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On the Epistemic Foundation for Iterated Weak

Dominance: An Analysis in a Logic of Individual

and Collective attitudes

Emiliano Lorini

Abstract This paper proposes a logical framework for representing static and

dynamic properties of different kinds of individual and collective attitudes. A com-

plete axiomatization as well as a decidability result for the logic are given. The logic

is applied to game theory by providing a formal analysis of the epistemic conditions

of iterated deletion of weakly dominated strategies (IDWDS), or iterated weak domi-

nance for short. The main difference between the analysis of the epistemic conditions

of iterated weak dominance given in this paper and other analysis is that we use a

semi-qualitative approach to uncertainty based on the notion of plausibility first intro-

duced by Spohn, whereas other analysis are based on a quantitative representation of

uncertainty in terms of probabilities.

Keywords Epistemic logic · Epistemic game theory · Belief revision · Iterated

weak dominance

1 Introduction

The fundamental concept of game theory is the concept of solution which is, at the

same time, a prescriptive notion, in the sense that it prescribes how rational agents in

a given interaction should play, and a predictive one, in the sense that it allows us to

predict how the agents will play. There exist many different solution concepts both

for games in normal form and for games in extensive form (e.g., Nash Equilibrium,

iterated deletion of strongly dominated strategies, iterated deletion of weakly domi-

nated strategies, correlated equilibrium, backward induction, forward induction, etc.)

and new ones have been proposed in the recent years (see, e.g., [30]). A major issue
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we face when we want to use some solution concept in order either to predict human

behavior or to build some practical applications (e.g., for computer security or for

multi-agent systems) is to evaluate its significance. Some of the questions that arise

in these situations are, for instance: given certain assumptions about the agents such

as the assumption that they are rational (e.g., utility maximizers), under which con-

ditions will the agents converge to equilibrium? Are these conditions realistic? Are

they too strong for the domain of application under consideration? There is a branch

of game theory, called epistemic game theory, which can help to answer these ques-

tions (see [42] for a general introduction to the research in this area). Indeed, the aim

of epistemic game theory is to provide an analysis of the necessary and/or sufficient

epistemic conditions of the different solution concepts, that is, the assumptions about

the epistemic states of the players that are necessary and/or sufficient to ensure that

they will play according to the prescription of the solution concept. Typical epistemic

conditions which have been considered are, for example, the assumption that players

have common belief (or common knowledge) about the rationality of every player,1

the assumption that every player knows the choices of the others,2 or the assumption

that players are logically omniscient.3

The aim of this paper is to propose a new logic, called PDL-A (Propositional

Dynamic Logic of individual and collective Attitudes), in which the epistemic condi-

tions of different solution concepts for normal form games can be formally specified.

Our logic PDL-A is a combination of van Benthem et al.’s variant of Propositional

Dynamic Logic PDL which gives an epistemic interpretation to programs [53] with

Spohn’s theories of uncertainty and belief change [45]. The interesting aspect of this

logic is that it allows us to describe both the static and the dynamic properties of

different kinds of individual and collective epistemic attitudes such as knowledge,

belief, graded belief, robust belief and common belief which provide the epistemic

foundations of different solution concepts in game theory.

In this work we mainly concentrate on the logical characterization in PDL-A of the

epistemic conditions of iterated deletion of weakly dominated strategies (IDWDS)

(also called ‘iterated weak dominance’ or ‘iterated admissibility’).

Iterated weak dominance is an important solution concept in game theory which is

distinguished from iterated strong dominance. Although there have been some works

in economics investigating the epistemic conditions of iterated weak dominance, they

are far less studied and understood than the epistemic conditions of iterated strong

dominance. The fundamental difference between the analysis of iterated weak domi-

nance given in this paper and other analysis is that we use a semi-qualitative approach

to uncertainty based on the notion of plausibility introduced by Spohn [45], whereas

existing analysis of the epistemic conditions of iterated weak dominance are based

on a quantitative representation of uncertainty in terms of probabilities (see, e.g.,

1This is the typical condition of iterated deletion of strongly dominated strategies (also called iterated

strong dominance).
2This condition is required in order to ensure that the agents will converge to a Nash equilibrium.
3See [56] for an interesting analysis of iterated strong dominance after relaxing the assumption of logical

omniscience.



[20, 23, 32, 48]). Spohn’s theory of uncertainty and belief change, generally referred

to as ‘κ calculus’, has been largely used in Artificial Intelligence (AI) (Goldszmidt

& Pearl [28] refer to it as ‘rank-based system’ and ‘qualitative probabilities’). It pro-

vides an elegant and relatively simple approach designed to reason about both the

static aspects and the dynamic aspects of epistemic attitudes. Our approach is semi-

qualititative in the sense that we assume that beliefs of agents are ranked by a finite

number of non-negative integers providing a qualitative scale for degrees of belief.

Specifically, each integer corresponds to a linguistic quantifier such as I weakly

believe that ϕ, I mildly believe that ϕ, I strongly believe that ϕ, etc. However, our

approach is not purely qualitative because it allows us to say how much a given agent

believes that a certain proposition ϕ is true. The distinction between purely quan-

titative, semi-qualitative and purely qualitative approaches to uncertainty has been

widely discussed in the AI literature (see, e.g., [41, 55]). While in purely quantita-

tive approaches belief states are characterized by classical probabilistic measures or

by alternative numerical accounts, such as lexicographic probabilities [14, 20, 23] or

conditional probabilities [12], in semi-qualitative approaches, such as Spohn’s the-

ory, belief states are described by rough qualitative measures assigning orders of

magnitude. Finally, purely qualitative approaches do not use any numerical represen-

tation of uncertainty but simply a plausibility ordering on possible worlds structures

inducing an epistemic-entrenchment-like ordering on propositions. Purely qualitative

approaches have been used both in the area of belief revision and in the area of logics

of belief change (see, e.g., [9, 27, 51]).

The rest of the paper is organized as follows. Section 2 provides an informal intro-

duction to the concept of iterated weak dominance and to the epistemic conditions

of this solution concept. Section 3 presents the syntax and the semantics of the logic

PDL-A. Section 4 is devoted to the formalization in PDL-A of the previous different

kinds of individual and collective attitudes, which are fundamental building blocks

for the analysis of the epistemic conditions of iterated weak dominance. In Section

5 a complete axiomatization as well as a decidability result for PDL-A are given. In

Section 6 the logic PDL-A is extended with constructions to describe information

about agents’ choices and is used to provide an analysis of the epistemic conditions of

iterated weak dominance. Related works on the analysis of the epistemic conditions

of iterated weak dominance are discussed in Section 7.

2 Epistemic Conditions of Iterated Weak Dominance: Some Intuitions

Given a game in normal form Ŵ and a player i in this game, a strategy a of player i is

a weakly dominated strategy if and only if there is another strategy b of player i such

that: (1) no matter what strategies the other players will choose, playing b is for i at

least as good as playing a and (2) there exists at least one strategy profile of the other

players such that, if the others play this strategy then playing b is for player i better

than playing a. The so-called iterated weak dominance is a procedure that starts with

a given game in normal form and, at each step, for every player in the game removes

all his weakly dominated strategies, thereby generating a subgame of the original

game, and that repeats this process again and again. The strategy profiles that survive



Fig. 1 Example of iterated

deletion of weakly dominated

strategies

after this iteration of removal of weakly dominated strategies are the equilibria of the

game.

Consider the game in Fig. 1 with two players Row and Column (the payoff on the

left-hand side being the payoff of Row and the payoff on the right-hand side being

the payoff of Column). In the initial game the strategy B of Row is weakly dominated

by the strategy A and is deleted from the game. In the resulting game the strategy β

of Column is weakly dominated by the strategy α and is also deleted from the game.

Therefore, the solution of the game is the strategy profile (A, α).

There are at least two requirements that should be met in order to be able to predict

that the players will act according to the prediction of iterated weak dominance. Let

us illustrate them with the aid of the example in Fig. 1. Assume that both Row and

Column are rational players (i.e., they are utility maximizers) and that they have a

common belief about this.

If we assume that Row is rational then his only reason for discarding strategy B

and for deciding not to play it is that he envisages the possibility that Column will

play β (even though playing β clashes with the hypothesis that Column is rational and

that she believes that Row is rational, as we assumed common belief in rationality,

and hence that Row will not play B). Thus, the first requirement is that the beliefs of

Row and, more generally, the beliefs of every player in the game must be cautious,

in the sense that every player must envisage all possible choices of the other players

(see, e.g., [38, Chapter 8] and also [2, 4, 18, 19, 22, 44] for further discussion about

this requirement).

Moreover, if we assume that Column is rational then her reason for discarding

strategy β is that she considers the situation in which Row plays the admissible (i.e.,

non-weakly dominated) strategy A strictly more plausible than the situation in which

Row plays the inadmissible strategy B. More generally, in order to guarantee that

the players in a game will act according to the prescription of the solution concept,

each of them should believe that the situations in which the other players play an

admissible strategy are strictly more plausible than the situations in which they play

an inadmissible one. If we assume that a certain strategy of a player is incompatible

with the player’s rationality if and only if it is inadmissible, the previous observation

leads to the following second requirement: every player in a game must have a robust

belief about the rationality of the other players, in the sense that he will continue

to believe that the others will play rationally as long as he does not learn something

which is incompatible with this fact. This concept of ‘robust belief’ is one of the

key elements of Stalnaker’s analysis of the epistemic conditions of iterated weak

dominance [47, 48].4

4Related concepts are the concept of ‘assumption’ [23], ‘strong belief’ [12] and ‘full belief’ [2]. See [3]

for a comparative analysis of these four concepts.



The previous two requirements will be formally specified in Section 6, in which

a logical analysis of the epistemic conditions of iterated weak dominance will be

provided. But before moving to game theory we present in the next section the logic

PDL-A.

3 Logical Framework

This section presents the syntax and the semantics of the logic PDL-A. Technically,

this logic is an extension of the logic E-PDL (Epistemic Propositional Dynamic

Logic) proposed by van Benthem et al. [53] with special constructions for repre-

senting plausibility orderings over possible worlds and with dynamic operators for

representing the effects of an operation of belief conditioning in the sense of Spohn.

Generally speaking, PDL-A can be seen as a combination of E-PDL with Spohn’s

rank-based system.

3.1 Syntax

Assume a countable set of atomic propositions describing facts Prop = {p, q, . . .}, a

finite set of agents Agt = {i, j, . . .} and a set of natural numbers Num = {0, . . . ,max},

with max ∈ N \ {0}. For example, suppose Num = {0, 1, 2, 3, 4, 5}. Num can be

interpreted as a qualitative scale where 0 means ‘null’, 1 means ‘very low’, 2 means

‘low’, 3 means ‘medium’, 4 means ‘high’ and 5 means ‘very high’.5 For the sake of

simplicity we assume that Num is finite. This assumption is crucial to be able to pro-

vide a complete axiomatization of the logic PDL-A (see Section 5). A generalization

of our results to the case where Num is infinite is postponed to future work.

2Agt∗ = 2Agt \ ∅ is the set of all non-empty sets of agents (alias coalitions).

Elements of 2Agt∗ are denoted by symbols J, H, . . . For notational convenience, the

coalition Agt \ {i} is denoted by −i.

The language of PDL-A is defined by the following grammar in Backus-Naur Form

(BNF):

π ::= i | π1; π2 | π1 ∪ π2 | π∗ |?ϕ

ϕ, ψ ::= p | exci,h | ¬ϕ | ϕ ∧ ψ | [π ]ϕ | [∗α
i ϕ]ψ

where p ranges over Prop, h ranges over Num, i ranges over Agt and α ranges over

Num \ {0}. The other Boolean constructions ⊤, ⊥, ∨, → and ↔ are defined from p,

¬ and ∧ in the standard way. We define Obj to be the set of all Boolean combinations

of atomic propositions in Prop and we call the elements of Obj ontic (or objective)

facts in order to distinguish them from ‘epistemic facts’ about agents’ mental states.

5It has to be noted that Spohn’s notion of plausibility is measured on the set of ordinals. Here, for

simplicity, it is assumed that plausibility is measured on the integer scale Num.



Knowledge constructs (or programs) π correspond to the basic constructions

of Propositional Dynamic Logic (PDL) [33]: sequential composition (;), non-

deterministic choice (∪), iteration (∗) and test (?). A given knowledge program π

corresponds to a specific configuration of the agents’ epistemic states.

The formula [π ]ϕ has to be read “ϕ is true, according to the knowledge program

π”. For the atomic case, the operator [i] represents the standard S5-notion, partition-

based and fully introspective notion of knowledge that is commonly used both in

computer science [26] and economics [6]. [i]ϕ has to be read “ϕ is true according to

what agent i knows” or more simply “agent i knows that ϕ is true”, which just means

that “ϕ is true in all worlds that agent i envisages”. Sequential composition ; allows

to represent an agent’s knowledge over his knowledge and over other agents’ knowl-

edge. For instance, [i; j]ϕ means that “ϕ is true according to what agent i knows

about agent j’s knowledge”. or more simply “agent i knows that agent j knows that ϕ

is true”. Non-deterministic choice ∪ allows to represent the notion of shared knowl-

edge. For instance, [i ∪ j]ϕ means that “both agent i and agent j know that ϕ is true”.

By means of iteration ∗ one can represent higher order knowledge of arbitrary depth.

For instance, [(i; j)∗]ϕ means that “agent i knows that agent j knows ϕ is true, agent

i knows that agent j knows that agent i knows that agent j knows ϕ is true, and so on,

ad infinitum”. The test operation ? has the usual meaning as in PDL: [?ϕ]ψ means

that “if ϕ is true then ψ is true”.

As we will show in Section 4.1, the operators [i] captures a form of ‘absolutely

unrevisable belief’, that is, a form of belief which is stable under belief revision

with any new evidence. A similar property for the notion of knowledge has been

advanced by the so-called defeasibility (or stability) theory of knowledge [34, 43,

49]. According to this theory, a given piece of information ϕ is part of an agent’s

knowledge only if the agent’s justification to believe that ϕ is true is sufficiently

strong that it is not capable of being defeated by evidence that the agent does not

possess. As pointed out by [9], two different interpretations of the term ‘evidence’

have been given in the context of this theory, each giving a different interpretation of

what knowledge is. The first one [49] defines knowledge as a form of belief which

is stable under belief revision with ‘any piece of true information’, while the second

one [43] gives a stronger definition of knowledge as a form of belief which is stable

under belief revision with ‘any piece of information’. The concept formalized by the

operators [i] captures the latter notion of knowledge in a stronger sense. In Section

4.1, we will introduce the notion of safe belief which corresponds to the former notion

of knowledge.

The formula
[
∗α

i ϕ
]
ψ has to be read “after agent i has learnt that ϕ is true with a

degree of firmness α, ψ will be true” (or “after agent i has revised his beliefs with ϕ

and with a degree of firmness α, ψ will be true”). As we will show in Section 3.2,

technically an epistemic event ∗α
i ϕ amounts to an operation of beliefs’ conditional-

ization in Spohn’s sense [45], where the parameter α measures the extent to which

agent i will believe that ϕ is true after learning that ϕ is true. The epistemic event

∗α
i ϕ is supposed to be public, i.e., if agent i learns that ϕ is true then all other agents

know this. This assumption could be easily relaxed by using action models as intro-

duced in [7, 8], which would allow us to model private and semi-private epistemic

events.



The language of PDL-A contains special atoms of the form exci,h which are used

to rank the worlds that agent i considers possible at a given world according to their

plausibility degree for the agent. Starting from [29], ranking among possible worlds

have been extensively used in belief revision theory. We here use the notion of plau-

sibility first introduced by Spohn [45]. Following Spohn’s theory, the worlds that are

assigned the smallest numbers are the most plausible, according to the beliefs of the

individual. That is, the number h assigned to a given world rather captures the degree

of exceptionality of this world, where the exceptionality degree of a world is nothing

but the opposite of its plausibility degree (i.e., the exceptionality degree of a world

decreases when its plausibility degree increases). Therefore, formula exci,h can be

read alternatively as “the current world has for agent i a degree of exceptionality equal

to h” or “the current world has for agent i a degree of plausibility equal to max− h”.

Before turning into semantics, we provide some abbreviations that will be used in

the rest of the paper. We define 〈i〉 to be the dual of [i], that is:

〈i〉ϕ
def
= ¬[i]¬ϕ

Formula 〈i〉ϕ means that “ϕ is compatible with agent i’s knowledge”.

3.2 Semantics

The semantics of the logic PDL-A is a possible world semantics with a special

function for exceptionality.

Definition 1 (Model) PDL-A models are tuples M = 〈W, {Ei : i ∈ Agt}, κ, V 〉

where:

• W is a nonempty set of possible worlds or states;
• every Ei is an equivalence relation between worlds in W;
• κ : W × Agt −→ Num is a total function mapping worlds and agents to natural

numbers in Num such that:

(Constr1) for every w ∈ W and for every i ∈ Agt, there is v such that wEiv and

κ(v, i) = 0;

• V : W −→ 2Prop is a valuation function.

As usual, p ∈ V (w) means that proposition p is true at world w. The equivalence

relations E i, which are used to interpret the epistemic operators [i], can be viewed as

functions from W to 2W . Therefore, we can write Ei(w) = {v ∈ W : (w, v) ∈ Ei}.

The set Ei(w) is agent i’s information set at world w: the set of worlds that agent i

envisages at world w. As Ei is an equivalence relation, if (w, v) ∈ Ei then agent i has

the same information set at w and v (i.e., agent i has the same knowledge at w and v).

The function κ provides a plausibility grading of the possible worlds for each agent

i and is used to interpret the atomic formulas exci,h. κ(w, i) = hmeans that, according

to agent i the world w has a degree of exceptionality h or, alternatively, according to

agent i the world w has a degree of plausibility max − h. (Remember that the degree

of plausibility of a world for an agent is the opposite of its exceptionality degree for



the agent). The function κ allows to rank an agent’s envisaged worlds according to

their plausibility degree: among the worlds agent i envisages at world w (i.e., agent i’s

information set at w), there are worlds that i considers more plausible than others. For

example, suppose that Ei(w) = {w, v, u}, κ(w, i) = 2, κ(u, i) = 1 and κ(v, i) = 0.

This means that at world w agent i envisages the three worlds w, v and u. Moreover,

according to agent i, the world v is strictly more plausible than the world u and the

world u is strictly more plausible than the world w (as max−0 > max−1 > max−2).

(Constr1) is a normality constraint for the plausibility grading which ensures that

an agent can always envisage a world with a minimal degree of exceptionality 0. This

constraint is important because it ensures that an agent’s beliefs are consistent e.g.,

an agent cannot believe ϕ and ¬ϕ at the same time (see Section 4.1 for more details).

As in PDL, the accessibility relation for atomic knowledge programs is general-

ized to all kinds of knowledge programs. Given a PDL-A-model M = 〈W, {Ei : i ∈

Agt}, κ, V 〉 we define:

Eπ1;π2
= Eπ1

◦ Eπ2

Eπ1∪π2
= Eπ1

∪ Eπ2

Eπ∗ = (Eπ )∗

E?ϕ = {(w, w) : w ∈ ||ϕ||}

where ||ϕ|| = {w ∈ W : M, w |= ϕ}.

Definition 2 (Truth conditions) Given a PDL-A-model M, a world w and a formula

ϕ, M, w |= ϕ means that ϕ is true at world w in M. The rules defining the truth

conditions of formulas are:

• M, w |= p iff p ∈ V (w)
• M, w |= exci,h iff κ(w, i) = h

• M, w |= ¬ϕ iff not M, w |= ϕ
• M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
• M, w |= [π ]ϕ iff M, v |= ϕ for all v such that (w, v) ∈ Eπ

• M, w |= [∗α
i ϕ]ψ iff M∗α

i ϕ, w |= ψ

where the updated model M∗α
i ϕ is defined according to the Definition 4 below.

The epistemic event ∗α
i ϕ (i.e., agent i learns that ϕ is true) updates agent i’s infor-

mation set by modifying the exceptionality degree that i ascribes to his envisaged

worlds. Before defining this model update, we follow [45] and lift the exceptionality

of a possible world to the exceptionality of a formula viewed as a set of worlds.

Definition 3 (Exceptionality degree of a formula) Given a PDL-A model M =

〈W, {Ei : i ∈ Agt}, κ, V 〉, let ||ϕ||w,i = {v ∈ W : v ∈ ||ϕ|| and (w, v) ∈ Ei} be the

set of worlds that agent i envisages at w and in which ϕ is true. The exceptionality

degree of formula ϕ for agent i at world w, denoted by κw,i(ϕ), is defined as follows:

κw,i(ϕ) =

{
min

v∈||ϕ||w,i

κ(v, i) if ||ϕ||w,i �= ∅

max if ||ϕ||w,i = ∅



The exceptionality degree of a formula ϕ captures the extent to which ϕ is consid-

ered to be exceptional by the agent. As expected, the plausibility degree of a formula

ϕ is defined as max − κw,i(ϕ). The plausibility degree of a formula ϕ captures the

extent to which ϕ is considered to be plausible by the agent.

Definition 4 (Update) Given a PDL-A-model M = 〈W, E, κ, V 〉, M∗α
i ϕ is the model

such that for all w ∈ W and for all j ∈ Agt:

W∗α
i ϕ = W

E
∗α

i ϕ

j = Ej

κ∗α
i ϕ(w, i) =

⎧
⎨
⎩

κ(w, i) − κw,i(ϕ) if M, w |= ϕ

Cut(α + κ(w, i) − κw,i(¬ϕ)) if M, w |= ¬ϕ ∧ 〈i〉ϕ

κ(w, i) if M, w |= [i]¬ϕ

κ∗α
i ϕ(w, j) = κ(w, j) if i �= j

V ∗α
i ϕ = V

where

Cut(x) =

{
x if 0 ≤ x ≤ max

max if x > max

The epistemic event ∗α
i ϕ does not affect the objective world. This is the reason

why the valuation function V is not altered by it (see the definition of V ∗α
i ϕ). More-

over, it modifies agent i’s plausibility ordering but does not modify the plausibility

orderings of the agents different from i (see the definition of κ∗α
i ϕ). In particular, it

induces a kind of belief conditioning in Spohn’s sense [45]. Agent i’s plausibility

ranking over his envisaged worlds is updated as follows.

1. For every world w in which ϕ is true, i.e., M, w |= ϕ, the degree of exceptionality

of w for i decreases from κ(w, i) to κ(w, i) − κw,i(ϕ), which is the same thing

as saying that, degree of plausibility of w for i increases from max − κ(w, i) to

max−(κ(w, i)−κw,i(ϕ)). (Note that, by Definition 3, we have κ(w, i)−κw,i(ϕ) ≤

κ(w, i)).

2. For every world w in which ϕ is false:

(a) if at w agent i envisages a world in which ϕ is true, i.e., M, w |= ¬ϕ ∧

〈i〉ϕ, then the degree of exceptionality of w for i changes from κ(w, i)

to Cut(α + κ(w, i) − κw,i(¬ϕ));

(b) if at w agent i does not envisage a world in which ϕ is true, i.e. M, w |=

[i]¬ϕ, then the degree of exceptionality of w for i does not change.

The preceding condition 1 ensures the intuitive requirement that belief revision with

ϕ leaves the plausibility ranking in the ϕ-part of agent i’s information set unchanged.

In other words, if v and u are worlds in which ϕ is true and agent i considers v more

plausible (or less exceptional) than u then, after revising his beliefs with ϕ, agent

i will still consider v more plausible than u. More formally, for all v, u ∈ ||ϕ|| we



have that if κ(u, i) > κ(v, i) and (u, v) ∈ Ei then κ∗α
i ϕ(u, i) > κ∗α

i ϕ(v, i).6 The

degree of firmness α in the preceding condition 2(a) measures the extent to which

agent i will believe that ϕ is true after revising his beliefs with ϕ. Indeed, as we will

show in Section 4.1, in Spohn’s theory of uncertainty the strength of the belief that

ϕ is true is defined by the exceptionality degree of the negation of ϕ (i.e., κw,i(¬ϕ)).

Consequently, condition 2(a) guarantees that, if agent i envisages a world in which

an objective formula ϕ is true then, after revising his beliefs with formula ϕ and with

a degree of firmness α, he will believe ϕ with strength α. This property will become

clearer in Section 4.1 in which the concept of graded belief (i.e., believing something

with a certain strength) will be formally defined and its logical properties will be

studied (see, in particular, Proposition 7).

Note that the reason why in Section 3.1 we assumed that α must be different from

0 is to guarantee that if an agent envisages a world in which a given objective formula

ϕ is true then, after learning that ϕ is true, he will believe ϕ. Again, this property of

the belief revision operation will become clearer in Section 4.1 where the concept of

belief will be clearly defined (see, again, Proposition 7).

The function Cut is a minor technical device, taken from [5], which ensures

that the new plausibility assignment fits into the finite set of natural numbers Num.

Finally, the preceding condition 2(b) guarantees that the agent’s i plausibility ordering

over worlds does not change, if i learns something that he does not envisage.7

Remark 1 It is straightforward to verify that the operation ∗α
i ϕ preserves the con-

straint (Constr1) over PDL-A-models. Therefore, if M is a PDL-A-model then M∗α
i ϕ

is a PDL-A-model too.

In what follows we write |= ϕ to mean that ϕ is valid (ϕ is true in all PDL-A-

models).

4 Varieties of Individual and Collective Attitudes

In the following two sections a variety of individual and collective attitudes will be

defined, and their logical properties and logical relationships will be studied. We

consider three kinds of individual attitudes, in addition to the concept of knowl-

edge formalized by the operator [i], namely belief, graded belief and robust belief.

Furthermore, we consider three kinds of collective attitudes, namely common knowl-

edge, common belief and common robust belief. Of course, we do not claim that this

analysis is exhaustive. For instance, we do not consider the collective counterpart of

6As for the ¬ϕ-part, due to the fact that Num is finite, we can only say that: if v and u are worlds in

which ϕ is false, agent i considers v more plausible than u and, according to agent i, u has a degree of

exceptionality equal or lower than max−α then, after revising his beliefs with ϕ, agent i will still consider

v more plausible than u. More formally, for all v, u ∈ ||¬ϕ|| we have that if κ(u, i) > κ(v, i) and (u, v) ∈ Ei

and κ(u, i) ≤ max − α then κ∗α
i ϕ(u, i) > κ∗α

i ϕ(v, i).
7Note that the three conditions 1, 2(a) and 2(b) cover all cases. Indeed, the third condition [i]¬ϕ is

equivalent to ¬ϕ ∧ [i]¬ϕ, because [i]¬ϕ → ¬ϕ is valid.



graded belief, namely the concept common graded belief, as a logical analysis of this

concept goes beyond the objectives of the present work.

The concepts of belief, graded belief, robust belief and common belief will be

fundamental building blocks for the analysis of the epistemic conditions of iterated

weak dominance that we will carry out in Section 6. The concept of graded belief

is also essential to understand the meaning of the parameter α in the belief revision

operator
[
∗α

i ϕ
]
). Finally, the concepts of common knowledge and common robust

belief are defined here because we are interested: (1) in comparing them with the con-

cept of common belief and (2) in understanding the similarities between the dynamic

properties of robust belief and the dynamic properties of common robust belief, and

between the dynamic properties of knowledge and the dynamic properties of common

knowledge.

4.1 Individual Attitudes

Following [45], we say that agent i believes that ϕ is true, denoted by Beliϕ, if and

only if ϕ is true in all worlds that i considers minimally exceptional (or maximally

plausible). Let us define the belief operator Beli as follows:

Beliϕ
def
= [i](exci,0 → ϕ)

As the following Proposition 1 highlights, the previous abbreviation correctly charac-

terizes this notion of belief. Given a PDL-A model M = 〈W, {Ei : i ∈ Agt}, κ, V 〉 and

a world w in M, let Bi = {(w, v) : (w, v) ∈ Ei and κ(v, i) = 0} be the accessibility

relation for agent i’s belief and Bi(w) = {v ∈ W : (w, v) ∈ Bi} be the corresponding

i’s belief state at world w.

Proposition 1 For every PDL-A model M and for every world w in M, M, w |= Beliϕ

if and only if M, v |= ϕ for all v ∈ Bi(w).

The following concept of ‘graded belief’ is taken from Spohn.8 We say that at

world w agent i believes that ϕ with strength equal to h, denoted by Belhi ϕ, if and only

if the degree of exceptionality of ¬ϕ for agent i at w (i.e., κw,i(¬ϕ)) is equal to h. In

formal terms we define:

Belhi ϕ
def
=

{
〈i〉(exci,h ∧ ¬ϕ) ∧ [i](exci,<h → ϕ) if h < max

[i](exci,<h → ϕ) if h = max

8A modal logic analysis of this concept has been given by Aucher [5] (see also [35, 54]). A relevant

difference between Aucher’s approach and our approach is that he introduces graded belief operators in

the syntax right away, whereas we build them from the special atomic formulae exci,h. However, the added

value of working with the exci,h-constructs is that they provide a simple extension of van Benthem et al.’s

logic presented in [53]. This simple extension allows us to formalize a variety of individual and collective

epistemic attitudes that have been studied in the literature (see Section 4) and that are not expressible in

Aucher’s logic. (For instance, Aucher’s logic does not incorporate the concepts of common belief and

common knowledge).



where exci,<h
def
=
∨

k∈Num:0≤k<h exci,k for all h ∈ Num such that h ≥ 1, and

exci,<0
def
= ⊥. The following proposition highlights that the preceding definition of

the graded belief operator is indeed correct.

Proposition 2 For every PDL-A model M, for every world w in M and for every

h ∈ Num, M, w |= Belhi ϕ if and only if κw,i(¬ϕ) = h.

As we have emphasized above, graded belief is a fundamental concept of Spohn’s

theory of uncertainty and belief change, as it justifies the definition of belief revision

we have given in Section 3.2 (Definition 4). It is worth noting that the graded belief

operator Belhi is an operator of strong necessity (or actual necessity) in the sense of

possibility theory [25].

For every h ∈ Num, we moreover provide the following definition:

Bel
≥h
i ϕ

def
=

∨

k∈Num:k≥h

Belki ϕ

Bel
≥h
i ϕ has to be read “agent believes that ϕ is true with strength at least h”. It is

worth noting that, when h ≥ 1, the operator Bel
≥h
i is a normal operator, as it can be

interpreted by means of the following accessibility relation:

B<h
i = {(w, v) : (w, v) ∈ Ei and κ(v, i) < h}.

In particular, given a PDL-A model M = 〈W, {Ei : i ∈ Agt}, κ, V 〉, we have that

M, w |= Bel
≥h
i ϕ if and only if M, v |= ϕ for all v such that (w, v) ∈ B<h

i . The

operator Bel
≥h
i will be a key element in the analysis of the epistemic conditions of

iterated weak dominance that we will conduct in Section 6.4. Specifically, it will be

necessary in order to define the notion of perfect rationality on which the concept of

iterated weak dominance is based. For notational convenience, we define B̂el
≥h
i to be

the dual operator of Bel
≥h
i , that is, B̂el

≥h
i ϕ

def
= ¬Bel

≥h
i ¬ϕ.

The following Propositions 3–7 capture some interesting properties of the preced-

ing types of individual attitudes. For instance, the following Proposition 3 highlights

that modal operators for belief and graded belief with strength at least h are

normal.

Proposition 3 For every � ∈ {Beli : i ∈ Agt}∪
{
Bel

≥h
i : i ∈ Agt, h ∈ Num \ {0}

}
we

have:

|= (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) (1a)

If |= ϕ then |= �ϕ (1b)

According to the following Proposition 4, belief is characterized by the normal

modal logic system KD45.



Proposition 4 For every i ∈ Agt we have:

|= ¬(Beliϕ ∧ Beli¬ϕ) (2a)

|= Beliϕ → BeliBeliϕ (2b)

|= ¬Beliϕ → Beli¬Beliϕ (2c)

Note that the item (2a) follows from the normality constraint (Constr1) over PDL-A

models given in Section 3.2.

The following Proposition 5 highlights some basic relationships between knowl-

edge, belief and graded beliefs with different strengths.

Proposition 5 For every i ∈ Agt we have:

|= Belhi ϕ → ¬Belki ϕ if h �= k (3a)

|= [i]ϕ → Belmaxi ϕ (3b)

|= [i]ϕ → Beliϕ (3c)

|= Beliϕ ↔ Bel
≥1
i ϕ (3d)

According to the item (3a), an agent cannot believe the same thing with different

strengths. Moreover, knowing that ϕ implies believing that ϕ with maximal strength

max (3b); knowing that ϕ implies believing that ϕ (3c); believing that ϕ coincides

believing that ϕ with strength at least 1 (3d).

The following Proposition 6 captures the basic decomposability properties of the

operators of graded belief.

Proposition 6 For every i ∈ Agt we have:

|=
(
Belhi ϕ ∧ Belki ψ

)
→ Bel

≥max{h,k}
i (ϕ ∨ ψ) (4a)

|=
(
Belhi ϕ ∧ Belki ψ

)
→ Bel

min{h,k}
i (ϕ ∧ ψ) (4b)

According to the validity (4a), the degree of belief of ϕ∨ψ is at least equal to the max-

imum of the degree of belief of ϕ and ψ . According to the validity (4b), the degree

of belief of ϕ ∧ ψ is equal to the minimum of the degree of belief of ϕ and ψ . Simi-

lar properties for graded belief are given in possibility theory [25]. Note that second

validity uses the “definite” value min{h, k} while the first validity uses the “at least”

construction ≥ max{h, k} because the minimun of the union of two sets is equal to the

minimum of the minima of the two sets, while the minimun of the intersection of two

sets is at least equal to the maximum of the minima of the two sets but not necessarily

equal.

Finally, the following Proposition 7 is about the dynamic properties of belief and

graded belief.



Proposition 7 For every i ∈ Agt and for every α ∈ Num \ {0} we have:

|= 〈i〉ϕ →
[
∗α

i ϕ
]
Beliϕ if ϕ ∈ Obj (5a)

|= 〈i〉ϕ →
[
∗α

i ϕ
]
Belαi ϕ if ϕ ∈ Obj (5b)

|= [i]ψ →
[
∗α

i ϕ
]
[i]ψ if ψ ∈ Obj (5c)

|=
[
∗α

i ϕ
]
[i]ψ → [i]ψ if ψ ∈ Obj (5d)

Item (5a) highlights a basic property of belief revision in the sense of AGM theory

[1], namely the so-called success postulate: if ϕ is an objective fact and agent i envis-

ages a world in which ϕ is true then, after learning that ϕ is true, agent i believes that

ϕ is true.9 Note that this property does not hold in general but only for formulas in

Obj. Indeed, if we drop the restriction to Boolean formulas, the match to AGM suc-

cess postulate does not work anymore. For instance, if ϕ is a Moore-like sentence of

the form p ∧ ¬Belip, the formula 〈i〉ϕ →
[
∗α

i ϕ
]
Beliϕ is clearly not valid.

Item (5b) clarifies the role of the degree of firmness α in the operation of belief

revision: if ϕ is an objective fact and agent i envisages a world in which ϕ is true

then, after revising his beliefs with formula ϕ and with a degree of firmness α, agent

i believes that ϕ is true with strength equal to α. Finally, item (5c) captures the fun-

damental property of knowledge that we have discussed in Section 3.1: if ψ is an

objective fact and agent i knows that ψ then, after learning a new fact ϕ, he will

continue to know that ψ is true. In this sense, knowledge is stable under belief revi-

sion with any piece of information. The last item (5d) is a no-learning principle for

knowledge: if ψ is an objective fact and agent i will know that ψ after revising his

knowledge with ϕ then, it means that i already knows ψ .

Before moving to the analysis of collective attitudes, we follow Stalnaker [48] in

defining a notion of robust belief relative to a specific formula ϕ, in the sense of

belief which is stable under belief revision with ϕ:

RBeli(ϕ, ψ)
def
= Beliψ ∧

[
∗α

i ϕ
]
Beliψ

where α is any arbitrary value in Num \ {0} (e.g., α = 1). The construction

RBeli(ϕ, ψ) has to be read “agent i has a robust belief that ψ relative to ϕ”. One

reason why the value of the parameter α can be taken arbitrarily is that we have the

following validity, for all α, α′ ∈ Num \ {0} and for all ψ ∈ Obj:

|=
[
∗α

i ϕ
]
Beliψ ↔

[
∗α′

i ϕ

]
Beliψ

Therefore, the definition of relative robust belief RBeli(ϕ, ψ) is independent

from the value of α in case of objective formulas (i.e., Beliψ ∧
[
∗α

i ϕ
]
Beliψ

is logically equivalent to Beliψ ∧
[
∗α′

i ϕ

]
Beliψ for all α, α′ ∈ Num \ {0}

and for all ψ ∈ Obj). This concept of relative robust belief, as well as

the concept of graded belief defined above, will be fundamental in the logical

9The only difference with AGM theory is the condition 〈i〉ϕ. AGM assumes that the new information ϕ

must incorporated in the belief base, whereas we here assume that ϕ must incorporated in the belief base

only if agent i envisages a world in which ϕ is true.



analysis of the epistemic conditions of iterated weak dominance we will carry out in

Section 6.

Remark 2 It is worth noting that our concept of relative robust belief, represented

by the formula RBeli(ϕ, ψ), is related to the concept of robust (or strong) belief

defined by [10]. According to Baltag & Smets, ϕ is a strong belief if and only if ϕ

is epistemically possible and moreover all epistemically possible ϕ-states are strictly

more plausible than all epistemically possible ¬ϕ-states. More formally, we can say

that at world w agent i has the robust belief that ψ (in Baltag & Smets’s sense),

denoted by RBelB&S
i ψ , if and only if (i) ||ψ ||w,i �= ∅ and (ii) for all v ∈ ||ψ ||w,i and

for all u ∈ ||¬ψ ||w,i, κ(v, i) < κ(u, i). The operator RBelB&S
i ψ can be syntactically

expressed in the logic PDL-A. In particular, for every PDL-A model M and for all

w ∈ W we have:

M, w |= RBelB&S
i ψ if and only if

M, w |= Beliψ ∧
∧

h∈Num\{0}
(〈i〉(¬ψ ∧ exci,h) → [i](ψ → exci,<h)).

Note that for all objective facts ψ ∈ Obj, we have the following validity:

|=
(
RBelB&S

i ψ ∧ 〈i〉(ϕ ∧ ψ)

)
→ RBeli(ϕ,ψ).

In other words, if ψ is robust belief in Baltag & Smets’s sense and, according to the

agent’s knowledge, ϕ and ψ are consistent, then the agent has a robust belief that ψ

relative to ϕ, that is, the belief that ψ is stable under belief revision with ϕ. In other

words, a robust belief in Baltag & Smets’s sense can only be defeated by evidence

(truthful or not) that is known to contradict it.

Following Baltag & Smets [9] we moreover define the following concept of ‘safe

belief’. In [48] Stalnaker calls it ‘absolutely robust belief’ in order to distinguish it

from the preceding concept of ‘relative robust belief’, while in [49] he uses it to

formally characterize Lehrer’s defeasibility analysis of knowledge [36]. We say that

agent i has the safe belief that ϕ, denoted by SBeliϕ, if and only if ϕ is true in all

worlds that i envisages and that are at least as plausible as the current world. In formal

terms, we define:

SBeliϕ
def
=

∧

h∈Num

(exci,h → [i](exci,≤h → ϕ))

with exci,≤h
def
=
∨

k∈Num:0≤k≤h exci,k. As the following Proposition 8 highlights, the

previous abbreviation correctly characterizes this notion of safe belief. Given a PDL-A

model M = 〈W, {Ei : i ∈ Agt}, κ, V 〉 and a world w in M, let SB i = {(w, v) : (w, v) ∈

Ei and κ(v, i) ≤ κ(w, i)} be the accessibility relation for agent i’s safe belief and let

SB i(w) = {v ∈ W : (w, v) ∈ SB i} be the corresponding set of i’s SB i-accessible

worlds at world w.10

10Note that the relation SB i matches exactly to the plausibility relation in the pure qualitative accounts on

belief revision in Dynamic Epistemic Logic (DEL) [9, 51].



Proposition 8 For every PDL-A model M and for every world w in M, M, w |=

SBeliϕ if and only if M, v |= ϕ for all v ∈ SB i(w).

For notational convenience, we define ŜBeli to be the dual operator of SBeli, that is,

ŜBeliϕ
def
= ¬SBeli¬ϕ.

As the items (6a)–(6c) in the following Proposition 9 highlight, safe belief is

characterized by the normal modal logic system S4.3 which exactly corresponds to

Stalnaker’s logic S4.3 in his defeasibility analysis of knowledge [49]. The item (6d)

in Proposition 9 captures the characteristic property of safe belief: if ψ is an objec-

tive fact, agent i safely believes that ψ and ϕ is true then, after learning that ϕ, he

will continue to safely believe that ψ is true. In this sense, a safe belief is stable under

belief revision with any piece of true information.

Proposition 9 For every i ∈ Agt and for every α ∈ Num \ {0} we have:

|= SBeliϕ → ϕ (6a)

|= SBeliϕ → SBeliSBeliϕ (6b)

|=
(
ŜBeliϕ ∧ ŜBeliψ

)
→
(
ŜBeli

(
ϕ ∧ ŜBeliψ

)
∨ ŜBeli

(
ψ ∧ ŜBeliϕ

))
(6c)

|= (ϕ ∧ SBeliψ) →
[
∗α

i ϕ
]
SBeliψ if ψ ∈ Obj (6d)

Note that, differently from knowledge, safe belief is not necessarily stable under

belief revision with false information. Indeed, SBeliψ →
[
∗α

i ϕ
]
SBeliψ is invalid

even for ψ ∈ Obj.

4.2 Collective Attitudes

Given a PDL-A model M = 〈W, {Ei : i ∈ Agt}, κ, V 〉, let EJ =
⋃

i∈J Ei, BJ =
⋃

i∈J Bi

and SBJ =
⋃

i∈J SB i. We define a world v to be EJ-reachable from world w, denoted

by (w, v) ∈ E
+
J , if and only if there exist worlds w0, . . . , wn such that w0 = w, wn = v

and for all 0 ≤ k ≤ n−1, there exists i ∈ J such that (wk, wk+1) ∈ Ei. In other words,

for every J ∈ 2Agt∗, E+
J is the defined to be the transitive closure of EJ . Similarly, we

define B
+
J and SB

+
J to be the transitive closures of BJ and SBJ .

We define three types of collective attitudes that are interpreted by means of the

relations E
+
J , B

+
J and SB

+
J . The first two correspond to the well-known concepts

of common knowledge and common belief and are represented, respectively, by the

operators CKJ and CBelJ . The third one, represented by the operator CSBelJ , corre-

sponds to the concept of common safe belief that has been rather neglected in the

logical literature up to now.11 We define it here because we are interested in com-

paring it with the concepts of common knowledge and common belief, in the same

11The only exception is Baltag et al. [11] who study a notion of “common stable true belief” which similar

to our notion of “common safe belief”.



way as in Section 4.1 we compared safe belief with knowledge and belief. For all

J ∈ 2Agt∗ we define:

CKJϕ
def
=

[(⋃
i∈J

i

)∗]
ϕ

CBelJϕ
def
=

[(⋃
i∈J

(i; ?exci,0)

)∗]
ϕ

CSBelJϕ
def
=

[(
⋃

h∈Num,i∈J

(?exci,h; i; ?exci,≤h)

)∗]
ϕ

As the following proposition highlights, the preceding three abbreviations correctly

characterize the concepts of common knowledge, common belief and common safe

belief.

Proposition 10 For every PDL-A model M and for every world w in M:

• M, w |= CKJϕ if and only if M, v |= ϕ for all v such that (w, v) ∈ E
+
J ,

• M, w |= CBelJϕ if and only if M, v |= ϕ for all v such that (w, v) ∈ B
+
J ,

• M, w |= CSBelJϕ if and only if M, v |= ϕ for all v such that (w, v) ∈ SB
+
J .

The following Proposition 11 highlights the basic logical relationships between

common knowledge, common belief and common safe belief.

Proposition 11 For every J ∈ 2Agt∗ we have:

|= CKJϕ → CSBelJϕ (7a)

|= CSBelJϕ → CBelJϕ (7b)

According to the item (7a), J’s common knowledge that ϕ entails J’s common safe

belief that ϕ whereas, according to the item (7b), J’s common safe belief that ϕ entails

J’s common belief that ϕ.

Finally, the following Proposition 12 is about the dynamic properties of common

knowledge, common belief and common safe belief. Let

[∗Jϕ] ψ
def
=
[
∗

α1

i1
ϕ
]
. . .
[
∗

αcard(J)

icard(J)
ϕ
]
ψ

where (i1, . . . , icard(J)) is any arbitrary ordering of the elements of J, and

α1, . . . , αcard(J) are any arbitrary values in Num \ {0}. The construction [∗Jϕ]ψ has

to be read “after every agent in J has learnt that ϕ is true, ψ will be true”.

Proposition 12 For every J ∈ 2Agt∗ we have:

|= CKJ

∧

i∈J

〈i〉ϕ → [∗Jϕ]CBelJϕ if ϕ ∈ Obj (8a)

|= CKJψ → [∗Jϕ]CKJψ if ψ ∈ Obj (8b)

|= (CSBelJϕ ∧ CSBelJψ) → [∗Jϕ]CSBelJψ if ψ ∈ Obj (8c)



The item (8a) is the collective counterpart of the item (5a) of Proposition 7: if ϕ

is an objective fact and the agents in J have common knowledge that each of them

envisages a world in which ϕ is true then, after learning that ϕ is true, the agents in

J acquire the common belief that ϕ. This principle can be viewed as the collective

counterpart of the success postulate of AGM theory [1]. The item (8b) is the collec-

tive counterpart of the inertial principle for knowledge (Proposition 7, item 5c): if the

agents in J have common knowledge that the objective fact ψ is true then, after learn-

ing that ϕ, they will continue to have common knowledge that ψ . The item (8c) is the

collective counterpart of the inertial principle for safe belief (Proposition 9, item 6d):

if the agents in J have the common safe belief that the objective fact ψ is true and

that ϕ is true then, after learning that ϕ is true, they will continue to have the common

safe belief that ψ . In this sense, common safe belief is stable under belief revision

with any piece of information that the agents commonly and safely believe to be true.

5 Axiomatization and Decidability

In this section, we provide a complete axiomatization as well as a decidability result

for the logic PDL-A. This logic has so-called reduction axioms which allow us to

eliminate all the dynamic operators of belief revision from formulas. That elimination

provides a decidable procedure for checking whether a given formula is PDL-A valid.

Moreover it provides an axiomatics.

Let PDL-A− be the fragment of the logic PDL-A without the operators
[
∗α

i ϕ
]

and

PDL-A−− be the fragment of PDL-A− without the special atoms exci,h. That is, let

the language of PDL-A− be the set of formulas defined by the following BNF:

ϕ ::= p | exci,h | ¬ϕ | ϕ1 ∧ ϕ2 | [π ]ϕ

and let the language of PDL-A−− be the set of formulas defined by the following

BNF:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [π ]ϕ

where p ranges over Prop, h ranges over Num, i ranges over Agt and π ranges over

the set of knowledge programs as defined in Section 3.1.

Proposition 13 The following formulas are PDL-A valid for all h, k ∈ Num and for

all i ∈ Agt.

〈i〉exci,0 (NormPlaus)

∨

h∈Num

exci,h (ComplPlaus)

exci,h → ¬exci,k if h �= k (UniquePlaus)



Proposition 14 The following equivalences are PDL-A valid for all p ∈ Atm, h ∈

Num, α ∈ Num \ {0}, i, j ∈ Agt such that i �= j:
[
∗α

i ϕ
]

p ↔ p (R1)

[
∗α

i ϕ
]
exci,h ↔

((
ϕ ∧

∨
l,m∈Num\{0}:l−m=h

(
Belmi ¬ϕ ∧ exci,l

)
)

∨

(
¬ϕ ∧ 〈i〉ϕ ∧

∨
l,m∈Num:Cut(α+l−m)=h

(
Belmi ϕ ∧ exci,l

)
)

∨([i]¬ϕ ∧ exci,h)
)

(R2)

[
∗α

i ϕ
]
excj,h ↔ excj,h (R3)

[
∗α

i ϕ
]
¬ψ ↔ ¬

[
∗α

i ϕ
]
ψ (R4)

[
∗α

i ϕ
]
(ψ1 ∧ ψ2) ↔

([
∗α

i ϕ
]
ψ1 ∧

[
∗α

i ϕ
]
ψ2

)
(R5)

[
∗α

i ϕ
]
[π ]ψ ↔

[
F∗α

i ϕ(π)

] [
∗α

i ϕ
]
ψ (R6)

where for all j ∈ Agt:

F∗α
i ϕ(j) = j

F∗α
i ϕ(π1; π2) = F∗α

i ϕ(π1); F∗α
i ϕ(π2)

F∗α
i ϕ(π1 ∪ π2) = F∗α

i ϕ(π1) ∪ F∗α
i ϕ(π2)

F∗α
i ϕ(?ψ) = ?

[
∗α

i ϕ
]
ψ

F∗α
i ϕ(π∗) =

(
F∗α

i ϕ(π)
)∗

As the rule of replacement of equivalents preserves validity, the equivalences

of Proposition 14 together with this allow to reduce every PDL-A formula to an

equivalent PDL-A− formula. Call red the mapping which iteratively applies the above

equivalences from the left to the right, starting from one of the innermost modal

operators. Red pushes the dynamic operators inside the formula, and finally

eliminates them when facing an atomic formula.

Proposition 15 Let ϕ be a formula in the language of PDL-A. Then

1. red(ϕ) has no dynamic operators [π ]

2. red(ϕ) ↔ ϕ is PDL-A valid.

The first item of Proposition 15 is clear. The second item is proved using Proposition

14 and the rule of replacement of equivalents.



Theorem 1 Satisfiability in PDL-A is decidable.

Theorem 2 The validities of PDL-A are completely axiomatized by

• all principles of classical propositional logic
• axiomatization of PDL for the operators [π ]

([π]ϕ ∧ [π ](ϕ → ψ)) → [π ]ψ (K[π])

[π1; π2]ϕ ↔ [π1][π2]ϕ (Seq)

[π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ (Choice)

[?ψ]ϕ ↔ (ψ → ϕ) (Test)

[π∗]ϕ ↔ (ϕ ∧ [π ][π∗]ϕ) (FixPoint)

(ϕ ∧ [π∗](ϕ → [π ])) → [π∗]ϕ (Induction)

ϕ

[π ]ϕ
(Nec[π])

• axioms T, 4 and B for the epistemic operators [i]

[i]ϕ → ϕ (T[i])

[i]ϕ → [i][i]ϕ (4[i])

ϕ → [i]〈i〉ϕ (B[i])

• the schemas of Proposition 13
• the reduction axioms of Proposition 14
• rule of replacement of equivalents

ψ1 ↔ ψ2

ϕ ↔ ϕ[ψ1/ψ2]
(REP)

where ϕ[ψ1/ψ2] is the formula that results from ϕ by replacing zero or more

occurrences of ψ1, in ϕ, by ψ2.

6 Application to Game Theory

In this section we provide an application of the logic PDL-A to game theory. We first

introduce in Section 6.1 two important solution concepts of game theory: the pro-

cedure of Iterated Deletion of Strongly Dominated Strategies (IDSDS procedure),

and the procedure of n-rounds of Iterated Deletion of Weakly Dominated Strategies

followed by Iterated Deletion of Strongly Dominated Strategies (DWDSn-IDSDS



procedure). In Section 6.2 we provide an extension of the logic PDL-A with informa-

tion about agents’ behaviors (i.e., which strategy a given agent is currently playing).

We call PDL-A+ the resulting logic. In Section 6.4 the logic PDL-A+ is used to for-

mally characterize different forms of rationality which have been discussed in the

field of epistemic game theory: weak rationality, strong rationality and perfect ratio-

nality. Section 6.4 is the main contribution of this second part of the paper. Several

theorems about the epistemic characterization of IDSDS and DWDSn-IDSDS will be

provided. Proofs of these theorems are collected in a technical annex at the end of

the paper.

6.1 Iterated Weak and Strong Dominance

Let us first introduce the notion of normal form game.

Definition 5 (Normal form game) A normal form game is a tuple Ŵ = {{Si : i ∈

Agt}, {Ui : i ∈ Agt}} where:

• Si is agent i’s finite set of strategies;
• Ui :

∏
i∈Agt Si −→ R is agent i’s utility function assigning a real number

(the utility value for i) to every combination of agents’ actions (alias strategy

profiles).

For every agent i ∈ Agt, the elements of Si are denoted by symbols ai, bi, . . .

For every coalition J ∈ 2Agt∗, we define the set of strategies for the coalition

J to be SJ =
∏

i∈J Si. For notational convenience we write S instead of SAgt.

For every coalition J, elements of SJ are denoted by sJ, s′
J, . . . For simplicity, ele-

ments of S are denoted by s, s′, . . . Given sJ ∈ SJ and i ∈ J, we note sJ[i]

the position of sJ corresponding to agent i. In what follows we write s ≤i s′

instead of Ui(s) ≤ Ui(s
′) and s <i s′ instead of Ui(s) < Ui(s

′) to mean

respectively that “the strategy profile s′ is for agent i at least as good as the strat-

egy profile s” and “the strategy profile s′ is for agent i better than the strategy

profile s”.

Definition 6 (Subgame) Given two games Ŵ = {{Si : i ∈ Agt}, {Ui : i ∈ Agt}} and

Ŵ′ = {{S′
i : i ∈ Agt}, {U′

i : i ∈ Agt}}, Ŵ′ is a subgame of Ŵ if and only if:

• for every i ∈ Agt, S′
i ⊆ Si;

• for every i ∈ Agt, U′
i = Ui|

∏
i∈Agt S′

i
where U′

i is the restriction of Ui to the set of

strategy profiles
∏

i∈Agt S′
i.

A strategy ai of a given player i is a strongly dominated strategy if and only if,

there exists another strategy bi of i such that, for all strategies s−i of the other players,

playing bi while the others play s−i is for i better than playing ai while the others

play s−i. An example of strongly dominated strategy is cooperation in the Prisoner

Dilemma (PD) game: whether the opponent chooses to cooperate or defect, defection

yields a higher payoff than cooperation. More formally:



Definition 7 (Strongly dominated strategies) Given a game Ŵ = {{Si : i ∈

Agt}, {Ui : i ∈ Agt}}, the set

SDŴ
i = {ai ∈ Si : ∃bi ∈ Si s.t. ∀s−i ∈ S−i, 〈ai, s−i〉 <i 〈bi, s−i〉}

is the set of strategies of player i that are strongly dominated in Ŵ.

A strategy ai of a given player i is a weakly dominated strategy if and only if, there

exists another strategy bi of i such that, for all strategies s−i of the others, playing bi

while the others play s−i is for i at least as good as playing ai while the others play

s−i and there is at least one strategy s′
−i of the others such that playing bi while the

others play s′
−i is for i better than playing ai while the others play s′

−i. More formally:

Definition 8 (Weakly dominated strategies) Given a game Ŵ = {{Si : i ∈

Agt}, {Ui : i ∈ Agt}}, the set

WDŴ
i = {ai ∈ Si : ∃bi ∈ Si s.t. ∀s−i ∈ S−i, 〈ai, s−i〉 ≤i 〈bi, s−i〉 and

∃s′
−i ∈ S−i s.t.〈ai, s′

−i〉 <i 〈bi, s′
−i〉}

is the set of strategies of player i that are weakly dominated in Ŵ.

The so-called Iterated Deletion of Strongly Dominated Strategies (IDSDS) (or

iterated strong dominance) is a procedure that starts with the original game Ŵ and,

at each step, for every player i removes from the game all i’s strongly dominated

strategies, thereby generating a subgame of the original game, and that repeats this

process again and again. The IDSDS procedure can be inductively defined as follows.

Definition 9 (IDSDS Procedure) Given a game Ŵ = {{Si : i ∈ Agt}, {Ui : i ∈ Agt}},

Iterated Deletion of Strongly Dominated Strategies (IDSDS) is the procedure defined

recursively as follows.

For all i ∈ Agt: let SIDSDS
i,0 = Si and Ŵ0 = Ŵ, for m ≥ 1, let SIDSDS

i,m = SIDSDS
i,m−1 \

SDŴm−1

i , where Ŵm−1 is the subgame of Ŵ with strategy sets SIDSDS
i,m−1 .

For every m ≥ 0 and J ∈ 2Agt∗, let SIDSDS
J,m =

∏
i∈J SIDSDS

i,m and let SIDSDS
m = SIDSDS

Agt,m .

Finally, let SIDSDS
i =

⋂
m∈N SIDSDS

i,m . For every J ∈ 2Agt∗, let SIDSDS
J =

∏
i∈J SIDSDS

i

and SIDSDS = SIDSDS
Agt .

The procedure of n-rounds of Iterated Deletion of Weakly Dominated Strategies

followed by Iterated Deletion of Strongly Dominated Strategies (DWDSn-IDSDS) is

a procedure that starts with the original game Ŵ and, at each step, for every player

i removes from the game all i’s weakly dominated strategies thereby generating a

subgame of the original game, and that repeats this process for n rounds. Then, after

n rounds it applies Iterated Deletion of Strongly Dominated Strategies starting with

the game Ŵn. The DWDSn-IDSDS procedure can be inductively defined as follows.

Definition 10 (DWDSn-IDSDS Procedure) Given a game Ŵ = {{Si : i ∈

Agt}, {Ui : i ∈ Agt}}, n-iteration of Deletion of Weakly Dominated Strategies



(DWDSn) followed by Iterated Deletion of Strongly Dominated Strategies (IDSDS)

is the procedure defined recursively as follows.

For all i ∈ Agt: let SDWDSn−IDSDS
i,0 = Si and Ŵ0 = Ŵ, for 1 ≤ m ≤ n,

let SDWDSn−IDSDS
i,m = SDWDSn−IDSDS

i,m−1 \ WDŴm−1

i , for m > n, let SDWDSn−IDSDS
i,m =

SDWDSn−IDSDS
i,m−1 \ SDŴm−1

i , where Ŵm−1 is the subgame of Ŵ with strategy sets

SDWDSn−IDSDS
i,m−1 .

For every m such that 0 ≤ m ≤ n and J ∈ 2Agt∗, let SDWDSn−IDSDS
J,m =∏

i∈J SDWDSn−IDSDS
i,m and SDWDSn−IDSDS

m = SDWDSn−IDSDS
Agt,m .

Finally, let SDWDSn−IDSDS
i =

⋂
m∈N SDWDSn−IDSDS

i,m . For every J ∈ 2Agt∗, let

SDWDSn−IDSDS
J =

∏
i∈J SDWDSn−IDSDS

i and SDWDSn−IDSDS = SDWDSn−IDSDS
Agt .

Note that, if n = 0, DWDSn-IDSDS is nothing but IDSDS. Moreover, if n = ∞,

DWDSn-IDSDS corresponds to the procedure of iterated admissibility or iterated

deletion of weakly dominated strategies [20, 23].

6.2 PDL-A with Information About Players’ Choices

The logic PDL-A is here extended with special constructions of the form pli(ai) whose

meaning is “agent i plays (or chooses) the strategy ai”. We call PDL-A+ the resulting

logic. For every J ∈ 2Agt∗, we define plJ(sJ) (“the agents in J play the collective

strategy sJ”) as follows:

plJ(sJ)
def
=
∧

i∈J

pli(sJ[i])

For simplicity, we write pl(s) instead of plAgt(s).

For every coalition of agents J ∈ 2Agt∗, we define the set BehJ of information

about J’s choices:

BehJ =

{∨

sJ∈sJ

plJ(sJ) : sJ ⊆ SJ

}
.

For example, the formula plJ(sJ) ∨ plJ(s
′
J) in BehJ means that “the agents in J play

either the collective strategy sJ or the collective strategy s′
J”.

Definition 11 (PDL-A+ model) PDL-A+-models are tuples M′ = 〈M, {Ai : i ∈ Agt}〉

where:

• M is a PDL-A model;
• for every agent i, Ai : W −→ Si is a total function mapping each world w to the

strategy played by agent i at w.



Ai(w) = ai means that at w agent i plays the strategy ai.

Functions Ai are easily generalized to functions AJ : W −→ SJ , by postulating

that AJ(w) = sJ if and only if Ai(w) = sJ[i] for every i ∈ J.

Given a PDL-A+ model M and a world w, the truth condition of pli(ai) is:

M, w |= pli(ai) iff Ai(w) = ai

PDL-A+ models are assumed to satisfy the following two constraints. For every

w, v ∈ W, i ∈ Agt, ai ∈ Si and s−i ∈ S−i:

(Constr2) if Ai(w) = ai and (w, v) ∈ Ei then Ai(v) = ai;

(Constr3) there is u such that (w, u) ∈ Ei and A−i(u) = s−i.
12

According to the Constraint (Constr2), an agent i chooses the strategy ai if and only

if he knows this. According to the Constraint (Constr3), for every strategy s−i of

the other players an agent i envisages a world in which this strategy is played. This

corresponds to the second requirement we have discussed in Section 2, namely the

assumption that the beliefs of the players are cautious.

The notions of validity and satisfiability in PDL-A+ are defined in the usual way.

For every PDL-A+ formula ϕ, we say that ϕ is valid, denoted again by |= ϕ, if ϕ is true

in all PDL-A+-models. We say that ϕ is satisfiable if ¬ϕ is not valid. We moreover

say that two PDL-A+ formulas ϕ and ψ are compatible, denoted by Comp(ϕ, ψ), if

ϕ ∧ ψ is satisfiable.

Note that the logic PDL-A+ is completely axiomatized by the axioms and rules of

inference of the logic PDL-A plus the following axiom schemas:
∨

ai∈Si

pli(ai) (Active)

pli(ai) → ¬pli(bi) if ai �= bi (UniqueAct)

pli(ai) → [i]pli(ai) (ActAware)

〈i〉pl−i(s−i) (PossStr)

The decidability of PDL-A+ follows straightforwardly from the decidability of PDL-

A and the fact that the set of axioms differentiating PDL-A+ from PDL-A is finite

(remember that every strategy set Si is assumed to be finite).

6.3 Variants of Rationality

The following formula characterizes a notion of weak rationality which is commonly

supposed in the epistemic analysis of games (see, e.g., [52]):

WRati(ai)
def
=
∧

bi �=ai

⎛
⎝ ∨

s−i∈S−i:〈bi,s−i〉≤i〈ai,s−i〉

B̂elipl−i(s−i)

⎞
⎠

12Note that this constraint ensures that every function Ai is an onto function.



This means that the strategy ai is a weakly rational choice for the agent i, i.e.,

WRati(ai), if and only if, for every strategy bi different from ai, there exists a joint

strategy s−i of the other agents that he considers maximally plausible such that, play-

ing ai while the others play s−i is for agent i at least as good as playing bi while

the others play s−i. This means that weak rationality simply consists in not choosing

a strategy that is strongly dominated within the set of worlds that the agent consid-

ers maximally plausible. The following abbreviations WRati and AllWRatJ have to

be read respectively “agent i is weakly rational” and “all agents in the group J are

weakly rational”:

WRati
def
=
∨

ai∈Si

(pli(ai) ∧ WRati(ai))

AllWRatJ
def
=
∧

i∈J

WRati

The preceding notion of weak rationality has been distinguished from a slightly

stronger notion of rationality, called strong rationality (see, e.g., [17]). The strategy

ai is a strongly rational choice for the agent i, i.e., SRati(ai), if and only if, for each

strategy bi different from ai either (1) there is a joint strategy s−i of the other agents

that i considers maximally plausible such that playing ai while the others play s−i

is for i better than playing bi while the others play s−i or (2) there is no joint strat-

egy s−i of the other agents that i considers maximally plausible such that playing bi

while the others play s−i is for i better than playing ai while the others play s−i. This

means that strong rationality simply consists in not choosing a strategy that is weakly

dominated within the set of worlds that the agent considers maximally plausible:

SRati(ai)
def
=
∧

bi �=ai

⎛
⎝
⎛
⎝ ∨

s−i∈S−i:〈bis−i〉<i〈ai,s−i〉

B̂elipl−i(s−i)

⎞
⎠

∨

⎛
⎝ ∧

s−i∈S−i:〈ai,s−i〉<i〈bi,s−i〉

Beli¬pl−i(s−i)

⎞
⎠
⎞
⎠

The following abbreviations SRati and AllSRatJ have to be read respectively “agent i

is strongly rational” and “all agents in the group J are strongly rational”:

SRati
def
=
∨

ai∈Si

(pli(ai) ∧ SRati(ai))

AllSRatJ
def
=
∧

i∈J

SRati

Stalnaker has introduced an even stronger notion of rationality, called perfect ratio-

nality [47, 48]. Roughly, Stalnaker’s notion expresses that in cases two or more

actions maximize utility, the agent should consider, in choosing between them, how

he should act if he learned that he was in error. And if the two actions are still tied,

the agent considers how he should act if he learned that he was making an error

of a higher degree (see also [15]). We here consider a slightly different variant of

Stalnaker’s notion of perfect rationality that can be conceived as a lexicographic



refinement of the preceding concept of strong rationality. Our notion of perfect

rationality can be inductively defined by means of the preceding notion of strong

rationality and of the notion of graded belief introduced in Section 4.1. The basic idea

is the following. We say that the strategy ai is a strongly rational choice for the agent i

at level 1, denoted by SRat1i (ai), if and only if ai is a strongly rational choice accord-

ing to agent i’s current beliefs. This notion of level 1-strong rationality coincides with

the notion of strong rationality defined above. Moreover, for every h ∈ Num such that

1 < h ≤ max, we say that the strategy ai is a strongly rational choice for the agent i

at level h, denoted by SRathi (ai), if and only if:

• ai is a strongly rational choice for the agent i at level h − 1, and
• strategy ai is an admissible choice according to agent i’s graded beliefs with

strenght at least h,13 after having discarded all strategies bi different from ai that

are not strongly rational choices at level h − 1.

Finally, we say that the strategy ai is a perfectly rational choice for the agent i, denoted

by PRati(ai), if and only if:

• ai is a strongly rational choice for the agent i at level max, and
• strategy ai is an admissible choice according to agent i’s knowledge, after having

discarded all strategies bi different from ai that are not strongly rational choices

at level max.

In other words, ai is a perfectly rational choice for the agent i if and only if: ai is not

weakly dominated within the set of epistemic alternatives that i considers exceptional

with degree at most 0; and ai is not weakly dominated within the set of epistemic

alternatives that i considers exceptional with degree at most 1, after having discarded

all weakly dominated strategies within the set of epistemic alternatives that i consid-

ers exceptional with degree at most 0; and so on until level max. Formally speaking,

we define:

SRat1i (ai)
def
= SRati(ai)

for all h ∈ Num such that 1 < h ≤ max:

SRathi (ai)
def
= SRat

h−1
i (ai) ∧

∧

bi �=ai

⎛
⎝SRath−1

i (bi) →

⎛
⎝
⎛
⎝ ∨

s−i∈S−i:〈bi,s−i〉<i〈ai,s−i〉

B̂el
≥h
i pl−i(s−i)

⎞
⎠

∨

⎛
⎝ ∧

s−i∈S−i:〈ai,s−i〉<i〈bi,s−i〉

Bel
≥h
i ¬pl−i(s−i)

⎞
⎠
⎞
⎠
⎞
⎠

13Remember from Section 4.1 that the graded belief operator Bel
≥h
i can be interpreted by means of the

binary relation B<h
i = {(w, v) : (w, v) ∈ Ei and κ(v, i) < h}. Thus, strategy ai is an admissible choice

according to agent i’s graded beliefs with strenght at least h if and only if, strategy ai is a strongly rational

choice with respect to agent i’s set of envisaged worlds with exceptionality at most h − 1.



Finally:

PRati(ai)
def
= SRatmaxi (ai) ∧

∧

bi �=ai

⎛
⎝SRatmaxi (bi) →

⎛
⎝
⎛
⎝ ∨

s−i∈S−i:〈bi,s−i〉<i〈ai,s−i〉

〈i〉pl−i(s−i)

⎞
⎠

∨

⎛
⎝ ∧

s−i∈S−i:〈ai,s−i〉<i〈bi,s−i〉

[i]¬pl−i(s−i)

⎞
⎠
⎞
⎠
⎞
⎠

The following abbreviations PRati and AllPRatJ have to be read respectively “agent i

is perfectly rational” and “all agents in the group J are perfectly rational”:

PRati
def
=
∨

ai∈Si

(pli(ai) ∧ PRati(ai))

AllPRatJ
def
=
∧

i∈J

PRati

The following Proposition 16 highlights the logical relationships between the three

notions of rationality (weak, strong and perfect).

Proposition 16 For every i ∈ Agt we have:

|= SRati → WRati (9a)

|= PRati → SRati (9b)

The following Proposition 17 is about properties of positive and negative introspec-

tion for the three forms of rationality. If an agent is/is not weakly/strongly/perfectly

rational then, he knows this.

Proposition 17 For every i ∈ Agt we have:

|= WRati → [i]WRati (10a)

|= SRati → [i]SRati (10b)

|= PRati → [i]PRati (10c)

|= ¬WRati → [i]¬WRati (10d)

|= ¬SRati → [i]¬SRati (10e)

|= ¬PRati → [i]¬PRati (10f)

6.4 Epistemic Conditions of Solution Concepts

The following Theorem 3 is the qualitative version of a probabilistic-based result of

Stalnaker [46] who has been the first to use probabilistic Kripke structures in order



to characterize the IDSDS procedure in terms of common belief of weak rationality

(see [16, 17] for some recent discussion of Stalnaker’s result). A similar result has

also been proved, with differing degrees of formality, by Bernheim [13], Pearce [40],

Brandenburger & Dekel [21], Tan & Werlang [50] and Lorini & Schwarzentruber

[37]. According to the Theorem 3, if the players have common belief that every agent

is weakly rational then the strategy profile which is played must survive IDSDS.

Theorem 3 Let s �∈ SIDSDS. Then:

|= CBelAgtAllWRatAgt → ¬pl(s)

According to the following Theorem 4, if the players have common belief that

every agent is perfectly rational, then the strategy profile which is played must sur-

vive one iteration of DWDS followed by IDSDS. This is called the Dekel-Fudenberg

procedure as it appeared for the first time in [24]. Characterizations of the epistemic

conditions of this solution concept have also been given in a probabilistic setting by

Stalnaker [47] as well as by Brandenburger [22] and Börgers [18].14

Theorem 4 Let s �∈ SDWDS1−IDSDS. Then:

|= CBelAgtAllPRatAgt → ¬pl(s)

According to the following Theorem 5, if the players have common belief that

every player (1) is perfectly rational and (2) has a robust belief that all other players

are perfectly rational relative to any compatible information about their choices, then

the strategy profile which is played must survive two iterations of DWDS followed

by IDSDS. A similar theorem has been stated before by Stalnaker [48], even though

he did not provide a formal proof for it. The main difference between Theorem 5 and

Stalnaker’s result is that Stalnaker’s analysis is given in quantitative setting based on

probabilities whereas the representation of uncertainty used here is semi-qualitative

(see Section 7 for further discussion).

Theorem 5 Let s �∈ SDWDS2−IDSDS. Then:

|= CBelAgt

(
AllPRatAgt ∧ AllRBelPRatAgt

)
→ ¬pl(s)

where for every J ∈ 2Agt∗:

AllRBelPRatJ
def
=
∧

i∈J

⎛
⎜⎜⎝

∧

χ−i∈Beh−i:
Comp(χ−i,AllPRat−i)

RBeli(χ−i,AllPRat−i)

⎞
⎟⎟⎠

14Börgers’ characterization uses the concept of approximate common knowledge by Monderer & Samet

[39] instead of common belief. (Roughly speaking ϕ is approximate common knowledge if and only if,

everybody assigns high probability to ϕ, everybody assigns high probability to the fact that everybody

assigns high probability to ϕ, and so on).



AllRBelPRatJ has to be read “every player in J has a robust belief that all other

players are perfectly rational relative to any compatible information about their

choices”. It is worth noting that the hypothesis CBelAgt(AllPRatAgt ∧AllRBelPRatAgt)

of Theorem 5 requires that, for every player i ∈ Agt and for every strategy s−i of the

other players, if the strategy s−i is admissible (i.e., it is not weakly dominated) then

i envisages a world in which the other agents play the strategy s−i and they are all

perfectly rational. In particular, we have the following validity:15

|= CBelAgt(AllPRatAgt ∧ AllRBelPRatAgt) →
∧

i∈Agt

∧

s−i∈S−i:s−i∈SDWDS2−IDSDS
−i,1

〈i〉(pl−i(s−i) ∧ AllPRat−i)

Therefore, the model in which the formula CBelAgt(AllPRatAgt ∧ AllRBelPRatAgt)

is satisfied must be ‘sufficiently rich’, as for every player i and for every admissible

strategy of the other players there must be a world envisaged by i in which this strat-

egy is played and the other players are perfectly rational. This richness condition,

which is called by Brandenburger et al. [20, 23] the ‘completeness assumption’, has

been explicitly spelled out in [42, Definition 7.11, page 304].16

The preceding Theorem 5 can be generalized to n-iteration of deletion of weakly

dominated strategies. But before generalizing Theorem 5, we need to introduce the

concept of k-order robust belief about perfect rationality. For the case k = 1, we

define:

AllPRatRBelPRatJ,1
def
= AllPRatJ ∧ AllRBelPRatJ

and for all k > 1:

AllPRatRBelPRatJ,k
def
= AllPRatJ ∧

∧

i∈J

⎛
⎜⎜⎝

∧

χ−i∈Beh−i:
Comp(χ−i,AllPRatRBelPRat−i,k−1)

RBeli(χ−i,AllPRatRBelPRat−i,k−1)

⎞
⎟⎟⎠

15This validity can be proved by using Proposition 2 given in the technical annex at the end of the paper

(Section A.3).
16It is worth noting that the completeness assumption together with the fact that there is common belief

that every player is perfectly rational and has a robust belief à la Baltag & Smets [10] (see Section 4.1)

about the perfect rationality of the other players are also sufficient conditions for two iterations of DWDS

followed by IDSDS. Indeed, in a way similar to the proof of Theorem 5, one can prove the following

validity for all s �∈ SDWDS2−IDSDS:

|=

⎛
⎝ComplAss ∧ CBelAgt

⎛
⎝AllPRatAgt ∧

∧

i∈Agt

RBelB&S
i AllPRat−i

⎞
⎠
⎞
⎠→ ¬pl(s)

with

ComplAss
def
=
∧

i∈Agt

∧

s−i∈S−i:s−i∈SDWDS2−IDSDS
−i,1

〈i〉(pl−i(s−i) ∧ AllPRat−i).



AllPRatRBelPRatJ,k has to be read “every player in J is perfectly rational and has

a k-order robust belief that all other players are perfectly rational relative to any

compatible information about their choices”.

According to the following Theorem 6, if the players have common belief that

every player is perfectly rational and has a k-order robust belief that all other players

are perfectly rational relative to any compatible information about their choices, then

the strategy profile which is played must survive k + 1 iterations of DWDS followed

by IDSDS.

Theorem 6 Let s �∈ SDWDSk+1−IDSDS and k > 0. Then:

|= CBelAgtAllPRatRBelPRatAgt,k → ¬pl(s)

Note that, when k = 1, Theorem 6 and Theorem 5 coincide.

Before concluding, note that, because every Ai is a total function, the epistemic

conditions given in the antecedents of Theorems 3, 4, 5 and 6 are respectively suffi-

cient conditions of the equilibria IDSDS, DWDS1 − IDSDS, DWDS2 − IDSDS and

DWDSn − IDSDS. In particular,

|= CBelAgtAllWRatAgt →
∨

s∈SIDSDS

pl(s)

|= CBelAgtAllPRatAgt →
∨

s∈SDWDS1−IDSDS

pl(s)

|= CBelAgt(AllPRatAgt ∧ AllRBelPRatAgt) →
∨

s∈SDWDS2−IDSDS

pl(s)

|= CBelAgtAllPRatRBelPRatAgt,k →
∨

s∈SDWDSk+1−IDSDS

pl(s) for k > 0

7 Related Work

As pointed out in the introduction, the main difference between the present approach

and alternative epistemic characterizations of iterated weak dominance is that we

use a semi-qualitative approach to uncertainty based on the notion of plausibil-

ity introduced by Spohn [45], whereas existing epistemic analysis of iterated weak

dominance are based on a quantitative representation of uncertainty in terms of

probabilities. In this sense, the representation of uncertainty used in this paper is rel-

atively more simple than the representation of uncertainty used in other approaches.

For instance, in [47] Stalnaker presents a result similar to the preceding Theorem 4

whereas in [48] he discusses a result similar to the preceding Theorem 5. Differently

from the present approach, Stalnaker uses rich semantic structures combining prob-

ability measures over possible worlds, representing the uncertainty of players, with

plausibility orderings over epistemic alternatives, in order to model belief revision

policies.



Brandenburger et al. [23] (see also [20]) provide an epistemic characteriza-

tion of iterated admissibility where uncertainty is represented using lexicographic

probability systems (LPSs). An LPS assigns to every player a finite sequence

of probability measures (p1, . . . , pn) with non-overlapping supports. The proba-

bility p1 corresponds to a player’s initial hypothesis about the behavior of the

others, p2 corresponds to the player’s secondary hypothesis, and so on. The inter-

pretation given to this sequence of probability measure is that for any 1 ≤

k < n the hypothesis at level k is infinitely more likely than the hypothesis at

level k + 1. In their analysis of the epistemic conditions of iterated weak domi-

nance based on LPSs, Brandeburger et al. define a concept of ‘assumption’ that

is similar to the concept of robust belief used here and in Stalnaker’s analy-

sis. The idea is that a given player assumes that an event (or state of affairs)

ϕ is true if and only if, according to the player, ϕ is infinitely more likeky

than ¬ϕ.

In their logical characterization of iterated admissibility based on the concept of

“all the agents know” [31], Halpern & Pass [32] consider probability structures of the

form 〈
, s,F,PR1, . . . ,PRn〉, where Ŵ is a set of states, s is a function associating

each state in 
 to a strategy profile of a given game Ŵ, F is a 
-algebra over 
, and

for each player i in the game Ŵ, PRi associates with each state ω in 
 a probability

distribution PRi(ω) on (
,F).

Battigalli & Siniscalchi [12] analyze the epistemic conditions of the con-

cept of forward induction, that has been shown to be tightly related to

the concept of iterated admissibility. Their analysis is based on conditional

probability systems, a generalization of classical Bayesian probabilities that

allow them to model the update and/or the revision of the players’ beliefs,

in the course of an extensive game. The fundamental concept of Batti-

galli & Siniscalchi’s analysis is “strong belief” that is tightly related to

our and Stalnaker’s concept of “robust belief” and to Brandeburger et al.’s

concept of “assumption”. (See [3] for a comparison between these three

concepts).

A work that is similar in spirit to our approach is Baltag et al.’s analysis of the

epistemic conditions of backward induction based on a purely qualitative notion of

plausibility [11]. There are two main similarities between our approach and theirs.

First of all, we share with them the idea of analyzing the epistemic conditions of solu-

tion concepts by using a relatively simpler representation of uncertainty based either

on a purely qualitative approach or on a semi-qualitative one. Secondly, although

Baltag et al.’s analysis and our analysis are focused on two different solution con-

cepts, they employ a similar conceptual apparatus. For instance, Baltag et al.’s

characterization of the epistemic conditions of backward induction employs a con-

cept of “robust belief” that, as shown in Section 4.1, is closely connected to our

concept of “relative robust belief”.17

17Baltag et al.’s analysis too is largely inspired by Stalnaker [48].



8 Conclusive Remarks

In this paper we have developed a logical analysis of the epistemic conditions of

iterated weak dominance in a semi-qualitative framework based on Spohn’s theory of

uncertainty and belief change. One might wonder whether the same kind of analysis

could be made by using purely qualitative structures M = 〈W, {Ei : i ∈ Agt}, {�i:

i ∈ Agt}, V 〉 which result from replacing the plausibility grading function κ with a

family of total preorders �i over possible worlds, where w �i v means that v is for

agent i at least as plausible as w, and w ≡i v and w ≺i v mean respectively that

(w �i v and v �i w) and (w �i v and v ��i w). Let us consider this issue in more

detail. Our analysis is mainly based on the notion of perfect rationality, as defined in

Section 6.4, which is based on the notion of graded belief when max > 1.18

In order to define the concept of graded belief, it is necessary to rank the pos-

sible worlds that an agent envisages according to their degree of exceptionality (or

plausibility) so that we can identify the set of worlds of rank 0, the set of worlds of

rank 1, the set of worlds of rank 2, and so on. The total preorder �i over possible

worlds would be sufficient to make such a kind of ranking, as from a total order over

a set of elements we can build a corresponding ranking over the elements in that set.

Specifically, for all i ∈ Agt we could define:

Rank0
i = {v ∈ W :� ∃u ∈ Ei(v) such that v ≺i u}

and for all h ≥ 1:

Rankhi = {v ∈ W \
⋃

k<h
Rankki :� ∃u ∈ Ei(v) \

⋃
k<h

Rankki such that v ≺i u}.

Given the preceding ranking over possible worlds, the plausibility grading function

κ is definable as follows: for all i ∈ Agt and for all w ∈ W, κ(w, i) = h if and only if

w ∈ Rankhi .

Thus, while in our semi-qualitative approach the plausibility ranking is directly

given by the function κ in the definition of a PDL-A model, in a purely qualitative

approach, such as the one presented in [9, 51], it would be induced by the plausibility

ordering �i over the set of possible worlds.

Although from a semantic point of view, it seems clear that the same kind of

analysis could be made after replacing the plausibility grading function κ with a

family of total preorders �i, it is not clear at all what the resulting logic would look

like. More generally, it is not clear how to build a decidable logic with a complete

axiomatization which is interpreted by means of purely qualitative structures of the

form M = 〈W, {Ei : i ∈ Agt}, {�i: i ∈ Agt}, V 〉 and which allows us to represent

in the object language the epistemic conditions of iterated weak dominance, namely

18Note that, when max = 1, the notion of perfectly rationality as defined in Section 6.4 and, consequently,

our analysis of the sufficient condition for iterated weak dominance only require the operators of knowl-

edge [i] and belief Beli. However, this does not mean that the graded belief operator Belhi is useless in

general. It only means that it becomes unnecessary in the binary case, i.e., when it is assumed that agents

rank possible worlds according to a two-value scale Num = {0, 1} for degrees of belief.



the concept common belief, the concept of robust belief about perfect rationality

and the concept of graded belief on which the definition of perfect rationality is

based. However, another important reason for choosing a semi-qualitative approach

to uncertainty rather than a purely qualitative one is that the graded belief operator

Belhi ϕ, on which our analysis of the epistemic foundation of iterated weak dominance

is based, is traditionally interpreted by means of the plausibility grading function κ

(see the seminal work by Spohn [45] and also [5, 35, 54]). It would be a non-standard

and unnatural choice to intrepret it via the total preorder �i.

Another issue we intend to study in future research is a generalization of the

approach to belief change presented in Section 3.2. Due to space restrictions, we only

considered in this work an operation of belief change based on Spohn’s concept of

belief conditioning (Definition 4). We believe that our approach is flexible enough to

allow us to model or at least to approximate other kinds of belief revision operation

such as, e.g., the concepts of lexicographic upgrade and conservative upgrade in the

sense of [51].

Appendix: Some Proofs

A.1 Proof of Theorem 1

Satisfiability in PDL-A is decidable.

Proof First of all note that the logic PDL-A−− is nothing but the variant

of PDL where each atomic knowledge program i is interpreted by an equiv-

alence relation Ei. This logic can be embedded into PDL extended with con-

verse, by simulating every atomic knowledge programs i with a composite pro-

gram (a ∪ a−1)∗, where a is an arbitrary atomic program interpreted by a

binary relation Ra (not necessarily an equivalence relation!) and a−1 is the con-

verse of a. PDL with converse is decidable [33]. It follows that PDL-A−− is

decidable too.

Moreover, note that the problem of satisfiability in PDL-A− is reducible to the

problem of global logical consequence in PDL-A−−, where the special atoms exci,h

are just elements of the set of propositional variables Prop and the set of global

axioms Ŵ is the set of all formulas of Proposition 13. That is, we have |=PDL-A− ϕ

if and only if Ŵ |=PDL-A−− ϕ. Observe that Ŵ is finite (because Num is finite). It is

a routine task to verify that the problem of global logical consequence in PDL-A−−

with a finite number of global axioms is reducible to the problem of satisfiability in

PDL-A−−. In particular, if Ŵ = {χ1, . . . , χn}, we have Ŵ |=PDL-A−− ϕ if and only

if |=PDL-A−− CKAgt(χ1 ∧ . . . ∧ χn) → ϕ, where CKAgt is the common knowledge

operator defined in Section 4.2. As the problem of satisfiability checking in PDL-A−−

is decidable, it follows that the problem of satisfiability checking in the logic PDL-A−

is decidable too.

Proposition 15 ensures that red provides an effective procedure for reducing

a PDL-A formula ϕ into an equivalent PDL-A− formula red(ϕ). As PDL-A− is

decidable, PDL-A is decidable too.



A.2 Proof of Theorem 4

Let s �∈ SDWDS1−IDSDS. Then:

|= CBelAgtAllPRatAgt → ¬pl(s)

Proof The proof is by induction.

Base case For all s �∈ SDWDS1−IDSDS
1 we prove that:

(A1) |= CBelAgtAllPRatAgt → ¬pl(s)

To prove (A1), it is sufficient to prove the following validity (B1), as

CBelAgtAllPRatAgt → AllPRatAgt is valid by the item (10f) in Proposition 17.19 For

all s �∈ SDWDS1−IDSDS
1 we have that:

(B1) |= AllPRatAgt → ¬pl(s)

And to prove (B1), it is sufficient to prove that if s[i] �∈ SDWDS1−IDSDS
i,1 then:

(C1) |= PRati → ¬pli(s[i])

Let us prove (C1) by reductio ad absurdum. We assume that s[i] �∈ SDWDS1−IDSDS
i,1

and M, w |= PRati and M, w |= pli(s[i]) for some arbitrary model M and world w in

M. We are going to show that these three facts are inconsistent. s[i] �∈ SDWDS1−IDSDS
i,1

implies that:

(D1) there is bi ∈ Si such that: (1) for all s′
−i ∈ S−i we have 〈s[i], s′

−i〉 ≤i 〈bi, s′
−i〉

and (2) there is s′′
−i ∈ S−i such that 〈s[i], s′′

−i〉 <i 〈bi, s′′
−i〉.

M, w |= PRati and M, w |= pli(s[i]) together imply:

(E1) M, w |= PRati(s[i]).

By the Constraint (Constr3), (D1) implies that:

(F1) there is bi ∈ Si such that: (1) for all s′
−i ∈ S−i we have 〈s[i], s′

−i〉 ≤i 〈bi, s′
−i〉

and (2) there are s′′
−i ∈ S−i and u ∈ W and h ∈ Num such that (w, u) ∈ Ei and

A−i(u) = s′′
−i and κ(u, i) = h and 〈s[i], s′

−i〉 <i 〈bi, s′′
−i〉.

(F1) implies that:

(G1) M, w �|= PRati(s[i]).

But (G1) and (E1) are in contradiction.

Inductive case For m > 1, we assume that if s �∈ SDWDS1−IDSDS
m then:

(Inductive Hypothesis) |= CBelAgtAllPRatAgt → ¬pl(s)

19Indeed, CBelAgtAllPRatAgt implies
∧

i∈Agt BeliPRati which in turn implies
∧

i∈Agt〈i〉PRati. The latter

implies
∧

i∈Agt PRati (by the validity (10f) in Proposition 17).



We are going to prove that if s �∈ SDWDS1−IDSDS
m+1 then:

(A2) |= CBelAgtAllPRatAgt → ¬pl(s)

Let us take an arbitrary model M and world w and assume that M, w |=

CBelAgtAllPRatAgt and M, w |= pl(s). We are going to show that s ∈ SDWDS1−IDSDS
m+1 .

From M, w |= CBelAgtAllPRatAgt, by the validity (10f) in Proposition 17, it follows

that:

(B2) M, w |= AllPRatAgt

By the validity (9b) in Proposition 16, (B2) implies that:

(C2) M, w |= AllSRatAgt

Moreover we have the following validity by the property |= CBelAgtϕ →

BeliCBelAgtϕ for every i ∈ Agt:

(D2) |= CBelAgtAllPRatAgt →
∧

i∈Agt BeliCBelAgtAllPRatAgt

Therefore, from M, w |= CBelAgtAllPRatAgt we infer that:

(E2) M, w |=
∧

i∈Agt BeliCBelAgtAllPRatAgt

By the inductive hypothesis, Axiom K and the rule of necessitation for the belief

operator Beli, from (E2) it follows that if s′ �∈ SDWDS1−IDSDS
m then:

(F2) M, w |=
∧

i∈Agt Beli¬pl(s′)

From (F2), (C2) and M, w |= pl(s) it follows that for every i ∈ Agt and for all

bi ∈ Si either there is s′ ∈ SDWDS1−IDSDS
m such that 〈bi, s′

−i〉 <i 〈s[i], s′
−i〉 or for all

s′ ∈ SDWDS1−IDSDS
m we have 〈bi, s′

−i〉 ≤i 〈s[i], s′
−i〉. The latter implies that for every

i ∈ Agt we have s[i] ∈ SDWDS1−IDSDS
i,m+1 which is equivalent to s ∈ SDWDS1−IDSDS

m+1 .

A.3 Proof of Theorem 5

Let s �∈ SDWDS2−IDSDS. Then:

|= CBelAgt(AllPRatAgt ∧ AllRBelPRatAgt) → ¬pl(s)

Proof The proof is by induction. The proof of the inductive case goes exactly as the

proof of the inductive case in the proof of Theorem 4.

Here we only prove the base case.

Base case For all s �∈ SDWDS2−IDSDS
2 we prove that:

(A) |= CBelAgt(AllPRatAgt ∧ AllRBelPRatAgt) → ¬pl(s)



To prove (A), it is sufficient to prove the following validity (B), as

CBelAgt(AllPRatAgt ∧ AllRBelPRatAgt) → (AllPRatAgt ∧ AllRBelPRatAgt) is valid.20

For all s �∈ SDWDS2−IDSDS
2 we have that:

(B) |= (AllPRatAgt ∧ AllRBelPRatAgt) → ¬pl(s)

And to prove (B), it is sufficient to prove that if s[i] �∈ SDWDS2−IDSDS
i,2 then:

(C) |= (PRati ∧
∧

χ−i∈Beh−i:Comp(χ−i,AllPRat−i)
RBeli(χ−i,AllPRat−i)) → ¬pli(s[i])

Let us prove (C) by reductio ad absurdum. We assume that s[i] �∈ SDWDS2−IDSDS
i,2

and M, w |= PRati and M, w |=
∧

χ−i∈Beh−i:Comp(χ−i,AllPRat−i)
RBeli(χ−i,AllPRat−i)

and M, w |= pli(s[i]) for some arbitrary PDL-A+ model M = 〈W, {Ei : i ∈

Agt}, κ, {Ai : i ∈ Agt}, V 〉 and world w in M. We are going to show that these three

facts are inconsistent.

The rest of the proof makes use of the following Lemma 1.

Lemma 1 Let M = 〈W, {Ei : i ∈ Agt}, κ, {Ai : i ∈ Agt}, V 〉 be a PDL-A+ model.

If M, w |=
∧

χ−i∈Beh−i:Comp(χ−i,AllPRat−i)
RBeli(χ−i,AllPRat−i) and s−i ∈

SDWDS2−IDSDS
−i,1 and s′

−i �∈ SDWDS2−IDSDS
−i,1 then κw,i(pl−i(s−i))<κw,i(pl−i(s

′
−i)).

Proof In order to prove Lemma 1, we first prove the following Lemma 2.

Lemma 2 Let χ−i =
∨

s−i∈s−i
pl−i(s−i) for some s−i ⊆ S−i. Then,

Comp(χ−i,AllPRat−i) if and only if there exists s−i ∈ s−i such that s−i ∈

SDWDS2−IDSDS
−i,1 .

Proof (⇐) We first prove the right-to-left direction of the equivalence, after assum-

ing that the set of strategy profiles is S = {s1, . . . , sn} for some n ∈ N. Suppose that

s−i ∈ SDWDS2−IDSDS
−i,1 with s−i ∈ s−i. We can exhibit the following PDL-A+ model

M∗ = 〈W∗, {E∗
i : i ∈ Agt}, κ∗, {A∗

i : i ∈ Agt}, V ∗〉 where:

• W∗ = {w1, . . . , wn};
• for all i ∈ Agt, E∗

i = {(wh, wh′) : wh, wh′ ∈ W∗ and sh[i] = sh′[i]};
• for all wh ∈ W∗ and for all i ∈ Agt, A∗

i (wh) = sh[i];
• for all i ∈ Agt and for all wh ∈ W∗, κ∗(wh, i) = 0;
• for all wh ∈ W∗, V ∗(wh) = Prop.

20Indeed, CBelAgt(AllPRatAgt ∧ AllRBelPRatAgt) implies that
∧

i∈Agt Beli(PRati ∧∧
χ−i∈Beh−i:Comp(χ−i,AllPRat−i)

RBeli(χ−i,AllPRat−i)). The latter implies that
∧

i∈Agt PRati
(by the validity (10f) in Proposition 17). Moreover, it implies that∧

i∈Agt

∧
χ−i∈Beh−i:Comp(χ−i,AllPRat−i)

RBeli(χ−i,AllPRat−i). To see this, just note that for any PDL-A

model M = 〈W,E, κ, V 〉, worlds w, v in M and α ∈ Num \ {0} we have that if v ∈ Bi(w) then

B
∗α

i ϕ

i (w) = B
∗α

i ϕ

i (v). Hence, we have |= Beli
[
∗α

i ϕ
]
Beliψ → [∗α

i ϕ]Beliψ . By the preceding validity and

the validity |= BeliBeliϕ → Beliϕ, we have |= BeliRBeli(ϕ, ψ) → RBeli(ϕ, ψ). Finally,
∧

i∈Agt(PRati ∧∧
χ−i∈Beh−i:Comp(χ−i,AllPRat−i)

RBeli(χ−i,AllPRat−i)) is equivalent to AllPRatAgt ∧ AllRBelPRatAgt .



It is straightforward to verify that M∗, w∗ |= pl−i(s−i) ∧ AllPRat−i where w∗ is a

world in W∗ such that A∗
−i(w

∗) = s−i. Therefore, model M∗ satisfies pl−i(s−i) ∧

AllPRat−i. It follows that M∗ satisfies χ−i ∧ AllPRat−i too.

(⇒) The left-to-right direction of the equivalence can be proved by reductio ad

absurdum. We assume that: (1) s−i �∈ SDWDS2−IDSDS
−i,1 for all s−i ∈ s−i and (2)

there exists s′
−i ∈ s−i such that M, w |= pl−i(s

′
−i) ∧ AllPRat−i for some PDL-A+

model M and world w in M. From the assumption (1), it follows that there is

j ∈ Agt \ {i} such that s′
−i[j] �∈ SDWDS2−IDSDS

j,1 . From the definition of PRatj,

by the Constraint (Constr3) over PDL-A+ models, we can prove that if s′
−i[j] �∈

SDWDS2−IDSDS
j,1 and M, w |= plj(s

′
−i[j]) then M, w |= ¬PRatj. Hence, from the initial

assumptions it follows that M, w |= ¬PRatj. The latter is in contradiction with the

assumption (2).

Now assume that s−i ∈ SDWDS2−IDSDS
−i,1 and s′

−i �∈ SDWDS2−IDSDS
−i,1 . By Lemma

2, it follows that Comp(pl−i(s−i) ∨ pl−i(s
′
−i),AllPRat−i). Moreover, assume that

M, w |=
∧

χ−i∈Beh−i:Comp(χ−i,AllPRat−i)
RBeli(χ−i,AllPRat−i). From the latter assump-

tion it follows that M, w |= RBeli(pl−i(s−i) ∨ pl−i(s
′
−i)AllPRat−i). Hence M, w |=

[∗α
i pl−i(s−i)∨pl−i(s

′
−i)]Bel iAIIPRat−i for any α ∈ Num\{0}. By Lemma 2, from the

assumption s′
−i �∈ SDWDS2−IDSDS

−i,1 it follows that pl−i(s
′
−i)∧¬AllPRat−i is valid. By the

Constraint (Constr3) over PDL-A+ models and the truth condition of the belief revi-

sion operator [∗α
i ϕ], it follows that M, w |= [∗α

i pl−i(s−i)∨pl−i(s
′
−i)]Bel i(pl−i(s−i)∧

¬pl−i(s
′
−i)). The latter implies κw,i(pl−i(s−i)) < κw,i(pl−i(s

′
−i)). This completes the

proof of Lemma 1.

From M, w |=
∧

χ−i∈Beh−i:Comp(χ−i,AllPRat−i)
RBeli(χ−i,AllPRat−i), by Lemma 1,

it follows that:

(D) if s′
−i ∈ SDWDS2−IDSDS

−i,1 and s′′
−i �∈ SDWDS2−IDSDS

−i,1 then κw,i(pl−i(s
′
−i)) <

κw,i(pl−i(s
′′
−i)).

s[i] �∈ SDWDS2−IDSDS
i,2 implies that:

(E1) s[i] �∈ SDWDS2−IDSDS
i,1 or

(E2) s[i] ∈ SDWDS2−IDSDS
i,1 and s[i] �∈ SDWDS2−IDSDS

i,2

We split the proof in the two subcases: (E1) and (E2).

Proof for the Case (E1) s[i] �∈ SDWDS2−IDSDS
i,1 implies that:

(F1) there is bi ∈ SDWDS2−IDSDS
i such that: (1) bi �= s[i] and (2) 〈s[i], s′

−i〉 <i

〈bi, s′
−i〉 for some s′

−i ∈ SDWDS2−IDSDS
−i and (3) 〈s[i], s′′

−i〉 ≤i 〈bi, s′′
−i〉 for all

s′′
−i ∈ SDWDS2−IDSDS

−i .



From (F1) by the Constraint (Constr3) it follows that:

(G1) there are bi ∈ SDWDS2−IDSDS
i and s′

−i ∈ SDWDS2−IDSDS
−i and v ∈ W such

that: (1) bi �= s[i] and (2) (w, v) ∈ Ei and (3) M, v |= pl−i(s
′
−i) and (4)

〈s[i], s′
−i〉 <i 〈bi, s′

−i〉 and (5) for all u ∈ W such that (w, u) ∈ Ei and for all

s′′
−i ∈ SDWDS2−IDSDS

−i : if M, u |= pl−i(s
′′
−i) then 〈s[i], s′′

−i〉 ≤i 〈bi, s′′
−i〉.

But (G1) is in contradiction with M, w |= PRati and M, w |= pli(s[i]).

Proof for the case (E2) (E2) implies that:

(F2) there is bi ∈ SDWDS2−IDSDS
i,1 such that: (1) bi �= s[i] and (2) 〈s[i], s′

−i〉 <i

〈bi, s′
−i〉 for some s′

−i ∈ SDWDS2−IDSDS
−i,1 and (3) 〈s[i], s′

−i〉 ≤i 〈bi, s′′
−i〉 for all

s′′
−i ∈ SDWDS2−IDSDS

−i,1 .

By the Constraint (Constr3), (F2) together with M, w |= PRati and M, w |=

pli(s[i]) imply that:

(G2) there are s′
−i ∈ SDWDS2−IDSDS

−i,1 and s′′
−i �∈ SDWDS2−IDSDS

−i,1 such that

κw,i(pl−i(s
′
−i)) ≤ κw,i(pl−i(s

′′
−i)).

But (G2) is in contradiction with (D).

A.4 Proof of Theorem 6

Let s �∈ SDWDSk+1−IDSDS and k > 0. Then:

|= CBelAgtAllPRatRBelPRatAgt,k → ¬pl(s)

Proof The proof is by induction. The proof of the inductive case goes exactly as the

proof of the inductive case in the proof of Theorem 4.

Here we only prove the base case.

Base case For all s �∈ SDWDSk+1−IDSDS
k+1 we prove that:

(A1) |= CBelAgtAllPRatRBelPRatAgt,k → ¬pl(s)

To prove (A1), it is sufficient to prove the following validity (B1), as

CBelAgtAllPRatRBelPRatAgt,k → AllPRatRBelPRatAgt,k is valid (the proof of this

validity is similar to the one given in the proof of Theorem 5 for the validity

CBelAgtAllPRatAgt → AllPRatAgt).

For all s �∈ SDWDSk+1−IDSDS
k+1 we have that:

(B1) |= AllPRatRBelPRatAgt,k → ¬pl(s)

We prove something more general than (B1), namely we prove that for all J ∈ 2Agt∗

and for all sJ �∈ SDWDSk+1−IDSDS
J,k+1 :

(C1) |= AllPRatRBelPRatJ,k → ¬plJ(sJ)



The proof of (C1) is again by induction.

Base case For all sJ �∈ SDWDS2−IDSDS
J,2 we have to prove that:

(A2) |= (AllPRatJ ∧ AllRBelPRatJ) → ¬plJ(sJ)

In the proof of Theorem 5 we have proved something stronger than (A2),

namely we have proved that if s[i] �∈ SDWDS2−IDSDS
i,2 then |= (PRati ∧∧

χ−i∈Beh−i:Comp(χ−i,AllPRat−i)
RBeli(χ−i,AllPRat−i)) → ¬pli(s[i]).

Inductive case Let m be an integer such that m > 1. Let us assume that for all

J ∈ 2Agt∗, if sJ �∈ SDWDSm−IDSDS
J,m then:

(Inductive Hypothesis) |= AllPRatRBelPRatJ,m−1 → ¬plJ(sJ)

We are going to prove that if sJ �∈ SDWDSm+1−IDSDS
J,m+1 then:

(A3) |= AllPRatRBelPRatJ,m → ¬plJ(sJ)

The proof is by reduction ad absurdum. We take an arbitrary PDL-A+ model M

and a world w in M. We assume that M, w |= AllPRatRBelPRatJ,m and M, w |=

plJ(sJ) and sJ �∈ SDWDSm+1−IDSDS
J,m+1 . We are going to show that these three facts are

inconsistent.

The rest of the proof is based on the following Lemma 3.

Lemma 3 Let m be an integer such that m > 1 and let χ−i =
∨

s−i∈s−i
pl−i(s−i) for

some s−i ⊆ S−i. Then, Comp(χ−i,AllPRatRBelPRat−i,m−1) if and only if there exists

s−i ∈ s−i such that s−i ∈ SDWDSm−IDSDS
−i,m .

Proof of Sketch The proof of Lemma 3 is again by induction. We only prove the base

case (i.e., when m = 2).

(⇐) We first prove the right-to-left direction of the equivalence, after assuming

that the set of strategy profiles is S = {s1, . . . , sn} for some n ∈ N. Suppose that

s−i ∈ SDWDS2−IDSDS
−i,2 with s−i ∈ s−i. We can exhibit the following PDL-A+ model

M∗ = 〈W∗, {E∗
i : i ∈ Agt}, κ∗, {A∗

i : i ∈ Agt}, V ∗〉 where:

• W∗ = {w1, . . . , wn};
• for all i ∈ Agt, E∗

i = {(wh, wh′) : wh, wh′ ∈ W∗ and sh[i] = sh′[i]};
• for all wh ∈ W∗ and for all i ∈ Agt, A∗

i (wh) = sh[i];
• for all i ∈ Agt and for all wh ∈ W∗:

1. κ∗(wh, i) = 0 if and only if, for all j ∈ Agt \ {i}, sh[j] ∈ SDWDS2−IDSDS
j,1 ,

2. κ∗(wh, i) = max if and only if there is j ∈ Agt \ {i} such that sh[j] �∈

SDWDS2−IDSDS
j,1 ;

• for all wh ∈ W∗, V ∗(wh) = Prop.

With the help of Lemma 2 in Section A.3, it is straightforward to ver-

ify that M∗, w∗ |= pl−i(s−i) ∧ AllPRat−i∧
∧

j∈Agt\{i}

(
∧

χ−j∈Beh−j:

Comp(χ−j,AllPRat−j)



RBelj(χ−j,AllPRat−j)
)

where w∗ is a world in W∗ such that A∗
−i(w

∗) = s−i. There-

fore, model M∗ satisfies pl−i(s−i)∧AllPRatRBelPRat−i,1. It follows that M∗ satisfies

χ−i ∧ AllPRatRBelPRat−i,1 too.

(⇒) The left-to-right direction of the equivalence can be proved by reductio ad

absurdum. We assume that: (1) s−i �∈ SDWDS2−IDSDS
−i,2 for all s−i ∈ s−i and (2) there

exists s′
−i ∈ s−i such that M, w |= pl−i(s

′
−i) ∧ AllPRat−i∧∧

j∈Agt\{i}(
∧

χ−j∈Beh−j:

Comp(χ−j,AllPRat−j)

RBelj(χ−j,AllPRat−j)) for some PDL-A+ model M

and world w in M. From the assumption (1), it follows that there is j ∈ Agt \

{i} such that s′
−i[j] �∈ SDWDS2−IDSDS

j,2 . From the definition of PRatj(s
′
−i[j]), by

the Constraint (Constr3) over PDL-A+ models and with the help of Lemma 1

in Section A.3, we can prove that if s′
−i[j] �∈ SDWDS2−IDSDS

j,2 and M, w |=∧
χ−j∈Beh−j:

Comp(χ−j,AllPRat−j)

RBelj(χ−j,AllPRat−j) then M, w |= ¬PRatj(s
′
−i[j]). Therefore,

from the initial assumption that M, w |= pl−i(s
′
−i) it follows that M, w |= ¬PRatj.

The latter is in contradiction with the assumption (2), namely with M, w |= AllPRat−i.

M, w |= AllPRatRBelPRatJ,m is equivalent to:

(B3) M, w |= AllPRatJ ∧
∧

i∈J

∧
χ−i∈Beh−i:Comp(χ−i,AllPRatRBelPRat−i,m−1)

×RBeli(χ−i,AllPRatRBelPRat−i,m−1)

By inductive hypothesis, (B3) implies that for all s′′
−i �∈ SDWDSm−IDSDS

−i,m :

(C3) M, w |=
∧

i∈J

∧
χ−i∈Beh−i:Comp

×(χ−i,AllPRatRBelPRat−i,m−1)RBeli(χ−i¬pl−i(s
′′
−i))

From (C3) and Lemma 3 it follows that for all i ∈ J:

(D3) if s−i′ ∈ SDWDSm−IDSDS
−i,m and s−i′′ �∈ SDWDSm−IDSDS

−i,m then

κw,i(pl−i(s−i′)) < κw,i(pl−i(s−i′′)).

(The proof of the preceding item (D3) is similar to the proof of the item (D) in the

proof of Theorem 5 in Section A.3).

The rest of the proof proceeds as the proof of Theorem 5 in Section A.3 (starting

from item (D)). For this reason, we do not repeat it here.
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