case, the
communication is impossible. In the second case, discovering
such a path will require to flood the network. Moreover the
duration of the path is generally short because each of its links
shares the same characteristics as the broken one. Hence, the
keepalive service will only rely on close nodes.

The path will then grow (Figure 3). When the vehicles come
closer to each other, useless relays must be removed.

The path adjustments are done on the basis of local informa-
tion exchanged in the neighborhood of the concerned nodes
only. Hence the load on the network is drastically reduced.
Moreover, when messages from the application layer are sent
over the path, the control information is piggybacked to the
messages. When a node forwards the received message, the
previous sender receives an indirect acknowledgment. The
control information consists in the local knowledge about the
path as well as some flags allowing to exchange states about
neighbors: sender, receiver, uncertainty about its identifier and
so on. It is important to note that only local information is
used, avoiding overhead due to remote information update.

III. KEEPALIVE PROTOCOL

In this section, we describe the underlying protocol of the
keepalive service. For sake of simplicity a single source-
destination communication is considered. The protocol is
based on three mechanisms described hereafter: local periodic
messages, path extension and path reduction.

A. Periodic messages

The local periodic updates allow to deal with neighborhood
changes and link failures. Each node involved in the com-
munication sends periodically a message in its neighborhood
for announcing its position in the path. In case a node does
not receive this message anymore in a certain time interval, it
concludes that the link is broken. These periodic sending are
local, and involve only nodes of the path.

The periodic messages contain the list of nodes’ identifiers
belonging to the path (e.g., ugujususugsus) along with two
flags (Figure 4). The first flag (represented by symbol >)
indicates the sender of the message along with its successor.
For instance, if us is the sender and us is its successor in the
path, the message looks like ugujuo>usuqus, as in Figure 4.
When resent by us to its neighbors, the message will contain
UgU1 Uz >Ugs. Node us will also receive it and will deduce
that its last message has been received by its successor. The
first message between, say nodes w and v is u>v and the
acknowledgment sent by v is uv>.

UoU1U2>U3Uy
@ @ @ W @

Fig. 4. Messages periodically sent by us to its neighbors indicate its position
in the path as well as the identity of its current predecessor and successor.

The second flag, called uncertainty flag and represented by
the symbol 7, is used in case of problem regarding a node. For
instance, if us has a doubt on its successor ug, its message
looks like uguqugo>usg?usus (see Figure 5).

UgUiU,>U37Uy

Fig. 5. The message sent by ug indicates that it suspects a problem on the
link (’U,Q, ug).

@)

The uncertainty flag can also be used on the preceding
node. Indeed, a message sent by us should be received by
any node in its neighborhood, including both us and uy4. By
sending uguius?ug>ugus, node ug informs its neighbors that
it suspects uo to have left the neighborhood (see Figure 6).

UpUiU,?Us3>Uy

@)

@)

Fig. 6. The message sent by u3 indicates that ug suspects a problem on the
link (uz, ug).

All this control information is sent periodically using an
adjusted timer, either by piggybacking of the application
messages or in standalone messages when they are not enough
application layer messages.

B. Path extension

The path extension mechanism permits to deal with link
breaking, which can happen when two neighbors go far from
each other. When receiving messages from both extremities
of a link containing uncertainty flags on one another, the
neighbor nodes can propose to become relays of the broken
communication.

Consider for example Figure 4 and suppose that link
(ug,us3) breaks. Since node uy sends periodically messages
containing wug>us3 (as illustrates in Figure 4), it expects
implicit acknowledgment of ug, that is a message without
uncertainty, containing usus>. Such messages indicate that
us well receives the message of us and forwards it with the
path usus> to the next node in that path.

If node uo does not receive such messages from usg, it sets
the uncertainty flag on its successor ug in its next messages,
containing ug>us? as in Figure 5. Similarly, if us does
not receive other messages from wuo, it will send messages
containing us Tug>uy4 as in Figure 6. This leads to the situation
shown in Figure 7.

.1.12>U.3?... ...U.2?U.3>U4...
.U2>U3?... ...U2?U3>U4...
U2>us?.U27us>uy. ..

Fig. 7. Extremities of the broken link add an uncertainty flag in their periodic
messages. This process is repeated a limited number of times.

If a neighbor node v notices such messages containing the
uncertainty flags, it counts them. When a given threshold is
reached, it proposes to be relay of the communication by
sending a message containing u;?v>u;7.

As several neighbors of both uy and us may propose to
be relays, us (closer to the source of the path) chooses the
first (say v) and sends a message containing uo>vug?. Then
v sends usv>ug?. Then uz sends ugvusz> and the path is
repaired: there are no more uncertainty flags (see Figure 8).

...Uz2VUus>. ..

Fig. 8. A neighbor node v proposes to become a relay between uz and us.
Node uz will confirm to a single relay. When node ug confirms in turns v
by removing the last uncertainty flag, the path is repaired.

C. Path reduction

The third mechanism, called path reduction, consists in
reducing the path whenever it is possible.

Consider the case depicted in Figure 9. By receiving mes-
sages sent by u; and w4 (which contain path information),
node v observes that it can reduce the path, becoming a new
relay node for the path. Subsequently v proposes the reduction
by placing in the path the shortcut denoted by u;—7v—"7uy,
with an uncertainty flag on the links (u1,v) and (v, uy).
The message sent by v contains then u;—7v—7uguguzv>uy
(Figure 9).

When u,4 receives this message, it confirms to v the possibil-
ity of reduction, removing the uncertainty flag on the reduction
link (v,u;) (message 2 in Figure 9). Then messages from v
will no more contain the uncertainty on link (v, u4). Node 14
will consider the reduction proposed by v and will propagates
it along the path by sending from this time forward messages
containing u; — v — u;>upuzu4. The reduction information
will then be forwarded along the path by wus and w3 and
will eventually reach u4. However, in case one of the nodes
between u; and uy is already engaged into a reduction, it
will not forward the reduction by v. This prevents any path
disconnection.

When receiving the reduction proposed by v from its
predecessor us, node uy knows that this reduction has been
accepted by u; and all other nodes between u; and itself in
the path. There is then no risk of path disconnection. Finally,
node v sends a message containing wjvu4>, confirming to v
that the reduction is effective.

By using this acceptance mechanism on all the nodes in
the path between w; and uy4, the protocol prevents any path
disconnection due to several overlapping reductions occurring
simultaneously. If a node is already engaged in another reduc-
tion, it will not forward the validation message containing the
reduction. Hence, any conflict between reductions is solved
using a lock on the common sub-path: the winning reduction
is the first that will be received by nodes of the common sub-
path.

Through the same mechanism, the reduction can be per-
formed by a node belonging to the original path. In case of
conflict, priority is given to the node closer to the destination
(it reaches the common sub-path first because it is itself in the
common sub-path). The rest of the analysis is similar to the
one shown in Figure 9.

(4) - -~ T (2 (D)
O——© O——)
(4) (5) (6) (2)

(1) «..U;—2V—2U,4U,U3v>Uy. .« .
(2) «..U;—2V—Uu,UusUug>. . .

(3) .« ..U~ 2V-Ugu,usv>uy. . .
(4) « . U;—V—Uyz>UsUsz. ..

(5) « .« .U~ V—UysUu,>U3z. . .

(6) .+ .U;—V—UgUyU3>Uyg. . .
(7)o e e U3 VUL> . .

Fig. 9. Messages exchanged during the path reduction proposed by node v.

IV. EXPERIMENTAL VALIDATION

The protocol described in the previous section has been
studied formally [7] and has been implemented using the Air-
plug framework [6]. The framework permits road experiments
and performance studies through network emulation.

A. Airplug framework

Airplug is a light communication middleware designed for
dynamic networks [6]. It is characterized by its simplicity and
robustness in the messages exchange for in-vehicle and inter-
vehicle communications. Any language can be used within the
Airplug framework. However Tcl/Tk is generally preferred for
compatibility with ns-2 [8]. The keepalive service has been
implemented in Tcl/Tk as an Airplug application named PTH.
The Airplug middleware offers several modes, allowing
to use a given application in different ways without further
modifications:
e airplug-live: environment for real tests on vehicles or
other dynamic networks (as illustrated in Figure 1) [5];

e airplug-emu: environment for emulating dynamic net-
works in a personal computer (PC). It permits, for in-
stance to replay real tests while changing parameters or
adding vehicles [3].

e airplug-ns: adds-on for ns-2 allowing to reuse Tcl code
of the application in a large simulation [8];

o airplug-rmt: environment allowing to export an applica-
tion on another computer while still being connected to
the framework.

B. Proof of concept on the road

In order to test the interest of our approach as well as to
validate our implementation, we designed a chat application
running on Android phones connected through bluetooth to the
vehicles’ on-board computer. The Airplug applications running
on this embedded computer are:

o the Airplug core program (APG) that manages message
exchanges and network interfaces;

« the Airplug Bluetooth application (BTH) that is in charge
of communicating with the users’ devices;

o the Airplug Chat application (CHT) that requires the
keepalive service;

« the Airplug PTH application implementing the keepalive
service, used by CHT.

The CHT application can either be used on the PC or
from the Android phones (illustrated in Figure 1). This is a
generic application for exchanging messages between remote
users and it could be used as a basis for the follow me
application. Each message sent by CHT are relayed by the
local PTH application to neighbors until the destination. In
case no message is produced by CHT, PTH will produce its
own to check the path. Else the control information is sent
with the CHT payload. In case a link breaks, a relay node is
inserted. In case useless relays are present, they are removed
as explained in the previous section.

The proof of concept involved six vehicles. The embedded
computers were Dell mini-9 Model DP118 under Ubuntu

v8.04 Hardy Heron, external USB GPS devices and external
USB WiFi antennas Alfa AWUSO36EH. The Android phones
were Motorola Atrix under Android 2.3.

During the scenario, two cars started a communication while
they were close to each other. Then the first car accelerates,
creating the space for other cars to be inserted into the path
between the first two vehicles, in order to keep their communi-
cation alive. Next the first vehicle slows down, allowing a path
reduction. Two traffic conditions have been used: Compiegne
down-town and high-speed road close to Compiggne.

This proof of concept confirmed that our protocol is able to
maintain a communication between two vehicles in different
real traffic conditions, showing its usability and interest.

C. Measure of performances

1) Method: Analytical studies validated our protocol [7]
and on-road tests validated its implementation (previous sec-
tion). However, in order to complete the evaluation, it is
interesting to estimate the gain in terms of number of messages
compared to usual networking services. As it is not possible to
obtain repeatable experiments on the road (due to traffic among
other parameters), we used the network emulation mode of the
Airplug framework [3].

With Airplug-emu, scenarios are described in an XML
file, GPS traces logged during road tests are replayed for
vehicles moves and real applications are used. The Airplug-
emu application manages vehicles moves and communications
between applications involved in the emulation, according to
the geographic positions. Figure 10 shows a large scenario
(described hereafter) obtained from several real road tests.

Fig. 10. A screenshot of the execution of the keepalive service using the
vehicular networks emulator Airplug-emu on the down-town scenario.

2) Scenarios: Two scenarios have been used for the per-
formance study. First, we replayed by emulation the high-
speed road scenario from the proof of concept. In this scenario
(named high-speed road scenario in the following) traffic is
sparse and regular. Then, we mixed several road tests in order
to obtain a realistic down-town scenario with larger density
(Figure 10) and less regularity. In this scenario (named down-
town scenario in the following), 31 vehicles are involved.
The communication begins between two vehicles moving from
the Research Center to the train station in Compiegne. The

path involves up to four vehicles (a screenshot movie of this
emulation is available on-line [1]).

We performed a comparative evaluation of PTH against a
greedy geographic routing in the two scenarios: high-speed
road and dense down-town. The geographic routing relies itself
on a location service to know the position of the destination.
When this position is known, the sender sends its message
towards the geographic zone containing the destination. When
the message reaches the borders of this zone, it is broadcast
to reach the destination.

3) Results: We denote by N the number of generated
messages on the source node. These messages are forwarded
to the destination using the keepalive services. Consequently,
we express the total number of messages sent on any link of
the network as a function of N.

a) High-speed road scenario: In this sparse and regular
network, all nodes are involved in the path. As shown in
Table I, the geographic routing produces 2.3N messages,
whereas our implementation of the keepalive service produces
2.6N messages. This difference is explained by the fact that
the destination must acknowledge the received messages by
retransmitting a message (to its predecessor). To the contrary,
this retransmission is not required with the geographic routing.
Hence the destination node sends less messages over the
network. Finally, the geographic routing involved one more
vehicle than PTH to ensure the communication (Table I).

Service | # Messages produced | # Cars involved
Geo. routing 2.3N 6
Keepalive 2.6N
N is the number of messages generated by the source node.
TABLE I

KEEPALIVE VS. GEOROUTING IN SPARSE AND REGULAR NETWORK

b) Down-town scenario: In this dense and irregular
scenario, 31 vehicles are present with a path increasing up
to length 4. The geographic routing with its location service
produces 5N messages. On the same scenario, our implemen-
tation of the keepalive service produces only 2.4 N messages,
avoiding to load excessively the network.

Furthermore, in this scenario, all the 31 vehicles are in-
volved in the operation of the geographic routing, whereas
only 6 are used by PTH (Table II). As we can see, PTH is
advantageous when it comes to dense networks, compared
to other routing protocols because very few vehicles are
concerned by the communication.

Service \ # Messages produced \ # Cars involved
Geo. routing 5N 31
Keepalive 2.4N 6
N is the number of messages generated by the source node.
TABLE II

KEEPALIVE VS. GEOROUTING IN DENSE NETWORKS

As a conclusion, our keepalive service admits similar per-
formances compared to geographic routing in sparse networks
and reduces drastically the load over the network in dense
scenarios. We see that the keepalive service not only reduces
the total number of messages produced in the network for the
same demand by the application (here the application wishes

to send N messages), but also reduces to the minimum the
number of cars involved in the transmissions.

V. RELATED WORKS

Applications for mobile networks have grown in number
and in variety. Some of these services concern entertainment
applications, like video streaming for example [18], [15],
[19], and some others concern road safety or safety critical
applications, like exchanging traffic information for example.
Other applications concern commercial purposes [22], or data
dissemination [4]. A survey of these applications is detailed
in [10]. These applications usually use the services deployed
in these networks.

New infrastructures are being proposed to offer the coop-
eration between cars as a service and allow the sharing of
many services. In [14], the authors propose a novel architecture
that permits to share a set of services for free without any
additional infrastructure.

In terms of safety critical applications and services, in [13],
the purpose is to ensure the reliability of one hop safety critical
broadcast services. For video conferencing, the aim is to be
able to distribute contents to all participants. In [9], the authors
propose an evaluation platform for scalable video conference
service. On the other hand, in [23], the authors propose a
dynamic differentiated service management to provide QoS
for delivering IP applications on the IP-Broadcasting Gateway
equipment.

Many services and applications use the location service.
Securing these location based applications is essential. In [12],
the authors study a new approach for efficient privacy pre-
serving and improving the key update efficiency of Location
Based Services. In [16], a secure location aware services using
geographical secure path routing is proposed.

Many work deal with routing in vehicular networks to
support the ITS services. Geographic routing relies on a
location service (which generally uses flooding) to discover the
position and the address of its destination. When the address is
well known to the source, the relay node is the closest neighbor
to the destination (greedy routing). Two surveys of protocols
designed for vehicular networks are presented in [11] and [2].
In [20], the authors propose a new scheme for a stable routing
protocol to support ITS Services in VANET Networks.

VI. CONCLUSION

Many applications are emerging in VANET. They rely on
the underlying services deployed in the network. However,
usual networking services such as naming, localization or
routing are not always pertinent in these networks because
they turn to be costly in terms of messages and resources
when the network dynamic becomes high.

In this paper, we proposed a new service named keepalive,
which is advantageous for a large set of applications, including
chat, follow me, RSU-download, map sharing among others.
This service relies on identifiers to manage the communi-
cation and proceeds only to local exchanges of messages
in the neighborhood of the concerned vehicles. Therefore,

addresses, remote information or broadcast communications
are not needed and applications’ performances increase.

We presented a proof of concept on road and a performance
study using network emulation to replay road tests with some
variants while using the same code as the one deployed on
the road. The proof of concept showed the interest of such a
service. The performance study proved its efficiency in terms
of messages saved and vehicles involved.

In future work, we plan to organize new large road tests,
to improve our prototype and to measure the performance
gain offered by the keepalive service with the RSU-download
application.

The authors wish to thank their colleagues for their help
during road tests.

REFERENCES

[1] PTH emulation screenshots. https://www.hds.utc.fr/airplug.

[2] M. Altayeb and I. Mahgoub. A survey of vehicular ad hoc networks
routing protocols. IJIAS, 3(3):829-846, July 2013.

[3] A. Buisset, B. Ducourthial, F. El Ali, and S. Khalfallah. Vehicular
networks emulation. In ICCCN, Zurich, Switzerland, 2010.

[4] M.O. Cherif, S.M. Senouci, and B. Ducourthial. Efficient data dissemi-
nation in cooperative vehicular networks. Wireless Communications and
Mobile Computing, 13(12):1150-1160, 2013.

[5] B. Ducourthial and S. Khalfallah. A platform for road experiments. In
IEEE VTC 2009, Barcelona, Spain.

[6] B. Ducourthial. Designing applications in dynamic networks: The
Airplug Software Distribution. In Proc. of ASCoMS, France, 2013.

[71 F. El Ali. Communication unicast dans les réseaux mobiles dynamiques.
PhD thesis, Université de Technologie de Compiegne, 2012.

[8] S. Khalfallah and B. Ducourthial. Bridging the gap between simulation
and experimentation in vehicular networks. In IEEE VTC Fall 2010.

[91 T. Le and H. Nguyen. Application-aware cost function and its

performance evaluation over scalable video conferencing services on

heterogeneous networks. In JEEE WCNC 2012, pp 2185-2190, France.

U. Lee, R. Cheung, and M. Gerla. Emerging Vehicular Applications.

Taylor & Francis Group, 2008.

Y. Lin, Y. Chen, and S. Lee. Routing protocols in vehicular ad hoc

networks: A survey and future perspectives. J. Inf. Sci. Eng., 26(3):913—

932, 2010.

R. Lu, X. Lin, X. Liang, and X. (Sherman) Shen. A dynamic

privacy-preserving key management scheme for location-based services

in VANETS. Trans. Intell. Transport. Sys., 13(1):127-139, March 2012.

X. Ma, J. Zhang, and T. Wu. Reliability analysis of one-hop safety-

critical broadcast services in VANET. [EEE TVT, 60(8):3933-3946,

2011.

H. Mousannif, I. Khalil, and H. Al Moatassime. Cooperation as a service

in VANETs. J.UCS, (8):1202-1218, 2011.

[15] J.S. Park, U. Lee, S.Y Oh, and M. Gerla. Emergency related video

streaming in VANET using network coding. In ACM VANETO06, pp

102-103, 2006.

V. Pathak, D. Yao, and L. Iftode. Securing location aware services over

VANET using geographical secure path routing, 2008.

C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance

vector (AODV) routing, 2003.

P. Pifiol, O. Lépez, M. Martinez, J. Oliver, and M.P. Malumbres.

Modeling video streaming over VANETSs. In Proceedings of the 7th

ACM PM2HW2N, pages 7-14, New York, NY, USA, 2012.

N. Qadri, M. Altaf, M. Fleury, M. Ghanbari, and H. Sammak. Robust

video streaming over an urban VANET. In JEEE WIMOB 2009, pages

429-434, Washington, DC, USA.

T. Taleb, E. Sakhaee, A. Jamalipour, K. Hashimoto, N. Kato, and

Y. Nemoto. A stable routing protocol to support its services in VANET

networks. I[EEE TVT, 56(6):3337-3347, 2007.

R. A. Uzcidtegui and G. Acosta-Marum. Wave: a tutorial. IEEE Comm.

Mag., 47(5):126-133, May 2009.

M. Watfa. Advances in Vehicular Ad-Hoc Networks: Developments and

Challenges. Information Science Reference. 2010.

[23] J. Zhang, H. Jiang, Z. Xu, J. Li, X. Ye, and Y. Sun. Dynamic

differentiated service management for ip over broadcasting network. In
IEEE WCNC 2010, pages 1-6, Sydney, Australia.

[10]

(11]

[12]

(13]

[14]

(16]
[17]

(18]

[19]

[20]

[21]

[22]

