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Abstract

Background: The Hes superfamily or Hes/Hey-related genes encompass a variety of metazoan-specific bHLH
genes, with somewhat fuzzy phylogenetic relationships. Hes superfamily members are involved in a variety of
major developmental mechanisms in metazoans, notably in neurogenesis and segmentation processes, in which
they often act as direct effector genes of the Notch signaling pathway.

Results: We have investigated the molecular and functional evolution of the Hes superfamily in metazoans using the
lophotrochozoan Platynereis dumerilii as model. Our phylogenetic analyses of more than 200 Metazoan Hes/Hey-related
genes revealed the presence of five families, three of them (Hes, Hey and Helt) being pan-metazoan. Those families
were likely composed of a unique representative in the last common metazoan ancestor. The evolution of the Hes
family was shaped by many independent lineage specific tandem duplication events. The expression patterns of 13 of
the 15 Hes/Hey-related genes in Platynereis indicate a broad functional diversification. Nevertheless, a majority of these
genes are involved in two crucial developmental processes in annelids: neurogenesis and segmentation, resembling
functions highlighted in other animal models.

Conclusions: Combining phylogenetic and expression data, our study suggests an unusual evolutionary history
for the Hes superfamily. An ancestral multifunctional annelid Hes gene may have undergone multiples rounds of
duplication-degeneration-complementation processes in the lineage leading to Platynereis, each gene copies ensuring
their maintenance in the genome by subfunctionalisation. Similar but independent waves of duplications are at the
origin of the multiplicity of Hes genes in other metazoan lineages.

Keywords: Hes superfamily, Platynereis, Nervous system, Segmentation, Chaetogenesis, DDC, Subfunctionalisation,
Neofunctionalisation, Notch
Background
The basic helix-loop-helix (bHLH) protein superfamily
comprises an ancient class of eukaryotic transcription
factors (TFs) that are found in fungi, plants and metazoans
[1]. These TFs are defined by the presence of a bHLH
domain that is, a DNA-binding basic region (b) followed
by two α-helices separated by a variable loop region
(HLH), that serves as a dimerization domain and as a
platform for protein interactions [2]. The bHLH super-
family is considered to be subdivided into 6 higher-order
groups (named A to F) composed of evolutionarily related
families of orthologous genes that share structural and
biochemical properties. Among them, the Hes (Hairy/
enhancer of Split) and the Hey (Hairy/Enhancer of Split
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related with YRPW motif ) genes belong to two closely
related families among the group E [2], and possess an
additional protein-protein interaction domain, the Orange
domain required for their function as transcriptional regu-
lators [3]. Another molecular property of the HES/HEY
proteins is the presence of a C-terminal tetrapeptide motif
(WRPW or YRPW), which is known for HES proteins to
recruit co-repressors of the groucho/TLE1-4 family [4,5].
The Hes and Hey families include the well-known HAIRY,
HAIRY-related, ENHANCER OF SPLIT proteins of
Drosophila and the numerous mammalian HES and
HEY proteins, as well as several other related proteins
such as HERP, HEYL, HELT, HESL, DEC1, and DEC2
whose mutual relationships and relationships with HES
and HEY proteins are still poorly understood [5-9]. This
lack of knowledge often results in a confusing, non-
consensual nomenclature of these genes.
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These HES/HEY-related proteins are involved in a broad
variety of molecular and developmental mechanisms
across metazoans. They function as DNA-binding tran-
scriptional repressors that control cell fate decisions in
several contexts. These proteins are often, but not al-
ways, found as direct effector genes of the Notch signal-
ing pathway [10-13]. This pathway, a direct juxtacrine
signaling system, is involved in the control of cell identity,
proliferation, differentiation and apoptosis in animals (see
reviews [14-19]).
In deuterostomes and ecdysozoans, Hes/Hey-related

genes are involved in crucial developmental events, in
particular nervous system (NS) patterning and segment
formation [20,21]. In mammalians, for example, Hes genes
(notably Hes1, Hes3 and Hes5) play an essential role in
neural development by regulating proliferation, differ-
entiation and specification of neural stem cells in both
Notch-dependent and -independent manners [12]. These
genes are also involved in regulating the maintenance of
boundaries, which partition the NS into many compart-
ments in a Notch-independent way [12,22]. Still in mouse,
another Hes-like member, HeyL promotes neuronal differ-
entiation of brain neural progenitor cells through the
control of the BMP signaling, [23]. Hes7 and Hes1 are
also key elements of the mouse molecular clock that,
through the control of Notch, induce somite formation
and are periodically expressed in anterograde wave-like
fashion in the presomitic mesoderm (PSM), each wave
leading to the generation of a pair of somites [22,24-26].
Other roles of Hes genes in mouse have been evidenced,
such as regulating the maintenance of stem cells in digest-
ive organs [12], the development of sensory organs (eye,
inner ear) [5] and a critical role of Hey genes (Hey1, Hey2,
HeyL) in the development of the cardiovascular system
[5,27] in a Notch-dependent manner. Similar roles for
Hes/Her/Hey genes in zebrafish and chick have been
documented [12,25,26].
In Drosophila, the Hairy gene is involved in segmen-

tation, during which it acts as a primary pair-rule gene
required for the establishment of segments [28] but it
also helps in defining the pattern of sensory bristles by
repressing the formation of sense organ precursors [29],
in a Notch-independent way in both cases [28-30]. In
contrast, the genes of the Enhancer of split (Espl) complex
mediate the effects of Notch signaling in a process named
lateral inhibition, during embryonic and adult neurogen-
esis. Activation of the Espl genes (except m1) blocks the
accumulation of large amounts of proneural protein in
most cells of the proneural clusters, preventing them from
adopting a neural fate [31,32]. The Hes family gene dead-
pan, have been shown to regulate the self-renewal and
specification of Drosophila neural stem cells, and to be
involved in sex determination, both independently of
Notch [33,34]. Drosophila Hey participates in alternative
neuronal fate establishment during asymmetric divisions,
both in a Notch-dependent and -independent manner
[35]. In long germ-band arthropods, such as the spider
Cupiennius salei [36,37], the myriapod Strigamia mari-
tima [38], and the cockroach Periplaneta americana [39],
some Hairy-related genes are expressed in segmental
patterns through the control of Notch signaling, suggest-
ing a role in the segmentation process, while in the short
germ-band Tribolium castaneum a Notch-independent
expression of Hairy is observed [40,41]. In the nematode
Caenorhabditis elegans, a unique gene closely related to
Hes/Hey, named lin-22 was reported to be involved in pat-
terning the peripheral NS (PNS), in a Notch-independent
manner [42]. In addition, the members of the Ref-1 family
that encode unusual proteins containing two distinct bHLH
domains, may be very divergent relatives of Hes/Hey genes
and mainly mediate Notch signaling in various devel-
opmental processes, although Notch-independent ex-
pressions are also observed [43].
In lophotrochozoans, a major clade of protostomes

often neglected in evolutionary developmental biology
studies, the few data on Hes genes available so far mainly
come from annelids. In the leech Helobdella robusta, Hes
gene is expressed in the stem and progenitor cells
(teloblasts and blast cells) of the posterior addition
zone [44], under the control of Notch, and may be im-
plicated in posterior elongation and segment formation
[45,46]. In the polychaete Capitella teleta, three Hes
genes have been shown to be expressed in a variety of
embryonic territories. They are possibly regulated by
Notch-dependent and -independent mechanisms, depend-
ing on the expression territories concerned [47]. The three
genes are expressed in the posterior addition zone of the
juvenile worm, which is responsible for the addition of
segments. Two of the genes, Cte-Hes2 and 3, are also
expressed in the brain and in the elongated trunk and
Cte-Hes2 is, in addition, expressed in the presumptive
chaetal sacs, at the origin of the chaetae of the append-
ages, suggesting a role for Hes genes in neurogenesis,
chaetogenesis and segmentation [47].
In non bilaterian metazoans, the roles of Hes genes

have only been explored in cnidarians. In the anthozoan
Nematostella vectensis, seven Hes/Hey-like genes have
been reported to be expressed in a variety of territories,
with distinct expression domains whose union seems to
recapitulate the expression of the Notch receptor [48].
Blocking Notch signaling using small molecule inhibitors
suggests that four of the Hes genes are targets of Notch
signalling and are involved in cnidogenesis and neurogen-
esis [48]. Studies in adults and during budding of the
hydrozoan Hydra suggest that Notch has a role in germ
and nematocyte cell differentiation [49], as well as in
boundary formation in the forming bud, via the regulation
of the expression of HyHes (the only Hes reported in
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Hydra) [50]. In demosponges (Porifera), one Hey gene was
identified in the genome of Amphimedon queenslandica
[2] and recently, Hes genes were reported (by blast
searches only) in the transcriptomes of two others demos-
ponges (but without phylogenetic analyses confirming
their assignment [51]).
In addition to the aforementioned studies aimed at

defining the expressions and functions of Hes and Hey
genes, there have been several analyses describing the
genomic repertoire of these genes in various animals.
These studies have shown a surprisingly variable number
of Hes/Hey genes in these species and have suggested
the occurrence of species- or lineage-specific duplications,
for example, in the cnidarian Nematostella vectensis [6],
the fruitfly Drosophila melanogaster [7], and the amphi-
oxus Branchiostoma floridae [52,53]. Attempts to resolve
the evolutionary relationships among Hes/Hey families
members have so far focused on vertebrates [6,11] or
insects [7]. A recent survey of Hes/Hey genes in 17
metazoan species (mainly vertebrates, plus 2 non-bilaterian
species) has led authors to suggest that Hey genes were
already present in the last common ancestor of metazoans,
whereas Hes genes would have arisen in the stem lineage of
Eumetazoans [2,6]. The authors of this study proposed a
scenario with two rounds of expansions of this gene family,
in the common ancestor of animals and vertebrates, re-
spectively [6]. All these studies were, however, ham-
pered by a dataset of taxa that are poorly representative
of the metazoan diversity and by poor statistical support
of phylogenetic trees [6]. Whereas the Hes and Hey
genes are robustly separated into distinct clades, rela-
tionships among Hes genes are poorly resolved. A num-
ber of vertebrate sub-classes have been proposed
recently and named HesL, DEC1/2, Hes1/4, Hes2, Hes3,
Hes5, Hes6, Hes7 [6] but it is unclear whether any of
these sub-classes arose before the separation of the verte-
brate lineage.
In this paper, we try to unravel several issues concerning

the molecular evolution and functions of the Hes/Hey-re-
lated genes. (i) When and how did the multiplicity of Hes/
Hey-related genes arise in the metazoan tree and how
many families can be defined among them? (ii) Why have
so many copies of Hes/Hey-related genes been conserved
in the course of evolution? (iii) When and how have the
multiple functions of Hes/Hey-related genes been acquired
during metazoan evolution?
To gain insights into these questions, we studied the

Hes, Hey and their related genes in the lophotrochozoan
Platynereis dumerilii. Over the past decade, the annelid
Platynereis has become a valuable model for evolutionary
developmental biology studies. Importantly a number
of comparative genomic studies have suggested that
Platynereis is descending from a slow-evolving lineage
and has therefore retained many ancestral bilaterian
features including the ancestral composition of multigene
families [54-57]. We identified a large family of 15 Hes/
Hey-related genes in Platynereis. To determine whether
these numerous Platynereis genes represent an ancestral
bilaterian gene family or an independent gene radiation in
the annelid lineage, we investigated broadly the origin and
evolution of Hes/Hey genes and their distinct sub-families
in animals. As a clear improvement compared to earlier
studies, we sampled extensively animal lineages that branch
outside bilaterians (cnidarians, ctenophores, sponges) to de-
cipher the early steps of the family evolution in metazoans.
We also sampled several lophotrochozoan species genomes,
a bilaterian branch often neglected in phylogenomic stud-
ies. Our detailed phylogenetic analyses of more than 200
HES/HEY-related proteins show that three subfamilies
(Hes, Hey and Helt) are pan-metazoan whereas two others
seem to be restricted to protostomes (Stich) and chordates
(Dec). Phylogenetic as well as genetic linkages analyses
support the hypothesis of multiple independent Hes
tandem duplications in almost each metazoan phylum,
including in the Platynereis lineage. To test whether
related Platynereis genes in the tree share similar expres-
sion patterns during embryogenesis; we determined the
expression patterns through embryonic/larval develop-
ment as well as during juvenile posterior elongation. We
show that these genes are expressed in a wide variety of
expression domains, (that is, mesodermal tissues, seg-
ments, NS). We discuss the possibility that Platynereis
Hes/Hey-related genes, after duplication from a single
ancestor, underwent a process of divergence by either
neofunctionalization, that is, the random acquisition of
a new function in the course of the accumulation of
neutral mutation in duplicated genes [58] or subfunctionali-
zation via the duplication-degeneration-complementation
(DDC) model [58-61]. In the latter, it was postulated
that degenerate mutations affect the gene functions,
rendering neither copy alone sufficient to perform
the ancestral functions and resulting in the partition-
ing of these ancestral functions in each paralogous
copy [62].

Methods
Animal culture and collection
Platynereis embryos and juveniles were obtained from a
breeding culture established in the Institut Jacques
Monod (Paris), according to the protocol of Dorresteijn
et al. [63]. Staging of the embryos was done following
Fischer et al. [64]. Posterior parts of atokous worms re-
generated 11 days after caudal amputation were ob-
tained as previously described [65]. Embryos and
larvae, as well as atokous worms 11 days after caudal
amputation were fixed in 4% paraformaldehyde (PFA),
1 × PBS, 0.1% Tween20 and stored at -20°C in methanol
100% [66].
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Survey of Platynereis dumerilii Hes/Hey-related genes:
identification, intron positions and cloning
Platynereis Hes/Hey-related genes were identified by
sequence similarity searches against large collections of
expressed sequence tags (ESTs) and genomic sequences
(Platynereis resources, 4dx.embl.de/platy/, D Arendt,
personal communication) [56] using Drosophila and/or
vertebrate genes as query. Complete coding sequences
were assembled from EST fragments using CodonCode
Aligner (CodonCode Corporation, USA). For each Platy-
nereis gene, putative exons positions were mapped on
genomic DNA by comparison with ESTs using Artemis
[67]. Large gene fragments were subsequently cloned by
PCR using sequence-specific primers on cDNAs from
mixed larval stages (primer sequences and PCR conditions
are available upon request). PCR products were TA cloned
into the PCR2.1 vector following the manufacturer’s
instructions (Invitrogen, France) and sequenced. Par-
tial cDNA obtained were then used as templates to
produce RNA antisense probes for whole-mount in
situ hybridization (WMISH) using Roche (France) re-
agents. Orthology relationships were defined using as
criteria sequence similarities, presence of specific domains
and phylogenetic analyses (see below). The fifteen newly
identified Platynereis genes sequences were deposited in
Genbank [KC999039 to KC999053].

Sequences analyses
Data sources, sequence retrieving and domains composition
Hes/Hey gene searches were carried out using the tblastn
or blastp algorithms [68] implemented in ngKlast (Korilog
V 4.0, Questembert, France) with Drosophila, vertebrate
and Nematostella proteins as query sequences, with the
default BLAST parameters and a low cutoff E-value
threshold of 0.1, against 24 genome datasets. Lists of
BLAST hits were then reciprocally BLASTed against the
human proteins dataset of the NCBI database to extract
sequences related to the Hes/Hey family (reciprocal best
hits [69]). Those genomes correspond to 24 metazoan
species representatives of the main lineages of animals:
Porifera, Ctenophora, Cnidaria, Placozoa, Lophotrochozoa,
Ecdysozoa and Deuterostomia. For each species, we
screened the genome assembly, the predicted protein
sequence dataset and transcriptomes when available.
Concerning the sponges, we concatenated a chimeric
dataset from two Oscarella species: Oscarella carmela
from which the genome is accessible and an undescribed
Oscarella specimen (Oscarella sp.) from which only EST
were available. Indeed, the Hes repertory of Oscarella
carmela lacks several representatives that were present in
the EST dataset of another Oscarella and their addition
are critical to understand the origin of the Hes family.
The presence of the Hes/Hey-related specific protein

domains (that is, bHLH, Orange and WRPW peptides)
was systematically checked by scanning sequences with
both NCBI Conserved Domain search option V3.10 [70]
and InterProscan V.42 online software [71]. An import-
ant proportion of the Hes predicted sequences (1/4
roughly) do not harbor an Orange domain. We tried to
ensure that these Orange domains are genuinely missing
by checking predicted sequences against genomic scaffolds
and screening specifically for Orange sequences. However,
in the absence of exhaustive transcriptome data in some
species, we cannot exclude that in a limited number of
cases, the lack of an Orange domain results from faulty
sequence prediction. Last, a complete list of genomic
scaffolds carrying the predicted sequences was produced
for each species and the presence of genomic clusters
was established for a number of them.

Phylogenetic analyses
The predicted amino-acid sequences of the identified
Platynereis gene fragments were aligned with their pre-
sumptive orthologs from 24 metazoan species. Two
group-B bHLH members: sterol regulatory element-
binding protein (SREBP) and microphthalmia-associated
transcription factor (Mitf) were selected as the outgroup
in order to root the Hes/Hey-related tree. Only the bHLH
domains of those sequences were included and aligned for
two species: Danio rerio and Lottia gigantea. Alignments
were performed with MUSCLE 3.7 online [72,73] under
default parameters and adjusted manually in Bioedit [74].
Only parts of the alignments corresponding to the bHLH,
Orange and WRPW peptides, when presents (112 amino
acids altogether) were used for the phylogenetic analyses.
Two datasets were used for the analyses, one including
all sequences for all species (n = 201) and the other
containing only sequences where both domains (bHLH
and Orange) were identified (n = 154). The phylogenetic
trees were constructed using two different approaches: the
maximum likelihood (ML) and the Bayesian analyses. ML
analyses were performed with the PHYML 3.0 program
under an LG model of amino acid substitution [75], a
model that was shown to be the most efficient. To take
into account rate variation among sites, we computed
likelihood values by using an estimated gamma law with
six substitution rate categories and we let the program
evaluate the proportion of invariant sites. Statistical sup-
port for the different nodes was assessed by both the ap-
proximate likelihood ratio test (aLRT) [76] and bootstrap
(BP) analysis [77] with 500 replicates. Bayesian analysis
was performed with MrBayes 3.2.1 [78], using the WAG
fixed model, as the LG model is not available. Two sets of
six independent simultaneous metropolis-couples Markov
chains Monte Carlo were run for 10 and 20 million
generations (for the restricted and all inclusive alignments
respectively) and sampled every 500th generation. We
estimated that convergence was obtained if the average
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standard deviation of split frequencies reached a threshold
value of 0.05. The trees obtained were mixed and an
adequate burn-in was removed (above 25% of tree and
parameters). Bayesian posterior probabilities (PP) were
used for assessing the confidence value of each node
[79]. Phylogenetic trees were visualized, rooted and
edited using FigTree V.1.4.0 [80]. The tree topologies
showed are from the ML analysis and all nodes, even
moderately supported ones, were conserved because
taxa number and composition, in addition to statistical
support, are keys to discussing the validity of nodes in
such a broad phylogenetic analysis.
We also performed parsimony reconstruction of char-

acter evolution based on a consensus Metazoan phylo-
genetic tree using Mesquite software version 2.72 [81].
Character used in those analyses is the number of gene
per species that was encoded in a character matrix.
Analyses were performed for Hes and Hey family as
well as more than 40 other bHLH families, based on
previously published datasets [2]. Sampling of the pre-
cedent paper differs slightly from this study, implying
the presence of missing data in the character matrix.
Visualization of Platynereis HES expression patterns by
whole mount in situ hybridization
Single NBT/BCIP whole-mount in situ hybridization
was performed as previously described [66] on five larval
stages (24, 33, 48, 55 and 72 h post fertilization (hpf ))
and during post-embryonic posterior elongation. For the
latter, we performed WMISH on worms 11 days after
posterior amputation as post-caudal regeneration posterior
elongation is a proxy to normal posterior elongation [82].
Bright-field images were taken on a Leica microscope. Ad-
justments of brightness, contrast and Z projections were
performed using the ImageJ and Photoshop software.
Results and discussion
Origin and evolution of the Hes superfamily
The Hes superfamily in Platynereis
Exhaustive searches on the genome of Platynereis com-
plemented with several EST datasets led us to identify
no less than 15 Hes/Hey-related genes coding for pro-
teins of various lengths: from 215 to 642 amino-acids.
While all of them possess the conventional bHLH do-
main, four genes (Pdu-Hes10; Pdu-Hes11; Pdu-Hes12;
Pdu-Hes13) lack the Orange domain (Figure 1). These ab-
sences represent presumably secondary evolutionary
losses of an ancestral Orange domain although we can-
not exclude the possibility of a non-perfect assembly of
the genome that could impair our domain predictions.
All but Pdu-Stich possess the WRPW terminal domain,
modified in WQPW in Pdu-Hes9 and in YRPW in
Pdu-Hey.
In Pdu-Hes1 to Pdu-Hes10, a conserved pattern of
intron positions is observed, two of them being located
at exactly homologous positions in the bHLH coding se-
quence, while the third one is situated between bHLH
and Orange coding sequences (Figure 1). In Pdu-Hes11,
Pdu-Hes12 and Pdu-Hes13, lacking the Orange domain,
only the first two introns (in the bHLH domain) are
found, whereas Pdu-Hey and Pdu-Stich harbor only the
second homologous intron (Figure 1). Pdu-Hey and
Pdu-Stich are peculiar with respectively three and six
introns, only one of which is in shared positions with
other Platynereis Hes-related genes.
This high number of Hes/Hey-related gene copies in

the Platynereis genome is somewhat surprising, given
the evolutionary conservatism displayed in other gene
families such as the Wnt [57], Hox [83] and bHLH [2]
genes. A number of other metazoans share a high number
of Hes-related genes. This assessment led us to question
the evolutionary origin of such diversity, to shed light
on this issue and prompted us to extend our genomic
analyses to the scale of the whole metazoan clade.

The Hes superfamily in Metazoa consists of three
pan-metazoan families: Hes, Hey and Helt
We performed a detailed search of Hes/Hey-related genes in
metazoan species representatives of all main metazoan line-
ages (that is Deuterostomia, Ecdysozoa, Lophotrochozoa,
Ctenophora, Cnidaria, Placozoa and Porifera). Details of
species used, genomic resources access, sequences names,
domains presence or absence as well as scaffold/chromo-
somes numbers where the sequences are located (when
available), are presented in the Additional file 1. We
especially surveyed lophotrochozoan and non-bilaterian
species as they have been neglected in earlier studies and
are especially informative on bilaterian, eumetazoan and
metazoan ancestral states, respectively.
In a first approach, we built ML and bayesian trees of

the complete dataset, that is including those sequences
for which no Orange domain was found (Figure 2,
Table 1). As the evolution of the Hes/Hey family is rather
complex, we first assessed how many strongly supported
pan-metazoan clades are evidenced by these trees. These
clades reflect the existence of a number of ancestral genes
that were present in a metazoan ancestor and are evi-
denced by highly supported clades (aLRT >90%) in which
a majority of metazoan phyla are represented. Only three
mutually exclusive clades of this nature exist in the
complete tree: nodes C, D’ and B, corresponding respect-
ively to Hey, Helt and a large clade grouping most
remaining Hes genes. Strikingly, the emergence of these
three clades predate the last common ancestor of all meta-
zoans as genes belonging to each of them are found in
three (of the four) non-bilaterian phyla considered here,
the sponges, the placozoan and the cnidarians (Figures 2



Figure 1 Platynereis Hes/Hey-related genes structures and domains. The intron positions, indicated by gaps, are essentially conserved in 10
Pdu-Hes (1 to 10). The different domains are schematized by colored boxes (see inset). Newly defined domains (see text for details and Figure 4)
for Pdu-Hey and Pdu-Stich are also mentioned. All but four Platynereis genes possess both the bHLH and the Orange domains. All but Pdu-stich
have a WRPW/YRPW C-terminal motif.
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and 3, Tables 1 and 2) in the hypothesis of sponges being
the sister group to all other metazoans species [84].
Recently an alternate view of the relationships of non
bilaterian phylum have emerged and some authors
considered that ctenophore are indeed the sister group
to all others metazoans [85]. In the case of the Hes
superfamily, Mnemiopsis Hes/Hey-related genes repertory
is especially poor, with only three long-branch Hes genes,
and less informative compared to sponges.
In addition to B, C and D’ groups, several smaller but

well-supported clades show a more restricted taxonomic
composition. Node E contains only protostome genes,
both from ecdysozoan and spiralian taxa, and presum-
ably reflects a new, previously unrecognized ancestral
protostome gene related to Drosophila Sticky ch1 [86].
Node F contains only vertebrate Dec genes grouped
with an amphioxus gene, thus likely indicating an
ancestral chordate Dec gene. Two remaining well sup-
ported clades (nodes P and Q) represent only small
subsets of animal species (sponges, hemichordate and
cephalochordate). In addition, these genes display long
branches. Therefore, we consider that both nodes P and Q
are unlikely to represent ancestral metazoan genes but are
rather derived genes grouped together by artifact. While
the monophyly of the Hes/Hey family as a whole is well-
supported, relationships within four interphyletic clades
(Hes, Hey, Helt and Stich) are poorly resolved (Figure 2,
Table 1).



Figure 2 Phylogenetic tree of Hes/Hey-related genes based on the complete dataset. The tree topology is obtained from the ML analysis
and rooted on SREBP and Mitfa bHLH genes. A color code was used for nodes robustness (see inset). Branch and sequence names have specific
colors following a color code based on the clade/phylum they belong to (see inset). The letters in front of the nodes refer to Table 1. Dashed
lines indicate that branches were artificially reduced for a more aesthetic representation. Hes, Dec, Stich, Helt and Hey family members are
highlighted by a specifically colored background.
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One possible explanation why relationships between
genes are so poorly resolved within the Hes clade could be
the rapid evolution of the sequences of a large number of
genes. Indeed, many genes coding for a protein with no
Orange domain have a long branch especially within
the R clade. We wanted therefore to test the possibility
of assessing the phylogeny of the genes with a conserved
protein domain structure (presence of the Orange domain)
separately (Figure 3, Table 2). The resulting tree was not
fundamentally different in its overall architecture from the
complete dataset tree. In particular, nodes corresponding to
the Hey (C), Helt (D), Stich (E), Dec (F) and Hes genes (B)
were still present, although with slightly diminished statis-
tical significance. Within Hes genes, a clade with relatively
short branched genes (M) was present in both trees, with a
large majority of the same genes. A clade with long
branched genes (R) was also found with some statistical
support. This clade is however much smaller than in the
complete dataset tree because many proteins with no
Orange domain were initially included in this group.



Table 1 Summary of topologies and node supports obtained with the Hes superfamily complete dataset analyses

Node names Node descriptions Complete dataset Comments

ML - aLRT ML - bootstrap Bayes - PP ML - aLRT ML - bootstrap Bayes - PP

A Hes + Dec + Hey + Stich + Helt 0,99 86 1 9 sequences are not included
in any family

9 sequences are not included
in any family

9 sequences are not included in
any family

B Hes 0,98 22 0,91

C Hey 0,92 45 0,95

D Helt 0,15 20 0,78 Oca_10158 is not included in Helt

D' Helt subgroup 0,9 30 0,78 Oca_10158 is excluded Oca_10158 is excluded

E Stich 1 92 0,94

F DEC 0,92 100 0,86

G E(Spl) 0,73 19 0,96 15 sequences of ecdysozoans 15 sequences of ecdysozoans 15 sequences of ecdysozoans

H Cnidarian Hes group 1 0,9 0 0,57 13 sequences + 3 sequences
of deuterostomian

13 sequences + 3 sequences of
deuterostomian

6 sequences only

H' Cnidarian Hes subgroup of group 1 0,92 86 0,57 8 sequences 8 sequences 6 sequences only

I Lophotrochozoan Hes group 1 0,44 2 _ 4 sequences + Spu_06813 4 sequences + Spu_06813 Not found

J Lophotrochozoan Hes group 2 0,6 3 0,61 5 sequences 5 sequences 5 sequences + Spu_15712

K Ecdysozoan Hes group 1 0,84 0 _ 17 sequences including
Dme_Hairy, side and dp,
Cel_Lin-22+ 2 lophotrochozoan
sequences

17 sequences including Dme_Hairy,
side and dpn Cel_Lin-22+ 2
lophotrochozoan sequences

Not found

K' Ecdysozoan Hes subgroup of group 1 0,92 0 _ 8 sequences including
Dme_Hairy and dpn

8 sequences including
Dme_Hairy and dpn

Not found

L Deuterostomian Hes group 1 0,8 5 _ 14 sequences 14 sequences Not found

M Hes subgroup 0,84 0 _ 65 sequences including
Lophotrochozoan Hes groups1
and 2, Ecdysozoan Hes group 1,

65 sequences including
Lophotrochozoan Hes groups1
and 2, Ecdysozoan Hes group 1,

Not found

Cnidarian Hes group 1 and
Deuterostomian Hes group 1

Cnidarian Hes group 1 and
Deuterostomian Hes group 1

N Lophotrochozoan Hes group 3 0,71 1 1 10 sequences + 1 sequence of
Nematostella

10 sequences + 1 sequence of
Nematostella

6 sequences only

O Cnidarian Hes group 2 0,81 18 _ 5 sequences + 1 sequence of
Platynereis

5 sequences + 1 sequence of
Platynereis

Not found

P Sponges + deuterostomes group 1 0,99 71 1 4 sequences (2 sponges + 2
deuterostomes)

4 sequences (2 sponges + 2
deuterostomes)

4 sequences (2 sponges + 2
deuterostomes)

Q Sponges + deuterostomes group 2 0,96 89 1 5 sequences (2 sponges + 3
deuterostomes)

5 sequences (2 sponges + 3
deuterostomes)

5 sequences (2 sponges + 3
deuterostomes)
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Table 1 Summary of topologies and node supports obtained with the Hes superfamily complete dataset analyses (Continued)

R Hes subgroup 2 0,87 0 _ 70 sequences including E(spl),
Lophotrochozoan Hes group 3
and Cnidarian Hes group 2

70 sequences including E(spl),
Lophotrochozoan Hes group
3 and Cnidarian Hes group 2

Not found

Hes/Hey-related genes complete dataset was analyzed both with maximum likelihood (ML) and Bayesian algorithms. Node supports were tested by approximate likelihood ratio test (aLRT) (0 to 1) and bootstraps (0 to
100) for ML, and with posterior probabilities (PP, 0 to 1) for Bayes; results were provided in this table. Nodes names and descriptions correspond to the nodes of the Figure 2. Comments on clade for all analyses are
provided, when relevant.
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Figure 3 Phylogenetic tree of Hes/Hey-related genes based on the partial dataset. Partial dataset include all sequences that possess both
the basic helix-loop-helix (bHLH) and the Orange domains. The tree topology is obtained from the maximum likelihood (ML) analysis and rooted
on Sterol regulatory element binding protein (SREBP) and microphthalmia-associated transcription factor (Mitfa) bHLH genes. A color code was
used for node robustness (see inset). Branch and sequence names have specific colors following a color code based on the clade/phylum they
belong to (see inset). The letters in front of the nodes refer to Table 2. Dashed lines indicate that branches were artificially reduced for a more
aesthetic representation. Hes, Dec, Stich, Helt and Hey family members are highlighted by a specifically colored background.
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Based on these phylogenetic results, we can redefine
five families, also supported by specific additional proteic
motifs (Figure 4). Three families are pan-metazoan (the
Hes, Hey and Helt families) and two others are clade-
specific (the Stich and Dec families).
The evolutionary history of the well-known Hes family

was already investigated in a study mainly focused on
vertebrates [6]. This recent study failed to evidence clear
relationships among this large family outside vertebrates.
Not surprisingly, we observed a similar fuzzy situation
in our own analyses. Nevertheless, in opposition to pre-
cedent statement (based only on one sponge species,
that is, Amphimedon queenslandica, Demospongiae) [6],
we found the evidence of a real Hes gene from another
sponge lineage, the Homoscleromorpha (recently nomi-
nated as the fourth sponge lineage [87]). Accordingly we
also totally disagree with the idea of a primitive tetrapeptide
FRPW, found in the A. queenslandica Hey/1/2/L gene,



Table 2 Summary of topologies and nodes supports obtained with the Hes superfamily partial dataset analyses

Node names Node descriptions Partial dataset Comments

ML - aLRT ML - bootstrap Bayes - PP ML - aLRT ML - bootstrap Bayes - PP

A Hes + Dec + Hey + Stich + Helt 0,99 96 1 2 sequences are not included
in any family :

2 sequences are not included
in any family :

Oca_10158 is included in

sko_273877 and Bfl_109346 sko_273877 and Bfl_109346 no family

B Hes 0,89 32 0,97

C Hey 0,86 44 0,97 sko_273877 and Bfl_109346

are included in Hey

D Helt 0,72 28 0,95 Oca_10158 is outside Helt

E Stich 1 96 0,99

F DEC 0,87 60 0,92

G E(Spl) 0,8 4 0,8 Dme-M8 and Dme_M5 are
not included

Dme-M8 and Dme_M5 are not
included

Dme-M8 and Dme_M5 are included

H Cnidarian Hes 0,69 55 0,69 8 sequences 8 sequences 8 sequences

I Lophotrochozoan Hes group 1 0,9 1 _ 13 sequences 13 sequences Not found

J Lophotrochozoan Hes group 2 0,92 6 0,78 6 sequences + Spu-15712 6 sequences + Spu-15712 5 sequences + Spu-15712

K Ecdysozoan Hes group 1 0,93 1 _ 12 sequences including
Dme_Hairy, side and dpn

12 sequences including
Dme_Hairy, side and dpn

Not found

L Deuterostomian Hes group 1 0,97 58 0,98 4 sequences of Danio and
Homo

4 sequences of Danio and Homo 4 sequences of Danio and Homo

M Hes subgroup 0,91 0 _ 48 sequences including
Lophotrochozoan Hes

48 sequences including
Lophotrochozoan Hes

Not found

groups 1 and 2, Ecdysozoan
Hes group 1,

groups 1 and 2, Ecdysozoan
Hes group 1,

Cnidarian Hes and
Deuterostomian Hes group 1

Cnidarian Hes and
Deuterostomian Hes group 1

R Hes subgroup 2 0,76 1 _ 39 sequences including E(spl) 39 sequences including E(spl) Not found

Hes/Hey-related genes partial dataset was analyzed both with maximum likelihood (ML) and Bayesian algorithms. Node supports were tested by approximate likelihood ratio test (aLRT) (0 to 1) and bootstraps (0 to
100) for ML, and with posterior probabilities (PP, 0-1) for Bayes; results were provided in this table. Node names and descriptions correspond to the nodes of Figure 3. Comments on clade for all analyses are provided,
when relevant.
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Figure 4 Alignments of protein conserved motifs/domains for three Hes-related families. (A) Hey family conserved motifs/domains. Above
the basic helix-loop-helix (bHLH) and Orange domains, three conserved motifs/domains are proposed: MKRXX, DAHA, KPYRPWGXEXGAF/Y. Red
lines indicate a specific glycine in the 6th position of the bHLH domain that can be considered as a molecular signature of Hey family. Brackets
around dots indicate that the alignments were artificially cut for a more aesthetic representation. (B) Stich family conserved motifs/domains.
Above the bHLH and Orange domains, four new conserved motifs/domains are proposed: XRDP, YHFKX, FALHX, HPISIX. (C) Dec family conserved
motifs/domains. Above the bHLH and Orange domains, two new conserved motifs/domains are proposed: EDXKD and PXLYPG.
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which could represent the ancestor of Hes WRPW domain.
These points highlight the fact that a unique representative
species of a large phylum is not sufficient and can lead to
erroneous evolutionary interpretations.
The Hey family [2] is present in all metazoan lineages

included in these analyses. This family is characterized
in addition to bHLH and Orange domains by an N-
terminal motif named MKRXX, while shorter than the
motif 1 previously proposed [6], by an extended well-
conserved C-terminal motif, 13 amino-acid-long, renamed
KPYRPWGXEXGAF/Y and another short motif (7 aa) lo-
cated between the bHLH and Orange domains named
DAHA. Finally, we observed that a specific glycine is
found only in Hey sequences, in the 6th amino acid
position of the bHLH domain and can be considered as
a molecular signature of Hey (Figure 4A). Our trees are
compatible with the presence of a single Hey gene in
the last metazoan, eumetazoan and bilaterian ancestor
and a single gene has been retained in many metazoan
species.
The previously poorly-defined Helt family [6,88] encom-

passes 12 members of Deuterostomes, Lophotrochozoa,
Cnidaria, Placozoa and Porifera but surprisingly no
Ecdysozoa. This family named HESL in a previous study
[6] was supposed to be composed of eumetazoan repre-
sentatives only. The presence of sponge and placozoa
sequences within this family rejected this hypothesis.
This robust clade, in our phylogenetic analyses, is not
supported by any discrete molecular signature. Never-
theless, intron numbers and positions are conserved in
Placozoa, Cnidaria, Lophotrochozoa and Deuterostome
representative species, except for B. floridae sequences.
In others, the first intron is found just before the bHLH
domain, the 2nd, inside the bHLH, and the third be-
tween the bHLH and the Orange domains. Trichoplax
sequence harbors a supplementary intron in the Orange
domain (data not shown). Trees are compatible with the
existence of a single Helt gene in the last metazoan,
eumetazoan and bilaterian ancestor. This Helt gene has
been secondarily lost in an ecdysozoan ancestor as well
as an annelid ancestor.
The new Stich (named after the fruit fly gene Sticky ch1)

family forms a robust clade of protostomes sequences
only, which has never been identified in previous studies
[6]. Detailed analyses of those nine sequences revealed the
presence of four specific conserved motifs shared by all
sequences (except for the first one) in addition to the clas-
sical bHLH and Orange domains (Figure 4B). We named
XRDP the first Stich-specific motif, 9 amino-acid long,
and located just in front of the bHLH. This motif seems to
be absent from two sequences (Phu134640 and Tca12119)
but as those sequences are incomplete in the N-terminal
part (Figure 4B) we cannot exclude that their absence is
due to an imperfect genome annotation. The second
motif, named YKFKX is 14 aa long and is located be-
tween the Orange domain and the C-terminal part of
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the protein. The third Stich motif is longer (27 aa) and also
located between the Orange domain and the C-terminal
part of the protein. We named it FALHX while three
sequences do not harbor exactly this motif (especially
the Pinctada sequence). The fourth and last specific
motif of the Stich family is located in the C-terminal
part. Composed of 12 aa and named HPISIX, it is found
in all sequences except the shorter Lottia sequence. Intron
numbers and positions are not conserved among Stich
sequences (data not shown). Trees are compatible with a
single Stich gene having been present in the last proto-
stome ancestor and a single gene is present in most of its
extant protostome descendants.
The Dec family was already known and supposed to be

composed of chordate representatives as well as a Dros-
ophila sequence, although no phylogenetic data support
this last point [6]. Furthermore, two diagnostic motifs
named motifs 2 and 3 have been proposed by Zhou et al.
[6]. Our phylogenetic analysis revealed that the Dec family
is specific to chordates solely and while the motifs 1 and 2
are indeed found in the vertebrate members, they are
clearly not conserved in the Branchiostoma sequence. We
nevertheless found two short specific motifs of 9 aa,
EDXKD and PXLYPG, respectively in the N-terminal and
C-terminal parts of the proteins, that are diagnostic of
Dec members (Figure 4C). Intron numbers and positions
are almost totally conserved; with little variation for the
Branchiostoma protein. Indeed, all of them have a first in-
tron in the non-conserved N-terminal part of the protein,
the 2nd intron is found in the middle of the newly de-
scribed EDXKD motif, and the 3rd one is in the middle
of the bHLH domain. For the chordate sequence, the
4th intron is located between the bHLH and the
Orange domain, while is it inside the Orange domain
in the Branchiostoma protein (that also possesses a
supplementary 5th intron) (data not shown). One Dec
gene was present in the last common ancestor of
chordates.
The numbers of genes for each species in each gene

clade reveals contrasting situations (Table 3). In a majority
of metazoan species, a single gene was found in each spe-
cies for the Hey, Helt and Stich clades. This is compatible
with the hypothesis that a single gene was present in the
metazoan (Hey, Helt) or protostome (Stich) last common
ancestor. One exception is the presence of three Hey
paralogues in vertebrates Homo and Danio, presumably
the result of the double whole genome duplication (2R)
postulated in a vertebrate ancestor. By contrast, the number
of Hes genes is extremely variable, ranging from one single
gene in the sponge Oscarella, the placozoan Trichoplax,
the cnidarian Hydra, the deuterostome Saccoglossus, the
ecdysozoan Caenorhabditis, and the spiralian Schmidtea to
11 in the cnidarian Nematostella, 11 in the ecdysozoan
Drosophila, 13 in the spiralian Platynereis and no less than
22 in the deuterostome Danio. This indicates that the evo-
lution of the Hes family in each of four big animal clades
(cnidarians, spiralians, ecdysozoans and deuterostomes)
has been complex with numerous independent gene
duplications, or numerous gene losses, or a combination
of both phenomena.
Our exhaustive analyses of Hes superfamily in a broad

variety of metazoan organisms, especially lophotrochozo-
ans and non-bilaterians ones, allow us to grasp the early
evolutionary history of this group. Indeed, our phylogen-
etic data, in opposition to precedent statements [6], clearly
show the presence of three pan-metazoan families (Hes,
Hey and Helt) that we inferred from the presence of indis-
putable Hes, Hey and Helt orthologs in sponge species,
(considering that sponges are the sister group to all other
metazoan species [84]). Stich members are specific to the
protostomes indicating a likely appearance of the Stich
family in the direct ancestry of this lineage. While this
is less parsimonious, the Stich family could have been
already present in Urbilateria (the bilaterian common
ancestor) and lost in the deuterostomes. Urbilateria
possessed at least 3 Hes/Hey related genes (Hes, Hey and
Helt).

Multiple Hes gene independent duplications in many
metazoans
The Hes family is composed of a high number of Hes
sequences; with a great variability in the number of genes
found in metazoan species (Table 3) from one in the
enteropneust Saccoglossus to 22 in the vertebrate Danio;
more than 60 of these genes are found in a clade of rela-
tively short branched taxa (Figures 2 and 3, M node).
Many more derived sequences, with longer branches are
found in a second, poorly supported clade, R.
As already observed on a smaller scale [6], in both

clades, genes tend to be grouped into lineage-specific
clades. In the clade M, a big clade of ecdysozoan genes
(K or K’), a large clade of deuterostome genes (L), two
groups of lophotrochozoan genes (I and J) and robust
clades of cnidarian genes (H and H’) are found. Sponge
and Placozoa representatives are grouped together. Six of
the Platynereis Hes genes: Pdu-Hes1, Pdu-Hes3, Pdu-Hes4,
Pdu-Hes5, Pdu-Hes6, Pdu-Hes8 are found in the lophotro-
chozoan clades I and J. The other part of Hes subfamily
clade (poorly supported clade R) contains diverse diver-
gent sequences notably the Enhancer of split complex
members that are grouped together (nodes G, with two
Drosophila sequences excluded in the partial dataset).
Large cnidarians and lophotrochozoan-specific clades
(nodes N and O) are also found, with four derived Platy-
nereis sequences (Pdu-Hes10 to 13) within the latter.
Such phylogenetic relationships tend to indicate the

presence of a limited number of ancestral genes and a
large number of independent gene duplications in various



Table 3 Classification of the 208 Hes/Hey-related sequences identified in 24 metazoan species

Species names Number of sequences

Hes Hey Helt Stich Dec Unknown Total

Amphimedon queenslandica 0 1 0 0 0 1 2

Oscarella chimeric 1 1 1 0 0 3 6

Trichoplax adhaerens 1 1 1 0 0 0 3

Mnemiopsis leidyi 3 0 0 0 0 0 3

Nematostella vectensis 11 1 1 0 0 0 13

Acropora digitifera 7 1 2 0 0 0 10

Hydra magnipapillata 1 0 0 0 0 0 1

Capitella teleta 6 2 0 1 0 0 9

Lottia gigantea 11 1 1 1 0 0 14

Helobdella robusta 9 1 0 0 0 0 10

Platynereis dumerilii 13 1 0 1 0 0 15

Pinctada fucata 8 1 1 1 0 0 11

Schmidtea mediterranea 1 1 0 0 0 0 2

Daphnia pulex 5 1 0 1 0 0 7

Drosophila melanogaster 11 1 0 1 0 0 13

Pediculus humanus 5 1 0 1 0 0 7

Ixodes scapularis 4 1 0 1 0 0 6

Tribolium castaneum 6 1 0 1 0 0 8

Caenorhabditis elegans 1 0 0 0 0 0 1

Danio rerio 22 3 1 0 2 0 28

Homo sapiens 7 3 1 0 2 0 13

Strongylocentrotus purpuratus 4 1 0 0 0 0 5

Saccoglossus kowalewski 1 1 1 0 0 3 6

Branchiostoma floridae 9 1 2 0 1 2 15

Total 147 26 12 9 5 9 208

All of them were assigned to a particular sub-family following phylogenetic analysis. Numbers of representatives for each sub-family for each species are detailed.
Definitions of the sub-families are provided in the text.
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lineages. Strong evidence of such gene duplications is the
persistence of chromosomal gene linkages, indicative of
tandem duplications. We checked chromosome locations
and genetic linkages for species that present specific dupli-
cations and from which those data are available (that is, 2
Cnidaria, 3 Lophotrochozoa, 5 Ecdysozoa and 4 Deutero-
stomes) and have detailed the start and end positions of
the genes in the scaffold as well as the gene strand, in
Additional file 2. We found the presence of one or more
clusters of Hes genes in all the 14 species genomes ex-
plored (Figure 5). In all but two species (S. purpuratus and
H. sapiens), the phylogenetically related genes are also
clustered and so physically linked. This situation is espe-
cially obvious in cnidarians where two clusters of two and
three genes were found in Acropora and two clusters of
two and six genes in Nematostella. For Acropora, all the
clustered genes are phylogenetically related while only 6
on 8 Nematostella genes are. In Capitella teleta, three
clusters were found and surprisingly one corresponds to
Hey genes. This is the only case of a non-Hes tandem
duplication. In the two other lophotrochozoans, several
clusters of three and four genes were found. As already
described, clustered genes are also found in the Ecdy-
sozoans E(Spl) complex [7], in the amphioxus [52,53]
and in zebrafish [6]. A sea urchin complex of two Hes
genes that are not phylogenetically related was found,
but the Spu-21608 sequence placement in the tree
among lophotrochozoa is doubtful. Another argument
in favor of this hypothesis is provided by the parsimony
reconstruction of the character number of Hes genes
(based on a theoretical metazoan tree [84]) analysis
(Additional file 3, A). From the observed pattern, we
conclude in favor of the presence of one ancestral gene
that underwent several lineage specific duplications.
Gene losses may also have occurred but cannot be inferred
precisely.
Can we thus reconstitute an ancestral number of Hes

genes in the last metazoan, eumetazoan and bilaterian



Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 Genomic clustering of the Hes superfamily genes in diverse metazoan representatives. Blue dots correspond to Hes/Hey-related
genes (name mentioned above); orange squares represent non-Hes/Hey-related intervening genes; grey dots indicate non-Hes E(spl) members
(name mentioned above), green lines represent microRNA. Boxes follow the same color code as in phylogenetic trees (Figures 2 and 3): cnidarians
are in blue, lophotrochozoans are in purple, ecdysozoans are in orange and deuterostomians are in green. Physical linkages between Hes/Hey-related
genes are found in each of these major lineages, with two to six clustered genes.
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ancestors? Given the relatively low significance of phylo-
genetic resolution in the Hes clade, any proposal will
remain tentative. We however propose that a single Hes
gene may have been present in the metazoan ancestor and
one or possibly two in the eumetazoan and bilaterian an-
cestors. These ancestral genes underwent numerous gene
duplications in several, but not all, metazoan lineages
(Additional file 3, A). The fact that species-specific clades
exist also revealed that some of these duplications are
recent, as highlighted in the zebrafish [6], amphioxus [53]
but also in Helobdella and Lottia, and presumably Platy-
nereis genomes. The presence of a single indisputable Hes
gene, in the sponge Oscarella, embedded in the short
branch clade M, is a clear new indication that the family
originated in a metazoan ancestor. The grouping of a large
number of cnidarian genes in a common clade (H) and
the confirmation by chromosomal linkage that many of
these genes are the results of tandem duplications in the
Nematostella and Acropora genomes, indicate that these
genes originate from a single ancestral gene. The presence
of grouped cnidarian genes in the second long branch
clade (R) together with representative of genes of all
bilaterian clades suggest the presence of a second Hes
gene, related to the enhancer-of split cluster genes of
Drosophila. This clade is persistent when eliminating
the sequences without Orange domain from the data-
set but remains composed of genes evolving signifi-
cantly faster than those of clade M. The grouping of
genes of all bilaterian phyla in clade L, with the excep-
tion of a few presumably more derived annelid and
echinoderm genes, is indicative of a single short-
branch Hes in the bilaterian ancestor. A second clade
of enhancer-of-split bilaterian genes is also present in
both trees, supporting a putative second Hes gene. This
clade is again composed of fast-evolving sequences, and
comprises, surprisingly, ctenophore genes. It is therefore
more questionable.
We conclude from the combined results of phylogenetic

analyses and genomic organization that Hes superfamily is
divided into five families, three of them being already
present as a single gene in the urmetazoan (Hes, Hey and
Helt). The evolution of the Hes family has been shaped by
many independent lineage specific tandem duplication
events. Is this situation often found in the gene family or
is it highly unusual? We made parsimony reconstruction
of the evolution of the character, number of gene copies,
among more than 40 bHLH families (Additional file 3 B,
C and D and data not shown). Those analyses revealed
that the Hes family duplication rate is drastically superior
compared to all other families. Thus, the presence of large
numbers of Hes genes in a number of animal species rep-
resents a form of evolutionary convergence.

Platynereis Hes superfamily members involved in two
major, potentially ancestral, developmental processes:
neurogenesis and segment addition
The unusual evolutionary history of the Hes family
described above leads us to question when the multiple
functions of Hes genes have been acquired during
metazoan evolution and how these functions evolved.
For that purpose, we monitored expression patterns of
the lophotrochozoan Platynereis Hes/Hey-related genes at
five different embryonic developmental stages (early,
mid and late trochophore, metatrochophore and early
nectochaete), and also during juvenile posterior elong-
ation when new segments are added sequentially. The
overall morphologies of the studied stages are shown in
Additional file 4. Two of the analyzed genes: Pdu-Hes7
and Pdu-Hes9 show none or very weak and ubiquitous
expressions at all studied stages (not shown). We inves-
tigated the presence of those two Pdu-Hes genes in six
different transcriptomic databases (available with restricted
access at http://4dx.embl.de/platy/). We found the pres-
ence of Pdu-Hes9 exclusively in a 454 cDNA library ob-
tained from juvenile heads. Pdu-Hes9 appeared thus as
an adult specific regulator, which is congruent with our
non-conclusive in situ hybridization experiments on
embryonic stages. Pdu-Hes7 is found in two of the six
transcriptomic databases and is thus presumably none
or weakly expressed in the studied stages. Nevertheless,
we cannot exclude the fact that technical limitations
have prevented us from accessing a weak or very tran-
sient expression. These two genes will not be further
described. Pdu-Hes11 and Pdu-Stich expression pat-
terns were obtained only at 72 hpf (Additional file 5).
Expression patterns for relevant stages, as well as their
schematic representations for Pdu-Hes1, Pdu-Hes2,
Pdu-Hes3, Pdu-Hes4, Pdu-Hes5, Pdu-Hes6, Pdu-Hes8,
Pdu-Hes10, Pdu-Hes12, Pdu-Hes13 and Pdu-Hey are
provided in Figures 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16
respectively. Detailed descriptions of those expression
patterns are provided in the figure legends.

http://4dx.embl.de/platy/


Figure 6 Expression patterns of Pdu-Hes1 and their schematic representations in Platynereis larvae and during posterior elongation
(PE). Whole-mount in situ hybridizations (WMISH) for the different stages indicated on each panel are shown. Pdu-Hes1 is first expressed in ectodermal
columns at 24 h post fertilization (hpf) then restricted to the midline and segment epidermis lateral cells that form a more or less continuous line in
each segment at 48 and 72 hpf. During PE, Pdu-Hes1 is still expressed in the midline and the whole segment epidermis, (while more intensively at the
segment boundaries and borders), but also in the ectodermal segment addition zone (SAZ) and at the basis of the anal cirri. In the dorsal part, its
expression is in the form of broad stripes but some distance away from the SAZ, therefore in maturing segments. For the larvae, panels are ventral
views (anterior is up). Expressions patterns during PE are shown for both sides (anterior is up), V = ventral, D = dorsal.
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Developmental expressions of Platynereis Hes/Hey-genes
suggest an involvement in nervous system patterning
All 13 Hes/Hey-related genes for which we obtained ex-
pression data for are expressed in cells that are crucial
for the formation of the central and peripheral NS. These
include widely distributed territories, such as the ventral
midline, the ventral nerve cord (VNC), the PNS and
some brain cells (Table 4). The midline corresponds to



Figure 7 Expression patterns of Pdu-Hes2 and their schematic representations in Platynereis larvae and during posterior elongation
(PE). Whole-mount in situ hybridization (WMISH) for the different stages indicated on each panel is shown. Pdu-Hes2 is first expressed in two
lateral ectodermal patches at 24 h post fertilization (hpf) and expands broadly in the 12 chaetal sacs, and in few cells of the brain at 48 hpf. At 72
hpf its expression is restricted to the dorsal segment addition zone (SAZ) located between the third segment and the pygidium (expressions in
the silk glands, indicated by an asterisk, are an artifact). During PE, Pdu-Hes2 is expressed very early, in the future chaetal sacs of each segment, in
a ring-like shape, corresponding to the follicular cells of the follicles (that compose the chaetal sacs) with the deeper seating cells, the chaetoblasts, not
stained. When chaetae protrude, the expression is in a larger spot at the basis of chaetae. Panels are ventral views (anterior is up) for the larvae and
during PE.
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a specialized population of cells that demarcate the
plane of bilateral symmetry between the two halves of
the neurectoderm. This is the place where the edges of
the proliferating trunk ectoderm meet and fuse during
gastrulation [89]. We observed that Pdu-Hes1, Pdu-Hes6,
Pdu-Hes8 and Pdu-Stich are expressed there (Figures 6,
11, 12 and Additional file 5). Previous studies reported the
specific expression of several genes in the larvae ventral
midline cells such as slit, sim and netrin [90] but also a
wnt gene (Wnt 4, [57]), two upstream regulators of the
core PCP proteins (fat and four-jointed, [91]) and a micro-
RNA (mir92, [92]). In Drosophila, m3, m7, mγ, and mδ
(E(spl) genes) are specifically expressed in the embry-
onic midline and m7 transcripts are present in the
midline until the condensation of the nerve chord [93].
It has been shown that the ventral midline of protostomes
is homologous to the floor plate (FP) of vertebrates, thus,
in mouse, Hes1 is present in the FP cells that are mor-
phologically specialized cell populations at the ventral
midline of the neural tube [94]. Consistent with the
non-neurogenic property of FP cells, persistent expression
of Hes1, which suppresses proneural gene expression, is
required for the establishment of FP cell fate in mouse
[95]. Functionally, the structure serves as an organizer
sending a ventralizing signal to the neural tube, as well as
to guide neuronal positioning and differentiation along
the dorsoventral axis of the neural tube. Recently, it was
proposed that Platynereis ventral midline may also act as
an organizing center, which produces signals important
for neuron production and the proper scaffolding of the
VNC [91].
In the early neurectoderm, five Hes/Hey-related genes

(Pdu-Hes3, Pdu-Hes10, Pdu-Hes12, Pdu-Hes1 and Pdu-
Hey) are active in neurogenic cells distinct from the
midline cells (Figures 8, 13, 14, 15 and 16). Among
them, Pdu-Hes3 and Pdu-Hes10 are exclusively expressed
in the VNC during PE (Figures 8 and 13) in opposition
to Pdu-Hes12 only found in the neurectoderm at 48 hpf
(Figure 14). Pdu-Hes1 is active in both the early and late
neurectoderm with an expression in bilateral columns,



Figure 8 Expression patterns of Pdu-Hes3 and their schematic representations in Platynereis larvae and during posterior elongation (PE).
Whole-mount in situ hybridization (WMISH) for the different stages indicated on each panel is shown. In the 48 and 72 h post-fertilization (hpf) trochophore
larvae, Pdu-Hes3 is expressed in the mesoderm of the (presumptive) parapodia. During PE, Pdu-Hes3 expression covers the exterior borders of the ventral
nerve cord (VNC), with a more large and intense expression in the VNC of the segments recently produced by the segment addition zone (SAZ). Pdu-Hes3
is also expressed in ectodermal patches at the basis of the chaetae. Panels are ventral views (anterior is up) for the larvae and during PE.
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in addition to the midline, as well as in intersegmental
stripes in the prospective VNC only, that persists as VNC
ganglia differentiate (Figure 6). During PE, we observed
that expressions of both Pdu-Hes13 and Pdu-Hey, are
maintained in the ganglions of the VNC of maturing
Figure 9 Expression patterns of Pdu-Hes4 and their schematic represen
Whole-mount in situ hybridization (WMISH) for the different stages indicated
is expressed predominantly in two columnar brain cells in the dorsal part of t
parapodia. At 72 hpf, an intense expression is found in the developing cone-s
this gene is broadly expressed in the segment epidermis of well-developed s
well as the dorsal blood vessels. For the larvae, panels are ventral views (anter
(anterior is up), V = ventral, D = dorsal. Deeper ventral view (different focus pla
segments, suggesting that those genes, also involved in
later neurogenesis, mark differentiated neurons or neu-
rons in the course of differentiation. As these expressions
are highly restricted compared to the Elav pattern [90], a
marker of the whole VNC, we suggest that those genes are
tations in Platynereis larvae and during posterior elongation (PE).
on each panel is shown. From 33 to 48 h post fertilization (hpf), Pdu-Hes4
he larvae, in the stomodeum and in the mesoderm of the (presumptive)
haped midgut and mesodermal segment addition zone (SAZ). During PE,
egments (in the ventral side), in the midline, in the ectodermal SAZ as
ior is up). Expressions patterns during PE are shown for both sides
ne) is highlighted in red for 33hpf larvae.



Figure 10 Expression patterns of Pdu-Hes5 and their schematic representations in Platynereis larvae and during posterior elongation
(PE). Whole-mount in situ hybridization (WMISH) for the different stages indicated on each panel is shown. From 24 to 72 h post fertilization
(hpf), Pdu-Hes5 is expressed in mesodermal lateral blocks. It is first restricted to the future segments at 48hpf, and then extends to the back of the
embryos and the mesodermal segment addition zone (SAZ) at 72 hpf. The brain, stomodeum and the developing cone-shaped midgut cells also
expressed Pdu-Hes5 respectively at 48 and 72 hpf. During PE, Pdu-Hes5 expression is found in both the mesodermal and ectodermal SAZ, and
extended to the segment epidermis and in mesodermal stripes at the anterior part of segments. For the larvae, panels are ventral views (anterior
is up), excepted for a 72-hpf picture and schema. Expressions patterns during PE are shown for both sides (anterior is up), V = ventral, D = dorsal.
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expressed in a sub-population of neurons or neurons in
differentiation of the VNC.
In the brain, 10 Hes/Hey-related genes are active in

rather small specific subsets of cells. With the term
brain, we refer here to the cells that occupy the dorsal
half of the episphere of Platynereis larvae [96] and take
part in the formation of the worm prostomium. Most
Pdu-Hes are expressed in pairs of columnar cells in the
dorsal part of the episphere of the larvae (Figures 9, 10,
11, 12, 13, 15, 16, and Additional file 5). Most of these
expressions in pairs of columnar cells look similar, but
we cannot establish whether the same cells expressed
several Hes genes. As the precise characterization of the
cells that express those genes is not the main focus of
our study, we did not detail further these expressions.
We nevertheless noticed that such precise Hes/Hey-re-
lated expressions in brain are also observed in several
other organisms, such as deadpan in the drosophila [97].
Similarly, in zebrafish, several Hes-related genes (Her3,
Her5, Her11 [12]) are known to be expressed in the brain,
specifically in the midbrain-hindbrain boundaries they
contributed to form. Above those expressions in the
central nervous system ((CNS): VNC and brain cells),
one Hes (Pdu-Hes10) is also expressed in disparate
unknown cells that also do not harbor a precise bilateral
pattern and that could possibly be precursors of sensory
cells of the PNS (sensory organs and neurons) (Figure 13).
One of the striking features of this study is that all

Hes/Hey-related genes from which we obtained expres-
sions are found in one or more cells/tissues/structures
related to the NS patterning. Nevertheless, their expres-
sions are often specific to a category of cells. Indeed, few
genes found in the VNC or PNS are also expressed in
brain cells. Notably, the Hes/Hey-related genes expressed
in the ventral midline cells are almost never expressed
in the VNC or PNS. This last point is in accordance to
previous results showing that midline markers are never
expressed in neurectoderm, suggesting a non-neurogenic
property of Platynereis midline cells, similar to the FP
cells. Those results may also suggest the involvement
of a combinatorial code of Hes/Hey-related genes in
the Platynereis NS patterning. In the annelid Capitella
teleta, three Hes genes (of the six we identified, Table 3)
have been previously studied and two of them (CapI-Hes2



Figure 11 Expression patterns of Pdu-Hes6 and their schematic representations in Platynereis larvae and during posterior elongation (PE).
Whole-mount in situ hybridization (WMISH) for the different stages indicated on each panel is shown. Pdu-Hes6 is first expressed in ectodermal patches
at 24 h post fertilization (hpf) then restricted to the midline, the stomodeum, two brain cells in the dorsal side and ectodermal lateral cells that form a
more or less continuous line in each segment of the 48-hpf larvae. At 72 hpf its expression is greatly reduced and only concerns the midline plus
minor patches in each segment. During PE, Pdu-Hes6 is still expressed in the midline, but also in the ectodermal segment addition zone (SAZ) and in
the whole segment epidermis. Expression in both the dorsal and ventral segment epidermis is in a striped fashion, with more intensive expression in
the borders and boundaries of the segments. For the larvae, panels are ventral views (anterior is up). Expressions patterns during PE are shown for both
sides (anterior is up), V = ventral, D = dorsal. Deeper ventral view (different focus plane) is highlighted in red for 48hpf larvae.
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and CapI-Hes3) are localized in a small part of the de-
veloping brain in larvae and in the forming ganglia of
the VNC of juveniles [47]. CapI-Delta and CapI-Notch
expression patterns in the larvae and juvenile are rem-
iniscent of CapI-Hes2 and CapI-Hes3 ones, except for
CapI-Delta, absent in the VNC of the juvenile. Due to



Figure 12 Expression patterns of Pdu-Hes8 and their schematic representations in Platynereis larvae and during posterior elongation
(PE). Whole-mount in situ hybridization (WMISH) for the different stages indicated on each panel is shown. Pdu-Hes8 expression is mainly restricted to
the ectodermal cells, in lateral patches in the episphere and hyposphere of the 24hpf post fertilization (hpf) larvae. At 48 and 72 hpf, its expression is
reduced in minor patches in each segment and in the stomodeum, plus brain cells and mesodermal segment addition zone (SAZ) cells at 72 hpf.
During PE, Pdu-Hes8 is expressed in the midline, and also in the whole segment epidermis, in the ectodermal SAZ and at the basis of the anal cirri.
Expression in both the dorsal and ventral segment epidermis is in a striped fashion, with more intense expression in the borders and boundaries of
the segments. For the larvae, panels are ventral views (anterior is up). Expressions patterns during PE are shown for both sides (anterior is up),
V = ventral, D = dorsal.
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the pivotal role of Hes/Hey-related genes in vertebrate
and arthropod neural development in regulating prolif-
eration, differentiation and specification of neural stem
cells in a Notch-dependent manner, results observed in
Capitella may reinforce the view of an ancestral func-
tion of the Notch signaling pathway in patterning the



Figure 13 Expression patterns of Pdu-Hes10 and their schematic representations in Platynereis larvae and during posterior elongation
(PE). Whole-mount in situ hybridization (WMISH) for the different stages indicated on each panel is shown. Pdu-Hes10 is expressed in several brain
cells from 33 to 72 h post fertilization (hpf), as well as in the stomodeum, disparate ectodermal cells (48 hpf) and gut cells (72 hpf). Pdu-Hes10 has
a salt and pepper expression pattern in the ventral nerve cord (VNC), plus an expression in disparate unknown cells of the forming parapodia,
possibly corresponding to sensory or peripheral nervous system cells. Panels are ventral views (anterior is up) for the larvae and during PE.
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NS of bilaterians. But the situation is maybe not so
simple, as in Platynereis, neither Notch nor Delta seems to
be expressed in cells, tissues or structures related to the
NS (Gazave and Balavoine, Notch signaling in the annelid
Platynereis, in preparation). Thus the 13 Hes/Hey-related
genes of Platynereis that appears to be involved in neuro-
genesis may act in a Notch-independent manner and the
nature of their regulators is still a totally open question.

Platynereis genes expression patterns support an implication
in segmentation processes
Among the 13 Hes/Hey-related genes from which we
obtained precise expression data, seven are localized in
structures (SAZ), patterns (expression in stripes) or ter-
ritories (segment epidermis) that suggest an involvement
in the process of segment formation (Table 4, Additional
file 5). The segmentation process can be virtually divided
into three major steps in both arthropods and verte-
brates and presumably in annelids: the axis growth, the
specification of a segmental periodicity and the axial
patterning of individual segments. In Platynereis, the
first step, the production of an elongated anterior-posterior
axis, relies on the presence of both ectodermal and
mesodermal stem cells, called teloblasts, in a specific
ring-shaped posterior zone: the SAZ [82]. During poster-
ior elongation, six Hes genes (Pdu-Hes1, 2, 4, 5, 6 and 8)
are expressed in a 1- to 3/4-cell-wide ring of ectodermal
cells, immediately anterior to the pygidium, in the SAZ
(Figures 6, 7, 9, 10, 11 and 12). The ring, most clearly
visible on the dorsal side of the worms, extends to their
ventral face but is in most cases interrupted in the
ventral-most part of the ectoderm, as illustrated by the
pattern of Pdu-Hes2 (Figure 7). This ring-like expression
is similar to what is observed for several genes already de-
scribed in ectodermal teloblast-like cells [65,82]. Pdu-Hes5
is not restricted to this ring-like ectodermal expression
but is also expressed in a ring-like group of posterior
mesodermal cells located immediately anterior to the py-
gidium boundary, in the ventral side (Figure 10). Several
genes that are expressed in the ectodermal SAZ during
PE, are also found in a group of internal cells located at
the border between the 3rd chaetigerous segment and the
forming pygidium at 72 hpf (Pdu-Hes4, 5, 8 and 11;
Figures 9, 10, 12 and Additional file 5), or in a ring-like
fashion, on the dorsal ectoderm only (Figure 7). These
internal cells, first reported by Rebscher et al. [98,99]
as forming a prospective mesodermal posterior growth
zone are thought to be derived from the primary meso-
blasts of the 4d lineage. Gazave et al. [82] provided ex-
pression data for these cells, for more than 20 genes
(mainly RNA-binding proteins and transcription factors)
involved in the formation, behavior, or maintenance of



Figure 14 Expression patterns of Pdu-Hes12 and their schematic representations in Platynereis larvae and during posterior elongation
(PE). Whole-mount in situ hybridization (WMISH) for the different stages indicated on each panel is shown. At 33 h post fertilization (hpf),
Pdu-Hes12 is expressed in two large lateral patches that become restricted in a weak expression in the ventral nerve cord (VNC) and around the
stomodeum at 48 hpf. At this stage, as well as during PE, this gene is also expressed in a single cell at the bottom of each chaetal sac. An expression
in the stomodeum is also evidenced at 48 and 72 hpf. Panels are ventral views (anterior is up) for the larvae and during PE. Deeper ventral view
(different focus plane) is highlighted in red for 48-hpf larvae.
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stem cells in other metazoan organisms. These cells are
proliferative, correspond most probably to the mesoder-
mal component of the prospective SAZ and at least a part
of it comprises stem cells [82]. Thus, those Pdu-Hes ex-
pressions are very similar to what we have reported before,
both at 72 hpf and during PE, suggesting that they are
expressed in posterior ecto and/or meso teloblast-like
stem cells of the SAZ, involved in the PE process. Although
PE also occurs in some groups of non-segmented animals,
this process has been so far mainly described in seg-
mented bilaterian animals, many of which form most of
their body axis through the sequential posterior addition
of segments [100].
Interestingly, for one gene, Pdu-Hes5, expression is

not only restricted to the ecto and mesodermal cells of
the SAZ, but continued in mesodermal stripes, well before
any trace of segmentation is visible (Figure 10). These
stripes are persistent in differentiating segments and posi-
tioned in the anterior part of each segment. These meso-
dermal stripes also extend in the lateral sides of the trunk
but are interrupted ventrally and dorsally at the level of
the unsegmented ventral and dorsal vessels, respectively.
A previous study of Platynereis reported the expression of
mesodermal stripes for four genes of the NK family
(Pdu-Msx, Pdu-Lbx, Pdu-Tlx and Pdu-NK1) that have
been proposed to be associated with the segmented
mesodermal epithelia that surround the coelomic cavities
[101]. One of them, Pdu-NK1 is precisely located at the
anterior part of the segment, like Pdu-Hes5. The expres-
sions of those four genes are complementary, covering
most of the mesodermal segments, suggesting that they
might be working in a concerted way to pattern the A/P
polarity of individual mesodermal segments. A similar role
for Pdu-Hes5, whereas no others Hes are expressed in
mesodermal stripes, could be thus also proposed.
Five Hes/Hey-related genes (Pdu-Hes1, 4, 5, 6, and 8)

are also expressed in various patterns in the segment
epidermis of the larvae and/or during PE. These genes
are not expressed in stripes in the vicinity of the SAZ,
but in maturing segments suggesting that they are not
early players in the segmental patterning (Figures 6, 9, 10,
11, 12). These late expressions are probably indicative of a
role in segment differentiation rather than in segment
early patterning.
In this study, we show that seven Hes/Hey-related genes

are expressed in structures related to the segmentation



Figure 15 Expression patterns of Pdu-Hes13 and their schematic representations in Platynereis larvae and during posterior elongation
(PE). Whole-mount in situ hybridization (WMISH) for the different stages indicated on each panel is shown. Pdu-Hes13 is first expressed in four
bilateral patches at 24 h post fertilization (hpf). At 48 hpf, Pdu-Hes13 + cells of the ventral nerve cord (VNC), at the vicinity of the midline, are
observed, in addition to few brain cells and stomodeum cells. At 72 hpf, the expression in cells around the midline, in the stomodeum and in the
brain are maintained or extended (for the brain cells), and an additional expression in the cone-shaped midgut appears. During PE, this gene is
still expressed in cells of the VNC around the midline plus in scattered gut cells. Panels are ventral views (anterior is up) for the larvae and during
PE. Deeper ventral views (different focus plane) are highlighted in red for 48 and 72hpf larvae.
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process. Although five of them are found in two categories
of expression patterns (that is, SAZ and segment epider-
mis), only one gene, Pdu-Hes5, is expressed in both the
ectodermal and mesodermal SAZ but also in mesodermal
stripes and in the segment epidermis. This leads us to
propose that Pdu-Hes5 may be a key element acting
during the axial patterning of Platynereis segments. The
six other Hes/Hey-related genes expressed in structures
related to the segmentation are localized in the teloblasts
of the SAZ. The mitotic behavior of Platynereis teloblasts
is coordinated to a certain degree [82] and they presum-
ably undergo asymmetric divisions as leech teloblasts do



Figure 16 Expression patterns of Pdu-Hey and their schematic representations in Platynereis larvae and during posterior
elongation (PE). WMISH for the different stages indicated on each panel is shown. Pdu-Hey is first expressed in four bilateral patches
at 33 h post fertilization (hpf), two of them being in each side of the ventral midline. At 48 hpf, Pdu-Hey + cells are observed in a
larger territory, surrounding the ventral nerve cord (VNC), in addition to few brain cells, stomodeum cells and mesodermal patches. At
72 hpf, the expression is maintained in brain and stomodeum cells. During PE, Pdu-Hey is expressed in the ganglions of the VNC of
mature segments as well as in specific spots of the dorsal mesoderm. For the larvae, panels are ventral views (anterior is up).
Expressions patterns during PE are shown for both sides (anterior is up), V = ventral, D = dorsal. Deeper ventral view (different focus
plane) is highlighted in red for 48hpf larvae.
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[102]. One can suppose that those genes may be involved
in such cellular processes and so have a role in the
specification of a segmental periodicity. This would be
reminiscent of the vertebrate situation, in which Hes/
Her genes are periodically expressed in a wave-like
fashion in the presomitic mesoderm (PSM) and are
the main elements of the molecular clock that,
through the control of Notch, induce somite forma-
tion [24-26]. A possible involvement of the Notch/
Delta pathway in the segmentation of an annelid has
been previously questioned [47]. During Capitella tel-
eta larval development, neither CapI-Hes1/2/3, nor
CapI-Delta and CapI-Notch are expressed in a striped
pattern, suggesting they are not involved in the forma-
tion of the larval segments. Nevertheless, all of them
are expressed in the mesodermal SAZ during PE of
the juvenile, a fact that can be interpreted in favor of a
role of these genes in the formation of segments dur-
ing PE. In Platynereis, expression pattern during PE of
Notch and Delta are in agreement with such a hypoth-
esis (Gazave and Balavoine, Notch signaling in the
annelid Platynereis, in preparation). If Pdu-Hes5 is a,
direct or not, target gene regulated by the Notch path-
way in this segmentation process is an issue not yet
resolved.
All expressed Hes/Hey-related genes in Platynereis are
involved in diverse organogenesis processes in addition to
segmentation and nervous system patterning
All 13 Hes/Hey-related genes from which we obtained
expression data are expressed in specific organs or
structures, such as chaetal sacs, stomodeum, midgut
and parapodes (Table 4). Thus, Pdu-Hes4, 5, 10, 13 and
Pdu-Stich are expressed in the developing cone-shaped
midgut at 72 hpf (Figures 9, 10, 13 and 15, Additional
file 5), while for Pdu-Hes10 and 13, this expression is
restricted to specific round cells. Ten Hes/Hey-related
genes (Pdu-Hes1, 4, 5, 6, 8, 10, 11, 12, 13 and Pdu-Hey)
are also expressed in the stomodeum of the larvae. Nu-
merous Hes/Hey-related genes are found to be expressed
more or less broadly in the parapodia, of the 72 hpf larvae
and also during PE, in very different ways from one gene
to another (Figures 7, 8, 9, 10 and 16).
Two Hes/Hey-related genes have an intriguing loca-

lization. These are Pdu-Hes2 and 12 that are very specific-
ally and intensively expressed in presumptive chaetal sac
anlagen (Figure 7 and 14). Chaetae are chitinous bristle-
like structures displayed by the annelid parapodes. At 48
hpf, chaetae do not protrude from the epidermal layer but
grow internally in the chaetae sacs. There are 12 chaetal
sacs in the trochophore, two per hemi-segment, located



Table 4 Summary of Platynereis expression patterns during embryonic and post-embryonic development

Segmentation process Nervous system patterning Other organogenesis Others

Figure SAZ Stripes Segment epidermis
patterning

Midline VNC PNS Brain cells Chaetal sacs Stomodeum Midgut Parapodia

Number Ecto Meso Ecto Meso

Pdu-Hes 1 6 x x x 24 hpf: ectodermal columns;
48 hpf: apical organ

Pdu-Hes 1 PE x x x Anal cirri tentacles

Pdu-Hes 2 7 x x x 24 hpf: ectodermal patches

Pdu-Hes 2 PE x x x Ectodermal columns

Pdu-Hes 3 8 x

Pdu-Hes 3 PE x x

Pdu-Hes 4 9 x x x x x

Pdu-Hes 4 PE x x x Blood vessels

Pdu-Hes 5 10 x x x x x

Pdu-Hes 5 PE x x x x x

Pdu-Hes 6 11 x x x x x

Pdu-Hes 6 PE x x x

Pdu-Hes 8 12 x x x x x

Pdu-Hes 8 PE x x x Anal cirri tentacles

Pdu-Hes 10 13 x x x

Pdu-Hes 10 PE x x

Pdu-Hes 12 14 x x x

Pdu-Hes 12 PE x

Pdu-Hes 13 15 x x x x 24 hpf: ectodermal patches

Pdu-Hes 13 PE x Dispersed gut cells

Pdu-Hey 16 x x x x

Pdu-Hey PE x

Platynereis Hes/Hey-related genes are mainly (but not only) expressed in cells, tissues, organs or structures that are related to the patterning of two major developmental processes: segmentation and nervous system
patterning. Hpf, hours post fertilization.
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laterally. In a lateral view, each pair of ventral and dorsal
sacs corresponds to the chaetal sac of the future neuro-
pode and notopode of the parapodia. While Pdu-Hes2
and 12 are both expressed in the same areas corre-
sponding to the chaetal sac, their patterns are different.
Indeed, Pdu-Hes2 is expressed in 12 larges patches cor-
responding to a large proportion of the chaetal sac cells
(Figure 7). In contrast, Pdu-Hes12 expression is restricted
to 12 spots of very few cells, presumably just one (6 groups
in the ventral part and 6 in the dorsal one) (Figure 14) that
sit at the internal tip of the chaetal sac. Morphological and
ultrastructural studies revealed that chaetae emerge
from epidermal follicles that in turn form the chaetal
sacs. Furthermore, each follicle consists of one basal
chaetoblast and several laterally surrounding follicle
cells [103]. As a consequence, it appears that Pdu-Hes2
and 12 are expressed differentially in the different cell-
types of the follicles forming the chaetal sacs, Pdu-
Hes12 being found in a unique cell in each chaetal sac
while Pdu-Hes2 is located in the surrounding follicle
cells. During PE, the situation seems similar, with pre-
cise expression at the basis of the chaetal sac harboring
the already emerged chaetae, for Pdu-Hes12. Pdu-Hes2
is expressed very early during PE, long before the protru-
sion of the chaetae, in the recently produced segment.
Expression of annelid Hes in the chaetal sac was previ-

ously reported in Capitella teleta [47]. Indeed, CapI-Hes2
expression coincides with those of CapI-Delta and
CapI-Notch in the presumptive chaetal sacs. Those ex-
pression patterns appear just after the segments form,
and their detection ceases prior to the appearance of
chaetae and suggest a role (direct or not) of the Notch
pathway in chaetogenesis. In Platynereis, Delta and
Notch are also expressed in the chaetal sacs (Gazave and
Balavoine, Notch signaling in the annelid Platynereis, in
preparation) supporting the idea that the involvement
of Notch signaling in chaetal development may be an
ancestral feature, at least, for annelids.

Conclusions
Gene duplication in the Metazoan Hes superfamily:
insights from the Platynereis expression data
Gene duplication is one of the major mechanisms for
the origin of functions of new genes and it is now well-
known that the refashioning of duplicated genes is a
great contributor to the origin of the evolutionary novel-
ties [61]. Taking into account both evolutionary history
of the family and expression data from Platynereis, we
propose here two hypotheses to explain how gene dupli-
cation occurred in the Hes superfamily in metazoan.
One possibility to explain how this family is so prolific

compared to other bHLH family (Additional file 3) is a
high frequency of gene duplication events specifically for
the Hes superfamily - a sort of hotspot of duplication,
that could be explained by the presence of repeated se-
quences or late-replicating regions in the genomic area
of Hes genes, which will raise the recombination rate,
compared to other gene families [104]. Among the very
high number of copies generated by the multiple duplica-
tions, a minority of them will become fixed by selection
[58]. Nevertheless, such a hotspot process should produce
large numbers of gene copies that become pseudogenes.
In the species studied in this analysis we failed to find any
evidence of pseudogeneization, such as in frame stop
codons. Therefore, we cannot conclude that the high
number of gene copies in some lineages lies in a high
frequency of duplications rather than in a high retention
rate of duplicated genes.
As a functionally indistinguishable duplicate has no

chance to be fixed, two main models have been proposed
to explain such a counterintuitive state: the neofunctiona-
lization model and the DDC process [58]. The neofunctio-
nalization model proposes that the accumulation of
neutral mutations in both copies of the duplicated gene
will rapidly cause the appearance of a new function in at
least one of them, and thus a favorable selective context
to retain both copies. However, it seems unlikely that
such a process could by itself explain the multiplicity of
Hes gene copies in some lineages, because this would
also imply the repeated appearance of similar functions
in different lineages. The DDC model relies instead on
the presence of an ancestral gene that carried out pleio-
tropic roles. At first glance, Platynereis Hes genes are
expressed in a variety of cells and territories. A compre-
hensive overview however suggests that they are mainly
involved in three main processes of annelid development:
segmentation, neuron subtype-differentiations and chaeto-
genesis. This is congruent with the presence of an ances-
tral Hes gene carrying a multiplicity of functions. We also
observed three cases of combinatorial patterns of Hes
genes among the Platynereis development. The first one is
revealed by the multiples Hes genes that may be involved
in the NS patterning, the Pdu-Hes expressed in the
midline cells are never expressed concomitantly with
others Hes genes found in the VNC, PNS or brain cells.
Also noticeable is the combination of two Hes genes
(Pdu-Hes2 plus Pdu-Hes12) in the chaetal follicles. The
addition of Pdu-Hes2+ and Pdu-Hes12+ cells exactly
corresponds to most cells of the chaetal follicles. In a
similar way, Pdu-Hes6 and Pdu-Hes8 have comparable
expression patterns, but not strictly identical, suggesting
also a duplication event but more recent. These three
specific cases are arguments in favor of the DDC model
during Hes superfamily evolution. A similar situation
has been previously proposed for the Branchiostoma
Hairy clustered genes [53].
Following this DDC hypothesis, a plausible schematic

representation of expression territories in the multifunction
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ancestral Pdu-Hes is proposed in the Figure 17, as well
as representation of specific patterns for each Platyner-
eis Hes/Hey-related gene. When positioning Platynereis
Hes expression in front of a tree of Platynereis Hes
phylogenetic relationships, an intriguing pattern is re-
vealed. Indeed, all but one genes expressed in territories
related to the segmentation process are grouped to-
gether in a clade constituting the less divergent Hes (see
phylogenetic part of the results and discussion). This
clade also included all but one gene that harbor an
expression in the midline. The more divergent Hes,
which mainly correspond to those that have lost the
Orange domain in the course of evolution are grouped
Pdu-Hes1

Pdu-Hes2

Pdu-Hes3

Pdu-Hes4

Pdu-Hes5

Pdu-Hes6

Pdu-Hes8

Pdu-Hes10

Pdu-Hes12

Pdu-Hes13

Pdu-Hey

Pdu-Stich

Pdu-Hes9

Pdu-Hes7

Pdu-Hes11

Pdu-Hes_ancestralSAZ

Stripes

Segment epidermis

Midline

VNC

PNS

Brain cells

Chaetal sacs

Segmentation Neurogenesis

Chaetogenesis

Stomodeum

Midgut

Figure 17 Scenario of Platynereis Hes/Hey-related genes subfunctionalis
gene. Phylogenetic relationships of Platynereis Hes/Hey-related genes are repr
mapped. Expression patterns related to segmentation process, neurogenesis,
coded in green, pink, yellow, blue and orange. A putative ancestral multifunc
and evolutionary history of Hes/Hey-related genes may be the result of nume
together and are involved mainly in the NS patterning.
Notably, the two markers of chaetogenesis are found in
both clades.
Integrating both phylogenetic and expression data

led us to hypothesize that an ancestral multifunctional
Pdu-Hes gene has undergone duplication-degeneration-
complementation processes, each gene copy ensuring
their maintenance in the genome by subfunctionalisation.
Nevertheless, we cannot totally exclude the possibility
of a certain amount of neofunctionalisation and there-
fore a combination of those two genetic mechanisms
to shape a complex evolutionary history as highlighted
by the Hes superfamily case.
DDC events

ation after duplications from a multifunctional Pdu-Hes-ancestral
esented in a simple tree in front of which expression patterns are
chaetogenesis, in the stomodeum and the midgut are respectively
tional Platynereis Hes-like gene is represented. Present expression patterns
rous duplication-degeneration-complementation (DDC) events.
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A still open question: are the Hes superfamily members
ancestrally regulated by Notch?
Can the Hes/Hey-related genes be considered canonical
target genes of the Notch pathway? As highlighted in
the Introduction, most studies of the Hes/Hey-related
genes have been performed in the context of the analysis
of the Notch signaling pathway. This biased point of
view has led many authors to consider as a general rule
their regulation by the Notch pathway, characterizing
the Hes/Hey-related genes as canonical targets of the
pathway. However, it should be stressed that the HES
proteins, in contrast to Su(H) are not core components
of the Notch pathway, and are used as transcriptional
outputs of the pathway in some but not all Notch-
dependent processes. Also few Notch-independent ex-
pressions and functions have been reported and recent
studies have demonstrated that crosstalk between Notch
and other major signaling pathways, such as fibroblast
growth factor (FGF), bone morphogenetic protein (BMP)
and transforming growth factor (TGF)-β, results in
the regulation of some Hes or Hey genes in a Notch-
independent fashion [10,105]. Thus a systematic regu-
lation of Hes/Hey-related genes by Notch should not
be expected while Hes Notch-independent roles have
been marginally explored so far. As shown in this study,
the last common ancestor of metazoan possessed at least
three Hes/Hey-related genes and the Hes family under-
went a large expansion in the course of the evolution of
each lineage, resulting in the presence of numerous
Hes paralogues in the present species. Unfortunately,
expression and/or functional data are only known for a
very small proportion of them, preventing a detailed
picture of the Hes/Hey-related genes regulation versus
non-regulation by Notch at a metazoan scale. We also
know that the Notch pathway is a metazoan innovation,
presumably already functional in the last common ances-
tor (LCA) [18]. We propose that a regulation by Notch of
Hes/Hey-related genes was already present at the dawn of
metazoan diversity but does not imply that all Hes/Hey-re-
lated genes that frequently appeared during metazoan
evolutionary history retained this regulation. Studying all
the Hes/Hey-related genes repertory of a species, as it was
performed for Branchiostoma [53] and Platynereis (this
study, Gazave and Balavoine, Notch signaling in the
annelid Platynereis, in preparation ) will help to obtain
a more realistic picture of Hes/Hey-related genes and
Notch relationships.
Additional files

Additional file 1: Table S1. Detailed information about the sequences
of Hes/Hey-related genes used in our study. For each sequence, the
species and lineage to which it belongs, the sequence name, the
presence or absence of the main domains (basic helix-loop-helix (bHLH)
and Orange) as well as the genomic localization (when available) are
provided. NR = non relevant, no genomic localization data are available.
Stars indicate the presence of clustered genes located in close genomic
localization, with four genes in the case of Lgi168394c and five genes in
the case of DreHer4c.

Additional file 2: Table S2. Information about the physical linkages
between Hes/Hey-related genes in 14 species among metazoans. In this
table, we report the different Hes/Hey-related genes that are physically
linked for each species, the genomic scaffolds (or chromosome) to which
they belong, their position in these scaffolds as well as their strand.

Additional file 3: Figure S1. Parsimony reconstruction analysis of
character evolution based on a consensus Metazoan phylogenetic tree.
The characters used in this analysis are the numbers of genes per basic
helix-loop-helix (bHLH) family per species. Each character state is mentioned
by a color code. Double-colored branches indicate non-determination
of character state in the branch. The squares below taxon names give
character state in the considered taxon; no square means unknown/
missing data (in this case, character-state in the corresponding branch is
optimized according to character-states in related taxa). A = Hes family:
1 to 22 Hes genes are present in the sampling dataset, the Urmetazoan
presumably possessed one Hes gene and many duplications occurred.
Gene loss is evidenced in one case. B = Hey family: 0 to 3 Hey genes are
present in the sampling dataset, the Urmetazoan presumably possessed
one Hey gene and 1 to 2 duplications occurred in the lineage leading to
Capitella teleta and (Danio Rerio + Homo sapiens) clade only. Gene losses
are evidenced in three cases. C = NeuroD family: 0 to 4 NeuroD genes
are present in the sampling dataset, Urbilateria presumably possessed
one NeuroD gene and duplications occurred in the lineage leading to
(Danio rerio + Homo sapiens) clade. Gene loss is evidenced in one case.
D = Clock family: 0 to 3 Clock genes are present in the sampling dataset,
the Urmetazoan presumably possessed one Clock gene and one to two
duplications occurred in several lineages. Gene loss is evidenced in one
case.

Additional file 4: Figure S2. Schematic drawings of Platynereis dumerilii
general anatomy. Larval developmental stages studied as well as
post-caudal regeneration posterior elongation process are shown.
Those drawings are used in the main figures of the article for an easier
comprehension of the expression patterns. A = 24 h post fertilization
(hpf), ventral view; B = 33 hpf, ventral view, C = 48 hpf, ventral view;
D = 72 hpf, ventral view (focusing on the neurectoderm); D = 72 hpf,
deeper ventral view (focusing on internal structures such as the SAZ);
E = post-caudal regeneration posterior elongation process, dorsal view;
E’ = post-caudal regeneration posterior elongation process, ventral view.
Ac = anal cirri; Ae = adult eye; At = apical tuft; bla = blastopore; ch = chaetae;
Le = larval eye; Mg=midgut; Mid =midline; Para = parapodia; Pt = prototroch;
Py = pygidium; S1 = 1st segment; S2 = 2nd segment; S3 = 3rd segment;
S = stomodeum; SAZ = segment addition zone; Telo = telotroch;
VNC = ventral nerve cord.

Additional file 5: Figure S3. Expression patterns of Pdu-Hes11 and Pdu-
Stich at 72 h post fertilization (hpf). Whole-mount in situ hybridization
(WMISH) for the 72hpf stage is shown. Pdu-Hes11 is expressed in various
brain cells, stomodeum cells and mesodermal patches. In addition
Pdu-Hes11+ cells are also observed in the segment addition zone
(SAZ). Pdu-Stich is expressed in the midline cells, in various brain cells
and mesodermal patches. Panels are mostly ventral views (anterior is
up). A dorsal view (D) is also shown for Pdu-Stich.
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aLRT: approximate likelihood ratio test; bHLH: basic helix-loop-helix; CSL: CBF1,
Su(H): Lag-1; CNS: central nervous system; DDC: duplication-degeneration-
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